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Abstract

 

The term "symmetry" is practically synonomous with the terms "reduction" and 
"simplification" in the field of structural mechanics. Conditions for the existence of certain 
symmetries to exist in the buckle patterns of symmetrically laminated composite plates are 
presented. The plates considered have a general planform with cutouts, variable thickness and 
stiffnesses, and general support and loading conditions. The symmetry analysis is based on 
enforcing invariance of the corresponding eigenvalue problem for a group of coordinate 
transformations associated with buckle patterns commonly exhibited by symmetrically laminated 
plates. The buckle-pattern symmetries examined include a central point of inversion symmetry, 
one plane of reflective symmetry, and two planes of reflective symmetry.
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buckling (see equation (6b))
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conditions (see equation (8))
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(see equation (15))
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Introduction

 

In the pursuit of high-performance aerospace structures, tailoring of material properties, 
support conditions, load introduction, and geometry play an important role. For example, previous 
studies have been conducted to find ways of using curvilinear fiber placement and thickness 
tailoring to reduce the severity of stress concentrations caused by cutouts, stiffener terminations, 
and other local stress raisers. Moreover, similar tailoring approaches have been used to find ways 
to enhance load-carrying, vibration and buckling performance. Specific examples that are 
representative of these efforts, spanning nearly forty years, are given in references 1-49. These 
examples, particularly the later ones, illustrate the complexity of the analyses and the 
computational expense generally involved in optimizing structures with tailored pointwise elastic 
properties. Thus, ways of reducing computational expense, such as developing relatively simple 
special-purpose analyses that exploit symmetries are likely to provide more lattitude for 
optimization efforts conducted in a building-block setting. This scenario is one example that 
illustrates that even in this era of powerful, general purpose computational tools for structural 
analysis, there remains a need for special-purpose analysis tools with a limited scope. 

The term "symmetry" is practically synonomous with the terms "reduction" and 
"simplification" in the field of structural mechanics. To illustrate this point, consider a generally 
laminated, fiber-reinforced rectangular plate with spatially uniform plies. For this general class of 
plates; extension, shearing, bending, and twisting deformations are fully coupled through the plate 
constitutive equations (see reference 50, pp. 187-236). As a result of this coupling, the plate 
behavior, as modelled by classical plate theory, is governed by three fully coupled partial 
differential equations that generally cannot be solved in closed form. In contrast, for 
symmetrically laminated plates, the coupling between inplane and bending deformation modes is 
absent, and the partial differential equations governing the behavior reduce to two equations for 
the inplane response and one for the out-of-plane bending response. Moreover, when coupling 
between inplane shear and extension is absent, the two partial differential equations for the 
inplane response become significantly simpler. Likewise, when coupling between bending and 
twisting is absent, the corresponding partial differential equation governing the out-of-plane 
bending behavior reduces to a significantly simpler form. Both of these simplifications 
correspond to a symmetry exhibited by laminates with orthogonal ply directions that are aligned 
with the rectangular-plate edges. Thus, the symmetries of the plate lamination correspond to a 
tremendous simplification of the mathematical analysis that governs laminated-plate behavior. As 
a result of these symmetry-based simplications, clarity and insight into the physical behavior is 
gained and the complexity of the corresponding mathematical analyses is reduced. For example, 
symmetry-based simplications lead to finite element analyses that use only a portion of the 
original computational domain. Likewise, these simplifications lead to the elimination of 
unneeded basis functions in classical Rayleigh-Ritz and Bubnov-Galerkin analyses.

Exploiting symmetry in structural mechanics is not a new idea. In particular, using symmetry 
arguments to simplify the pointwise, local constitutive equations of elastic materials is a 
cornerstone of the Theory of Elasticity that began in the 19

 

th

 

 century.

 

51

 

  These symmetry-based 
simplifications ultimately contributed to the development of analytical solutions for a variety of 
practical boundary-value problems that yielded significant advances in structural mechanics 
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technology. In more recent times, Renton

 

52

 

 used global, or overall, symmetry arguments to 
simplify buckling analyses of symmetrical frames. In 1973, Glockner

 

53

 

 demonstrated how to use 
symmetry arguments systematically to simplify structural analyses and reduce computational 
expense. A key ingredient of Glockner’s work is his 

 

axiom of symmetry

 

, which is based on the 
physical observations and experience base within the structural mechanics discipline up to that 
time. In essence, it is not unreasonable to expect that the inherent symmetry of a structural system 
results in a corresponding symmetry of its mechanical response. More specifically, Glockner’s 
axiom is paraphrased as follows.  

 

Given a structure whose geometry, support and loading 
conditions, elastic stiffness and mass distributions, and thermal expansion properties exhibit a 
common certain type of symmetry, the structural response will exhibit the same type of symmetry.

 

 
Discussions of Glockner’s work are found in references 54-58.  

In 1973, MacNeal et. al.

 

59

 

 presented a method for reducing the number of simultaneous 
equations to be solved in a linear finite element analysis of a general structure composed of two 
or more identical sub-regions. In this method, the sub-regions are arranged symmetrically with 
respect to an axis and, as a result, the symmetry is referred to in reference 59 as cyclic symmetry. 
Later, in 1976, Evensen

 

60

 

 showed how to exploit symmetry in the analysis of structural dynamics 
problems. In particular, Evensen showed how to identify the smallest subdomain of a structure, 
and the appropriate boundary conditions on the subdomain, that will yield all the vibration modes 
of the overall structure.  Also in 1976, and in 1977, Noor and his colleagues

 

61-64

 

 identified the 
symmetries exhibited by fiber-reinforced laminated-composite plates and shells, as a function of 
ply orientation and stacking sequence. In addition, the conditions on the geometry, stiffness and 
mass coefficients, loading and support conditions, stress resultants, and kinematics quantities are 
deduced from Glockner’s axiom of symmetry. Futhermore, a procedure is presented that exploits 
a given symmetry to obtain the smallest computational domain that can be used in linear and 
nonlinear finite element analyses. Everstine

 

65

 

 presented similar ideas in 1977, and in 1979 
Williams

 

66

 

 presented quantitative structural analysis results that showed substantial benefits in 
reducing computational costs by exploiting symmetry. In 1992, Li and Reid

 

67

 

 presented a more 
detailed examination of the symmetry conditions exhibited by laminated-composite structures, 
similar to that given by Noor and his colleagues. Several years later, Balaji et. al.

 

68

 

 presented a 
computer program for the design of radial impellers that is based on exploiting cyclic symmetry.

 
The concepts and results presented in reference 59-68 are applications of the mathematical 

discipline known as Group Theory; as demonstrated by Miller

 

69

 

 in 1981 and by Zheng et.al.

 

70

 

 in 
1982, and elucidated by Lobry and Broche

 

71

 

 in 1994. Additional studies that use Group Theory to 
exploit symmetry in structural analyses are found in references 72-102. Furthermore, reviews of 
this topic have been given in 2002 and 2009 by Zingoni.

 

103-104

 

    

For the most part, the previous studies cited herein are focused on simplifying the numerical 
solution of complicated boundary-value or eigenvalue problems. The studies presented by Noor 
and his colleagues appear to be the only ones that address the conditions required on the geometry, 
loading and support conditions, and material properties of plates and shells for certain prescribed 
symmetries in the response quantities to exist. These conditions are based on Glockner’s 
symmetry axiom previously stated herein and are presented as a direct consequence of the axiom. 
In contrast, the conditions for certain symmetries to exist in the response quantities of anisotropic 
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and orthotropic plates and shells are derived herein based on enforcing invariance of a given 
eigenvalue problem; that is, enforcing the primative concept of symmetry. Thus, the objective of 
the present study is to present the details of a direct procedure for obtaining the necessary and 
sufficient conditions on the problem parameters for prescribed symmetries to exist in the response 
quantities, in a simple manner. This procedure is based on the treatment of Schröedinger’s 
equation given by Humi and Miller

 

105

 

 (pp. 169-170), and on the treatment of functions and 
operators presented by McWeeny

 

106

 

 (pp. 166-202).  Just as the existence of symmetries were 
shown to yield reduction of the computational domain in many of the previous studies cited herein 
that focus on finite element analyses, the existence of symmetries lead to simplification in the 
basis functions that are used to represent the response quantities in classical Rayleigh-Ritz and 
Galerkin methods. This simplification is manifested as the elimination of unneeded waveforms, 
which improves computational efficiency of a special-purpose buckling analysis.

To achieve the objective of the present study, the eigenvalue problem associated with 
buckling of symmetrically laminated plates is considered first, without becoming entangled in 
mathematical jargon and notation that are not typically encountered by structural engineers. 
Specifically, symmetrically laminated plates of general shape with variable stiffness and general 
support and inplane loading conditions are examined and convenient differential operators are 
introduced. Then, symmetries associated with plate buckling are discussed and coordinate 
transformations that are used to characterize the symmetries are presented. After this step, the 
transformed eigenvalue problem is derived and the conditions that are necessary and sufficient for 
the plate-buckling symmetries to exist are given. More specifically, these conditions are given for 
buckle patterns with a central point of inversion symmetry, one plane of reflective symmetry, and 
two planes of reflective symmetry. Although the analysis presented subsequently is focused on 
symmetrically laminated plates, its extension to more complicated eigenvalue problems of fully 
anisotropic shells is straightforward. 

 

Equations Governing Buckling Behavior

 

The plates considered in the present study are idealized as perfectly flat and have a midplane 
with the general planform shown in figure 1. Coordinates of points of the midplane are given by 
(x, y) with respect to the  x  and  y  axes and are collectively referred to herein as the domain 

 

D

 

. 
In general, the planform domain 

 

D

 

 is bounded by a continuous exterior curve  

 

C

 

o

 

  and by one or 
more interior curves  

 

C

 

i

 

  that correspond to cutouts. Each of these curves generally consist of a 
finite number of smooth, connected pieces with coordinates that are specified parametrically by  
x = x

 

(s)

 

  and  y = y

 

(s)

 

,  where  s  is an arc length parameter. Collectively, the plate boundary is 
denoted by  

 

C  

 

= 

 

C

 

o

 

  

 

∪

 

 

 

C

 

i

 

. At any given point of a smooth segment of a boundary curve, the unit-
magnitude vector field normal to the segment is given by the components  n

 

x

 

(x, y)

 

 and n

 

y

 

(x, y)

 

, as 
shown in figure 1, where x = x

 

(s)

 

, y = y

 

(s)

 

, n

 

x

 

(x, y)

 

 = dy/ds, and n

 

y

 

(x, y)

 

 = - dx/ds. Traversal of a 
boundary curve, associated with increasing values of the arc length parameter  s, and orientation 
of the unit-magnitude vector field are presumed to be consistent with the standard convention of 
Stokes Integral Theorem; that is, the exterior boundary is traversed counterclockwise and each 
interior boundary is traversed clockwise, and the unit-magnitude vector field points away from 
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the interior of the plate domain. As depicted in figure 1, the plate is loaded by force-per-unit-
length inplane tractions  

 

λ

 

P

 

n

 

(x, y)

 

  and 

 

λ

 

P

 

s

 

(x, y) 

 

 that are normal and tangent to the boundary curve 
at a given point, respectively. In general, the tractions are presumed to be distributed over one or 
more of the segments forming the boundaries of the planform. The symbol  

 

λ

 

  represents a loading 
parameter that is increased monotonically from a value of zero to a value  

 

λ

 

cr

 

 that corresponds to 
buckling. 

The equations governing the buckling behavior of plates are found in references 107 and 108. 
From the equations in these references, and reference 50, the general form of the partial 
differential equation governing bifurcation buckling of perfectly flat plates with flexural-twist 
anisotropy, in terms of the Cartesian coordinates (x, y), is found to be given by

     (1)

for the set of points that form the domain 

 

D

 

. The function  w

 

(x, y)

 

  is the out-of-plane buckling 

deflection and the functions  denote the prebuckling, inplane 
stress resultants produced by the edge loads  

 

λ

 

P

 

n

 

(x, y)

 

  and  

 

λ

 

Ps(x, y). Positive values of these stress 
resultants are shown in figure 1.  The terms  D11, D12, D22, and D66  are the plate bending stiffnesses 
that account for flexural orthotropy, and the terms  D16 and D26 are the plate bending stiffnesses 
that account for flexural-twist anisotropy. For the general case of plates with variable thickness 
and nonuniform fiber placement, these stiffnesses are functions of the coordinates (x, y). Herein, 
these functions are presumed to be differentiable. Formulas for computing these bending 
stiffnesses for laminated-composite plates are found in reference 50. It is important to note that 
the determination of the prebuckling stress resultants generally requires the solution of a separate 
boundary-value problem. However, for several practical cases, they are statically determinant.

The general form of the boundary conditions that correspond to equation (1) are given by the 
conjugate pairs

  or                           (2a)

  or                                                       (2b)

evaluated on one or more segments of the boundary curves and 

                                                              (2c)

∂
2

∂x2 D11
∂

2w
∂x2 + D12

∂
2w
∂y2 + 2D16

∂
2w

∂x∂y + ∂
2

∂y2 D12
∂

2w
∂x2 + D22

∂
2w
∂y2 + 2D26

∂
2w

∂x∂y

+ 2 ∂
2

∂x∂y D16
∂

2w
∂x2 + D26

∂
2w
∂y2 + 2D66

∂
2w

∂x∂y = λ Nx

0∂
2w
∂x2 + Ny

0∂
2w
∂y2 + 2Nxy

0 ∂
2w

∂x∂y

λNx

0
(x, y), λNy

0
(x, y), and λNxy

0
(x, y)

w = 0 Vn ≡ Qn +
∂Mns

∂s
+ λ Pn

∂w
∂n

+ Ps
∂w
∂s

= 0

∂w
∂n

= 0 Mn = 0

Mns = 0
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evaluated at points of the boundary curves with sharp corners (discontinuous derivatives). In these 
equations, 

                                                     (3a)

                                                   (3b)

                                         (3c)

                                      (3d)

                                 (3e)

where

                                   (4a)

                                   (4b)

                                   (4c)

are the bending stress resultants. Together, the homogeneous partial differential equation and the 
homogeneous boundary conditions, given by equations (1) and (2), constitute an eigenvalue 
problem in which  λ  is the eigenvalue and  w(x, y)  is the corresponding eigenfunction. An 
eigenfunction is referred to herein as a buckle pattern.

To facilitate further analysis presented herein, it is convenient to express equation (1) in 
operator form as

                                                   (5)

where the linear differential operator L( ) is defined by
 

∂w
∂n

= nx
∂w
∂x

+ ny
∂w
∂y

∂w
∂s

= − ny
∂w
∂x

+ nx
∂w
∂y

Mn = Mxnx
2 + 2Mxynxny + Myny

2 = 0

Mns = My − Mx nxny + nx
2 − ny

2 Mxy

Qn =
∂Mx

∂x
+
∂Mxy

∂y
nx +

∂Mxy

∂x
+
∂My

∂y
ny

Mx = – D11
∂

2w
∂x2 + D12

∂
2w
∂y2 + 2D16

∂
2w

∂x∂y

My = – D12
∂

2w
∂x2 + D22

∂
2w
∂y2 + 2D26

∂
2w

∂x∂y

Mxy = – D16
∂

2w
∂x2 + D26

∂
2w
∂y2 + 2D66

∂
2w

∂x∂y

L w(x, y) = λ G w(x, y)
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       (6a)

and the linear differential operator G( ) is defined by

                           (6b)

Similarly, the boundary conditions are expressed in operator from as follows. First, the boundary 
stress resultants are expressed in operator form as

                                                         (7a)

                                                        (7b)

                                                          (7c)

where

    (7d)

L = ∂
2

∂x2 D11(x, y)
∂

2

∂x2 + D12(x, y)
∂

2

∂y2 + 2D16(x, y)
∂

2

∂x∂y

+ ∂
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∂

2

∂x2 + D22(x, y)
∂

2
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∂

2
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+ 2 ∂
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∂x∂y D16(x, y)
∂

2

∂x2 + D26(x, y)
∂

2
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∂

2
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∂
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0
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∂
2
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0
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∂
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∂

2
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∂

2
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2(x, y)D26(x, y) + 2nx(x, y) ny(x, y)D66(x, y)
∂

2

∂x∂y
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   (7e)

    (7f)

Then, equation (2a) is expressed in operator form as 

                                                 (8a)

where for the displacement boundary condition  w = 0,

     and                                                  (8b)

and for the conjugate force boundary condition  Vn = 0, 

                                      (8c)

and

     (8d)

Likewise, equation (2b) is expressed in operator form as 

                                                           (9a)
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2(x, y) D16(x, y)
∂

2

∂x2

+ nx(x, y)ny(x, y) D22(x, y) − D12(x, y) + nx
2(x, y) − ny

2(x, y) D26(x, y)
∂

2

∂y2

+ 2 nx(x, y)ny(x, y) D26(x, y) − D16(x, y) + D66(x, y) nx
2(x, y) − ny

2(x, y)
∂
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∂
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∂
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∂

∂y
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where for the slope boundary condition 

                                                                               (9b)

and for the conjugate moment boundary condition  Mn = 0, 

                                                            (9c)

Furthermore, equation (2c) is expressed as  

                                                          (10)

for points of the boundary curves with discontinuous derivatives.

Symmetries Associated With Plate Buckling

A buckle pattern  w(x, y)  that is a legitimate solution to the eigenvalue problem for plate 
buckling defined herein may exhibit certain types of symmetries, depending on the circumstances 
of a given problem. These circumstances are determined by the geometry of the midplane domain  
D, the distributions of the edge loading and supports, and the stiffnesses associated with the plate 
material composition and construction. For example, the buckle pattern may exhibit one plane of 
reflective symmetry, as shown by the contour plots in figures 2 and 3 for a rectangular plate 
domain, or one plane of reflective antisymmetry, as shown in figures 4 and 5. Inspection of figure 
2 reveals that a buckle pattern with one plane of reflective symmetry, given by  x = 0, satisfies the 
condition  w(-x, y) = w(x, y). Similarly, in figure 3 the plane of reflective symmetry given by  y 
= 0  satisfies the condition  w(x, -y) = w(x, y). In contrast, the contour plots in figures 4 and 5 
reveal that a buckle pattern with one plane of reflective antisymmetry satisfies the conditions      
w(-x, y) = - w(x, y)  or  w(x, -y) = -w(x, y), respectively. In many cases, a buckle pattern may 
exhibit two planes of reflective symmetry, as shown in figure 6, for which  w(-x, y) = w(x, y) and  
w(x, -y) = w(x, y). Similarly, a buckle pattern may exhibit one plane of reflective symmetry and 
one plane of reflective antisymmetry where  w(-x, y) = -w(x, y)  and  w(x, -y) = w(x, y)  are 
satisfied  (figure 7) or where  w(-x, y) = w(x, y)  and   w(x, -y) = -w(x, y)  are satisifed  (figure 8). 
Furthemore, a buckle pattern may exhibit two planes of reflective antisymmetry where  w(-x, y) 
= -w(x, y)  and  w(x, -y) = -w(x, y)  are satisifed, as shown in figure 9. Two other types of 
symmetries often encountered are depicted in figures 10 and 11. In figure 10, the buckle pattern 
exhibits a central point of inversion symmetry for which  w(-x, -y) = w(x, y), and in figure 11 the 
buckle pattern exhibits a central point of inversion antisymmetry for which  w(-x, -y) = -w(x, y). 

∂w
∂n

= 0,

B 2 = nx(x, y)
∂

∂x
+ ny(x, y)

∂

∂y

B 2 = M n

M ns w(x, y) = 0
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It is significant to note that buckle patterns simlilar to those with the reflective symmetries 
described above have been observed in experiments conducted on actual plates that are not 
perfectly symmetric, but may be reasonbly close for engineering purposes. Examples of real 
buckle patterns with reflective quasi-symmetries are found in references 109 and 110. An 
example of a real plate buckle pattern similar to the idealized central point of inversion symmetry 
shown in figure 10, is shown in figure 12. This plate is a highly anisotropic [+606/-606]s laminated-
composite plate made of a typical high-strength graphite-epoxy material and loaded in 
compression. This plate was tested at the NASA Langley Research Center by the author circa 
1990. 

Although the symmetries associated with plate buckling have been illustrated for a 
rectangular plate domain, they can exist for certain types of nonrectangular domains. For 
example, an elliptical domain with its principal axes coincident with the x and y axes can exhibit 
the symmetries described in this section, depending on the loading and support conditions and on 
the material properties and corresponding stiffness distributions.

Necessary and Sufficient Conditions for a Prescribed Symmetry

Each of the symmetries depicted in figures 2-11 are characterized by a relationship between 
the values of the eigenfunction  w  at the points  (x, y) ∈ D  and at a corresponding set of related 
points  that are reckoned with respect to the same coordinate frame. This relationship 
between the sets of points is quantified by a general unique orthogonal coordinate transformation 
of the domain D onto itself. Herein, this transformation is denoted symbolically by 

    and                                                     (11a)

or by
                                                            (11b)

where T[  ]  denotes the transformed image of the quantity within the brackets. In this context, 
equations (11) are viewed as a mapping of points in which the coordinate axes remain fixed. In 
addition, because the transformations are orthogonal, the lengths of lines in  D, and the angles 
between them remain unaltered; that is, invariant. Moreover, it follows that since  D  is bounded 
by the curves forming the boundary C, that for every  (x, y) ∈ C, the corresponding point  
is also an element of  C  for this class of transformations. Thus, the actual form of the functional 
relationships given by equations (11) places restrictions on the shape of the domain and its 
boundary; that is, T[ D ] = D  and T[ C ] = C. 

Three coordinate transformations are used in the present study to characterize symmetries 
commonly exhibited by the buckle patterns of idealized plates described herein previously. The 
first transformation corresponds to a reflection of the points forming the region  D ∪ C  about the 

(x, y) ∈ D

x = x(x, y) y = y(x, y)

(x, y) = T (x, y)

x, y
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plane  x = 0, and is given by

                                                   (12)

For this transformation, the domain D  and boundary C  are required to be symmetric about the 
plane  x = 0, as shown in figure 13.  The second transformation corresponds to a reflection of the 
points comprizing  D ∪ C  about the plane  y = 0, and is given by

                                                   (13)

For this transformation, the domain  D  and boundary C  are required to be symmetric about the 
plane  y = 0. The third transformation corresponds to a reflection of the points comprizing D ∪ C  
about the plane normal to the line passing through the point (x, y) and the origin. This 
transformation is given by

                                                 (14)

and is depicted in figure 14. It is important to observe that the partial derivatives of  and  with 
respect to x and y are constants for these three very special transformations. Moreover, the 

derivatives  and the values of  and  are equal to either  1  or  -1. 

Furthermore, the inverses are given by   and   These simplifications are used 

subsequently to simplify the analysis.

Necessary Conditions

Each of the three transformations given by equations (12)-(14) corresponds to a reflective 
symmetry about a given plane that may be either symmetric or antisymmetric about the plane. If 
a buckle pattern exists that is symmetric about the symmetry plane, with respect to a given 
coordinate transformation, then the buckle pattern defined in both sets of coordinates satisfies the 
condition  In contrast, if a buckle pattern exists that is antisymmetric about the 
symmetry plane, then the buckle pattern defined in both coordinate systems satisfies the condition 

For convenience, both of these cases are represented herein by

                                                     (15)

where  k  = 1  and  k  = -1  for buckle patterns that are symmetric and antisymmetric about the 
plane of reflection symmetry, respectively. The conditions that are necessary for the existence of 

x(x, y) = − x and y(x, y) = y

x(x, y) = x and y(x, y) = − y

x(x, y) = − x and y(x, y) = − y

x y

∂y
∂x

= 0, ∂x
∂y

= 0, ∂x
∂x

∂y
∂y

∂x
∂x

=
∂x
∂x

∂y
∂y

=
∂y
∂y

.

w(x, y) = w(x, y).

w(x, y) = − w(x, y).

w(x, y) = k w(x, y)
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equation (15) are found by examining the transformed eigenvalue problem as follows. 

First, equations (5)-(10) are expressed in terms of the  coordinates by simply replacing  

x  with    and  y  with   to obtain expressions for the transformed eigenvalue problem. Then, 
the coordinate transformation given by equations (11) is introduced and the chain rule of 
differentiation is applied to get the transformed eigenvalue problem. 

                                        (16a)

for every (x, y) ∈ D  and by

                                     (16b)

and

                                                      (16c)

for every . Likewise,

                                                     (16d)

for points of C  where the derivatives are discontinuous. In these transformed equations,

    (17a)

                 (17b)

where the arguments of the stiffnesses and the prebuckling stress resultants are given in terms of 
(x, y) by equations (11). In obtaining these equations, it is noted that even powers of the 

(x, y)

x y

T L w(x, y) = λ T G w(x, y)

T B 1 w(x, y) = λ T G 1 w(x, y)

T B 2 w(x, y) = 0

(x(s), y(s)) ∈ C.

T M ns w(x, y) = 0

T L = ∂
2

∂x2 D11(x, y)
∂

2

∂x2 + D12(x, y)
∂

2

∂y2 + 2D16(x, y) ∂x
∂x

3∂y
∂y

∂
2

∂x∂y

+ 2 ∂
2

∂x∂y D16(x, y) ∂x
∂x

3∂y
∂y

∂
2

∂x2 + D26(x, y)∂x
∂x

∂y
∂y

3∂
2

∂y2 + 2D66(x, y)
∂

2

∂x∂y

+ ∂
2

∂y2 D12(x, y)
∂

2

∂x2 + D22(x, y)
∂

2

∂y2 + 2D26(x, y)∂x
∂x

∂y
∂y

3 ∂
2

∂x∂y

T G = Nx

0
(x, y)

∂
2

∂x2 + Ny

0
(x, y)

∂
2

∂y2 + 2Nxy

0
(x, y)∂x

∂x
∂y
∂y

∂
2

∂x∂y
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derivatives    and    are equal to unity for the particular class of transformations considered 

in the present study. Likewise, the operators in equations (16b)-(16c) are transformed in two steps 
as follows. First, the partial derivatives in these operators are transformed to get 

     (18)

   (19)

(20)

For the displacement boundary condition  w = 0,

     and                                          (21a)

For the conjugate force boundary condition  Vn = 0,

∂x
∂x

∂y
∂y

T M n = nx
2(x, y)D11(x, y) + ny

2(x, y)D12(x, y) + 2nx(x, y) ny(x, y)D16(x, y)
∂

2

∂x2

+ nx
2(x, y)D12(x, y) + ny

2(x, y)D22(x, y) + 2nx(x, y) ny(x, y)D26(x, y)
∂

2

∂y2

+ 2 nx
2(x, y)D16(x, y) + ny

2(x, y)D26(x, y) + 2nx(x, y) ny(x, y)D66(x, y) ∂x
∂x
∂y
∂y

∂
2

∂x∂y

T M ns = nx(x, y)ny(x, y) D12(x, y) − D11(x, y) + nx
2(x, y) − ny

2(x, y) D16(x, y)
∂

2

∂x2

+ nx(x, y)ny(x, y) D22(x, y) − D12(x, y) + nx
2(x, y) − ny

2(x, y) D26(x, y)
∂

2

∂y2

+ 2 nx(x, y)ny(x, y) D26(x, y) − D16(x, y) + D66(x, y) nx
2(x, y) − ny

2(x, y) ∂x
∂x
∂y
∂y

∂
2

∂x∂y

T Qn = nx(x, y)∂x
∂x

∂
∂x

D11(x, y)
∂

2

∂x2 + D12(x, y)
∂

2

∂y2 + 2D16(x, y)∂x
∂x
∂y
∂y

∂
2
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+ ny(x, y)
∂y
∂y

∂
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D12(x, y)
∂
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∂x
∂y
∂y

∂
2

∂x∂y

+ nx(x, y)
∂y
∂y

∂

∂y
+ ny(x, y)∂x
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               (21b)

and

             (21c)

For the slope boundary condition 

                                                                          (22a)

and for the conjugate moment boundary condition  Mn = 0,

                                                        (22b)

In these equations for the transformed boundary conditions,   and  are the 
components of the unit-magnitude vector field normal at points of plate boundary C  given by  

  and   The second step in the transformation process 
deals with transforming these components. Specifically, the relationships between the 
components of the unit-magnitude normal-vector fields are obtained by applying the chain rule of 
differentiation to the definitions  nx(x, y) = dy/ds, and ny(x, y) = - dx/ds. This process  gives 

                                          or                                                     (23a)

                                          or                                                    (23b)

for the special class of coordinate transformations considered herein. Applying equations (23) to 
equations (18)-(20) yields 

T B 1 = T Qn + nx(x, y)
∂y
∂y

∂

∂y
− ny(x, y)∂x

∂x
∂

∂x T M ns

T G 1 = nx(x, y)Pn(x, y) − ny(x, y)Ps(x, y) ∂x
∂x

∂

∂x

+ nx(x, y)Ps(x, y) + ny(x, y)Pn(x, y)
∂y
∂y

∂

∂y

∂w
∂n

= 0,

T B 2 = nx(x, y)∂x
∂x

∂

∂x
+ ny(x, y)

∂y
∂y

∂

∂y

T B 2 = T M n

nx(x, y) ny(x, y)

x =x(x(s), y(s)) = x(s) y = y(x(s), y(s)) = y(s).

nx(x, y) = nx(x, y)
∂y
∂y

nx(x, y) = nx(x, y)
∂y
∂y

ny(x, y) = ny(x, y)∂x
∂x

ny(x, y) = ny(x, y)
∂x
∂x
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  (24)

  (25)

    (26)

For the force boundary condition  Vn = 0, equations (21b) and (21c) become

                      (27a)

and

T M n = nx
2(x, y)D11(x, y) + ny

2(x, y)D12(x, y) + 2nx(x, y)ny(x, y)
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        (27b)

For the slope boundary condition  equation (22a) becomes

                                                                          (28)

The necessary conditions that correspond to the existence of a buckle pattern that is either 
symmetric or antisymmetric about a symmetry plane are obtained by enforcing invariance of the 
eigenvalue problem under the transformations given by equations (11). In other words, if equation 
(15) is valid, as presumed, the two corresponding eigenvalue problems must be identical. 
Specifically, invariance of the differential equation is given by 

                      (29)

and yields the necessary conditions

                                                     (30a)

                                                     (30b)

                                             (30c)

                                                      (30d)

                                               (30e)

                                                       (30f)

on the stiffnesses and 

T G 1 = nx(x, y)
∂y
∂y
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∂x
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∂y
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                                                         (31a)

                                                         (31b)

                                                (31c)

on the prebuckling stress resultants, for all values of (x, y) in the domain D. 

As for invariance of the boundary conditions, consider the general case in which  w(x, y) = 0  
for an arbitrary subset of the plate boundary denoted by CΔ ⊂ C, as depicted in figures 13 and 14. 
In general, CΔ  consists of a finite number of smooth disjoint boundary segments.  Applying the 
coordinate transformation given by equations (11) to this displacement constraint, and enforcing 
equation (15), yields the necessary condition that  w(x, y) = 0  on points of the plate boundary given 

by T[CΔ]. Similarly, if   is specified on a given subset of the plate boundary Cδ ⊂ C, 

then the transformation of  that is obtained from equations (16c) and (27), and 

enforcement of equation (15), yields the necessary condition that   on T[Cδ], for the 

class of transformations considered herein. 

Next, consider invariance of the boundary condition  Mn(x, y) = 0, given by  equations (7c) 
and (9c), for an arbitrary subset of the plate boundary denoted by CΜ ⊂ C.  Invariance of the 
corresponding transformed boundary condition, given by equations (16c), (22b) and (24), yields 
the  necessary conditions given by equations (28a), (28b), (28d), (28f), and

                                                   (32a)

                                                   (32b)

Equations (32a) and (32b) are effectively the same as equations (30c) and (30e), respectively, for 
the class of transformations considered herein. Applying these necessary conditions to equation 
(24) gives

                                                        (33a)

Thus, the transformed boundary condition yields the additional necessary condition that            
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0
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0
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0
(x, y) = Ny

0
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Nxy

0
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∂y
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Mn(x, y) = 0  be specified on T[CΜ].  

Now, consider the invariance of the operator    that is given by equations (7b). 
Substituting the necessary conditions given by equations (28a), (28b), (28d), (28f), and (30) into 
the corresponding transformed quantity, given by equation (25), yields

                                                  (33b)

Likewise, equation (26) becomes

                                                   (34)

Next, substituting equations (33b) and (34) into equation (27a) yields

                                                    (35)

Moreover, comparing equations (8d) and (27b) indicates that invariance of the operator  
yields the following necessary conditions on the applied loads
 

                                                          (36a)

and

                                                     (36b)

Enforcing these necessary conditions in equation (27b) yields

                                                    (37)

Now, consider the boundary condition Vn(x, y) = 0, given by  equations (8a), (8c), and (8d), 
for an arbitrary subset of the plate boundary denoted by CV ⊂ C. Invariance requirements for this 
boundary condition are obtained by substituting equation (15) into equation (16b) and making use 
of equations (35) and (37). This process yields the additional necessary condition that  Vn(x, y) = 
0  on T[CV]. 

Lastly, consider invariance of the boundary condition  Mns(x, y) = 0, given by  equations (7b) 

M ns

T M ns =
∂x
∂x
∂y
∂y M ns

T Qn =
∂x
∂x
∂y
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T B 1 =
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and (7e), for  N  points of the boundary with sharp corners, denoted by  Pκ ∈ C,  for k = 1, 2, ..., 
N.  From equation (33), it is seen that invariance of this boundary condition produces the 
additional necessary condition that  Mns(x, y) = 0  on T[Pκ], for k = 1, 2, ..., N. 

Sufficient Conditions

In the previous section, a prescribed symmetry was presumed to exist and the conditions that 
are necessary for the eigenvalue problem to be invariant under a corresponding coordinate 
transformation were detemined. In this section, the following question is addressed: "If the 
eigenvalue problem is invariant under a specified coordinate transformation, does the invariance 
imply that the eigenfunctions exhibit the symmetry inherent to the coordinate transformation?" If 
the answer to this question is yes, then the necessary conditions for invariance of the eigenvalue 
problem are also sufficient conditions for the existence of the corresponding symmetry.

To obtain the sufficient conditions for a buckle pattern to possess one of the symmetries 
described herein, it is presumed that the eigenvalue problem is invariant under the action of a 
coordinate transformation of the general form given by equations (11). Let the buckle pattern   
w(x, y)  be a solution to the original eigenvalue problem for a given eigenvalue, and let  be 
the solution to the corresponding transformed eigenvalue problem, for the same eigenvalue. 
Because of the presumed invariance, both eigenfunctions are solutions to the original eigenvalue 
problem, for a given eigenvalue. Moreover, both eigenvalue problems possess the same spectrum 
of eigenfunctions and, as a result, there exists a pair of eigenfunctions from the two identical 
eigenvalue problems, for a given eigenvalue, that possesses a unique correspondance. 
Additionally, since the amplitude of an eigenfunction is indeterminate, it follows that every 
corresponding pair of eigenfunctions  w(x, y)  and    can differ only in sign and magnitude. 
These differences are represented by a multiplicative real constant; that is,

                                                          (38)

To have complete equivalence of the eigenfunctions appearing in this equation,  kw(x, y)  and  
 are scaled to have the same maximum amplitude. Thus, the constant  k  has admissible 

values of  +1 and -1 and, as a result, equation (38) corresponds to equation (15) that was used to 
determine the necessary conditions. This correspondance between equations (15) and (38), 
implies that the necessary conditions given previously for the existence of symmetries are also 
sufficient conditions. 

Up to this point in the analysis, the functions that define the bending stiffnesses have been 
presumed to be differentiable on the domain D. However, for laminated plates that are tailored in 
a patchwork fashion, the bending-stiffness functions are sectionally differentiable. For these 
cases, the necessary and sufficient conditions for a buckle pattern to possess one of the 
symmetries described herein are found by partitioning the domain D into a finite number of 
subdomains and then enforcing the symmetry requirements for each subdomain and its boundary. 

w(x, y)

w(x, y)

w(x, y) = k w(x, y)

w(x, y)
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This process places additional conditions on the distribution of the patchwork bending stiffnesses 
that must be satisfied.  

The Three Specific Cases

The general necessary and sufficient conditions for the existence of a buckle pattern that is 
either symmetric or antisymmetric about a plane of reflective symmetry were derived in the 
previous section of the present study.  The corresponding results for the three specific cases 
defined by equations (12)-(14) are presented subsequently.

One Plane of Reflective Symmetry at  x = 0

Consider the case in which the plane  x = 0  is a proposed plane of reflective symmetry, as 
depicted in figure 2. The coordinate transformation used herein to characterize this type of 
symmetry is given by equation (12). For this transformations, equations (30) give  

                                                     (39a)

                                                     (39b)

                                                  (39c)

                                                     (39d)

                                                (39e)

                                                    (39f)

on the stiffnesses and 

                                                     (40a)

                                                     (40b)

                                                (40c)

on the prebuckling stress resultants. Likewise, the inplane loads given by equations (36) must 

D11(− x, y) = D11(x, y)

D12(− x, y) = D12(x, y)

D16(− x, y) = − D16(x, y)

D22(− x, y) = D22(x, y)

D26(− x, y) = − D26(x, y)

D66(− x, y) = D66(x, y)
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0
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0
(x, y)
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0
(x, y)

Nxy

0
(− x, y) = − Nxy

0
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obey
                                                       (41a)

                                                      (41b)

In addition, the transformation requires that for all   the condition 

  must hold, as illustrated in figure 13. As shown in this figure, a cutout placed 
on the y-axis must be symmetric about this axis, and a cutout located off the y-axis must have a 
correspond cutout on the other side of the axis with the appropriate symmetry. Moreover, for any 
boundary condition specified over all or parts of  C, with coordinates it must also be 

specified over the corresponding parts of  C, with coordinates  It is also important to 
note than when the bending stiffnesses are constants, D16 = D26 = 0  must hold. Each of these 
necessary and sufficient conditions are completely consistent with Glockner’s symmetry axiom 
as applied in references 61-64.

Two Planes of Reflective Symmetry

Consider the case in which  y = 0  is a reflective-symmetry plane, in addition to the plane  x 
= 0. Because the plane  x = 0  is taken as a pre-existing symmetry plane, the corresponding 
necessary and sufficient conditions given in the previous section must be enforced prior to 
applying the transformation used to characterize the plane  y = 0  as a reflective-symmetry plane. 
The coordinate transformation used herein to characterize symmetries with respect to the plane  y 
= 0  is given by equation (13). For this transformations, and the previous set of necessary and 
sufficient conditions, equations (30) give  

    and                               (42a)

    and                              (42b)

    and                           (42c)

    and                              (42d)

    and                           (42e)

   and                               (42f)

Pn(− x, y) = Pn(x, y)

Ps(− x, y) = − Ps(x, y)

(x(s), y(s)) ∈ C,

(− x(s), y(s)) ∈ C,

(x(s), y(s)),

(− x(s), y(s)).

D11(− x, y) = D11(x, y) D11(x, − y) = D11(x, y)

D12(− x, y) = D12(x, y) D12(x, − y) = D12(x, y)

D16(− x, y) = − D16(x, y) D16(x, − y) = − D16(x, y)

D22(− x, y) = D22(x, y) D22(x, − y) = D22(x, y)

D26(− x, y) = − D26(x, y) D26(x, − y) = − D26(x, y)

D66(− x, y) = D66(x, y) D66(x, − y) = D66(x, y)
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on the stiffnesses and 

    and                                (43a)

   and                                (43b)

   and                           (43c)

on the prebuckling stress resultants. Likewise, the inplane loads given by equations (36) must 
obey

   and                                   (44a)

   and                                (44b)

In addition, the transformation requires that for all  the conditions 

  and    must hold. Thus, a cutout placed on the x-axis must be 
symmetric about this axis, and a cutout located off the x-axis must have a correspond cutout on 
the other side of the axis with the appropriate symmetry. Moreover, for any boundary condition 
specified over all or parts of  C, with coordinates it must also be specified over the 

corresponding parts of  C, with coordinates  and  Each of these 
necessary and sufficient conditions are also completely consistent with Glockner’s symmetry 
axiom as applied in references 61-64.

A Central Point of Inversion Symmetry or Antisymmetry

Consider the case in which the origin of the coordiinates is a proposed point of inversion 
symmetry or antisymmetry, as depicted in figures 10 and 11. The coordinate transformation used 
herein to characterize this type of symmetry is given by equation (14). For this transformation, 
equations (30) give 

 
                                                   (45a)

                                                   (45b)

                                                   (45c)

                                                   (45d)

Nx

0
(− x, y) = Nx

0
(x, y) Nx

0
(x, − y) = Nx

0
(x, y)

Ny

0
(− x, y) = Ny

0
(x, y) Ny

0
(x, − y) = Ny

0
(x, y)

Nxy

0
(− x, y) = − Nxy

0
(x, y) Nxy

0
(x, − y) = − Nxy

0
(x, y)

Pn(− x, y) = Pn(x, y) Pn(x, − y) = Pn(x, y)

Ps(− x, y) = − Ps(x, y) Ps(x, − y) = − Ps(x, y)

(x(s), y(s)) ∈ C,

(− x(s), y(s)) ∈ C (x(s), − y(s)) ∈ C

(x(s), y(s)),

(− x(s), y(s)) (x(s), − y(s)).

D11(− x, − y) = D11(x, y)

D12(− x, − y) = D12(x, y)

D16(− x, − y) = D16(x, y)

D22(− x, − y) = D22(x, y)
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                                                   (45e)

                                                    (45f)

on the stiffnesses and 

                                                   (46a)

                                                   (46b)

                                                  (46c)

on the prebuckling stress resultants. Likewise, the inplane loads given by equations (36) must 
obey

                                                     (47a)

                                                      (47b)

In addition, the transformation requires that for all   the condition 

  must hold, as illustrated in figure 14. As shown in this figure, a cutout placed 
at the origin must have a central point of inversion symmetry, and a cutout located away from the 
origin must have a correspond cutout that produce a domain with the appropriate inversion 
symmetry. Moreover, for any boundary condition specified over all or parts of  C, with 
coordinates it must also be specified over the corresponding parts of  C, with 

coordinates Each of these necessary and sufficient conditions are also completely 
consistent with Glockner’s symmetry axiom as applied in references 61-64.

Concluding Remarks

Necessary and sufficient conditions for the existence of certain symmetries to exist in the 
buckle patterns of symmetrically laminated composite plates have been derived. The plates 
considered have a general planform with cutouts, variable thickness and stiffnesses, and general 
support and loading conditions. The specific form of the symmetry conditions are based on the 
invariance properties of the corresponding eigenvalue problem for a group of coordinate 
transformations associated with buckle patterns commonly exhibited by symmetrically laminated 
plates. The buckle-pattern symmetries examined include a central point of inversion symmetry, 
one plane of reflective symmetry, and two planes of reflective symmetry. The necessary and 

D26(− x, − y) = D26(x, y)

D66(− x, − y) = D66(x, y)

Nx

0
(− x, − y) = Nx

0
(x, y)

Ny

0
(− x, − y) = Ny

0
(x, y)

Nxy

0
(− x, − y) = Nxy

0
(x, y)

Pn(− x, − y) = Pn(x, y)

Ps(− x, − y) = Ps(x, y)

(x(s), y(s)) ∈ C,

(− x(s), − y(s)) ∈ C

(x(s), y(s)),

(− x(s), − y(s)).
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sufficient conditions presented herein are consistent with Glockner’s axiom of symmetry. 
Although only symmetrically laminated plates have been considered in the present study, the 
analysis presented herein is applicable to generally laminates plates and shells.
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w(x, y)w(-x, y)

Figure 2.  Buckle pattern with one plane of reflective symmetry given by
w(-x, y) = w(x, y).
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Figure 3.  Buckle pattern with one plane of reflective symmetry given by
w(x, -y) = w(x, y).
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Figure 4.  Buckle pattern with one plane of reflective antisymmetry given by
w(-x, y) = -w(x, y).
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Figure 5.  Buckle pattern with one plane of reflective antisymmetry given by
w(x, -y) = -w(x, y).
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Figure 6.  Buckle pattern with two planes of reflective symmetry given by
w(-x, y) = w(x, y)  and  w(x,-y) = w(x, y).

w(x, -y)
w(-x, -y)

 

y-axis

x-axis

w(x, y)w(-x, y)

 

Figure 7.  Buckle pattern with one plane of reflective symmetry given by  w(x,-y) = w(x,y)  
and one plane of reflective antisymmetry given by  w(-x, y) = -w(x, y).
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Figure 8.  Buckle pattern with one plane of reflective symmetry given by  w(-x, y) = w(x, y)  
and one plane of reflective antisymmetry given by  w(x, -y) = -w(x, y).
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Figure 9.  Buckle pattern with two planes of reflective antisymmetry given by
w(-x, y) = -w(x, y)  and  w(x, -y) = -w(x, y).
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Figure 10.  Buckle pattern with a central point of inversion symmetry 
given by  w(-x, -y) = w(x, y).
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Figure 11.  Buckle pattern with a central point of inversion antisymmetry 
given by  w(-x, -y) = -w(x, y).
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Figure 12.  Buckle pattern of a compression-loaded [+60
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 laminated-composite 
plate made of a typical high-strength graphite-epoxy material.    
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Figure 13.  Geometry of domain D and boundary C  imposed by the coordinate
transformation (x, y) = (− x, y).
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