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ABSTRACT

We propose and analyze several block iteration preconditioners for the solution of elliptic prob-
lems by spectral collocation methods in a region partitioned into several rectangles. It is shown that
convergence is achieved with a rate which does not depend on the polynomial degree of the spectral
solution. The iterative methods here presented can be effectively implemented on multiprocessor
systems due to their high degree of parallelism.
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INTRODUCTION

We consider the numerical solution of elliptic problems by spectral collocation methods in regions
partitioned into several rectangles (also called subdomains). The interaction between the
subdomains is handled by proper iterative methods.

Such iterative domain decomposition methods are particulary attractive in the context of spectral
approximations. Actually, they allow the reduction of a problem set in a complicated geometry to a
sequence of problems of similar type but with smaller size in every subdomain. The latter can
therefore be faced by standard monodomain spectral solvers. Besides, due to their (hopefully high)
degree of parallelism, these methods can be advantageously implemented on multiprocessor
systems.

To be effective, the rate of convergence of the iterative method should not deteriorate as the
polynomial degree N of the numerical solution in each subdomain increases. This is what we prove
for our method which alternates the solution of Dirichlet problems on the odd subdomains to that of
mixed Neumann-Dirichlet problems on the even ones. Our proof applies to any domain Q
decomposed into rectangles without internal crosspoints, i.c., whose vertices lie on the boundary
of Q (see fig.0.1). In the last section we consider a decomposition with internal cross points; in
this case it is possible to prove the convergence of the iterative method for fixed N, although the
rate of convergence decreases if N increases. This convergence behavior with respect to the
decomposition is shared by other multidomain approaches based on finite elements or finite
differences. We refer, e.g., to [4], [5].
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FIG.0.1 a) Decomposition without internal cross points b) Decomposition with an internal cross
point

The results we obtain generalize those of [15] which were established with a different proof
technique and were limited to the case of a rectangle divided into two subdomains only.

The outline of this paper is the following. In section 1 we write the differential problem in a
variational form which is set up on the multidomain decomposition of the physical domain.
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In section 2 we introduce the multidomain collocation problem. This amounts to collo-
cating the differential problem at the Chebyshev (or Legendre) collocation points internal
to each subdomain, and to enforcing, at the interface-boundary points, the continuity of
the solution as well as of a suitable combination of the residual of the equation and the nor-
mal flux. This method has been proposed by Funaro [13] and retains the same convergence
properties of the more classical patching method introduced by Orszag [23]. In particu-
lar, as shown in [13] and (19|, the numerical solution converges with spectral accuracy to
the physical solution as the polynomial degree N grows on each subdomain. In section 2
we also define an “iteration-by-subdomains” method for solving the discrete multidomain
decomposition problem. Each step of this iterative method is based on the solution of
Dirichlet problems in the odd subdomains, and mixed problems in the even ones. In sec-
tion 3 we give a variational formulation of both the multidomain decomposition problem
and the iteration-by-subdomain method. These variational formulations allow us to prove,
in section 4, the convergence of the iterative method, the rate of convergence being inde-
pendent of the degree of the polynomial solution in each subdomain. In section 5 we show
that the iteration-by-subdomain method here analyzed amounts to solving the capacitance
system governing the interface unknowns by a linear iteration procedure using a proper
block diagonal preconditioner. Going further along this equivalence, we propose in section
6 other preconditioners for the capacitance system, which in turn gives rise to some new
iteration-by-subdomains algorithms. Finally in section 7 we consider a decomposition of

the domain with internal cross points and we state how our method can be formulated
and analyzed in this case.

Numerical experiments on this iteration-by-subdomain method are presented in [13], [28].
Earlier works on algorithms of this nature for finite element and finite difference domain
decomposition methods are reviewed and analyzed in [26].
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R TION OF RENTIAL PROBLEM

Let Q be an open two dimensional domain with boundary dQ2. We consider the
boundary-value-problem

(1.1) Lu=f inQ , u=0 ondQ
where f is a given function of L2(Q2) and

(12) Lu:=-Au+ou , a(x)20 VxeQ , ae CAQ)

In variational form (1.1) reads as

(1.3) ueHy (Q):  a(uv): = J (Vu Vv + aguv)dx = [ fvdx VveHy(Q) .

Q Q
The Lax-Milgram theorem ensures that there exists a unique solution to (1.3); moreover,

ue HX(Q), hence (1.1) holds almost everywhere in Q (see, e.g., [18]).

Let us consider a partition of Q by non intersecting open subdomains £2,, i = 1,...,.M, as in fig.1.1,

and denote by I, the common boundary between Q, and Q,,;,i SM - 1. ThensetI' = UT';. and,

i+1?

M-1
for each i, we denote with ® := 1 H}){)z (l'i) the space of functions defined on I, which are the
i=1

traces on I" of functions of H!((Q) (see [18]). Note that these functions vanish at the endpoints of

I’i for i=1,...M-1.

aQ Q

Fig.1.1: The partition of Q
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For any pe ®, let ¢ € H!((Q) denote any extension of @ to . An example is furnished by the

"harmonic" extension R@, whose restriction R to £, satisfies the Dirichlet problem:

a (R.v) =0 Vve Hy(Q) .
(1.4 R =0 ondQ, N,
Ro=0 onl, UT, ,

where we have set

ai(u,v)=[ (Vqu-t;aouv)dx .
o

The following equivalence statement is readily proven.

Proposition 1.1 Problem (1.3)is equivalent to find ue H!((Q) so that ui=uy;, 1 <1< M, are
solutions to:
(1.5) ai(ui,v)=f fvdx Vve Hy(Q) , 1<isM
o

(1.6) n=u,, on I'i , 1€isM-1,
(1.n u=0 onoQ,NdQ , 1sisM ,

M M
(1.8) 2; a(u,9)- | fodxh=- 2‘; (@) - | fodx} Voed..

i odd Q j;e-m ol

Clearly, (1.5) amounts to require that

(1.9) Lu=f inQ , 1SisM

while (1.8) is equivalent to the ransmission condition

du, odu

1

1.10 —=
(110 dv v

i+l

onl;, , 1SiSM-

(v is the outward unit vector to I‘i ).



In this section we consider a spectral collocation approximation of problem (1.5)-(1.8)
which consists of collocating the differential equations (1.9) at Gaussian collocation points internal

to Q, and to enforcing the interface conditions at some selected points of . Either

Gaussian-Legendre and Gaussian-Chebyshev points will be considered. We also give a variational
formulation of the multidomain problem, then we define an "iteration-by-subdomains" procedure to
solve effectively this problem.

We confine ourselves to the case of a rectangular domain 2 partitioned into M non intersecting
rectangles Q, without internal cross points (see fig.2.1), but what we are proving can be extended

to more general situations as well (cf. remarks 3.1 and 4.2).

r r r
1

FIG.2.1 Decomposition by aligned subdomains

Let D be the reference domain (-1,1)2 and let Ny, Ny be two given natural numbers. The Legendre

Gauss Lobatto collocation points in D are the roots {Ck m’ 0sk=N,0sms Ny} of the

polynomial
d d
p Ly (%) ¥ Lyy®)

where L, (1) is the Legendre polynomial of degree k in [-1,1]. In the Chebyshev case, the Gauss
Lobatto collocation points in D are given by

= (cos™ cos ™) | for0sk
Cm—(-cosﬁ;,-cosﬂ—;) , forO<ksN,_ , OSmsNy .
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We remind that, in both Legendre and Chebyshev cases, Ckm lies on the boundary of D if either k

equals 0 or N, or m equals 0 or N, Moreover
C={(x ¥y, 0SksSN,,0smsN), fori=1,..M ,

will denote the set of collocation points in the domain .. Given M natural numbers Nix, i=

1,..,M, we take the points of C; as the images of the Legendre (or Chebyshev) points in D, with
Ny = Nix, through the affine transformation which maps D into €2, For the convenience of

exposition we set
. r. .
CM:=CnQ,,:=CNaQ , C:=CNC*uQ) fori=l,...M
See fig.2.2 for an example with M=2.
0 points of Cbl

o points of Cbz

¢ points of C,int

e points of Czint

@ points of CI'1

g points of C?, ~ CP,
Fig.2.2 Interior and Boundary Collocation Points
For i=1,...,.M we denote by P\(£2)) the space of polynomials of degree Nix with respect to the x
variable and degree Ny with respect to the y one. Moreover we set
Pg (Q):={pe Py(Q):p=00n0Q,)

For the convenience of the reader we recall the Legendre and Chebyshev Gauss-Lobatto formulae
that will be extensively used in the sequel (see also [10]).
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Legendre Gauss-Lobanto formula
Ny Ny
@1 Jg(x,y) dxdy = Z 2g<xk ) 6,0,
Q’i
where
i & 1 2 1
2.2) Q =

— . - and ©_= .
NN+ 1) [Ly 1 " N L g F

We have set 3, = x; - x; ;, where x; denotes the abscissa of I".

Chebyshey Gauss-Lobatro formula
. N Ny .
- 1 . 1
@2.3) J gxy) @ (y)dxdy =2, X gy o o
k=0 m=0
Q
where
4 i . ;
® (xy) =[x -x )x - 012 -yH"?
ianfk SN 'Mfk=0de'
p =— 10r kK= v . » @ =-—— fOr an ?
.4 o, N k N
k4
[0 -N— for m=l,...,Ny-1 , @ -Wfor m=0 and m—N

We can now introduce the spectral collocation approximation 1o the problem (1.1), which

fits well the multidomain formulation (1.5)-(1.8). The spectral solution uy; verifies:

2.5) = “Nln.iEPN(Qi) , i=1,...M ,
2.6) Ly, =f inC™ |, i=1,..M ,

r.
Q.7 N =y,yx inC', i=l.. M-,
(2.8) uy =0 inC , i=l,..M ,

du, du. T
29) — g = My -0 0 - L,y -Do; inC', i=l.M1



-8 -

- i + i+l
Here we have setw, = , and o, =, for i=1....M-1. We are assuming f to be a continuous

function in order that (2.6) and (2.9) make sense. Note that at the interface collocation points, the
jump of the normal derivative is not asked to vanish (as in (1.10)), but rather to balance a suitable
linear combination of the residual of the equation from both sides. We observe,however, that the
coefficients of such combination tend to zero if N', tends to infinity. This follows from the

definitions of the weights @'y of the Gauss-Lobatto formula given in (2.2) and (2.4).
Froma corgputationsl point of view, dealing with condition (2.9) rather than with the pure flux
condition Ix UiN = 3% YisaLN does not bring any appreciable extra work. On the other hand, a

considerable advantage is achieved for the theoretical properties of the scheme, as is
will be pointed out in the forthcorr

Remark 2.1 The collocation scheme (2.5)-(2.9) has been first proposed by Funaro [13], who
stressed its equivalence with a suitable variational approximation to (1.5)-(1.8) (see below).This

equivalence allows one primarily to investigate the convergence properties, for N',, Ny —> oo, Of
the method.
The most relevant result (for the Legendre collocation) is the following (see [13] and [19]).
. [ A
Seting N, = min(N; , Ny) and assuming thatu, € H ‘(Qi) with 0,2 1, for i=1,...,M, the following

error estimate holds

(2.10) T sc§ NS +IEN )
g i SN L j i . -1
@ = Higy W

where C is a positive constant independent of Nj and u;, for j=1,...,M. In particular this estimate
shows that if f = 0 then u;y= 0 for i = 1, ..., M, hence the discrete problem has a unique

solution.

Another implication of (2.10) is that as NI, ,N, — oo the jumps in the normal derivatives
a2 Y
5% VN T g BN At the interface points vanish with spectral rate, hence so does the right hand side

of (2.9). In {13] it is also shown by numerical experiments that using (2.9) rather than the pure
flux condition does not reduce the accuracy of the results. ¢

We now introduce an iteration-by-subdomains procedure for the solution of the above
collocation problem. Let us suppose, here and in the sequel, that M is an odd number; the case of

M even can be studied analogously. We setT" = UT,, and define
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Py @ :=(p:T = R:p,:=pj is a polynomial of degree <N, on T,

vanishing at the endpoints of T",}.
For a given gle Pg (T") we look for a sequence u::N,n 2 1, satisfying: u} y€ P\(Q), i=1,..,.M,and:
foriodd:
@11) Luvy=f in Cjnt |,
2.12) uy=g"' in CHy Cl forin LM, -u"l'N =g inC), uyy =g in c M1
(2.13) u"n=0 inC%
forieven:

(2.14) Luty=f Gt

!‘ aun T
+ -LN - . i
@15) - Quy-Do, =—s+ @l y-Do,  inC
ou; . oul T,
N 1N + .
216) =+ Muy-D o= —5 - W, - Do inCc'
2.17) un=0 in Cb,
Then set:
T.
0 ul n+(1-0)g"" onC™  fori=3,.M ,iodd
(218 g'={" ™" "

T.
8 ul,n+(1-6)g"" onC'

1

fori=1,..M-2 , iodd

and restart from (2.11) with n+1 instead of n. In (2.18), Gn is a positive relaxation parameter; how

to choose it will be dealt with in the remark 5.4.

Following this method, at each step one solves the M/2+1 independent Dirichlet problems
(2.11)-(2.13); then, after computing the (independent) right-hand sides of (2.15)-(2.16), one has
to solve the M/2 independent mixed problems (2.14)-(2.17). The degree of parallelism of this
algorithm is therefore M/2.

In the simple situation of a decomposition by two subdomains, the above method simplifies
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to:
(2.19) Lu" n=f inCyimt
(2.20) =gl inCF
@.21) ut =0 inC%
(2.22) Luyy =f in C,m ]
n "
223) QDo =+ Qaly-De,  inCh
(2.24) uh N =0 in Cb; .

and g" =6 u"  + (1 - 8,) g™! on CT. Here T is the interface between Q, and Q,.

Remark 2.2 (More general differential operators) The multidomain approach (2.5)-(2.9), and the
corresponding iteration-by-subdomain procedure (2.11)-(2.18), apply also to the more general
differential operator:

(2.25) Lu :=%(a“g—:)+%(alz gl-;)+%(a21 %)4-%((122 %)+ a,u

with o, symmetric, uniformly negative definite, bounded, and smooth on Q. In such a case, the

operator L in €, should be replaced by its pseudo-spectral realisation

(2.26) Lx.N“ = aa; [I'N (“11 ; + 0, g; )] + % [I’N ("71 % + 0y, gi;)] + QU .

Here I'y v denotes the polynomial of Pn(£2) w}xich interpolates v at the collocation nodes of C, (see

[6], Ch. 2). Moreover, the conormal derivative auafax + a,za/ay should be used instead of the

normal derivative 0/dx at the subdomain interfaces.
In particular, we remind that this situation occurs whenever we consider the Laplace equation
within a domain Q subdivided into subdomains with curved boundaries. The mapping of the

physical subdomain Q, into the computational one D=(-1,1)? introduces a transformed operator
which has the form (2.25).0

Remark 2.3 The iteration procedure for two subdomains (2.19)-(2.24) has been introduced in
[15] for Chebyshev collocation methods, and subsequently applied in [21] to finite element
approximations. The convergence analysis was carried out in [15] for the Helmholtz operator using
a separation of variable argument. In section 4, we apply a proof technique based on a suitable
extension theorem, similar to the one presented in [21] for finite elements. The higher generality of
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this technique allows us to deal with the case of several subdomains.¢

VARIATIONAL FORM OF LLOCATION MAIN PROBLEM

In this section we give a variational formulation of the collocation multidomain problem
(2.5)-(2.9), and, accordingly, of the iterative procedure (2.11)-(2.18). The new formulation is
more suited for the convergence analysis that will be carried out in section 4.

We confine ourselves to the case of Legendre collocation points, where we will make use of the

following notation. For functions continuous in Q; we define a discrete inner product,

approximating that of L¥(Q)), as follows:

N Ny

3.1) (W) = kZO 2:0 W) (b, y) @, @, i=1,..M

Due to the exactness of the quadrature formula (2.1) for polynomials g € P,y ;, we have

(3.2) (W2, N =J' wzdx  ifwze Py, (Q) , i=1,..M

Q
We also define the discrete bilinear form

3.3) aN (w,z) := (%\-:- R g; )i.N + (g; s % )i.N + (%sz)i.N i=1,..,.M

For any ¢ € P°y (I, we denote with § € Py () any piecewise polynomial extension of ¢ to Q
which is determined by the values of @, , and @, solely. O can be, e.g., either the discrete

harmonic extension, or the interpolant extension of @. We can now prove the following

equivalence result.

Proposition 3.1 The collocation multidomain problem (2.5) - (2.9) is equivalent to look for uy
such that u; \ := uyg; € Pn(€2)), i=1,...M.and satisfies

(34) ay (N V) = (V)N Vve Py(Q) , i=l,..M ,

(3.5) yn=0 ondQ, NI , i=l,...M,
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(3.6) ui’N = ui+l'N on ri , i=1,...,M‘l ’
M M M
@) T an O D= D@+ 2 Py YO R
i leven iJodd g

Proof This proof generalizes the proof of an analogous equivalence statement given in [13] for a
decomposition by two subdomains.
We start proving the following discrete integration by parts formula:

Ny .

(3.8) 3N (w,2) = Lw,z); 5+ mzsa[(%i_v z) ;0 Ym) - (%:'I z) (X1 » ym)] @

for i=1,...M , V w, z € P(Q) such that w=z=0 on 0Q,NdQ.

Indeed, by (3.3) and (3.1) we obtain, using the property (3.2):

Xj 1

N, N,
ow dz i| (owoaz\ ;
SN (w,2) = ,nz,;ommj (3; a;) (x,ym) dx + kz,oa&l{ (W a;) (Xk,y) dy + (ao w, z)i.N
Xi.1 -1

(%i_‘; z) (XY )X - (‘3—‘: z)(x"y'") * (g% z) R

1

N
z i 82w i
- mk ~a—y—2 z (xk, y) dy + (ao w, z)l.N

k=0
-1

Now we get (3.8) using again (3.2). Let now uy be the solution to (2.5)-(2.9). Equatons (2.6)
give:

3.9) (Luy, V)N = EVvin Vve P°y(Q) , i=l,.M

This yields (3.4) by virtue of (3.8).
We verify now (3.7). For this, let i be an odd integer between 1 and M, and let @ be any function

of P°\ (N).In ©; onehas § = y& + ¢, where y{is a polynomial extension of the function
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. NI T . n,... . @ int
which coincides with @ on C ° and vanishes on C , 1# j. In particular, we can sety  =0on Q"
if1#j,j+ 1. Using (3.8) we have

Ny
0) @ duy
a;N (ui.N ¥ )= (Lui.N » ¥ ),_N + mz’om "axﬂ (Pi] () = (using (2.6))

Ix=xi
Ny 3u -
- i (i)
E’o“’n{ O, Ly - Digay; + -a,%x_x.] Om) @, ) + £, ¥ )iy = (using (2.9))
g + U1 N @) )
B msﬂm mi (Lui+lN - ohﬂi - T!x:xi (—Ym) (Pi (Ym) + (fv\l’ )I.N = (usmg (2.6))

@ g 9y N o) o)
- (Lui+l.N 24 )i+1.N + néom"{ 5)( Ix=xiq’i] (ym) + (fv‘l’ )i.N + (f’w )i+l.N

Then, using (3.8) in Q,, we find

N (“i.N ’ \l"i)) ={ZON (“i+1’N ’ “"i)) +(f, V(i))m +(f, ‘V(i))i.,.l N

In a similar way we find that:

A i VD) = a0 s WO D) + (6 WD) o+ (6 WD)

By summation of the last two equations it follows:

3 (U0 ®) = -2y ) (1 3 VD) -8y (50 00 W)
(3.10)

+ EPin+ EVED) v+ EVD &

It is now an easy task to see that (3.7) can be obtained by summing the relations (3.10) on all odd i
between 1 and M.
We shall now prove the converse, namely that the solution of (3.4)-(3.7) is also solution of

(2.5)-(2.9). To this end, for each i=1,...,.M let P denote a point of C;. The discrete characteristic

function associated with P is the polynomial of Py(€2,) which equals 1 at P and vanishes at the

remaining points of C,. Equations (2.6) are obtained from (3.4) taking ¢ to be either of the discrete

characteristic functions associated with either point of C{““. Similarly, (2.9) follows from (3.7)
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taking as @ a function of Py (I}) which equals 1 at a point of T, and vanishes at all the other

points of Cn, then working as done for proving (3.10). Clearly, the relatons (2.7) and (2.8)
follow from (3.5) and (3.6).¢

In view of the Proposition 3.1, it is now clear that the iterative procedure (2.11)-(2.18) admits
the following equivalent variational formulation:

Forall i odd (i=1,....M) solve
(3.1 a; N (u“i_N V)= V)N Vve Py(Q) , i=1,..M ,

(3.12) uny=0 ond2NaQ , i=1,.M

’

n-1 .
(3.13) u{ﬁ{e- uyn+ (-8 puly  onl,, , i=3,.M-1

0 o l+1.N +(1- Gn N “x.N on I"i , i=1,..,M-2 |

then for all [ even, (i=2,....M-1) solve
(3.14) N W N, Vv)=(f, V)i.N Vve Py (Qi) ,

3.15) wN=0 ondQ2NaoQ, ,

(3.16) a; N (uN 9) =-a,_ 1NN B) + EP) N+ (EP) y Ve Py y =0 if j=i-1,

(3:17) a; (ui’N ,P) =-a, N (uM'N P +E YN+ ED n VOE PN I : o= 0 if j=i
i

For each i odd, (3.11)-(3.13) is a Dirichlet problem, while, for i even, (3.14)-(3.17) is a mixed

type problem. The above variational formulation of the multidomain collocation iterations
(2.11)-(2.18) will be used in the next section to investigate the convergence properties
of this method. N '
Remark 3.1 If Q is a plurirectangle, partitioned into subrectangles €; without internal cross

points (as in fig.0.1.a), the above multidomain problem and the relative iteration procedure
(2.11)-(2.18) can still be formulated. In such case each vertex of the decomposition lies on the
boundary of €2, hence the value of each iterate u™; y is set to zero (the prescribed boundary data)
there. ¢

Remark 3.2 For one dimensional multidomain methods using the Chebyshev collocation points an
equivalent variational formulation is still available (see [14]). However, the bilinear form a;NCy)

that holds such an equivalence is much more involved than the Legendre one (3.3). (Actually it

must take into account the Chebyshev weight functions which blow up at each subdo-
main interface). The generalization of this equivalence to two dimensional problems is
not yet available. Thus the convergence analysis we carry out in the next section will
deal with Legendre collocation points only.{
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4 RGEN 1

In this section we confine ourselves to the case of the Legendre collocation. We prove that the

sequence {u® ], solution to (2.11)-(2.18) (or, equivalently to (3.11)-(3.17)) converges, as n —

%, 10 U; N and that the rate of convergence is independent of N.
For any g e P°\(I") we recall that gonT isdenoted by ¢,, i=1,...,M-1; then we define

R; N ¢ € Py (£2,) through the equations:

.1) Ry V) =0 Vve Py (Q),
4.2 Rin®=9, onT,,

4.3) Rin®=9,, onl,,,

(4.49) Rno=0 ondQNaQ,.

If i=1 or i=M the conditions (4.3) and (4.2) respectivey must be dropped. In view of the analogy

between this problem and (1.4), Ri.N @ is referred as the discrete harmonic extension of @ to Q2.

We now define the following norms.
172

M
(4.5) N llgg :={ 2:1 [anRin®.RinD)] }
i odd
1/2

M
(4.6) hol,,, = { Zl [ax Rin®,R\ D) }

i even
In the next lemma we state that the norms (4.5) and (4.6) are uniformly equivalent on P°y (T). This

is an extension type theorem for spectral collocation approximations similar to the one stated in [3]
and [21] for finite elements. Its proof is essentialy based on a result due to Bernardi and Maday

[21.
Theorem 4,1  There exist two positive constants ¢ and T independent of N such that

@.7) loil,soligf, and ol _stloll, , foranyge PY(M .
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with
“s) {o-oop(m.:-zop(M).mdp(M)s(nrr‘)maxu.H’).
| H = min {meas () , 1SiSM)

Proof Letus fix i such that2 <i S M-1. Forany @ € P°\ (IN let Q, @ € Py (Q,) be the solution
to the collocation problem:

-AQ =0 inG™ |
‘Quw =Q, onl, ,
Qno =9, onl},".
QN9 =0 ondQNdQ, .

Itis proven in [2] that (for Q; = (-1, 1)?)

12
: Q. ol o, I? No. . 12
(4.9) Qn©? H‘(ni)scl[ P, "m(,.i)"' P, ""ma.i-l)]

-1
For a general rectangle Q,, it is easy to see that C, is proportional to | + meas (€,
Settingv=R; N9 - Qi.N ¢ in (4.1) we obtain

(4.10) a,NRiNO- Q,_N P.Rn9-QnP) =-2,5(QN® Rin®- Q,_N ®) .

On the other hand we recall that (see [12]and [ 6, Ch.11]) -

(4.11) Cyllw u;,(ai) S a3y (W,w) Vwe Py (Q)

and

(4.12 lay (W2) ISCyliwll, izl Vw,ze Py(Q
) LN C3 Hl(fli) H‘(ﬂi) N (£

where C, and C, are positive constants independent of N. Hence, from (4.9) and (4.10) we
deduce '

(413) ‘LN (RLN Q, R,.N ¢) < C4 [“ ¢i ":(1)62(]_.) +1 ‘Pi_, ":(1)620._ ‘)]

e . ——— . a——— e
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In order 1o estimate the right hand side of (4.13) we use now the continuity of the trace operator
from H! (Q,) 10 H'2 (@@ Q,) (see [18}))

AN R @ RO SC [WRy 0l +IRyr, ]

LEC Y
where Cg is proportional to p (M)
Using again (4.11) we also get

(4.14) (a,NR,N?.Rin O)* S Cg ([2;, Ry x 9 Rigy v O + (2,4 xR, 3 @, R nol).

For i=1 or i=M working in the sarnc way we have

@15) {lax.n Ry N @ RN D SCylayy Ry 0. Ry 91
[ayn Ry @ Ry 12 S Cy [ayy 1§ Rypy N @ Ry n O

Finally summing up (4.14) and (4.15) for i odd and for i even we deduce the desired result (4.7).0

In order to prove that the solution u y of (3.11)-(3.18) converges, as n = e, to the one

UN of (3.4)-(3.7), we look for the operator T such that

(4.16) Wy - un=T (ly-up)  onT | ieven.

The operator Tg can be defined as follows. For any ¢ € P° (I let w; € Py (), i=1,..M, |
gven, be defined through:

4.17) a(wn.v)=0 Vve P (Q)
M M
(4.18) 2; a N (wi.N ’ Ri.N y)=- 2 N (RLN Q, R,_N V) v V€ PON )
T iz]
i .even ilodd
(4.19) win=0 ondQNaQ,
Then we define
4.20 T = w, i=1,...M-1 |
(4.20) (- w“"lri for i
and

(4.21) Tep=0To+(1-0)9 ., VoePpM
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Remark 4.1 Due to (4.1) and (4.17) one could substitute R, NV in (4.18) with any other extension

of y in Q, without affecting the definition of w; ;.0

Remark 42 The operator T can be interpreted as follows (suppose M > 2). For a given ¢ € P°y

(1) and an even number i with 2 Si< M-1 one can find R; | y ¢ and R;, ; ¢ by solving the

Dirichlet problems (4.1)-(4.4). Then compute the left flux at the boundary side I‘i_l and the right

flux and the boundary side I"i as follows
= 9 i-1 i-1
D 1m= 53 RiaN® (XN ¥ + LR @ (s y) @y
i+l

1
Ditim = a; Rin©® (xg" + Ym) + LRiyy @ (G, Y1)

for m=1,..., N-1. The functions w; ; are now obtained by solving the mixed problem

[w; N € Py (@)
Lw, =0 inG"
aw, N

5 (xN, Yo + wa.N (xN, Ym) O)N; = D1+l.m for m=1, - ,N-1

oW, N
- (xo, Yo - LWLN (xo, Ym) (n =D,, m for m=1, - N-1

(Win=0 onC?

Finally TponT, , and T’ is obtained by computing w;yon T, , and I,

The operator which associates to the values of D, , , and D,

is a discrete Poincaré-Steklov operator (see [1]).

the values of w;yon T,  andT,

i-2 i-1LN iN i+1.N °

i+l

Q Q Q

i-1 i i+l

FI1G.4.1 Computation of T @
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In the following theorem we prove that for suitable values of 6, Tgis a contraction. This, together
with (4.16), will imply the convergence of u™; y to u; forn — oo,

Theorem4.2 Forcach M 22 there exists 6* > 0 such that for any N >0 the following holds

(422) V8e (0,093k®)<1: ITe@lloggSk®@ Qlpgg  Voe PN @)

Moreover there exist €', 0" and x with 0 <6'< 8" <6* and x < 1 such that forall N >0

(4.23) Voée (6,0 k@ sx<1

Proof From (4.5) and (4.21) we have, using the symmetry of the forms a; N ()

M

2
(4.24) NT@13,=0 ITo 2, +20 (1-6) ;l an R0 RTo)+ (101012, .
i odd
Moreover, using (4.17) and (4.18), we have
M M M
(4.25) Zl 3,y Ry @, Ry TO) =- 21 8N Wi Ry T9) =- X; an Ry TO, Ry T9)
il;dd ileven ile-ven

hence, from theorem 4.1 and (4.24) we deduce
(4.26) I Tg® 105y S 8726 11 TQ Zgyen + (1 - 0)2 1 @ 12,44 - 26 (1 - 0) I T 12, o, B

From (4.25), the Cauchy-Schwarz inequality and (4.7) we also have

427 1TQ lyen S/ 0 NIy

In order to find a lower bound for lI T¢ Il.ven We remark that from (4.17)-(4.18) we have the
fundamental relation
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M M M
Z;‘LN(Rw‘P-PiN‘P)* 21 4N Win Ry @) =- z; LN RinTO. R x @)

i odd ieven i even

Using the Cauchy-Schwarz inequality, the property (4.7) and the definitions (4.5) and (4.6) we
deduce: :

1
(4.28) — gl <ITell, .
T

From (4.26),(4.27),(4.28) it follows

26 (1-6
IT,® lﬁ,ds(ez o +(1-0)°- -_¥)u o 1Ey

If we define

2 2 12
0 (O’t+1+2)-29(t+l)+‘t]

T

k(O):=|:
We can readily see that (4.22) holds and that
. . 2(¢t+1)
k@ <1 iff 0<6<0* =min 1,—2———- .
CT+T+2

Then (4.23) follows from the continuity of k(8).¢

We can now derive the following convergence result.

Corollary 4.1 Let u; y, i=l,..., M, be the solution of (3.4)-(3.7) and let u™; N, forn 2 1 and
i=1,..., M, be the solution of (3.11)-(3.18). If8_e (€', 6] we have

(4.29) I - loga S5 16 - U s
moreover

M 12
@30 [Z‘; o - 0 ":1(9.;)] scx
where C i 3 constant dependent on g° but independent of both N and M.

Proof The estimate (4.29) follows using repeatidly (4.16) and theorem 4.1. Due to the theorem
4.1 and to (4.11), the estimate (4.30) can be deduced from (4.29).0

Remark 43 In view of (4.8), if H is much smaller than one, then ¢ and t grow like H2. If eapl
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T+1

2
G tT+T+2

is the value of O that minimizes x (6), one has Gm = and x (8 opo) Dehaves like

(1 - CH)'2, where C is a positive constant. ¢

Remark 4,4 The proof of theorem 3.1 and corollary 3.1 can also be applied to the case of a
plurirectangle €2 partitioned into rectangles £, without internal cross points (see fig.0.1 and remark
3.1).0

To solve the multidomain problem (2.5)-(2.9) we have proposed, in section 2, an iterative
method based on a sequence of differential problems to be solved in each subdomain. An (a priori)
different point of view consists of applying the influence (or capacitance) matrix method for
solving (2.5)-(2.9). This approach, in the framework of spectral approximations, has been
extensively pursued by Peyret and his Coworkers (see e.g. [17], [24]) and by other authors (see

[20],{22]). The influence matrix coincides with the Schur complement of the matrix of
the system (2.5)-(2.9) with respect to the interface variables (see e.g. [9]). It is precisely
the matrix of the system of the interface unknowns and it is derived from the global
system by block Gaussian elimination (see e.g. [3]). In this section we show that the
iteration-by-subdomain method introduced in section 2 is equivalent to a preconditioned
Richardson iterative method for the resolution of the influence system. In particular we
will give the precise structure of the preconditioner for the influence matrix.

We proceed now to construct the influence matrix associated with the problem (2.5)-(2.5).

Let (n;e Py T) i =1,.,M-1} be M-1 given polynomials. Correspondingly, for each

i=2,....M, denote by v, y the solution to the problem
[vin € Py (Q)
Lviy=0  inG™
AT
(5.1) TViN =My inC

R ¥
Vi.N=0 in C

. ~b
v;n=0 inC;

Moreover, for each i=1,...,.M-1 we let ZN be such that



(2,5 & Py (Q)
Lz, =0 inG"
. AT
5.2) {ZN= inC
Ti
ZN=T, inC
(Zin=0 in G}
0 0
0 0
n i-1 Y i,N : iN n i
0 0

FIG.5.1 Boundary conditions for v;nand z;y

Let us denote with 1, the vector of the values attained by the polynomial . at the collocation points

cliof T.. Then we define S}, S'y, S'3, Si; to be the square matrices of order N-1 such that

. F) . . .
(5.3) (le Tli)m = > N (x;q s Ym) + in.N (XN ) o,
i d i i *+
(5.4) (Sﬁ_ﬂm)m === ViN (X » Ym) + LVin (Xg0 ¥) ©;
i d i i +
(5.5) (S5 'r\i)m === ZiN (Xg»>¥Ym) + in.N (X ¥Ym) o,

i 0 i i -
(56) (S4 ni-l)m = 5; Vi..N (xN > ym) + LviN (xN ’ ym) mi

for m=1,..,N-1. i, is defined for i=1,...,M-1, S, for i=2,...,.M and S, Si, for i=2,.. ,.M-1.

We shall call for brevity interface flux on I'; of a function w defined on €2, the quantity

P . . .
=%V (XN » Y + LW (X5 ¥ o, for m=1,....N-1
Then the matrix S'; represents the operator which associates to N, on T the interface flux on I, of

the left discrete harmonic extension of n, on €. §',, S's, Si, can be interpreted analogously.
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I

€ ‘
fa ' S Vau '
\— S;_/ N !
FIG.5.2 Interpretation of Si;, Siy, Sis, Siy.

We now define the block tridiagonal matrix S, of order (M-1) (N-1), as follows.

2 2
s' +8 s O
1 2 3

2 3 3
s |s?.s S
4 1 2 3
(5.7)54
M2 M-2 M-1 M-1
S S +8 S
4 1 2 3

. M1 | M1 M
O S S +5
4 1 2

We claim that the matrix S in (5.7) is actually the influence (or capacitance) matrix of the system
(2.5)-(2.9). As a matter of fact, let us solve the homogeneous collocation problems

Uy € Py(Q)
(5.8) {Liy= in Cf“'

~ . ri b
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for i=1,...,M and compute the vector b = [b,...,b,.....by,., ] defined by

0 ~ i ~ i - 0 ~ i+
(5.9) B = 35 Tin O+ V) + Wi D O V) O - 52 Ty w0 Y) +

Q- D&y o, , for m=l,. N1, i=l,.,.M-1
Then define the vector _ﬁ_ = [§1,...,§i,...,§M4]T as the solution of the linear system

(5.10) SE=b

It is now readily seen (using (5.1)-(5.10)) that the solution of (2.5)-(2.9) is given by

U= GI,N +WN+t N for i=2,...M-1
(5.11) YN=UYNTN
UyN = UMN + WMN

where w;  and z;  are obtained from (5.1) and (5.2) taking n; = §l Thus, the matrix S defined
in (5.7) is actually the influence matrix associated with the problem (2.5)-(2.9).

Remark 5.1 It can be proved, using repeatedly the integration by parts, that in the case of the
Légendre collocation the matrix S is symmetric. On the other hand S is not symmerric if the
Chebyshev collocation points are used. S is again non symmetric in the case of both Legendre or

. du.
Chebyshev collocation if the pure flux condition —axﬂ = —%‘—"i on l‘i is used instead of (2.9).0

The relations (5.8)-(5.11) suggest a possible algorithm, based on the influence matrix
system, for the solution of the multidomain problem (2.5)-(2.9). The crucial step of this algorithm
is the use of an efficient method for the solution of the system (5.10). To this end, preconditioned
iterative methods (which do not require the explicit construction of the matrix S but simply the
calculation of the product of S time a given vector) are currently used (see e.g. {3], [4], [5]. (7],
[8],{11],[16]). In this section we show that our iteration by subdomain method amounts
to the use of the Richardson iterative method for (5.10) preconditioned with a proper
matrix P (see (5.15) below).

Let us recall that if P is any non singular matrix of order (M-1) (N-1), the Ri~hardson iterative
method for solving (5.10) preconditioned with P is:

(5.12) P(E™!-EM =0, (b-SEY
The iteration matrix at the step n is

(5.13) (1-0)I+6 (1-Pls) .
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Let us define the matrix P as follows (we assume, ¢.g., M odd).

' —_2 2 -
S S
o o
s? s’
‘ 1
s* s*
2 3
‘ .
. (5.13) P= S S
i ‘ 1
g1 M
2 3
O g1 M

We denote with Ty and T the matrices associated with the operators defined in (4.20) and (4.21)
and bearing the same name.

(5.15) Te=(1-0)I+0(-PlS)

Proof In view of (4.20) and (4.21) it is sufficient to prove that T=1- P! § or equivalently that
PT = P-S. Recalling (5.3)-(5.6) the action of P consists of solving a sequence of Dirichlet
problems in €2, for i even, and then to compute the interface fluxes on T'. Recalling the
interpretation of the operator T given in the remark 4.2, it is readily seen that applying the matrix

PT to the values of a polynomial on I amounts to solve a sequence of Dirichlet problems in Q;

for i odd with such boundary conditions, and then to compute the interface fluxes on I' of the
obtained solution.
On the other hand the matrix P-S is given by
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P-S = S -S

From (5.3)-(5.6) we deduce that the matrix P-S is associated with the solution of Dirichlet

problems in £, for i odd and to the computation of the interface fluxes on I'. This shows that
PT=P-S. ¢

Remark 5.2 (The case of two subdomains) If M is even it is possible to give an analogous
interpretation of the iteration-by-subdomain method. In the particular case in which M=2 we have

(5.16) S§=S8!,+S% and P=S?, |,

and therefore (5.15) becomes Tg = (1-6)1-0 (S%)™! §!)). IfQ, and Q2 have the same measure
and L = -A + al, with « € RY, then §?; = §',, hence taking 6_ = 172, Vn, yields exact

convergence in two iterations (this result was already found in [15]). ¢

Remark 5.3 (Condition number of the preconditioned matrix) Let us consider the case of the
Legendre collocation with M=2. Recalling the definitions of S!; and 522 (see (5.3) (5.4)) and

using the discrete integration by parts formula (3.8) we deduce from (5.16) that

(517 Veo,yePyT) Geo W = 2N RN Ry W+ 2 8 Ron @, Ry W) -

where @ is the vector such that @ = ¢(y,,) m=0,...,Ny, and

y

N.
2 Smk “pk Vm mm

Ny
(5.18) S Wy, = Z-;OH)

Similarly the preconditioner P = $2; satisfies
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(5.19) VoyeRRT) @y, Wnr, =228 Ron & Rox W) -

From (5.18),(5.19) and theorem 4.1 we obtain the fundamental relation

(5.20) VeeRyT) ®o, Dr, SCP Oy STERO),

where T is a constant independent of N. This ensures that the eigenvalues of the matrix P~!S are

real and positive. Moreover the ratio xmax/'\' between the maximum and the minimum

'min

eigenvalue of P-1S is bounded by .0

Remark 5.4 (Choice of the relaxation parameter 8,). The interpretation of the iterative
method(2.11)-(2.18) as a Richardson scheme suggests some convenient choices of the parameter

8, appearing in (2.18). When information is available on the extreme eigenvalues of the precondi-

' 1
tioned influence matrix the optimal parameter 8 = ——————can be used for all n (see e.g.[7]).

m.lx+xmin

Otherwise a dynamical choice inspired by a "minimal residual” strategy can be used (see [1] for the
case of multidomain finite element approximation).
Another strategy is suggested by the proof theorem 4.2. The minimal value of the contraction con-

2
stamt k(0) is achieved for 6 o ™ (t+ 1/c t+ t+2).In[21] the values of Gn are choosen so that

sup {6 ) =6 opt and no extra computational work is needed to obtain 8,. The same strategy

can be applied to the case of spectral collocation approximations here discussed.<

P R

Based on the interpretation of the preconditioned Richardson method for solving the
influence system (5.10), one can formulate other iteration-by-subdomain procedures by simply
taking a preconditioner P in (5.12) different than the one in (5.14). For instance if we take

6.1) P=
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then the iteration (5.12) yields the following iteration by subdomain procedure. (We identify, for
simplicity of notation, the vector £ with the polynomial E" e P°y () whose values at the
collocation points are the components of ).
Given &°, look for U™, € Py (Q)) for i=1,..,M-1 such that for any n 2 1
Ll=f inQ" ,
n n-1 . ri n . ep s
(6.2) Ul =& inC' ,U'=0inCland,ifi22,

-1 T.
Ut =&, inC.

Then, for i=2,..,M look for V*; € Py (Q)) such that

LVi=f inG"
a n n + a n n . 3 r"l
(6.3) {3z Vi-@CVi- Do, =5 Ui+ LU, -Do;, inC

T,
VP=g inC', V'=0 inC} ifi<M,and Vi =0inC} .

Finally £"is defined by
n n n-1 rl .
(6.4) §=6V,,+(1-8) §& onC’ fori=l,..,M-1

i+l

Once ;:"l is available, one can compute U™, i=2,...,M by solving the M-1 independent problems
(6.2). Then the M-1 independent systems (6.3) can be solved simultaneously. At each step of this
algorithm one has to solve 2(M-1) differential problems, instead of M as prescribed by the method
(2.11)-(2.18), however in this case the degree of parallelism of the algorithm is M-1, instead of
M/2.

The choice of the preconditioner
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6.5) P=

gives rise to an algorithm analogous to (6.2)-(6.4). In this case the Dirichlet problems are solved in
Q! for i=2,...,M, and the mixed Dirichlet-Neumann problems in Q, for i=1,...,.M-1.
Another preconditioner which corresponds to an iteration-by-subdomain technique is

—1 g
s O

(66) P=

M-1 M-1
._O ' S4 S ] =

The differential interpretation of the preconditioned Richardson iteration is now the following.

First one solves M-1 independent Dirichlet problems in €, i=2,...,M, with §™! as boundary data.
Then computes the interface flux ¢, | on I, , of the solution in Q. Finally one solves sequendally
M-1 mixed problems going from Q, to Q) ;. For the mixed problem in Q, one enforces the flux ¢,

inT,, whileon T, | the value of the solution coming from £, , is enforced-as Dirichlet data. We
note that these mixed problems are not solvable in parallel.
An analogous algorithm is obtained by using the upper triangular preconditioner



-

The convergence analysis for these preconditioners is under investigation.
Notice that in the iteration by subdomain methods we have considered so far the subdomains can
be handled in parallel whenever the preconditioner P has a block diagonal structure. The degree of

sM-l SM 1
2 3
s
2

parallelism is precisely the number of diagonal blocks.

2_DECOMPOSTTION OF Q WITH INTERNAL CROSS POINTS

In this section we consider the case of decompositions of £ with internal cross points (see

fig.0.1 b).

For simplicity we consider the case of a square Q partitioned into four squares Q, i=1,.....4 (see

fig.6.1). The general case can be studied combining the results of this case with those of the

previous sections.

&

FIG.7.1 The decomposition of Q.
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4

We denote by © the space of the functions which are the traceson I" := I‘j of the functions of
j=1

H!x(Q). The variational multidomain formulation of problem (1.1) is given by (1.5)-(1.8)

provided u, is identified with u,.

The collocation points in &, , i=1,..., 4, are defined in section 2. We recall that here CTis the set

of the internal collocation points of the interval I', i=1,...,4. The cross point 0 is the unique

collocation point common to all the subdomains. For simplicity we look for a spectral solution
which is of equal degree (N) in the four subdomains. Hence the weights defined in (2.2) and (2.4)

are such .hat @, = @, , ¥V k=0,..N, moreover we have Wy, = Op and we denote this value with

.
Let us consider the following multidomain spectral approximation of problem (1.5)-(1.8). For

i=1....,4 we look for uNE PN(Qi) such that for i=1, ... ,4 (we identify us Ny with u, .N)

(7.1)  Luy=f inG™
. Al

(7.2) ui'N = ui,’_l’N inC

73  uy=0 inC

du.\ Ou; T
(7.4) ja:)—N - —;—IE =-(Lu;y - o - Loy n-Ho inC*

' ou ou 0 du ou du du
09 (3250 (52320 (330 (5250

4
= 2Luy-DOo .

i=l

The v/'s are the outward normal directions to I';, ordered clockwise as indicated in fig.6.1.

The conditions (7.4) are analogous to the ones in (2.9). The "cross point condition” (7.5) gives a
relation between the four polynomials u;  , i=1, - ,4. In the spirit of the method (2.11)-(2.18) it is
possible to formulate an iterative method for solving (7.1)-(7.5). The idea is to solve, at each

iteration, two Dirichlet problems in Q, and Q,, and two mixed problems in {2, and 2, as follows.
For i=1,...,4 let g% € Py (T') be such that g%, =0 on 3Q and g%, = g0, = g03 = g% in 0; we look

for a sequence u™; y, n 2 1, satisfying: u™; y € Py (Q), i=1,...,4 and
inQ and Q:

. r T
(7.6) Lufy=finC" uy=¢g" inC L ujy=g'inC*

n n-1 . no_n: b
, ul.N = gl m O, ul'N— Oln Cl
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; T. T.
A7 Lly=finC* By=g'inClujy=g"inC’ujy=g"in0,ulx=0inC

inQ,and Q,:

78  Ldy=f nG' , ¥Yy=0 inQG

n aun

7.9 -au""+(Lu‘,‘_N-t)m=- 2 Ll - Do inC™!
1 v,

duy ouy r

(7.10) -%‘-(Lu'z'ﬂ-f)mm 3'N+(Lu§-f)m inC 2

2 2

(7.11) Luly=f inC™ , ujy=0 inC,

ou;, ou, r.
112) —=. Qafy-Ho=- a;'N+(Lu§N-t)m inC >
3 3
au:N au‘;.N ‘r4
(7:13) —— +Lugy-No=- -(Lu;‘N-ﬂm inC
304 3\)4
ow) N O duj, Ouj
(7.14) -(%a+—lf;§;—N)(0)+(—;{—‘+—§)(0)+(Lu;N-f)(0)m+(Lu2N-f)(0)co=

ou]  Ou} du3 \ Ouy
=- [-J‘Xﬁ - —a‘y—”)w) * (11—” - 7;1“)(0) - Ml - O - (Luj - D O

The polynomial g% are defined recursively as follows:

'4 i . r
g’1‘=9nu';’,‘,-0-(1-On)g'l'1 inC!

.
g;=9nu';‘N+(l-O“)g'z"l inC 2

(7.16) : Ty

g5=0 ujy+(1-8) gi!  inC

r
g=0 ujy+(1-0)¢g’ inc*

n

g =6 Wy +(1-0) g’ fori=l,..4 in0.

Note that problems in Q, and Q, are independent, while those in €2, and Q, are coupled through
the two cross point conditions (7.14) and (7.15).

If the Legendre collocation points are used, the problem (7.1)-(7.5) can be written in a variational
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form which coincide with (3.4)-(3.7) provided M=4, Us is identified with u, N-and Py (M) is
substituted with the space

4
O, ={9: UT,>R :Qn_ie Py ). i=1,...4, @ is continuous in 0, p=0in IQ N (U ).
i=1
We skip the proof which is analogous to the one of proposition 3.1. With this variational

formulation we can now follow the guideline of section 4 to prove the convergence, as n — e, of
the iterative scheme (7.6)-(7.16). In this case however the extension theorem 4.1 takes a different

form. Precisely (4.7) holds now with two constants ¢ and t which depend on N as follows
6=0plogN, 1= tologN .

A consequence of this is that the constant 8* of theorem 4.2, as well as the error reduction factor
k(0), for 8 € (0, 6*), depend now on N. The convergence result (4.29) is still true, but x tends to

one as N — oo with a logarithmical speed. The precise form of this result and a detailed proof of it
can be found in [25].
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