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Abstract

This paper explores a class of multiple-model-based fault detection and identification
(FDI) methods for bias-type faults in actuators and sensors. These methods employ
banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and
estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different
failure pattern. Necessary and sufficient conditions are presented for identifiability
of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is
shown that FDI of simultaneous actuator and sensor faults is not possible using these
methods when all sensors have biases.

1 Introduction

Failures in control effectors and sensors can cause poor performance or instability
in dynamical systems. In particular, faults in flight control systems for aircraft or
spacecraft can lead to loss of control and serious incidents. Therefore, rapid fault
detection and identification (FDI) in actuators and sensors is important for enhancing
flight safety. One approach to actuator and sensor FDI is based on multiple-model
methods [1], [2], which have been extended to detect faults and identify the fault
pattern as well as the fault values [3], [4]. Such methods typically use banks of
Kalman-Bucy filters (or Extended Kalman filters) and multiple hypothesis testing,
and have been reported to be effective for bias-type faults such as aircraft control
surfaces getting stuck at unknown values, or sensors (e.g., rate gyros) that develop
unknown constant or slowly-varying biases. The underlying requirement for these
methods is that the faults should be identifiable. Identifiability of bias-type faults
was considered in [4] and preliminary results were presented. This paper focuses in
greater detail on the identifiability of actuator faults, sensor faults, and simultaneous
actuator and sensor faults.

2 Actuator Faults

Consider a linear time-invariant system:

ẋ = Ax+Bu+ wp

y = Cx+ ws (1)

where x ∈ Rn, u ∈ Rm, wp ∈ Rn, y ∈ Rl, ws ∈ Rl denote the state vector, control
vector, process noise, output vector, and sensor noise respectively, and A, B, C are
appropriately dimensioned matrices. wp and ws are usually assumed to be stationary
zero-mean Gaussian processes having constant covariance intensities.

Of the m actuators in the system, some may fail at unknown time instants. The
type of actuator failure addressed in this paper is a “stuck actuator” failure, which
produces a constant unknown input value (which is zero in the case of complete
actuator outage). Thus, in the kth failure pattern, if mk of the m actuators fail, the
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system dynamics becomes

ẋ = Ax+
∑
j /∈Fak

bjuj +
∑
j∈Fak

bj ūj + wp

= Ax+Bkuk +B
k
ūk + wp (2)

where Fak is the set of indices corresponding to the failed actuators, and ūj denotes
the corresponding failure value (for example, deflection of a stuck control surface in
aircraft). There are up to 2m − 1 possible failure patterns for m actuators. ūk ∈
Rmk denotes the failure value for the kth failure pattern; uk ∈ Rm−mk denotes the
input vector corresponding to the functioning actuators; Bk denotes the columns
of B corresponding to the failed actuators Bk denotes the remaining columns of B
corresponding to the functional actuators.

In multiple-model-based methods, up to 2m mathematical models (including the
“no failures” case and up to 2m − 1 failure patterns) are constructed from (2) and a
corresponding bank of 2m Kalman-Bucy filters is designed. The fault is isolated and
the fault values ūj are estimated by augmenting (2) with:

˙̄uj = waj (3)

where waj is a fictitious zero-mean white noise process. Thus the augmented equation
corresponding to model k (failure pattern k) is

d

dt

[
x
uk

]
=

[
A B

k

0 0

](
x
ūk

)
+
[
Bk

0

]
uk + wk (4)

where wk ∈ Rn+mk denotes the input noise vector consisting of the process noise wp
and the fictitious noise corresponding to ūk. Denoting

ξk =
[
x
ūk

]
(5)

the system corresponding to failure pattern k is expressed as

ξ̇k = Akξξ
k +Bk

ξ u
k + wk (6)

y = [C 0]ξk + ws := Ckξ ξ
k + ws (7)

where Akξ , B
k
ξ are the augmented system- and input-matrices from (4).

The FDI approach employed in multiple-model-based methods is to design and
implement a bank of Kalman-Bucy filters (KBF), one corresponding to each of the
2m models, and to determine (in real time) which model correctly represents the
actual fault pattern, using criteria such as highest conditional probability or the
smallest residual norm. The KBF corresponding to the correct model also gives an
unbiased minimum-variance estimate of the fault values. The KBF corresponding to
model k is given by

˙̂
ξk = Akξ ξ̂

k +Bk
ξ u

k +Hk(y − Ckξ ξ̂k) (8)
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where ξ̂k denotes the estimate of ξk and Hk (a function of time) is the KBF gain.
From (6) and (8), the estimation error dynamics are given by

˙̃
ξk = (Akξ −HkCkξ )ξ̃k + wk −Hkws (9)

where ξ̃k = ξk − ξ̂k. The residual (which is used in decision-making to determine
which fault model is “closest” to the actual system), is given by

rk = y − Ckξ ξ̂k = Ckξ ξ̃
k + ws (10)

For the scheme to work, the error dynamics (9) must be asymptotically stable and
unbiased, i.e., the mean of ξ̃k should converge to zero and its covariance should be
bounded ∀t ≥ 0.

For failure pattern k, if Bk is not of full rank, it is not possible to distinguish
between fault values for actuators corresponding to linearly dependent columns of
B
k. For example, for some failure pattern, if

B = [b̄1, b̄2, b̄3]

and if b̄3 = α1b̄1 + α2b̄2 for some constant α1, α2, the input terms due to the failed
actuators are

Bū = b̄1ū1 + b̄2ū2 + b̄3ū3

= b̄1(ū1 + α1ū3) + b̄2(ū2 + α2ū3) (11)

Thus only the aggregated fault values ū1 + α1ū3, ū2 + α2ū3 can be estimated, and
ū1, ū2, ū3 cannot be estimated individually. Therefore it is assumed henceforth that,
for each failure mode, the fault inputs corresponding to linearly dependent columns
of Bk have been aggregated and that Bk is of full rank. As a result, the number
of distinguishable failure patterns (and the corresponding Kalman-Bucy filters) is
usually less than 2m − 1.

2.1 Actuator Fault Identifiability

For the Kalman-Bucy filter to work correctly, observability of the augmented sys-
tem (6), (7) is essential. Unobservability can result in grossly erroneous estimates of
the augmented state vector and incorrect FDI. Furthermore, in the infinite duration
case, a KBF gain (constant) Hk that stabilizes the system matrix in (9) exists only
if (Cξ, Aξ) is detectable, which is possible only if the the augmented zero-frequency
modes of Aξ are observable. Thus, the observability rather than detectability of
(Cξ, Aξ) is important. The following theorem gives a necessary and sufficient condi-
tion for observability.
Theorem 1. The pair (Ckξ , A

k
ξ ) is observable iff all of the following conditions are

satisfied:

(i) l ≥ mk

(ii) the pair (C,A) observable, and
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(iii) the system (C,A,Bk) has no zeros at the origin.

Proof. Applying the PBH rank test [5], [Ckξ , A
k
ξ ] is observable iff

rank

 sI −A −Bk

0 sImk

C 0

 = n+mk for s = λ(A) and s = 0 (12)

where λ(.) denotes eigenvalue. The first n columns of the PBH test matrix are
independent (for all s) iff (C,A) is observable. For s 6= 0, the last mk columns are
mutually independent as well as independent of the first n columns, thus the test
matrix has a full rank. For s = 0, the rank condition (12) is satisfied iff l ≥ mk and
(C,A,Bk) has no system zeros at s = 0. �

Remark 2.1. The zeros mentioned in Theorem 1 are system zeros of (C,A,Bk),
which include transmission zeros and input decoupling zeros (idz) [6]. The idz’s are
simply the eigenvalues of A corresponding to the uncontrollable modes of (A,Bk).
Because (C,A) is observable, there are no output decoupling zeros. Note that Bk

corresponds to failed actuators in failure pattern k; therefore, (A,Bk) may not be
controllable for all k. For the corresponding models, Theorem 1 requires that the
uncontrollable modes must not have zero eigenvalues. If (A,Bk) is controllable, the
system zeros are just the transmission zeros.
Remark 2.2. In practical implementation, the estimation is performed in a discrete-
time setting using discrete-time Kalman filters. The observability conditions of The-
orem 1 are very similar, the only difference being that, in item (iii), the phrase “no
zeros at the origin” is replaced by: “no zeros at unity” (for the discretized version
of (C,A,Bk

ξ )).

Remark 2.3. The unobservable subspace Okξ of (Ckξ , A
k
ξ ) can be obtained as follows

(after some manipulation and using the fact that (C,A) is observable)

Okξ = N


Ckξ
CkξA

k
ξ

...
Ckξ (Akξ )

(n+mk−1)

 = N

[
A B

k

C 0

]
(13)

where N (.) denotes the null space. Thus the unobservable subspace of (Ckξ , A
k
ξ )

consists of the generalized eigenvectors of (C,A,Bk) corresponding to the zeros at
the origin. If A is nonsingular, it can be seen that

Okξ =

{[
−A−1B

k
x2

x2

]
, x2 ∈ Rmk

}
(14)

For the case when A has one or more zero eigenvalues, the corresponding Okξ is still

non-trivial when (C,A,Bk) has one or more zeros at the origin.
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Remark 2.4. It is intuitively straightforward to see that a zero at the origin ad-
versely affects the ability to estimate a constant fault value ū, because input fre-
quency components corresponding to the system zeros do not appear in the output.
Furthermore, a set of initial conditions exist such that y(t) is identically zero.

3 Sensor Bias

Suppose there are no actuator failures but q of the l sensors have unknown sensor
biases, (or are known to be prone to developing biases). Denote the bias-free part
and the biased part of the sensor output vector as y1 and y2 respectively, and the
corresponding output matrices as C1 ∈ R(l−q)×n, C2 ∈ Rq×n. Then the sensor output
equation is

y =
[
y1

y2

]
= Cx+ ws =

[
C1x

C2x+ ȳ2

]
+ ws (15)

where ȳ2 ∈ Rq is the sensor bias vector and C = [CT1 CT2 ]T . As was done in the
case of linearly dependent columns of Bk, it is assumed that linearly dependent
sensor outputs have been combined and C, C1, C2 all have full row ranks. (Biases
corresponding to linearly dependent sensors cannot be estimated individually and
must be aggregated).

For this sensor bias formulation, bias- and state-estimation does not require mul-
tiple models and a bank of KBFs, but requires only one KBF. Upon augmenting the
sensor bias ȳ2 to the state vector, the system becomes

η̇ :=
d

dt

[
x
ȳ2

]
=
[
A 0
0 0

]
η +

[
B
0

]
u+ w′

:=Aηη +Bηu (16)

y =
[
C1 0(l−q)×n
C2 Iq

]
η + ws := Cηη + ws (17)

where w′ denotes the augmented process noise vector.

3.1 Sensor Fault Identifiability

The bias estimation approach involves constructing a KBF for the augmented system
(16), (17). As in the case of actuator faults, observability of (Cη, Aη) is essential for
the KBF to function correctly. The following theorem gives necessary and sufficient
conditions for observability.
Theorem 2. The pair (Cη, Aη) is observable iff the following conditions are satisfied:

(i) the pair (C,A) is observable, and

(ii) all zero-frequency modes of A are observable with respect to the bias-free sensor
outputs
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Proof. Applying the PBH rank test, (Cη, Aη) is observable iff

rank


sI −A 0

0 sIq
C1 0
C2 Iq

 = n+ q for s = λ(A) and s = 0 (18)

The first n columns of the PBH test matrix are linearly independent ∀s iff (C,A)
is observable. For s 6= 0, the last q columns are mutually independent as well as
independent of the first n columns. For s = 0, the rank of the test matrix is n+ q iff

rank

 sI −A 0
C1 0
C2 Iq


s=0

= n+ q (19)

Since elementary column operations do not change the column rank,

rank

 sI −A 0
C1 0
C2 Iq


s=0

= rank


 sI −A 0

C1 0
C2 Iq


s=0

[
In 0
−C2 Iq

]
= rank

 sI −A 0
C1 0
0 Iq


s=0

(20)

Thus the rank of the PBH test matrix at s = 0 is n + q iff the first n columns are
linearly independent for s = 0, i.e., iff the zero-frequency modes of A are observable
with respect to C1. �

When all sensors have biases, i.e., q = l, (Cη, Aη) is observable iff A has no zero
eigenvalue, as stated below.
Corollary 2.1. If all sensors have biases, (Cη, Aη) is observable iff

(i) (C,A) observable, and

(ii) A has no zero eigenvalues.

Remark 3.1. For the case when all sensors have biases, the condition that A should
not have zero eigenvalues is rather restrictive, since many engineering systems have
free integrators in their dynamics. However, there does not appear to be an obvious
way of getting around this problem. Consider the effect of using output feedback
which moves the eigenvalues away from the origin, i.e.,

u = −Gy = −G(Cx+ ȳ) (21)

where G ∈ Rm×l, which gives the following closed-loop system (including the aug-
mented state ȳ);

η̇ =
[
A−BGC −BG

0 0

]
η + w := A′ηη + w (22)

y = [C I]η + ws (23)
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The pair (Cη, A′η) is observable iff

rank

 sI −A+BGC BG
0l×n sIl
C Il

 = n+ l for s = λ(A−BGC) and s = 0 (24)

Proceeding as in the proof of Theorem 2, the first n columns are linearly independent
iff [C, (A−BGC)] is observable. For s 6= 0, the last l columns of the PBH test matrix
are mutually independent as well as independent of the first n columns. For s = 0,
since the rank of a matrix is unchanged by multiplication by an elementary matrix,

rank

{[
In −BG
0 Il

] [
sI −A+BGC BG

C Il

]
s=0

}
= rank

[
sI −A 0
C Il

]
s=0

(25)
The rank is n+ l iff A has no eigenvalue at the origin. Thus, using feedback to move
the eigenvalue away from zero does not make the augmented closed-loop system
observable.
Remark 3.2. If A has one or more zero eigenvalues, the unobservable subspace
of (Cη, Aη) can be readily obtained. Defining Γ = [0q×(l−q) Iq]T , the unobservable
subspace is

Oη = N


C Γ
CA 0
CA2 0

...
...

CAn+q−1 0

 (26)

That is, if (xT1 , x
T
2 )T ∈ Oη,

Cx1 + Γx2 = 0; [O]Ax1 = 0 (27)

where O = [CT , CTAT , . . . , CTAn−1T ]T , which yields (since (C,A) is observable):

Ax1 = 0; C1x1 = 0; C2x1 + x2 = 0 (28)

That is, x1 must be an eigenvector of A corresponding to a zero-frequency mode
of A that is unobservable with respect to C1. If all zero-frequency modes of A are
observable with respect to C1, then x1 = 0, therefore, x2 = 0, Oη = 0, and the
augmented system is observable, which is consistent with Theorem 2. If some zero-
frequency modes of A are not observable with respect to C1, Oη can be characterized
as

Oη =
{[

x1

−C2x1

]
, x1 = eigenvector of A corresponding to unobservable 0-freq modes

}
(29)

Remark 3.3 In practice, the Kalman filter is implemented in a discrete-time setting,
and the condition (ii) in Theorem 2 changes to: “all modes corresponding to λ(A) =
1 are observable with respect to the bias-free sensor outputs” (for the discretized
version of A).
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4 Simultaneous Actuator Faults and Sensor Bias

For the case with actuator fault pattern k, if q of the sensors have biases, the aug-
mented system is given by

d

dt

 x
ūk

ȳ2

 := ϕ̇ =

 A B
k 0

0 0 0
0 0 0

ϕ+

 Bk

0
0

uk + w′′ (30)

:=Aϕϕ+Bk
ϕu

k + w′′ (31)

y =
[
C1 0 0
C2 0 Iq

]
ϕ+ ws = Cϕϕ+ ws (32)

where w′′ is the augmented process noise vector. The following theorem gives nec-
essary and sufficient conditions for observability.
Theorem 3. The pair (Cϕ, Aϕ) is observable iff

(i) l ≥ mk + q

(ii) the pair (C,A) is observable, and

(iii) the system (C1, A,B
k) has no zeros at the origin.

Proof. Applying the PBH rank test, (Cϕ, Aϕ) is observable iff

rank


sI −A −Bk 0

0 sImk
0

0 0 sIq
C1 0 0
C2 0 Iq

 = n+mk + q for s = λ(A) and s = 0. (33)

The first n columns of the PBH test matrix are linearly independent for all s iff
(C,A) is observable. For s 6= 0, the last mk+q columns are mutually independent as
well as independent of the first n columns. For s = 0, the columns of the test matrix
are linearly independent iff the columns of the following (n+ l)× (n+mk+q) matrix
(after applying elementary column operations as shown) are linearly independent: sI −A −Bk 0

C1 0 0
C2 0 Iq


s=0

 In 0 0
0 Imk

0
−C2 0 Iq

 =

 sI −A −Bk 0
C1 0 0
0 0 Iq


s=0

(34)

The columns of the above matrix are linearly independent iff (i) and (iii) hold. �
If all sensors have biases (q = l), condition (i) cannot be satisfied in the presence

of one or more actuator failures and the system is unobservable. This represents
a major limitation of this approach to FDI when actuator faults and sensor biases
are simultaneously present, and suggests that some alternate techniques should be
considered (perhaps for sensor FDI).
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5 Conclusions

This paper explored in detail a class of fault detection and identification (FDI)
methods for bias-type faults in actuators and sensors, from the point of view of fault
identifiability. The methods employ a bank of Kalman-Bucy filters (KBFs) to detect
the faults, determine the fault pattern, and estimate the fault values. Each KBF
is tuned to a different fault pattern. Necessary and sufficient conditions were pre-
sented for identifiability of bias-type actuator faults, sensor faults, and simultaneous
actuator and sensor faults. The results indicate that caution should be exercised to
ensure fault identifiability for different fault patterns when using such methods. It
was shown that FDI of simultaneous actuator and sensor faults is not possible using
these methods when all sensors have biases.
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