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ABSTRACT

A dual potential formulation for numerically solving the Navier-Stokes equations
is developed and presented. The velocity field is decomposed using a scalar and
vector potential. Vorticity and dilatation are used as the dependent variables in the
momentum equations. Test cases in two dimensions verify the capability to solve
flows using approximations from potential flow to full Navier-Stokes simulations. A
three-dimensional incompressible flow formulation is also described.

An interesting feature of this approach to solving the Navier-Stokes equations is
the decomposition of the velocity field into a rotational part (vector potential) and
an irrotational part (scalar potential). The Helmholtz decomposition theorem allows
this splitting of the velocity field. This approach has had only limited use since it
increases the number of dependent variables in the solution. However, it has often
been used for incompressible flows where the solution scheme is known to be fast
and accurate. This research extends the usage of this method to fully compressible
Navier-Stokes simulations by using the dilatation variable along with vorticity.

A time-accurate, iterative algorithm is used for the uncoupled solution of the
governing equations. Several levels of flow approximation are available within the
framework of this method. Potential flow, Euler and full Navier-Stokes solutions are

possible using the dual potential formulation. Solution efficiency can be enhanced
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in a straightforward way. For some flows, the vorticity and/or dilatation may be
negligible in certain regions (e.g., far from a viscous boundary in an external flow).
It is possible to drop the calculation of these variables then and optimize the solution
speed. Also, efficient Poisson solvers are available for the potentials.

The relative merits of non-primitive variables versus primitive variables for solu-

tion of the Navier-Stokes equations are also discussed.
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NOMENCLATURE

Roman Symbols

A vector potential
A cross-sectional area
B dilatation
c airfoil chord length
C f skin-friction coefficient (1—%2—)
FPooUoco

Cp pressure coefficient (1&1‘3—)

FPooUoo
cp specific heat at constant pressure
cv specific heat at constant volume
e internal energy
E, total energy per unit volume
F body force
h enthalpy
h non-dimensional height of a 2-D grid
I identity matrix
1,7,k index in the z,y, z direction respectively
1,7,k indices in tensor notation
1, j,ic unit vector in the z,y, z direction respectively
k thermal conductivity
L non-dimensional length of flowfield domain (e.g., channel length)
M Mach number
n outward unit normal
Nu Nusselt number
P exponent in the viscosity power law variation
P pressure
Pr Prandtl number (%)
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volume flow rate

finite-difference approximation to the exact solution
gas constant

Reynolds number

temperature

x component of velocity

average u velocity at an x cross-section

y component of velocity

z component of velocity

streamwise coordinate direction

spanwise coordinate direction

streamwise direction in the computational plane
spanwise direction in the computational plane
normal coordinate direction

conservative body force in the = direction
conservative body force in the y direction
conservative body force in the z direction

OO

=
o

kauwlalwagem:q

Greek Symbols

weighting parameter in hybrid differencing scheme
parameter in a 2-D stretching transformation
parameter in a 2-D stretching transformation

ratio of specific heats

rate of shear deformation in two dimensions, uy + vz
Kronecker delta function

.

hybrid difterence operator for convective terms

central difference operator, subscript gives direction to difference
e.g, dpu=1u;41 —u;_1

central difference operator, subscript gives direction to difference

e.g 85u = w1 — 2u; +u;_q

Mo P2 R R

(=)
[

momentum thickness

parameter in a 2-D stretching transformation
density

parameter in a 2-D stretching transformation
temperature parameter

scalar potential

(=2
(]

ElS®a ™ =

vector 3-D vorticity



xxii1

w 2-D vorticity

Subscripts

hyd based on the hydraulic diameter

m mean value

n normal direction

r reference

t time

t tangential direction

w wall

z derivative in x direction

Y derivative in y direction

z derivative in z direction

00 freestream value

Superscripts

* non-dimensional quantity
provisional value

) unit vector

k iteration level

n time level

Other Symbols

\Y gradient operator
v2 Laplacian operator
backward difference operator, subscript gives direction to difference
eg, Veu =u; —u;_1
forward difference operator, subscript gives direction to difference
eg., Apu = uj4] — Uy
A indicates an increment

[] used to enclose the units of measurement



1. INTRODUCTION

1.1 Background

The topic of this final report is a particular computational approach for solving
the Navier-Stokes equations. The Navier-Stokes equations are usually associated
with the field of fluid mechanics. Solutions to these equations with the appropriate
boundary conditions model fluid motion.

An analysis of fluid motion requires the solution for the physical laws of nature:
1. Conservation of mass
2. Newton’s second law of motion
3. Conservation of energy

These laws can be formulated mathematically, with the help of some assumptions,
to become the Navier-Stokes equations. Formally, the Navier-Stokes equations refer
to the mathematical representation of Newton’s second law. It will be more con-
venient for the purposes here to let the term “Navier-Stokes equations” include the
representation of all three physical laws above. Assumptions in the development are
that the coefficients of viscosity are related by a factor of —(2/3) according to Stokes’

hypothesis and that the fluid is Newtonian (Schlichting 1979). A Newtonian fluid




is one in which the fluid shear stress is linearly proportional to the rate of strain.
Additional relationships are included as necessary to describe certain processes or
fluids. Examples are the equation of state for a perfect gas, Sutherland’s formula for
viscosity and Fourier’s law of heat conduction.

As one can imagine, the successful solution to the Navier-Stokes equations can
help immensely in engineering design and optimization. The numerical solution of
the Navier-Stokes equations can be a complement to experimental and theoretical
fluid mechanics. Unfortunately, the Navier-Stokes equations are coupled and highly
non-linear. Only a few exact analytical solutions are available for simple conditions.
In most configurations of practical interest, numerical techniques must be used to
obtain a solution.

Much progress has been made in obtaining numerical solutions to the Navier-
Stokes equations. Several mathematical formulations for the Navier-Stokes equations

have been developed. They can be divided into two classifications:

1. Primitive variable methods

2. Non-primitive variable methods

As the name suggests, primitive variable methods solve the Navier-Stokes equa-
tions using the primary variables as the unknowns. The primary variables are velocity,
total energy (or a variable related to the energy) and pressure or density. One way
to think of the primitive variables is that they are physical quantities which one can
measure in the laboratory. Non-primitive variables, on the other hand, are mathe-
matically derived variables. They are derived from the primitive variables. The non-

primitive variables used in this report will replace the primary variable of velocity.




The replacements used will be vorticity and dilatation. One can devise techniques
to measure vorticity and dilatation experimexitally, but the direct measurement of
such quantities is uncommon. Both primitive and non-primitive variable methods
have been used to obtain solutions to the Navier-Stokes equations by numerical tech-
niques. Primitive variable methods are the most widely used for three-dimensional
simulations. Either primitive or non-primitive variables are used for two-dimensional
flow solutions although most applications of non-primitive variables have been for
incompressible flows. The following sections in this chapter will discuss some primi-
tive and non-primitive variable solution methods. The focus of this study will be on
a particular non-primitive variable method that is extended to compressible viscous

flow.

1.2 Primitive Variable Methods

Numerical methods of solving the Navier-Stokes equations using the physical
variables have attracted much attention. Several popular techniques will be men-
tioned here. The solution method depends on whether the flow is incompressible
or compressible, because the Navier-Stokes equations have a different mathematical
classification depending on the compressibility. For an unsteady incompressible flow,
the governing equations are elliptic/parabolic in time. For an unsteady compressible
flow, the equations are hyperbolic/parabolic in time.

The most common primitive variable solution method for incompressible flow
problems involves the use of a Poisson equation for pressure in place of the continuity

equation. An algorithm which employs this solution method is the SIMPLE (Semi-



Implicit Method for Pressure-Linked Equations) procedure (Patankar 1975, 1981).

Another primitive variable solution method is the artificial compressibility ap-
proach which modifies the continuity equation to include an unsteady term related to
pressure (Chorin 1967). The resulting equations are a mixed set of hyperbolic/parabolic
equations which can be solved using a time-dependent approach. This approach ap-
plies in two and three dimensions and can be modified to compute unsteady flows. An
available computer code that uses this method is INS3D (Kwak et al. 1986; Rogers
et al. 1987; Rogers and Kwak 1988).

A compressible flow solution is often obtained using a time-dependent or time-
dependent-like approach. Most schemes utilize implicit methods, for example, the
Beam and Warming (1978), Briley and McDonald (1977), or MacCormack (1981)
methods. An available code for these applications is F3D (Steger et al. 1986). Addi-
tional discussion and references on primitive variable solution methods can be found

in Holst (1987).

1.3 Non-primitive Variable Methods

Methods which in some way replace the velocity with derived variables will be
discussed here. At the highest level of approximation, potential flows are typically
solved using either the velocity potential or the stream function. Examples of their
use are found in most fluid mechanics textbooks (Currie 1974). By definition, a
potential flow is irrotational so that the velocity field can be defined by the gradi-
ent of a scalar function. This scalar function is called the velocity potential. It is

analogous to the electric field potential. For an incompressible potential flow, the



only additional constraint is mass conservation. The equation of mass conservation
is a Laplace equation for the velocity potential which is easily solved. The velocity
potential is applicable in two and three dimensions. If the stream function is used
it is defined to satisfy mass conservation and the Laplacian of the stream function
satisfies the irrotationality condition. The stream function as defined here only exists
in two dimensions. In both of the above schemes, the momentum equation (vorticity
transport equation) is satisfied automatically since the vorticity is zero everywhere
for the assumption of irrotational flow.

The vorticity/stream function approach is widely used for solution of the two-
dimensional incompressible Navier-Stokes equations. This method is also discussed
in most fluid mechanics textbooks and is treated extensively in the book by Roache
(1972).

Many would consider this the limit of practicality for non-primitive variable
methods. However, there are at least two other noteworthy approaches to solving
the Navier-Stokes equations in non-primitive variables. Both are valid for two- and

three-dimensional unsteady flows. These methods are known as the
1. Vorticity/velocity approach
2. Vorticity/vector potential approach

These two schemes will be briefly described and then the focus will be placed on
the vorticity/vector potential method. The topic of this thesis will cover the vor-
ticity/vector potential method. This method is also referred to by the the aliases

scalar/vector potential, vorticity/potential, or dual potential method. Since both




vorticity and dilatation are used in this work to replace the primitive variable mo-
mentum equations, it does not seem appropriate to identify the method as the vor-
ticity/vector potential approach. Instead, the term dual potential will be used here
following Chaderjian and Steger (1985). This terminology identifies the method as

one which uses two potential functions in a velocity decomposition.

1.3.1 Vorticity/velocity approach

In this method for incompressible flow, the momentum equation is replaced by the
vorticity transport equation. Derivatives of the vorticity definition then yield Poisson
equations for the velocity when the continuity equation is used to make appropriate
substitutions. A more general derivation of the Poisson equations is to take the curl
of the vorticity and substitute in the vorticity definition from velocity. The identity
for the vector triple product then yields Poisson equations for the velocity. The
earliest use of this method was by Fasel (1976). He studied the stability of two-
dimensional boundary layers using a coupled and iterative algorithm. Dennis et al.
(1979) used the vorticity/velocity method in the calculation of the cubical driven box
problem. Orlandi (1987) solved high Reynolds number flows over a backward facing
step. Other works using the vorticity/velocity formulation are Osswald et al. (1987),
Guj and Stella (1988), Gatski et al. (1982), Fasel and Booz (1984) and Farouk and
Fusegi (1985). There have been no reported compressible flow applications of this
method. However, the dilatation could be used as a dependent variable, as was done

in this research, to extend the vorticity/velocity method to compressible flow.



1.3.2 Dual potential approach

Derived variables which can be used to represent the three-dimensional continuity
and momentum equations for an incompressible flow are vorticity, a vector potential,
and a scalar potential. This is one possible three-dimensional extension of the more
familiar two-dimensional vorticity /stream function approach. This approach and oth-
ers that use the vorticity as a dependent variable are appealing because vorticity is
generally located near boundaries in high Reynolds number flows and subsequently
diffused and convected away. For a three-dimensional incompressible flow the usual
procedure in the dual potential method is to solve the vorticity transport equation, a
vector Poisson equation and a scalar Poisson equation. These equations are derived
from the continuity and momentum equations where the velocity is defined as the
curl of a vector potential plus the gradient of a scalar potential. The existence of
these potentials is easily shown for an incompressible flow since the velocity field is
divergence free (Aziz and Hellums 1967).

There has been only one reported formulation of the dual potential method for
three-dimensional compressible, viscous, unsteady flows (Morino 1985). He derived
a set of equations for density, vorticity, entropy and the potentials. There have been

no reported calculations using Morino’s formulation.

1.3.2.1 Applications of the dual potential method The dual potential

method has been applied to inviscid and viscous flow problems. Inviscid flow applica-
tions include the work of Rao et al. (1989) and Giannakoglou et al. (1988). Rao et al.

(1987) developed a three-dimensional inviscid rotational flow solver based on the dual




potential method. They incorporated a boundary layer interaction scheme for viscous
flow problems. Giannakoglou et al. (1988) compute two-dimensional steady rotational
transonic flows in arbitrarily shaped ducts and plane cascades. They decomposed the
mass flux vector into two potentials.

In the viscous regime, the dual potential method has been applied to problems
of three-dimensional natural convection in enclosures (Mallinson and De Vahl Davis
1973) and three-dimensional incompressible flows in ducts (Wong and Reizes 1984).
External viscous flows have been computed by Davis et al. (1989). No attempts
have been reported on the use of this method to solve three-dimensional unsteady
compressible viscous flows.

The dual potential method was first applied to natural convection problems by
Aziz and Hellums (1967). They used the dual potential method to transform the
Navier-Stokes equations. The transformed equations were solved using an alternating
direction implicit (ADI) scheme for the parabolic part of the problem (temperature
and vorticity transport equations) and a successive over-relaxation (SOR) method
for the elliptic portion (vector potential equations). They tested their technique by
applying it to the classical problem of convection in fluid layers bounded by solid
walls in both two and three dimensions.

Aziz and Hellums showed the dual potential method to be faster and more accu-
rate than solutions obtained using the primitive variable approach. In fact, though
the equations are fewer in number for the primitive variable approach, Aziz and
Hellums report that they are much harder to solve than the equations in the dual

potential method. The difficulty arises from the highly non-linear nature of the pres-



sure equation and the coupling due to pressure in the momentum equations (as in
incompressible flow problems).

The technique developed above was used by Ozoe and co-workers (Ozoe et al.
1976, 1977, 1979, 1985) in solving a variety of natural convection problems. In the
1985 paper, the problem of three-dimensional turbulent natural convection in a cubi-
cal enclosure was solved using a two-equation model for turbulence.

Applications of the dual potential method to incompressible duct flow (through-
flow) have not been wholly successful due to confusion over the appropriate vector
potential boundary conditions. The earliest work in this area was by Aregbesola and
Burley (1977). They presented a numerical finite-difference solution for the equations
of motion of a steady laminar incompressible flow in two and three dimensions using
the dual potential method. Wong and Reizes (1984) presented a dual potential for-
mulation for unsteady incompressible flows in ducts of constant but arbitrary cross
section. They showed that the method is capable of handling flows over a wide range
of Reynolds numbers and imply that it can deal with flow situations in which other
models become inadequate. The dual potential method guarantees a zero divergence
of velocity while the usual primitive variable method can at best approximate global
continuity. That formulation was limited to simply connected domains. In a later
paper Wong and Reizes (1986) showed how to use the dual potential method to solve
for the three-dimensional flow in multiply connected regions such as annular geome-
tries. Yang and Camarero (1986) used body fitted coordinates with the dual potential
method to simulate incompressible laminar flows in a square elbow and in a twisted

square elbow. The dual potential method in this paper is shown to be applicable to
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general duct flow situations in simply connected regions. Hafez et al. (1987) used a
finite element method to solve the steady two-dimensional Navier-Stokes equations
in a dual potential formulation for subsonic and transonic flows. They computed
laminar and turbulent flow cases.

Some viscous external flow solutions were obtained by Rao (1987) and Davis et al.
(1986) for flow over two- and three-dimensional troughs. Rao (1987) used interacting
boundary layer theory to supply the vorticity to a dual potential code for the inviscid
rotational part of the flow. Davis et al. (1986, 1989) use a viscous dual potential

method for the entire flow field. Matching between the outer inviscid flow and the

inner viscous region is automatic in their case.

One possible extension of the dual potential method to three-dimensional com-
pressible viscous flow has been formulated by Morino (1986). There are no reported
results in the compressible viscous regime.

Compressible viscous unsteady flows have been solved by a closely related method,
however. El-Refaee et al. (1981) used a non-primitive variable method that replaced
the momentum equation with vorticity and dilatation transport equations. The veloc-
ity field was obtained from the vorticity and dilatation field by an integral represen-
tation. They solved compressible unsteady flows and demonstrated that the solution
field for vorticity and dilatation can easily be limited in their integral representation.
In this report a similar equation set is used, but the velocity is decomposed into two
potentials and solved completely by finite differences. The proposed extension of the
dual potential method to compressible flow would be directly applicable to the vor-

ticity/velocity method. That is, the dilatation variable would be included to account
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for compressibility.

In view of the short list of references on the dual potential method it is evident
that this method has not been widely implemented in computations. The main
reasons for this have been the need for the solution of several additional variables as
compared to the primitive variable approach and the inability to analyze the numerical
solution process for convergence. There are no good model problems to guide the way.

Three-dimensional flow solvers are computationally demanding and the introduc-
tion of additional variables inevitably increases the computer memory requirement.
However, with the increasing memory of today’s computers, and since Aziz and Hel-
lums (1967) have shown that the dual potential approach can lead to faster and more
stable convergence than for primitive variable formulations (for certain problems),
the vector potential will perhaps play an increasing role in the solution of complex
three-dimensional fluid dynamics problems (Wong and Reizes 1986). Certainly this

kind of formulation deserves continued investigation.

1.3.2.2 Advantages and disadvantages Relative advantages of the prim-

itive variable method and dual potential method are cited in Morino (1985) and
Richardson and Cornish (1977). The major advantage of working in primitive vari-
ables is the relative simplicity of the equations and the fact that the primitive variables
have direct physical meaning.

The advantages of the dual potential method are:

1. The vorticity (and dilatation for compressible flow) need only be resolved in

distinct regions.
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2. Continuity is automatically satisfied for incompressible flow.
3. The equations are weakly coupled (at least for inviscid flow).
4. Good numerical solution routines exist for Poisson equations.

5. Matching between an inviscid region and viscous region occurs automatically

because of the velocity decomposition into rotational and irrotational parts.

Disadvantages of the dual potential method applied to a three-dimensional com-

pressible unsteady flow are:

1. The dual potential method involves ten dependent variables whereas the prim-
itive variable method involves only five to represent conservation of mass, mo-
mentum and energy. (In two dimensions the number of dependent variables are

six for the dual potential method and four for the primitive variable method.)

2. The equations for the dual potential method are more complex than the equa-

tions associated with the primitive variables (or, they are simply unfamiliar).
3. The potentials do not have direct physical significance.

In addition to the natural disadvantages of the dual potential approach listed
above, there is a lack of available software as compared to primitive variable solution
methods. The extension of this approach to unsteady compressible viscous problems

is uncharted territory.
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1.4 Scope of the Present Study

It has been the goal of this research to extend the capability of the dual po-
tential method to compute unsteady compressible viscous flows. An algorithm has
been developed to provide two-dimensional full Navier-Stokes simulations. A three-
dimensional algorithm has been developed for incompressible flow only. Test cases
were computed to verify the ability to compute flow fields ranging from full potential
flow to flow fields requiring the full Navier-Stokes equations. It has been demonstrated
in this work that the calculation region can be limited for vorticity and dilatation,
thus providing a speed advantage for certain flows.

Several two-dimensional test cases will be presented to test various aspects of the
dual potential method. Both incompressible and compressible flows will be computed.

Incompressible flows will be studied for steady, irrotational, inviscid conditions
and for steady, rotational, viscous conditions. The steady, irrotational, inviscid test
case is that of flow over a biconvex airfoil (or a bump on a wall). Steady, rotational,
viscous conditions are simulated for a channel inlet and laminar boundary-layer case.
Heat transfer calculations will be made for the channel cases with constant wall
temperature and constant wall heat flux boundary conditions.

For compressible flow, steady and unsteady, irrotational, inviscid flows will be
computed and also steady, rotational, viscous flows. The irrotational, inviscid flows
are biconvex airfoil cases. The steady, rotational, viscous flows are channel inlet
and boundary-layer cases. The channel inlet flows are computed with constant wall
temperature and constant wall heat flux boundary conditions at a Mach number of

0.1. Calculations of the flow over a flat plate are made for a subsonic and supersonic
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freestream.
In three dimensions only steady, viscous, incompressible channel inlet solutions

were obtained. A summary of the test cases to be presented is given below.

I. Two-Dimensional Cases

A. Incompressible flow
1. Steady irrotational inviscid flow
a) bump cases
2. Steady viscous flow
a) channel inlet with and without heat transfer
b) boundary layer
B. Compressible flow

1. Steady irrotational inviscid flow
a) bump cases

2. Unsteady irrotational inviscid flow
a) bump cases

3. Steady viscous flow
a) variable property channel flows
b) boundary layer

II. Three-Dimensional Cases

A. Incompressible flow

1. Steady viscous flow
a) channel inlet

B. Compressible flow

Progress in this research area has not been easy. There is very little guidance
in the literature on how to proceed with a full Navier-Stokes implementation of a
non-primitive variable method. The governing equations in non-primitive variable

form are unfamiliar. Non-linear terms were simply lumped into the source term and
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the system was solved uncoupled in an iterative manner. As a result, it was necessary
to employ rather simple test cases to check various aspects of the formulation.

The work completed here is primarily in the development and evaluation of the
dual potential method as a flexible approach to solving the Navier-Stokes equations.
Several features of the method have been highlighted. For example, the solution do-
main for vorticity and/or dilatation may be limited to certain regions. Also demon-
strated is the flexibility of the method to accommodate several approximations of
the full Navier-Stokes equations. This effort has advanced the understanding of the
dual potential method in the viscous compressible regime. It represents the first
application of this method to compute throughflow problems with heat transfer. Sev-
eral basic problems are solved to check out aspects of the algorithm and computer
code. Only Cartesian grids are used for the test problems. Further evaluation and

optimization of the method reported herein are left for future work.

1.5 Organization

The main body of this report consists of six chapters and two appendices. The
presentation follows the logical development of the method from equation derivation
to boundary condition determination, grid generation, numerical algorithm selection
and, finally, flow simulations. In Chapter 2, the dual potential equations are derived
from the velocity decomposition and non-primitive variable dependent variables are
selected to represent the usual primitive variable (or pressure-velocity) form of the
Navier-Stokes equations. In Chapter 3, the numerical representations of the boundary

conditions are derived and the numerical algorithms are presented. The Cartesian
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grid stretching is presented also. A comparison is made of the Poisson equation solvers
since the Poisson equation solution for the potentials can dominate the computation
time. In Chapter 4, the solution strategy is outlined and then numerical results are
reported for two- and three-dimensional test cases. The two-dimensional results repre-
sent cases from potential flow to situations requiring the full Navier-Stokes equations.
The three-dimensional results are for incompressible cases only, but are representative
of the speed of this approach for incompressible problems. Chapter 5 includes the
overall assessment of this method. Chapter 6 gives some incentives for future work
on the dual potential method.

The appendices contain equations for the full three-dimensional Navier-Stokes
implementation of this method. Also, alternative non-primitive variables are intro-

duced which could be useful for some problems.
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2. DUAL POTENTIAL FORMULATION

2.1 Introduction

In this chapter the mathematical equations which model fluid flow are presented.
These equations are the Navier-Stokes equations. They state the conservation of mass,
momentum and energy for a Newtonian, Stokesian fluid. The usual form of these
equations has the primitive variables (p, 1_/), Ey4) as the primary unknowns. Using the
Helmholtz decomposition theorem, the velocity field can be split into a rotational
part and an irrotational part. Each part is represented by a potential function.
This decomposition yields a non-primitive variable formulation for the Navier-Stokes

equations.

2.2 Governing Fluid Dynamics Equations
The following equations apply to a continuum fluid.
The conservation of mass is stated

Dp

—
-V = .
Dt+pV 0 (2.1)

The conservation of momentum (Newton’s second law), with the assumptions
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that Stokes’ hypothesis holds and that the fluid is Newtonian, is written

-
pv -2 2 g Ou; 6"]' 2_ Ouy
—=F-Vp+ am] [IL (aw] + axz) - '3'51]5;; (2.2)

—) Y
Where F = Xi+Yj+ Zk is the body force and §; j is the Kronecker delta function:

1 ifi=j
0 ifi#j
In the energy equation only internal and kinetic energy will be considered im-

portant. The conservation of energy is then written
- — — '
p—+pV . V=—o-V.qg+9 (2.3)

where %?— represents heat energy production by external agencies, 71‘) is the heat

conduction and ® is dissipation. Fourier’s law of heat conduction will be assumed so
q4=-kVT

The dissipation function for a Newtonian fluid in a Cartesian coordinate system be-

comes

¢ = p[2 (ug +v§ + w%) + ('U:c + uy)2 + (wy + ‘Uz)2 + (uz + wa:)2

-2 (wa+ vy +w2)’] (24)

The ideal gas equation of state and a viscosity law are used to close the system for
laminar flow. Constant specific heats are assumed throughout. Reference conditions
are selected to non-dimensionalize the equations. Reference quantities will be denoted

by the subscript 7. Fluid properties for air will be used in the calculations.
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For an ideal (or perfect) gas the following relationships exist:

p = pRT (2.5)
e=cyT h=cpT 7:2—1) R=cp—cy (2.6)
v

Sutherland’s law of viscosity is used in the form

T3/2
T + Cy

p=0C (2.7)

where C) and C9 are constants for a particular gas. For air at moderate temperatures
(approximately 200K-1000K), Cy = 1.458 x 106 [ke/(m sVK)| and Cy = 110.4K.

Power law variations for y were also available in the computer code:

£ _ (—T—)p 0.5 < p < 1.0 2.8
ll,r T’r * —_— p —_ ¢ ( * )
A constant Prandtl number is assumed and thermal conductivity is obtained

from the definition, Pr = EEE Typical values of the fixed quantities chosen for air

are:

— 14 (2.9)
R = 287|2 (2.10)
B kg K '
Pr = H%Pr_yy (2.11)

kr

A reference length will be designated by Ly [m] and a reference velocity by Uy [%] .
The reference length is taken to be a characteristic length of the problem such as the
hydraulic diameter for internal flow or chord length for external flow. The reference
velocity is taken to be the magnitude of either the inlet velocity for internal flows or

the freestream velocity for external flows.
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The following reference conditions were set for incompressible flow calculations

with the Reynolds number and reference length specified:

Ir

Hr

kr

Pr

Ur

My

Pr

288.15K (59°F)

c Tr3/2 kg
lTr + Cq

W2 [l

m-s

Pr m-°C

kg
1.22 |—
12 | 5]

Reference conditions for compressible flow calculations with the Reynolds num-

ber, Mach number and reference length specified are as follows:

Ir

Hr
kr

Ur

Pr

Dr

288.15K (59°F)

3/2
c T,./ kg
1T7-+C'2 m-s

H2 (e
Pr m - °C

i, 2

Repr [ kg
UrLr [m3
N
pr RTy [—2—]
m
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The following non-dimensional variables are then obtained:

* z * Y * z % t
r — -— = — Z = - t = ——————
Ir v =1, Ly (Lr/Ur)

* u * v * w * [t

u = - v _ - w = - = —

Ur Ur Ur # Kr

P* _ P p* — 4 T* _ 1 o — €

pr prU? Ty U?

* R * v x °p * k

=g~ = g = o~ k=

(Ug [Tr) (U#Tr) (U /Tr) r

where the variables distinguished by an asterisk are non-dimensional. The non-
dimensional variables will be used throughout, so the asterisk will be dropped in

the following. The non-dimensional gas constant above is equivalent to

1
R = 5
M7
so that
p = pRT

in dimensional or non-dimensional variables.

2.3 Derivations

2.3.1 Velocity decomposition

The basis of the dual potential method is a splitting of the velocity field into

rotational and irrotational parts. In this section, the impetus for splitting the velocity
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field in this way is presented. The Helmholtz decomposition theorem formally permits
the splitting.

A useful classification of vector fields is possible using the divergence and curl
operators (Ames 1977). For _vﬁ) . _E_) = 0 at every point of a region R, the vector field
B is said to be solenoidal or divergence free. Physically this means that there are

- -
no sources or sinks in R. If V x E = 0 at every point in R, the field is said to be

irrotational. The following classification of vector fields can then be made:

Class I Solenoidal and irrotational:
VxE=0 V-E=0
Class II Irrotational but not solenoidal:
Class II1 Solenoidal but not irrotational:
VxE#0 V-E=0
Class IV Neither solenoidal nor irrotational:
VxE#0 V-E#0

An important theorem in vector field theory is called the Helmholtz decomposi-
tion theorem. It states that any vector field can be split into a curl free and divergence
free part. Using the above classifications, it can be observed that the velocity field
of an incompressible fluid is in Class III and the velocity field of a rotational com-
pressible flow is in Class IV. Applying the Helmholtz decomposition theorem to the

velocity vector one obtains:
— — — =
V=V¢+V x A (2.12)

—
It is obvious that the curl free part of the velocity is V ¢. The divergence free

part (recall from the above that another word for divergence free is solenoidal) is the
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vector field X The vector 1_4) has been assumed to be solenoidal by design. This is
an arbitrary but appropriate choice to fit the Helmholtz decomposition theorem and
to remove the redundancy of describing a three component vector ( V) using another
three component vector ( 71)) plus the gradient of a scalar (¢).

For the classification of the velocity field then, one can compute the divergence

and curl of Equation 2.12 to obtain:

_)
v.

i
4

% =B | (2.13)

—
w

<l <!

— - — 9=
vV x = V(V.-A4)-V224 (2.14)

where ¢ is the scalar potential, B is the dilatation or rate of volumetric strain, Py
is the vorticity and ?f is the vector potential. The vector potential, z, is chosen to
be divergence free. The Laplacian operator in Equation 2.14 is the vector Laplacian.
Throughout this report only rectangular coordinates are used so each component of
the vector Laplacian is similar to a scalar Laplacian.

The vector potential and vorticity will be represented in three dimensions as

follows:

= Aji+ Agj+ Agk (2.15)

€l »J

= wii+wyj+ w3k (2.16)
The components of the vorticity are obtained from:

— -
3:: Vx V

W] = Wy — Vyz, w9 = —wg + uz, w3 = vp — Uy
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The velocity components are then:

u bz + Az, — Ay,
—
w ¢z + A2:c — Aly

In two dimensions only one component of X and w exist. For the standard
two-dimensional geometry shown in Figure 3.3 the single components are Ag and
wg. To simplify things in two dimensions, the subscripts will be dropped on the
vector potential and vorticity so that A and w refer to the two-dimensional case. The

velocity components in two dimensions are then:

u + A
V= _| =t (2.18)

v d’y-A:c

2.3.2 New dependent variables

In the well known incompressible application of the above decomposition, the
momentum equations become the vorticity transport equation. Continuity is satisfied
by the solution of a Laplace equation for ¢, since —6 . —‘7 = 0 in Equation 2.13. Finally,
the potentials are used to compute the velocity field. Any other governing equations
remain unchanged (energy equation, equation of state, etc.).

For a compressible flow, however, 5’ . V # 0. In this case, 3 . 1_/) = V2¢ =
B # 0 in Equation 2.13. An additional equation is required to give the dilatation,
B, for the solution of the scalar potential. By counting the number of equations and
unknowns, one can see that the three-dimensional momentum equations represent

three equations with three unknowns (or two equations and two unknowns in two
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dimensions). The vorticity transport equations formed by taking the curl of the three-
dimensional momentum equations yield just two independent vorticity component
equations (see Appendix A). In two dimensions, the vorticity is a single scalar quantity
so again there is one remaining usage of the momentum equations permitted. This
means that an equation (hopefully for the dilatation, B) can be derived by some
operation on the momentum equations in either two or three dimensions. Looking at
possible operations on the momentum equations, one choice is to take the divergence
of the momentum equation.

The divergence of the momentum equation yields for possible dependent variables
either the pressure (as in the pressure Poisson equation) or the divergence of the
velocity, ; . Y; The divergence of velocity will be represented by the scalar variable,
B, known as the dilatation or rate of volumetric strain.

Another possible combination of the momentum equations gives a scalar variable
which is the rate of shear deformation (or shear strain rate). Let the shear strain
rate be represented by the symbol, I'. In two dimensions, ' = uy + vg. This
dependent variable is formed by taking 5% of the y momentum equation + -5% of
the z momentum equation. The wall shear stress is simply uI'. The variable set
of T and @ can form the basis for an interesting computational procedure in two
dimensions. Unfortunately, one usually hopes to compute the skin friction, not give
it as a boundary condition. However, this could be a useful inverse type calculation

procedure (see Appendix B).
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2.4 Derivation of Non-Primitive Variable Equations

The dual potential equations will be derived starting from the governing equa-
tions written in primitive variable form. For purposes of comparison, the number of
unknowns required in a flow simulation using either primitive variables or the dual
potentials will be given. The number of unknowns is computed by considering the

continuity, momentum and energy equations only.

2.4.1 Two dimensions

The derivation of the dual potential method in two dimensions will contain the
fewest simplifying assumptions except, of course, that it only considers two space
dimensions. The solution capability will be for flows that require the full Navier-
Stokes equations (i.e., unsteady compressible viscous flow).

In the primitive variables, the continuity, momentum and energy equations rep-
resent four equations for four unknowns. These four unknowns may be p,u,v and T.

These variables are solved using:

e continuity:

pt + (pu)z + (pv)y =0 (2.19)

¢ X momentum:
Du gp 1 0 ouw 272 7 1 0 Ou Ov
Bt—-—X—E';-Fﬁ;'a—m' [[.L,(2-8—m'—-§V-V)]+-R—e'b—y [ﬂo (5—3;4-5—:;)] (2.20)

¢ y momentum:

Dv p 1 0 o 22 1 0 Ou Ov
p—ﬁ?_y——<'3_y+§;5§ “(253;—§V'V)]+ﬂa_z [[l« (5374-5;)] (2.21)
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e energy:

DT - = y = o= "

The pressure may be obtained from the ideal gas law, p = pRT. Any additional
variables (i, k,v,Pr, etc.) must be accompanied by their own equation of state or
constitutive equation.

For the non-primitive variables of the dual potential method, the same two-
dimensional flow requires the solution for ¢, A,w, B, T and p. The potentials give the
velocity field. The potentials themselves are determined by the solution of Poisson
equations derived from the divergence and curl of the velocity (cf. Equations 2.13 and
2.14).

To see what is needed for the dual potential formulation, consider the primitive
variable equations above. They are the governing equations for fluid flow, but now
it is desired to solve not for velocities directly but rather for the potentials. The
velocities are subsequently determined from the potentials by solving Equation 2.18.
The momentum equations must be recast to generate a solution to be used by the
potentials. Equations 2.13 and 2.14 for the velocity field splitting suggest that the
divergence and curl of velocity be sought as dependent variables. These are obtainable
from the z and y momentum equations above by taking the divergence and curl of
the primitive variable momentum equation.

The curl of the velocity (vorticity) is obtained as a dependent variable by taking
the curl of the momentum equation. The group, vz — uy = w, is retained as the
dependent variable. The divergence of the velocity is obtained as a dependent variable

by takin 9 of the z momentum equation and -2 of the y momentum equation and
€ 5z q By q
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summing. The grouping, ug + vy = B, can be retained as the dependent variable.
The remaining governing equations can be left unchanged from the primitive variable
equation set.

The continuity equation can be used to compute the density. The energy equation
can be used to solve for T or enthalpy, or any other variable that is related to energy.
The ideal gas equation of state can then be used to compute the pressure if it is
needed.

To summarize: The six variables of the dual potential method corresponding to

the solution of the continuity, momentum and energy equations are determined as

described below:
1. The continuity equation is used to compute the density, p.

2. The curl of the momentum equations gives the vorticity transport equation
for w. Conservative body forces are eliminated by this operation. Also, for
incompressible flow, the pressure is eliminated. For compressible flow, however,
the pressure derivatives remain but can be expressed in terms of other variables

by using the equation of state.

3. The divergence of the momentum equations gives the dilatation transport equa-

tion to be solved for B.
4. The energy equation is solved for T, or enthalpy, or a related variable.
5. A Poisson equation is solved for ¢ with B as the source term.

6. A Poisson equation is solved for A with —w as the source term.
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The equations for a two-dimensional dual potential formulation will be presented
below and subsequently solved in non-conservative form. Body forces will be ne-
glected.

In two dimensions the dual potential representation of the compressible Navier-

Stokes equations for constant specific heats are:

pt +upz +vpy +pB = 0 (2.23)
[ 2, _
wg + uwg + vwy — (-———-) Véw = Sy(p,B,w,T) (2.24)
pRe
B; +uBg + vBy — L v2B = So(p, B,w,T) (2.25)
) 3pRC y W,y
T+ uly +vTy — gl vir - S3(py B,w,T) (2.26)
Y7 \pRePr R
v2% = B (2.27)
24 _
v = —u (2.28)

The source terms for the w, B and T transport equations are given below. For
the vorticity transport equation, S contains the compressibility and ¢ contains the

variable viscosity terms.

- " 4 4

R c1
—(pzTy — pyT - 2.
+p(Pm y — pyTe) + Re (2.29)
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1 2
cq = ;(uy +vz)(pzz — pyy) + ;(”y — uz)pzy
2 1 2
+ux ;(wz + By) - p—z'(P:z:uy + pzvz — 2pyuz + gpyB)
2 1 2
+py ——;(—-wy + Bz) — p(zpzvy = Pyuy — pyvz — ':,:Pa:B) (2.30)

For the dilatation transport equation, So contains the “compressibility” and c

contains the variable viscosity terms.

_ 2 2 [t
Sg = —(ug + vy + 2uyvz) - 2R

€

4 4
[Pz(—wy +3Bz) + py(wz + §By)]

RT R RT
_RV2T Tv2p ~ - (Topz + Typy) + p—2(pi +p3) + 5R2; (2.31)

B

2 2
cg = ; [ﬂzy(Uy + 1)3:) + Hrrux =+ }I.yy‘vy] — Ezvzp
1 8 2pz Pz Py
= 1-2 =By +-22B 288y, -2
+p wy + 3 m+3p 5 p(uy+v:c)]
Ky 8 2py Py Pz
—Z 12 —By + =~*B — 2—%yy — — 2.3
NP R T P p(Uy+vz)] (2.32)

The energy equation source term, Sg, contains the compressibility and variable

thermal conductivity.

o L [4g2, 2 _ ]
S3 = —(v-1)BT + “Recy [3B + w® + 4vzuy — vyuz)
2

omapy ke Te + kyTy) (2.33)

The solution strategy for this system of equations is outlined in Section 4.2.
Briefly, the equations are grouped into an “incompressible” and compressible part.

An incompressible solution is obtained by computing among the equations in the
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“incompressible” set of equations given below. A compressible solution requires a
pass through both the “incompressible” and compressible sets of equations. In that
case the “incompressible” equations actually contain terms representing compressible
effects. This grouping is used to allow an incompressible solution to be the starting

solution for a compressible problem.

vorticity transport equation

Incompressible V2¢ =0

V24 = —w

dilatation transport equation
energy equation

) continuity equation
Compressible

v = B

ideal gas law,p = pRT

property updates : pu, k

The transport equations above are solved using an ADI scheme. Source terms
of the dependent variable (undifferentiated) are treated implicitly. Derivatives of the
dependent variable in the source term are treated explicitly so as not to weight the
off-diagonals. This did provide a slightly faster solution than treating all dependent
variable source terms implicitly.

One will immediately notice the many derivatives introduced in the governing
equations by this method. Even though most of the test cases to be presented are for
subsonic flows, it was necessary to handle some terms conservatively. In particular,

the pressure related terms in the dilatation transport equation and the conduction
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terms in the energy equation are best handled conservatively for the heat transfer
test cases computed. By treating these terms conservatively it is easier to obtain an
accurate representation than by expanding out in the chain rule form and differenc-

ing.

2.4.2 Three dimensions

Only the incompressible equations will be derived here. The three-dimensional

compressible set is given in Appendix A.

2.4.2.1 Incompressible flow The governing equations for viscous incom-

pressible flow in non-dimensional vector form are:

e continuity:
—_
vV.Vv=0 (2.34)
e momentum: .
av

—_ - — — 1 2—+ —
__t_+(v.v) V:_VP+§V V +F (2.35)

There are four unknowns to be determined for the primitive variable solution of a
three-dimensional incompressible flow. Usually these unknowns are u,v,w and p. It
will be seen that the dual potential method requires the solution for seven variables
to satisfy the continuity and momentum equations.

By taking the curl of the momentum equation the pressure is eliminated yielding

the vorticity transport equation:

U
—_ — —_ — — —
a_a‘t"_+(v.v);’_(;’.v)v = RI—CVZTJ+V><F (2.36)
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—
If F is a conservative body force (such as gravity) then it too is eliminated by the
curl.

Decomposing the velocity vector according to the Helmholtz decomposition the-

orem as in Equation 2.12 one obtains:
- — -  —
V=V¢+Vx A (2.37)

— - —
Since V . (Vx A) = 0, the substitution of Equation 2.37 into Equation 2.34
leads to:

V2 =0

—9
The relation between the vector potential, A, and vorticity is obtained by taking

the curl of Equation 2.37. This becomes:

—

9 - = —
VZA-V(V-A)=-w

The vector potential is chosen to be solenoidal so that the above reduces to:

Therefore, for viscous incompressible flow, the momentum and mass conservation

equations and the vorticity definition can be solved using:

o —_ — - — 1 —
?—i+(v-V) W (0 V) V= —V2J 4tV F (2.38)
ot Re

2 _

V% = 0 (2.39)

2"-*)
VAA = —w (2.40)



34

Then, the velocity is decoded from the potentials according to the Helmholtz
decomposition:
— - —_  —
V=V¢+VxA
If the pressure field is needed it can be obtained by solving for pressure from
one of the primitive variable momentum equations or by solving the pressure Poisson
equation. It is also possible to solve for the pressure by computing a force balance on

an appropriate fluid element since the velocity field and hence the shear stress field

is already determined by the solution strategy above.
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3. PRELIMINARY ANALYSIS

3.1 Introduction

In this chapter the essential parts for assembling a dual potential code are gath-
ered together. First the boundary conditions for the dependent variables are pre-

sented. Next, the Cartesian stretched grids are described and, finally, the necessary

solvers are explained.

3.2 Boundary Conditions

A general presentation of the boundary conditions will be given here. The bound-
ary conditions are applicable for two- or three-dimensional problems. Boundaries have

been classified as one of the following:

1. Solid — impermeable boundary (slip or no slip)
2. Throughflow boundary — boundary crossed by the streamwise velocity

3. Far-field boundary — a freestream boundary which may be modeled as an
impermeable boundary, a porous boundary or some other freestream condition

according to the problem.
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The boundary conditions are, of course, also identified with a partial differential
equation. For ease of presentation, only the boundary types as listed above are
discussed here. To determine what conditions are imposed in a particular problem
it is necessary to know the classification of the governing partial differential equation
(hyperbolic, parabolic or elliptic) and the number and type of derivatives of the
dependent variable. Specific boundary conditions for each model problem will be
given in figures in the discussion of the results. The solid boundary and throughflow
boundary conditions for the potentials are thoroughly derived in Wong and Reizes
(1984) and Hirasaki and Hellums (1970). For the transport variables ( ;',B,p,T),
a fully-developed exit condition is specified by dropping second order streamwise
derivatives (except for density) and upwinding other streamwise derivatives at the
exit. Example boundary conditions for a two-dimensional channel throughflow case

are illustrated in Figure 3.3 for reference.

3.2.1 Scalar potential boundary conditions

The scalar potential is obtained from the solution of the Poisson equation, qub =
B. This is an elliptic equation so a condition on ¢ or its derivative must be given on
all boundaries.

Since the velocity is decomposed into two potentials, it is useful to ascribe certain
of the velocity boundary conditions to each potential. It has already been demon-
strated by Hirasaki and Hellums (1970) that if the scalar potential were used to deal

with possible throughflow velocities, then simple boundary conditions on the vector
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potential are possible. Following Hirasaki and Hellums,

on the boundaries. Thus, the scalar potential has Neumann conditions all around.
The normal derivative of the scalar potential is the normal outflow velocity at the
boundary. For a pure Neumann problem such as this, existence and uniqueness of the
solution are concerns. Existence is ensured if the compatibility condition given by
Green’s theorem is satisfied. Uniqueness is ensured by prescribing the scalar potential
at some point. For the test cases to be discussed later, it was possible to make one
boundary a Dirichlet boundary and still satisfy the Neumann boundary condition by
virtue of Green’s theorem. The positive n direction in the following is the outward

normal.

3.2.1.1 Solid boundaries For no flow through the boundary, the condition

on the scalar potential is

Q)lQJ
S |©
il
(=)

3.2.1.2 Throughflow boundaries An inlet or exit is the best example of a

throughflow boundary. The condition on ¢ is then

= streamwise velocity, say u;

0
dn
where,

1 —
ui:r// V.hds
(]

and A; is the cross-sectional area of the throughflow boundary.
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3.2.1.3 Far-field boundaries A derivative condition on the scalar potential

is also used at a far-field boundary as follows:

gﬂ = normal component of velocity through the far-field boundary, usually 0.
n

3.2.2 Vector potential boundary conditions

The vector potential is obtained from the solution of the Poisson equation,
v?2 71): — @. This is an elliptic equation so a condition on the components of
Z or its derivatives must be given on all boundaries.

With the above choice of scalar potential boundary conditions, the boundary

-
conditions on A for a simply connected region may be shown to be

Ap=— "t =0 (3.1)

—_)
where the subscripts ¢ and n denote the tangential and normal components of A
respectively. An example of the potential boundary conditions for a solid surface in

the z—z plane are shown in Figure 3.1.

3.2.3 Vorticity boundary conditions

Vorticity is only needed for rotational flow computations. It is generated, for
example, at no-slip boundaries and diffused and convected away. Vorticity may also
be specified as part of the inlet or initial conditions. Vorticity can also be generated
by shocks, but such flows will not be considered here. The transport equation for
vorticity states the conservation of vorticity. Therefore, the boundary conditions are

extremely important in defining the flow field.
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Figure 3.1: 3-D Cartesian coordinate system with example boundary conditions for
the potentials on a solid impermeable surface in the z—z plane
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Figure 3.2: An initial uniform velocity profile along a viscous boundary for an im-
pulsive start

3.2.3.1 Solid boundaries The vorticity at a solid boundary is obtained
from the no-slip conditions. Several different formulations are possible. The wall
vorticity can be computed from the velocity derivatives or from a Taylor series ex-
pansion of the vector potential. Consider a wall in the (z, z) plane. Using the vorticity

definition from velocities, the wall vorticity (at y = 0) is

wo = 0 (3.3)
w3 = —uy (34)

This method was used by Aziz and Hellums (1967). It was only used in this work
to compute an initial wall vorticity based on an impulsive start. For example, the
initial wall vorticity for a two-dimensional impulsive start is given by w = —uy (see

Figure 3.2.  The finite-difference initial wall vorticity is then:
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u(1,2)

@) =~ @)

For subsequent global loops, a better approach (Roache 1972) was used to obtain
the wall vorticity. This better approach uses the vector potential. Consider a vorticity
producing surface at y = 0 (j = 1) in a two-dimensional flow. The grid may be
stretched, so let the transverse spacing to the first node point be Ay; as in Figure 3.2.
For the i index in the z direction and j index in the y direction, write the Taylor

series expansion for the vector potential at (7,2) about the wall values as follows:

0A 1624 g 1834 3
AG,2) = AGD+—| Dyi+-—5| (A ——2| (&
(4,2) )+ 5 i V1t 3507 z.,1( y1)“ +g % i,l( ¥1)
+ O( Ay1)4 (3.5)

From the velocity decomposition in two dimensions (Equation 2.18), u = ¢g + Ay.

At the wall this is
04
i1 0y

, )
u(t,1) = 8—3

1,1
but, u(7, 1) is zero for a no-slip boundary. Therefore, %ﬁ . in the Taylor series above
s

can be replaced by the scalar potential derivative along the boundary.

A
3__ = _8_(}5 (3.6)
Oyl;1 9=l
Again using the velocity decomposition in two dimensions, u = ¢z + Ay, the y

derivative of this equation gives: uy = ¢zy + Ayy. At the solid impermeable wall

this is:
Qli
Ay

824

62
a2 B 4
i1 Oy

il ~ 8zdy

i1
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From the scalar potential boundary condition at a solid boundary, %5. 1= 0. Hence,
L
the second order y derivative of A at the wall is simply:

8y2

_Ou
i1 9y

i1
The wall vorticity in two dimensions is the component w3 = w = vy — uy. Along the

wall v = 0, so that w(i,1) = —% 1y Therefore, the wall vorticity is introduced into

L2

the Taylor series for the Ayy term as:

824 du
= — = —w(1,1) (3.7)
By2 i1 9l

Equation 3.7 is also obtainable from the Poisson equation for the vector potential,
V24 = —w. At the wall, A = 0, so Azz = 0 and Ayy = —w. Substituting for Ay

and Ayy in the Taylor series of Equation 3.5 one obtains:

. ... 0 1834
A(2,2) = A(‘L,l)—-— ) g?a—y—s'

1 : 2
o z,lAy1+§(—w(z,1))( Ayq)

. (Ly)3+0( Ayt
(3.8)

8
Solving for w(i, 1) yields the following first order approximation for the wall vorticity

2

w(t,1) =
1 (Ayp)?

[A(i,n ~AG,2) - b

. A1/1] +0(Ayy) (3.9)

1,
The vector potential in two dimensions is zero at a solid impermeable wall, so A(3,1) =
0 in the above. Using a second order central difference for ¢ with possible stretching
in the z direction (Section 3.3), the finite-difference formula for the wall vorticity

becomes:

2
(Ayp)?

A1) - 46,2) - Za LU= LD Ay | (10

w(i,1) = 5
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In a similar fashion the Taylor series and above substitutions could be carried out
in the computational plane (%,%). The unequal grid spacing is accounted for by the

metrics to yield the following formula:

o (872, . .
w(i,1) = 2((—9-3;) (z,l)[A(z,1)~A(z,2)

+g%%U(¢U+1J)—ﬂi—LD) ;ﬁéilﬁfl_l]win

%‘5(:',1) 2 2 (gg)z(i,l)

The above first order form was used most frequently in the results to be reported

here. A second order formulation also based on the Taylor series is obtainable from
Equation 3.5 by retaining the ( Ay1)3 term. The second order boundary conditions
will be derived here for a three-dimensional case. Consider the z-z plane again. The
boundary condition on the w; component will be derived first by starting with the
Taylor series expansion of the vector potential component Aj. The Taylor series

expansion for A; at a mesh point adjacent to the boundary, (y = Ayq at 3 =2),is

given by
) _ . 0Aq 1 62A1 2
Ay(2,2,k) = A1(i,1,k) By Lk + 2552 i,l,k( Ayy)
1834
st (Ap)d+o(oy)! (3.12)
6 8y° i 1,k

)

where the indices 1, j, k denote the z,y, z positions, respectively.
_}
The first term of the expansion is zero since the tangential components of A

vanish on an impermeable boundary. Hence

A1(5,1,k) =0 (3.13)
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To evaluate the second term, use the velocity component which contains Aly in

its decomposition. From Equation 2.17 note that
w=¢z+ A —Aly

Since w = 0 on the boundary, the derivative in the second term of the expansion can

be written

9¢

L2
ik 07

dy

84
ik 9% i1k

From Equations 2.14 and 3.1, the second order derivative in the third term may easily

(3.14)

be identified as

824
= = —w(,1,k) (3.15)
Oy“ 1i,1,k

Here is where the second order method departs from the first order approach given

earlier. To obtain an expression for the third order derivative of Ay, a linear distribu-
tion of vorticity and Alyy over the first mesh interval is assumed (Wong and Reizes

1984), so that

w = wl(i,l,k)+ALm[wl(i,z,k)_wl(i,Lk)] (3.16)
2 2 2 2

A _ a‘L;I(i,l,k)+——3/——[%l(i,&k)—%%l(i,l,k)] (3.17)
Y )

dy? dy Ayy
Combining the above linear distributions in order to write w; as a function of Alyy

yields

824, oy .
—_ ayz + Ay]_ w1(1,2,k)+

8244
dy?

(Ul:

(i,2,k)] (3.18)
Differentiating Equation 3.18 with respect to y yields

6w1 _63A1 4 1

8y ~  0y3 Ay

(92A1 )
3y2 (2,2, k)] (3.19)

[“"1 (i’ 2, k) +
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Solving Equation 3.19 for Alyyy at y = 0 gives

3
021 i1, k) =
8y3

. : 2
wl(z,l,k)—wl(z,2,k) 1 ) 0“Aq .
+ wi(ty2,k) + —5=(1,2,k 3.20
o Ay 120+ ZHG2 K| G20)

Finally, substituting Equations 3.13, 3.14, 3.15 and 3.20 into Equation 3.12 gives
a second order relationship between the boundary vorticity and the potentials, that

is,

31,2, k) 3
(Ayp)2 Ay

1 :
+ 5414y (5,2,k) + O Ayp)? (3.21)

wl(i717k) = ) [¢Z(ia1ak)+A2x(i71)k)]

Similarly, the z component of vorticity at this boundary is found to be:

34a(i,2, k 3
3(3 )+

SGLR =0T T

. 1 .
A9 (5,1, k) + 5 A3y, (1,2, k) + O ( Ayp)? (3.22)

The third and final vorticity component at this boundary is computed from the

no-slip condition and the definition of vorticity to be
wo(i,1,k) =0 (3.23)

as already stated at the beginning of this discussion. In actual use, the second order
vorticity boundary condition increased the CPU time with no noticeable improve-
ment in accuracy. Roache (1972) also reports that second order vorticity boundary

conditions can be less stable and less capable than the first order boundary conditions.

3.2.3.2 Throughflow boundaries The only throughflow boundaries used

here are the inlet plane and exit plane for two- and three-dimensional problems. The

inlet flow field may be specified as either rotational or irrotational. This is controlled
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by the inlet plane transverse velocity. For two-dimensional flow, the inlet v velocity

is controlled to provide rotational or irrotational flow as follows:

) rotational ;setv =0
inlet condition (3.24)
irrotational ; compute v from the decomposition

- —
The inlet plane vorticity is then computed from the definition, w=VxV.

For a two-dimensional rotational inlet condition, the inlet transverse velocity is
set to zero and used throughout the code. The irrotational inlet condition is achieved
by computing the inlet plane transverse velocity from the decomposition and using
that non-zero inlet transverse velocity throughout the code. The streamwise velocity
component is unchanged since it fixes the inlet mass flux.

At the exit the second order streamwise derivative is dropped and other stream-

wise derivatives are upwinded.

3.2.3.3 Far-field boundaries The far-field vorticity must be specified or
determined from the specified upstream flow conditions. It is not safe to extrapolate
the vorticity to a far-field boundary, or any boundary since that does not account for
the physics of vorticity production, convection and diffusion. Far enough away from
a surface generating vorticity, the vorticity should be zero. If the velocity is known

at the far-field, vorticity may be obtained from the definition.

3.2.4 Dilatation boundary conditions

The dilatation, B, is only needed for a compressible flow. Boundary conditions

are developed from the expected velocity boundary conditions and the definition of



the dilatation,

- —
B=V .V =ug+vy+w;
or by applying the continuity equation,
pt + upg + vpy + wpz + pB =0

The treatment of this variable is the most uncertain. There is little guidance
in the literature. El-Refaee (1981) used the dilatation in his non-primitive variable
formulation. He extrapolated to obtain the dilatation at the boundary. The boundary
values of dilatation were relaxed and set to zero as the solution approached steady

state. El-Refaee solved external flow problems only.

3.2.4.1 Solid boundaries For a viscous flow along an impermeable wall, all

velocities are zero. This reduces the continuity equation to
pt +pB =0
For steady boundary conditions on density, or at steady state it is clear that
B=20

Otherwise, the density time derivative or the velocity derivatives must be evaluated

to compute

B = -2t , from continuity (3.25)
P lwall
or,
B = ug+vy+w; ,from the definition of B. (3.26)

In any case, B = 0 at the boundary at steady state.
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3.2.4.2 Throughflow boundaries The only throughflow boundaries used

here are the inlet plane and exit plane for two-dimensional compressible flow problems.
The inlet flow may be specified as either rotational or irrotational as stated in the
section on vorticity boundary conditions. From the definition of dilatation, B =
ug + vy, an inlet Dirichlet condition can be computed. For the rotational flow inlet
condition (which corresponds to a uniform parallel inlet flow), v = 0 at the inlet.
This gives B = ug for the inlet boundary condition. For the irrotational flow inlet
condition, v # 0 and in general vy # 0. This gives B = ug +vy for the inlet boundary
condition. It has been found that an inlet boundary condition of B = 0 may be used
for either inlet condition. By setting B = 0 at the inlet one avoids the ambiguity of
specifying the dilatation inlet condition using velocities which in turn depend on B.
At the exit, the second order streamwise derivative is dropped and other streamwise

derivatives are upwinded.

3.2.4.3 Far-field boundaries Generally, the velocity field is unchanging at
the far field, so B is given by the unchanging velocity derivatives. A typical far-field

condition is uniform parallel flow so that B = 0.

3.2.5 Density boundary conditions

The density boundary conditions are set using one of the following approaches,

depending on the problem:
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1. By applying the boundary-layer assumption for viscous compressible flow at a

solid boundary and the ideal gas law,

py =0

50,

p(3,2) T(,2)

P(ivl) = T(i,l)

2. By using the Bernoulli equation for inviscid irrotational compressible flows,
] 1
p= [1+7—§——Mgo (1—u2—v2—w2)]7_
3. By application of the continuity equation written along the boundary,
pt +upz +vpy+pB =0

3.2.6 Temperature boundary conditions

The temperature boundary conditions are either set as Dirichlet conditions or
derivative conditions based on a prescribed wall heat flux. First through fourth order
polynomial derivative conditions are included in the computer code as options. The
inlet temperature field is user specified. At the exit plane, second order streamwise

derivatives are dropped and other streamwise derivatives are upwinded.

3.2.7 Velocity boundary conditions

The velocity is not a primary variable in this method. Velocity boundary condi-

tions are dictated by the flow physics and are used to develop boundary conditions on
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the derived variables, such as the dilatation boundary conditions above. The condi-
tions to use are straightforward—e.g., no-slip at solid boundaries for a viscous fluid.
It is important to point out that the velocity boundary conditions are used, but not
necessarily enforced by the dual potential formulation. For example, a no-slip condi-
tion is used to develop boundary conditions for the vorticity at a solid viscous wall.
However, there is a small slip velocity computed by the velocity decomposition. The
slip velocity goes to zero as the grid is refined. To see how the slip velocity arises, con-
sider the velocity decomposition for a two-dimensional flow over a flat plate oriented
as in Figure 3.2. The velocity decomposition for this case is given by Equation 2.18,

repeated here for convenience.

— u + A
V= _| P=t A (3.27)

v ¢y — Az
At the flat plate surface, the boundary conditions on the potentials are:
¢y = 0
A =0
It is obvious that the v component of velocity will be zero both analytically and
numerically (provided the same difference formula is used to compute v as was used

to enforce the boundary condition on ¢). However, the u component will only be zero

if ¢z = —Ay. This is not exactly satisfied numerically.

3.3 Cartesian Grid Clustering

Simple independent variable transformations are used to allow for stretching of

the two-dimensional Cartesian grids (Anderson et al. 1984). The stretching trans-
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Figure 3.3: 2-D channel boundary conditions
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formations may be readily applied to a third coordinate direction for use in a three-
dimensional Cartesian grid. The transformations used here are from the family of
general stretching transformations proposed by Roberts (1971).

The coordinate transformation maps the physical plane (z,y) into the computa-
tional plane (Z,7):

(2,9) — (7,7)

where, T = f(z) only and ¥ = f(y) only. Also, the transformations are scaled so that
AT = AF = 1. The computational grid coordinate values then correspond to the
grid indices like (Z,%) = (¢ — 1,7 — 1). This simplifies the coding and avoids divisions
in the numerical algorithm for a slight speedup advantage. In the following, NI is the
largest = index and NJ is the largest y index in the domain. NI and NJ correspond
to the maximum dimensions of the physical grid L, h (see Figure 3.4).

Applying these transformations to the governing fluid dynamic equations requires
the following partial derivatives: (These have been simplified since ¥ and ¥ are only

functions of the respective coordinate directions.)

o _omd
0r 0z 0%
9 _ 9o
8y  0Oyoy
2 (=Y (%) 8
dz? oz) oz  \ 09«2 ) 0%
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82 8z 9y 62

dzdy Oz Oy 070y

The above metric terms are computed numerically using second order accurate
differences for the unequal mesh spacing. Analytical calculation of the metrics are
possible for the stretchings to be presented. It was found, however, that the numerical

calculation provided better flow results.

3.3.1 Clustering near boundaries

Take the z direction to be streamwise. The transverse direction is then y with
“walls” at y = 0 and y = h. The following transformation allows packing near the

inlet and near one or both walls.

In{lo+1—(z/L)]/[o — 1+ (=/L)]}

T = NI(1- e+ 1) /(e = 1] ) l1<o<oo (3.28)
y = a+t
(1 a8+ Iy (B 1) /1 20} / (B~ y 2 1) 1]+ 3a)) o

n[(B+1)/(8~1)]
This is designed so that 0 <Z < (NI-1)and 0 <§ < (NJ-1)for0<z< L,
0 <y < h with AT = AF = 1. Equation 3.29 for § packs near y = h for a = 0
and near both walls equally for o = 0.5. The inverse of equations 3.28 and 3.29 are

needed to construct the physical grid (z,y). The inverse for the above transformation

is readily found as:

L L(a+1)_(a_1)[g§}](1‘NIai_1)
2 1](1—N15_—1)+1

(3.30)
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—Q

11" I=a
L h(_nﬂgn(n)(ﬂna) [g“_if] _—ﬁ+2a)

—Q

(2a+1)(1+['§§ﬂ_ﬁ_"——)

(3.31)

where,

1 fork>0
sgn(k) =
-1 fork <0
The inverse for y has been modified using « to direct the y clustering to either

wall as described below. The stretching parameters in the above transformation have

the following affects:

z direction clustering

1 < 0 < oo — The stretching parameter o clusters more points near x = 0 as o
approaches 1. The grid becomes more uniform as ¢ — co. An
essentially uniform z grid is generated for o = 10.

y direction clustering

1 < B < oo — The stretching parameter 3 controls the y direction clustering
(spacing ratio). Maximum clustering is achieved as 3 approaches 1.
An essentially uniform y grid is generated for g = 10.

The stretching parameter « is either 0 or 0.5.

k > 0 clusters near y = h only.
a=0
k < 0 clusters near y = 0 only.

a=0.5 Cluster points near y = 0 and y = h equally. k makes no difference
when a = 0.5.

An example of the above clustering is shown in Figure 3.4.



95

¥y
y
(NJ-1)
h
-~ z 0 — 3z
L 0 (NL-1)

(a) (b)

Figure 3.4: Typical 2-D channel grid. (a) Physical plane using ¢ = 1.05,a =
0.5,8 = 1.2; (b) Computational plane

3.3.2 Clustering near an interior point

This clustering technique was used for the bump problem (isolated airfoil). It
can also be used to cluster points about an obstacle located within the grid. The
equations given will work in either the z or y directions and are designed to cluster
near a single point or to symmetrically cluster about an object by reflecting the
generated grid about the line of symmetry.

The z coordinate scheme for the bump problem will be given here. This requires
an odd number of i points and assumes that the bump or airfoil is always placed in
the center of the z grid. (The bump in the test cases is simulated by the blowing
condition rather than occupying z,y space.)

As stated previously, T is simply given by the grid point index, i — 1, so that
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Figure 3.5: Typical 2-D grid for an isolated airfoil at y = h. (a) Physical plane using
r=5.0,a =0,k =0,8 = 1.5; (b) Computational plane

AT = 1. The inverse transformation is:

sinh [1’ (83 - W)]

r = zcil+ snh (7 W) (3.32)
where
14 (™ —1) ( 2 )
1
W = —ln ffi 0<T<o00 (3.33)

27 14 (77 - 1) (%)

The stretching parameter, 7 varies from zero (no stretching) to large values which
produce the most refinement near © = zc. An example of this stretching is shown in
Figure 3.5 where the grid has been refined near the line zc and reflected about the

line of symmetry at « = L/2.
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3.3.3 Arbitrary user defined clustering

The dual potential computer program will accept any user defined clustering
so long as T = f(z) only and § = f(y) only. These may be input as arbitrary
z,y points or as equations relating ,y to 7,7 as in the above examples. The code

automatically scales the metrics to form a two-dimensional computational space with

3.4 Poisson Equation Solvers

Three different methods have been used to solve the Poisson equations for the
potentials. One method is the vectorized point Gauss-Seidel scheme with successive
over-relaxation (SOR). The other two are alternating direction implicit (ADI) type
schemes (Mitchell and Griffiths 1980). The two ADI type schemes will be distin-

guished as follows:

1. A scheme formed by factoring and then splitting into a two step formula similar
to the D’Yakonov (1963) approach. This will be referred to as the approximately

factored (AF) scheme in this discussion.

2. A Peaceman-Rachford type scheme with a half-time step level (Peaceman and

Rachford 1955). This scheme will be referred to hereafter as the ADI scheme.
In summary, the three schemes to be used to solve the Poisson equations are:
1. Vectorized point Gauss-Seidel with SOR

2. AF scheme
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3. ADI scheme

The model equation V2% = § will be used to demonstrate the above algorithms.
For the AF and ADI schemes, the Poisson equation is written with a fictitious time
derivative: ®; + V2% = S. The iterations represent “time” levels with time step h.
The time step may also be thought of as a relaxation parameter. At convergence the
time derivative term is negligible.

For a Cartesian grid with possible stretching according to the coordinate trans-

formations in Section 3.3, the equation to discretize is:

—\2 2 2 2—
0T 0% Jy 0y
q’t+(6$) ‘I’zz‘*’(am )Qf'{'(—a—g) @.‘l—/‘g-’r(a 2) @"‘—S

The computational plane grid spacing is unity so AT and Ay do not appear in

the algorithms below.

3.4.1 Vectorized point Gauss-Seidel with SOR

The finite-difference form of the equation to solve is:

0T\ 2 8z [ oy 2 2 o’y 3?/_ most recent
(2029 @ () e

Since Gauss-Seidel is a point iterative method, the exact application of the above
algorithm will depend on the mesh point ordering. The Gauss-Seidel method is based

the (I,most recent used in

on immediate use of the most recent values. Therefore,
the above equation is either k1l or &k Solving the above equation iteratively
by points will not vectorize due to data dependency. This can be illustrated by a

simple example. Consider the five-point formula finite-difference scheme for the two-

dimensional Laplace equation, vip = 0, on a uniform Cartesian grid with Dirichlet
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boundary conditions:

Vit = 2Vij + Vi1 UVig1 =20 +Uijq

0
(L) (Ay)?

As a further simplification take Az = Ay = 1 so that solving this by points one
would code the following:

DO 40 J=2,NJ-1

DO 40 I=2,NI-1

U(I,J) = 0.25 * (U(I-1,J) + U(I+1,J) + U(I,J-1) + U(I,J+1))
40 CONTINUE

The dependency of U(I,J) on U(I-1,J) inhibits vectorization. Notice, however,

that for a fixed J, the even I indexed values of U on the left hand side depend only
on the odd I indexed ones on the right hand side. A vectorization strategy is now
apparent. The data dependency is removed from the computation by “coloring” the
grid as a checkerboard and updating the U in two sweeps. At a starting J, the odd
I index points may be thought of as black squares on a checkerboard and the even
I index points may be thought of as red squares. At the next J , the odd I points
are then red squares and the even I points are black squares. This red-black coloring
continues in J until the grid is patterned like a checkerboard. In one sweep the black
points are updated using only red points and in another sweep the red points are
updated using only black points. This is easily implemented by incrementing the I
loop by 2. Some initial work is required to determine the starting and ending I indices
for each J. Therefore, in two sweeps the solution is iteratively updated and the code
will vectorize. The compiler, however, will not recognize that the data dependency
has been removed. The programmer must direct the compiler to vectorize the loops.

This strategy is coded below. Note that the starting and stopping I indices are a
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function of J. It is a simple alternating function, such as 2,3,2,3,... for IBSTRT(J) and

then 3,2,3,2,...for IRSTRT(J).

C...BLACK POINTS
DO 40 J=2,NJ-1
C...COMPILER DIRECTIVE: IGNORE VECTOR DEPENDENCIES IN THE I LOOP
DO 40 I=IBSTRT(J),IBEND(J),2
U(I,J) = 0.25 * (U(I-1,3) + U(I+1,J) + U(I,J-1) + U(I,J+1))
40 CONTINUE

C...RED POINTS

DO 41 J=2,NJ-1
C...COMPILER DIRECTIVE: IGNORE VECTOR DEPENDENCIES IN THE I LOOP

DO 41 I=IRSTRT(J),IREND(J),2

U(I,J) = 0.25 * (U(I-1,3) + U(I+1,]) + U(I,J-1) + U(I,J+1))
41 CONTINUE

This may be combined with SOR for a further speed advantage. The exten-

sion of this vectorization concept to three dimensions is straightforward. The three-
dimensional problem may be solved as a stack of two-dimensional checkerboards, as
a four-color point method, or by extending the idea of colored points to colored lines

and solving by lines rather than points. The red-black strategy and other vectorizable

structures are discussed in Gentzsch and Neves (1987).

3.4.2 APF scheme

Using first order temporal differencing and second order spatial differencing on

the model Poisson equation one obtains:

k+1 _ gk 2 2=\ T_ 2 2=\ 3=
-t (Y, (9F)\i (T 524 (977 %F| g+l _ g
h Oz 9z2 ] 2 oy) Y oy2 ] 2

(3.34)
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It is convenient to use the “delta” form of the dependent variable so define
Akg — g+l _ gk

To form a “delta” in the difference equation above subtract the spatial derivatives of
&¥ from each side. Multiplying through by the time step (or relaxation parameter),

h, gives
0z\2 o (0%=\ 5z  (09\%.o (0% %]\ .k
(I+h[(a—z) 6% + (5;'2') +(3y) 6 + Eyﬁ o A% P =
2 2— 2 2=\ 8+
0% \” 9 0°T\ bz 0g\“ 2 %\ 05| .k
hS—h[(a)é +(az) +(6y) 5-:‘-/--*-(5':'/—2 o> ¢

The “delta” form allows easy implicit handling of the boundary conditions.
Steady Dirichlet conditions are automatically satisfied by the fact that Ak® =
on the boundary. Steady Neumann conditions are easily handled by reflecting the
Ak at the boundary. The derivative function cancels so there is nothing to be added
to the right hand side. The actual Dirichlet values or derivatives are input by the
source term spatial derivatives of ok,

An approximately factored form of the equation above is:
OF\“ 9 %z a7 2 9 32'37 .._y_ k
h 5% =12
(1o (22f o (22) ) (1n(2) ' 0 (23) %) o
2 2 2 2=\ &
0T \” 9 0°%T\ bz 07\“ 2 g\ Sy | -k
—h 82 ]
woon|(2)'e (22) 5+ (29 (22) 8]

where the factors can be denoted as Ly and Ly so that the AF representation is

LyLy AR & = RHES.
As it is written, the algorithm is implemented by sweeping implicitly in the =

direction then in the y direction. The solution (Aké) is attained in the two steps:
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Step 1: Ly TEMP = RHS
Step 2: Lo AF & = TEMP

3.4.3 ADI scheme

The starting form of the difference equation is the same as for the AF scheme
(Equation 3.34). The ADI scheme splits the calculation for ® into two steps. In the
first step, the x derivatives are treated implicitly at the iteration level k + %, while
the y derivative terms are lagged. The provisional solution is denoted as <I>k+%.
The second step obtains the solution, gkt1 by discretizing the y derivative terms
implicitly at the iteration level k + 1 and using the = derivative terms at the k + %

level.

_ \F- \% 1
om0\ e, b1\ gkar bk [, h(0FYa  h(0%E\E | kty
2080y) Y 2\y2) 2] 270 280z ) T 2\8z2) 2| W

3.5 Poisson Solver Comparisons

An assessment of the two-dimensional Poisson solvers was made on test prob-
lems for the scalar and vector potentials. The test problems are from incompressible
channel throughflow cases. The three solvers were tested on stretched and uniform

grids with various aspect ratios. The L9 norm of the error is used to compare the
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convergence history for each method:

k+1 _ gk)2
Lz:\|m ok)

number of points

However, the requirement used for a converged solution is

|¢k+1 _ (I,kl
@k+1

max

<e (3.35)

where ® represents either potential and k is the iteration level. The tolerance used for
the comparisons below is ¢ = 10~ 6. This rather strict tolerance can yield a decrease
in the L9 error by as much as 6 orders of magnitude. It was found that the scalar
potential had to be obtained to this accuracy for reliable flow solutions.

All of the Poisson solvers were coded with the boundary conditions incorporated
in the solution algorithm. The relaxation parameter used for the vectorized SOR
method will be designated by w. The range for w is 0 < w < 2. The relaxation
parameter used for the AF and ADI schemes will be designated by h, the fictitious
time step. The time derivative term which was added to the Poisson equation sim-
ulates a parabolic problem, ®; + V2% — S. The way this is written, marching is
only permitted in the negative “time” direction. Therefore, a negative h was used
to march the AF and ADI solvers. The need for a negative k is also evident in the
numerical representation of these schemes since a negative h will add to the diago-
nal term of the coefficient matrix. The AF and ADI schemes were solved using a

vectorized tridiagonal solver.
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Figure 3.6: Scalar potential test problem

3.5.1 Scalar potential test problem

The scalar potential is given by the Poisson equation, V2¢ = B. For an in-
compressible flow the dilatation, B, is zero. The test problem for incompressible
flow through a channel is then, V2q$ = 0, with boundary conditions as shown in
Figure 3.6. The exact solution for this case is ¢ = z (notice that the problem is
actually one-dimensional). This is a difficult problem to solve numerically due to the
many Neumann boundary conditions. For incompressible problems, whether steady
or unsteady, the equation for the scalar potential can be solved once and for all. An
efficient solver may not seem important for the incompressible case. For a compress-
ible flow, however, the dilatation field will be computed by a time marching method
so the scalar potential will have to be solved as often as every global iteration. The
cases to be studied in this report are mostly subsonic and the dilatation may be ex-
pected to be small. Therefore, the incompressible solution may be used as a starting

solution for a compressible problem. Also, in some cases the dilatation may be so
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small as to be treated as a perturbation of the solution to the incompressible prob-
lem. For these reasons and the fact that the exact solution is easily obtained for the
incompressible case, the incompressible problem will be used to assess the solvers for
the scalar potential.

The first comparison on the scalar potential test problem is with uniform grids.
The aspect ratio, defined as a = %, is varied for each case. The results for a 21 x 21
grid are shown in Table 3.1 and for a 41 x 41 grid in Table 3.2. The SOR method
has trouble with this problem and requires an unusually high optimum relaxation
parameter, w. It can be seen from these results that the SOR method cannot compete
with ADI or AF when the grid aspect ratio is far from 1. Stretched grids will be
necessary in the solution of viscous problems so this immediately excludes the SOR
method for use in solving for the scalar potential, especially when B is non-zero.
Notice that the AF and ADI schemes solve the problem in the same number of
iterations regardless of the cell aspect ratio. Also, the optimum relaxation parameter
for AF and ADI can be reasonably predicted from the results shown in Tables 3.1
and 3.2 for 0 < a < 1. This is the most likely range of a for channel type viscous

flow geometries. The optimum h for the AF scheme behaves like
1
ha = haq(1 + 64log —
o al( + 64 log a)
The optimum h for the ADI scheme behaves like

1\2
b= by (3)

where ho‘l denotes the optimum h for a uniform grid with a = 1. This can be used to
get a reasonable estimate for the optimum relaxation parameter to use for a stretched

grid.
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Table 3.1: Poisson solver comparison on a 21 x 21 uniform grid

Uniform 21 x 21 grid bl
iterations to convergence CPU time (s)

method || a =1.0 | 0.1 0.01 1.0 0.1 0.01 | MFLOP

SOR 109 | 611 7253 0.0634 0.349 4.11 39.7

AF 3 3 3 |/ 0.001645 | 0.001626 | 0.001667 54.1

ADI 138 | 138 138 0.1234 0.1265 0.1236 64.6

Optimum relaxation parameters (w or h)

method || a =1.0 0.1 0.01

SOR 1.898 | 1.9854 1.9991

AF -160 | -10240 -1310720

ADI -0.0089 | -0.89 -89

Testing these solvers for the scalar potential on a realistic grid with stretch-
ing gives the convergence behavior shown in Figure 3.7. The grid is stretched as
shown in Figure 3.4. The cell aspect ratios for this stretched grid range from a =
0.4044-0.01265. Notice that the AF scheme converges over a very wide range of the
relaxation parameter, h. In contrast, the SOR method has a very limited range of
relaxation parameter which gives convergence in the thousands of iterations at the
very fastest. The extremely good performance of the AF scheme on this test problem
is incidental. It is explained by the fact that the exact solution for this test case
is ¢ = z, and the factorization error introduced in the AF scheme contains cross
derivative terms. The cross derivatives and hence the factorization error therefore go
to zero quickly. The optimum conditions for the solvers on this problem are shown
in Table 3.3. The convergence history at the optimum conditions for the solvers is

shown in Figure 3.8.
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Convergence History

scalar potential test problem
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Figure 3.8:

Convergence history for the scalar potential test problem
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Poisson solver comparison on a 41 x 41 uniform grid

| Uniform 41 x 41 grid

iterations to convergence CPU time (s)
method | @ =1.0 | 0.1 0.01 1.0 0.1 0.01 || MFLOP
SOR 195 | 1260 8105 0.306 2.01 12.7 55.3
AF 3 3 3 |1 0.00468 | 0.00475 | 0.00483 72.8
ADI 258 | 258 258 0.719 0.713 0.701 82.1

Optimum relaxation parameters (w or h)

method || a =1.0 0.1 0.01
SOR 1.9482 | 1.9925 1.99932
AF -160 | -10240 -1310720
ADI -0.0045 -0.45 -45

With stretching, AF and ADI outperform the vectorized Gauss-Seidel easily on
this problem. With non-zero dilatation and more complicated geometry the AF
scheme is not expected to display such a tremendous advantage over ADI as in the

example here. Also note the high relaxation parameter required for the fastest con-

vergence by the SOR method.

Table 3.3: Poisson solver comparison on the scalar potential test problem

| 41 x 41 stretched channel grid |
optimum iterations to
method: [| relaxation param. | convergence | CPU time (s) | MFLOP
SOR 1.