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SECTION 1

INTRODUCTION

Recently, there has been much interest in the problem of restruc-
turing the control law of aircraft following the failure of control sur-
faces or actuators (References 1,2,3). This interest is motivated in
part by two incidents involving commercial aircraft. In the case of
Delta flight 1080 on April 12, 1977, the left elevator became stuck in
the 19° up position at takeoff (Reference 4). The pilot was able to com-
pensate for the failure, in part by manipulating thrust to control the
pitch axis. However, the pilot of the DC10 that crashed in Chicago
(Reference 5) was unable to recover from the left engine breaking loose
and the resulting retraction of the left wing's outboard leading edge
slats. Simulations indicate that the aircraft could have been flown if
impending stall conditions had been recognized and the proper corrective
action taken. Restructuring the control system on-line to counteract the
effect of these failures may be one solution to such problem situations.
Although the need for restructurable control has been demonstrated for
state-of-the-art aircraft systems, it can be expected to be most applica-
ble to future aircraft where redundant control surfaces will very likely

be extensively employed.

A feasible and practical restructurable control system requires
the correct and timely detection and isolation of the control surface
failure so that the proper corrective action can be taken. The Charles
Stark Draper Laboratory, Inc. (CSDL) has investigated and evaluated prac-
tical FDI techniques for the NASA Langley Research Center under contract

NAS1-17556 entitled, "Evaluation of Failure Detection and Identification




Techniques for Application in Aircraft Restructurable Control Systems."
Reference 6 and this report document the results of this contractual

effort.

The initial phase of the CSDL study, Reference 6, compared three
failure detection and isolation techniques for detecting and isolating
control surface or actuator failures: the detection filter, the general-
ized likelihood ratio (GLR) test, and the orthogonal series generalized
likelihood ratio (OSGLR) test. A modification to the basic detection
filter was also considered. The algorithms were evaluated by testing
their ability to detect and isolate control surface failures in a non-
linear simulation of a C-130 aircraft. The testing was in general limit-
ed to a single cruise operating condition. All the algorithms were cap-
able of detecting failures. However isolating aileron and flap failures
was difficult since these surfaces produce similar effects on the air-
craft. Since the algorithms had difficulty isolating wing surface fail-
ures, the system monitoring strategy for implementing the FDI algorithms
would augment the FDI algorithm with position measurements of these sur-

faces.

The detection filter (References 7,8,9) has the form of an observ-
er with the feedback gain matrix chosen so that each type of failure pro-
duces a uniquely defined residual. With direct input-output coupling re-
sulting from the use of acceleration measurements, the residuals produced
by control surface failures may only be constrained to a known plane.

The modification to the basic detection filter uses secondary filtering
of the residuals to produce unidirectional control surface failure signa-

tures with acceleration measurements.

The GLR and OSGLR algorithms (References 10 and 11 respectively)
are sequential hypothesis tests. The failure hypothesis for the GLR al-
gorithm assumes an additive failure of a known behavior or, equivalently,
failure mode with unknown onset time and unknown magnitude. The failure
mode assumed for this study was a step. Based on the residuals from the

Kalman filter designed for the no-failure system, the maximum likelihood



estimate of the failure magnitude is determined for each possible failure
onset time. Using this estimate of the failure magnitude, the likelihood
ratio is maximized over the possible onset times to produce the general-

ized likelihood ratio test statistic.

Instead of assuming a fixed failure mode, the OSGLR algorithm ex-
presses the failure mode as a truncated series of orthonormal basis func-
tions. Based on the residuals of a no-failure Kalman filter, the coeffi-
cients of the series expansion are estimated using maximum likelihood es-
timation and a generalized likelihood ratio is formed using these esti-
mates. The rationale for adopting this approach is that most failures
should be represented fairly well using a truncated orthogonal series ex-
pansion and this algorithm should be more robust to failure mode uncer-
tainty than the conventional GLR test. Unlike the GLR algorithm, the on-
set time of the failure does not need to be estimated and therefore the

algorithm is computationally more efficient.

The OSGLR algorithm provided the best detection and isolation per-
formance. The disadvantage of the OSGLR algorithm is its robustness to
modeling errors was worse than the other algorithms. The GLR algorithm
performed almost as well as the OSGLR algorithm. However, the computa-
tional burden of the GLR algorithm is very heavy and it is not robust to
failure mode uncertainty. The OSGLR and GLR algorithms were less sensi-
tive to severe turbulence than the basic and modified detection filter
algorithms because the turbulence model was incorporated into the no-
failure Kalman filter. The sensitivity of the detection filter algo-
rithms to turbulence degraded their detection performance relative to the
OSGLR and GLR algorithms. The advantage of the detection filter algo-
rithms is their relatively low computational processing. Based on this
comparison, the OSGLR algorithm was selected for further study as the

most promising of the algorithms.

This report focuses on an in-depth evaluation of the OSGLR algo-
rithm. This evaluation considers a variety of steady winds and wind tur-

bulence levels and a number of flight conditions or flight regimes repre-



sentative of the range of environments in which a transport aircraft must
operate. Detection and false alarm performance issues are also address-

ed. Sensor dynamics and errors are included in the simulation.

In addition, to ensure all promising practical FDI techniques have
been evaluated, the literature is searched for FDI techniques that might
be applicable to control surface and actuator failure detection and
isolation in addition to those already studied. Any promising techniques

are to be included in the detailed evaluation described above.

This report is organized as follows. Section 2 reviews the ini-
tial phase of this study and summarizes the results. Section 3 surveys
the literature for other applicable FDI algorithms. Since the major
drawback to the OSGLR algorithm is robustness to modeling errors, Section
4 examines possible methods of reducing the effects of modeling errors on
the algorithm. The testing at a number of off-nominal flight and wind
conditions of the algorithm designed using a single cruise linear model
is described in Section 5. 2Also a number of failure cases are described
in order to determine the detection performance of the algorithm.

Section 6 examines scheduling as a means of extending the algorithm to a
larger flight envelope. The report is summarized and the major conclu-
sions presented in Section 7. Appendix A contains a table summarizing
the test cases presented in this report for easy reference and compari-
son. Appendix B contains additional implementation details of the sched-

uling approach.



SECTION 2

BACKGROUND

2.1 Introduction

The previous work done on this contract (Reference 6) analyzed and
compared the feasibility of using three FDI algorithms to detect and iso-
late aircraft control surface and actuator failures. The three algo-
rithms were the detection filter, the generalized likelihood ratio (GLR)
test, and the orthogonal series generalized likelihood ratio (OSGLR)
test. A modification to the detection filter was also developed and
tested. 1In addition, a system monitoring strategy was developed. The
present effort further investigates the most promising of the FDI
algorithms evaluated - the OSGLR algorithm. 1In order to provide the
necessary background for this effort and to motivate our selection of the
OSGLR algorithm as the most promising, this section reviews the prelimary
evaluation of the FDI algorithms and system monitoring strategy described
in Reference 6. The nonlinear C-130 aircraft simulation used in the
evaluation is described in the next section. A description of the algo-
rithms evaluated, a comparison of the algorithms, and the selection of

the system monitoring strategy follows.

2.2 C-130 Simulation Description

The FDI algorithms were evaluated by testing their ability to de-
tect and isolate control surface failures that have occurred in a
simulation of a Lockheed C-130 aircraft. The C-130 aircraft is a mili-

tary, medium- to long-range transport propelled by four turboprop engines



located on a high wing. The particular version of the C-130 aircraft
used for this program has short takeoff and landing (STOL) capability
provided by trailing edge double-slotted flaps.

The simulation of the C-130 aircraft uses the standard six
degree-of-freedom aircraft nonlinear equations of motion. The aerody-
namic forces and moments are described by one-, two~, or three-dimen-
sional look-up tables. These look-up tables are functions of angle of
attack, sideslip angle, thrust, and the control surface deflections.
Each of the four engines are assumed to provide the same thrust.
Actuator dynamics have been included; however, sensor dynamics were not

included.

The surfaces available for control of the aircraft are the
ailerons, flaps, rudder and elevator. The simulation allows for indepen-
dent motion of the left and right ailerons and the left and right flaps.
Since aileron and flap failures are similar in their effect on the
dynamics of the vehicle, detecting and isolating aileron and flap
failures provided an adequate test for the algorithms that were

evaluated.

The eleven measurements available for detecting and isolating
failures are those typically available onboard aircraft. These measure-
ments are listed in Table 2.1, along with the six control inputs describ-
ed above and the ten states that describe the aircraft dynamics. The
measurements are generated in the simulation by superimposing zero-mean
Gaussian distributed noise on the output variables. The noise statistics

used for this study are shown in Table 2.2.

Wind turbulence is also incorporated in the simulation. The tur-
bulence velocity along each body axis is modeled by passing white noise
through shaping filters to produce signals with desired one-dimensional
power spectral densities. The Dryden form of the spectra, defined in
Reference 12, is modeled. The turbulence intensities used in the pre-
liminary evaluation are presented later in this section. The turbulence
scale lengths were the clear air values defined in Section 3.7.3.2 of

Reference 12.



Table 2.1. Inputs, Outputs, and States of the C-130 Aircraft

Inputs

Elevator
Right aileron
Left aileron
Right flap
Left flap
Rudder

Outputs

Airspeed

Acceleration at the cg along the y body axis
Acceleration at the cg along the z body axis
Angular velocity about the x body axis
Angular velocity about the y body axis
Angular velocity about the z body axis

Roll

Pitch

Yaw

Altitude rate

Altitude

States

Airspeed

Sideslip angle

Angle of attack

Angular velocity about the x body axis
Angular velocity about the y body axis
Angular velocity about the z body axis
Roll

Pitch

Yaw

Altitude




Table 2.2. Standard

Deviation of Sensor Noise

SENSOR STANDARD DEVIATION
Airspeed 3.35 m/s 11 ft/s
Accelerometers 3 m/s2 «98 ft/s2

Roll Rate Gyro

Pitch and Yaw Rate Gyros
Attitude Gyros

Altitude Rate

Altitude

«0024 rad/s

«0007 rad/s

«01 radians
.08 m/s

3.05 m

«1375 deg/s
«04 deg/s
«573 degrees
«25 ft/s

10 ft




2.3 Description of FDI Algorithms Evaluated

The three FDI algorithms considered, the detection filter, the gen-
eralized likelihood ratio test, and the orthogonal series generalized
likelihood ratio test, are described in this section. A modification to
the detection filter was also developed and tested. The modification
will be referred to as the modified detection filter and will be discuss-

ed as a separate algorithm.

2.3.1 The Detection Filter1

The detection filter (References 7,8,9) is a linear, time-invariant
observer of the system (see Figure 2.1). Therefore, the nonlinear system
excluding the actuator dynamics must be linearized about a nominal oper-

ating condition for use in the observer. The model can be expressed as

x(t) Ax(t) + Bu(t) (2.1)

y(t)

Cx(t) + Du(t) (2.2)

where f(t), E(t)' and X(t) are the deviations in the states, controls,
and outputs respectively from their nominal values. The superscript
tilde in Figure 2.1 denotes the actual nonlinear qualities. Detection
filter theory cannot account for the effects of disturbances, measure-
ment noise, or mismodeling. Their effects on the performance of the

detection filter will be determined via simulation.

The detection filter state and residual satisfy

X' (t) Ax'(t) + Bu'(t) + Kr(t) (2.3)

r(t) = y(t) - y'(t) (2.4)

! this description was taken from Reference 13.
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where

y'(t) = Cx'(t) + Du'(t) (2.5)

Here, the prime denotes the detection filter state, output, and expect-
ed (no-failure) control input. In the absence of failures, the detec-

tion filter state estimation error satisfies the differential equation
a(t) = (a - kc)g(t) (2.6)

and the residual in terms of the state estimation error is given by

r(t) = Cq(t) (2.7)

In the presence of a failure of the ith actuator or control surface,

the filter error and residual dynamics are given by

q(t) (& - xC)g(t) + (b, - Kd,)n(t) (2.8)

r(t) Cq(t) + gin(t) (2.9)

where bi and di are the ith columns of the B and D matrices, and n(t) is
a function of time which represents the failure mode (i.e., the behavior
of the failed surface relative to the expected behavior). Detection fil-

ter theory allows n(t) to be any arbitrary function of time.

Since the gain matrix K must be chosen such that the filter is
stable, the detection filter will track the system when there are no
failures. However, when a failure occurs, the actuator models or the
linear model incorporated into the filter no longer accurately model the
system, and a nonzero residual results. The objective of detection fil-
ter design is to constrain the residual produced by a particular failure

to a single direction or plane. A failure is detected, then, when one or

-11-



more of the residual projections along a known failure direction or in a
known failure plane are sufficiently large. Isolating a failure may be
possible if one of the residual projections is significantly greater than

the rest.

Prior to this work, the development of the detection filter assumed
no direct coupling between the inputs and the outputs (i.e., no D
matrix). Without input-output coupling, present design procedures may be
able to determine K such that the residual is unidirectional in response
to a control surface or actuator failure. If such a gain matrix exists,
the residual will be constrained to the direction CAkt_)_i where k is the
smallest positive integer for which CAkEi is nonzero. Since n(t) does
not affect the failure direction, the failure direction is independent of

the failure mode. This is an important advantage of the detection

filter.

Using acceleration measurements to detect actuator and control sur-
face failures, however, results in direct input-to-output coupling. 1In
this case, the residual produced by such failures may be constrained to a
plane spanned by the vectors éi and C(k_)i - Kéi) if the part of the
residual produced by the (Ei - Kgi)n(t) term can be restricted to a
single direction. The difficulty in determining a gain matrix K to do
this is that present design procedures assume the direction of the addi-
tive term to the filter state error equation is known. However, the
direction of the (Ei - Kgi)n(t) term is not known until the gain matrix
is determined. Fortunately, knowledge of this direction is not necessary
when the system is fully measured (i.e., the rank of C is equal to the
number of states). The system used in the preliminary evaluation was

fully measured.

2.3.2 The Modified Detection Filter?

Secondary filtering of the detection filter residual was found to
restore the unidirectional failure signature property even when there is

direct coupling between the inputs and the measurements. Assuming that

2 This description was taken from Reference 13.
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the detection filter gain matrix, K, is calculated to satisfy the

relationship K = A - )I, the transfer function between the residual and

the unexpected input from the ith actuator is

C(b, - Kd.)
r(s) = [——————+4,]n(s) (2.10)

s - A -i
If the contribution din(s) could be filtered with the same time
constant as in the detection filter, the failure signature would be

unidirectional, lying along C(bi - Kdi) + éi'

The secondary filtering scheme, then, has several elements. First,
the components of the residual along the event vectors 91 are separated
from the residual. Next they are filtered using the detection filter
time constant. Finally, these filtered components are then added to
the other components, forming a new residual which is used for failure

detection and isolation.

In order for the initial separation of the components along 91 to be
possible, all event vectors gi must be mutually independent, and each
must be independent of the hyperplane formed by the C(l_)i - Kéi) vectors.
To obtain the components of the residual in the directions 91' first

write the residual

r(e) = oo - xd )|« folp, - xg6>N|§m|c_12N|]rc1(t) (2.11)
c2(t)
cg(t)

Here, C(bi - Kdi) has been normalized for each of the six actuators

considered in the preliminary evaluation, giving C(k_)i - Kgi)N, and §1N

~13-



and d2N are the two distinct directions among the columns of the D matrix
resulting from the two acceleration measurements. The vector c(t) is

obtained using
c(t) = pltr(r) (2.13)

where P is the Moore-Penrose pseudo inverse of P.

The magnitudes c_ and c8 are passed through a secondary two-state

7
filter:

g'(t) = AIg'(t) + c_’(t)‘-’ (2.14)
c8(t)_J

Substituting these filtered components for the unfiltered ones in c(t)

leads to

gf(t) = c1(t) (2.15)

c6(t)
q;(t)

qé(t)

Transforming this vector of components back into the original residual

space results in

Ef(t) = ng(t) (2.16)

-14-



Actuator failures may be detected and (simultaneously) isolated through
projection of rf(t) onto each of the six signature vectors

C(b, - Kd4.,) + 4..
-1 -1 -1

In using the transformation P, r(t) has been assumed to lie, in this
case, in the eight-dimensional space spanned by columns of P. Applying
transformations P! and P leads to suppression of noise in the residual
that is in directions orthogonal to the range of P. Because noise in
these directions only interferes with failure detection and isolation,
this suppression could be very beneficial. However, the transformation

is model-dependent and therefore will be sensitive to modeling errors.

The modified detection filter is shown in Figqure 2.2

2.3.3 The Generalized Likelihood Ratio (GLR) Test for
3

Dynamic Systems

The GLR test (Reference 10) assumes a linear, time-varying system.
The discrete-time case will be considered here. In the normal or un-
failed mode of operation, the state equation and measurement equation

are given by

H : x(k+1)

o (k)x(k) + B(k)u(k) + w(k) (2.17)

y(k) Cc(k)x(k) + D(k)u(k) + v(k) (2.18)
where x(k) is an n-dimensional state vector, y(k) is an m-dimensional
measurement vector, &(k) is the state dynamics matrix, and C(k) is the
measurement matrix. B(k) and D(k) are the input matrices for state and
output equations with u(k) being the control input. w(k) and v(k) are
zero-mean, independent, Gaussian white processes with intensities o(x)
and R(k), respectively. For the analysis that follows, the effects of

the control input may be omitted, due to the linearity of the equations.

3 This description of the GLR test was partially taken from Reference 6.
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The GLR failure hypothesis is that

Ho: X(k+1) #k)x(k) + w(k) + b(k)n(k,0)v (2.19)

y(k) C(x)x(k) + v(k) + d(k)n(k,8)v (2.20)
where b(k) and d(k) are known vectors that depend on the type of

the failure. For example, if an actuator failure is modeled, b(k)

will be the column of the matrix B(k) corresponding to that acuator,

and d(k) will be the corresponding column of D(k). n(k,6) is the

mode shape, or simply mode, of the failure, which occurs at time 6.

Generally, we have that

n(k,8) = o0, k<9 (2.21)

For example, if a bias failure is assumed, then

n(k' 9) = (2.22)

Finally, v is the magnitude of the failure.

One of the difficulties with the GLR test is that the failure mode
is assumed to be known in advance. While specifying the mode of the
failure will most likely improve the detection performance of a
failure for that specific mode shape, the detection performance of
other failure modes probably will be degraded. Adequately enumerating
all the possible failure modes is a practical consideration which must

be dealt with.

Suppose the dataiz(k) are observed over the observation interval

k. <k <k (2.23)

=17~



For a given time of failure, 0, and magnitude of failure, v, the

Likelihood Ratio (LR) is given by

P(Z_(k ), X_(k "‘1), seey l(k )|H, ,6,V)
Mkg,8,v) = o 0 £ | ! (2.24)
Ply(k ), 7K #1), oo, y(kf)|Ho)

Because the y(k) are not independent from time step to time step, the
evaluation of the conditional probabilities is difficult. To evaluate
the LR, a Kalman filter is implemented, based on the normal mode (Hp)

system. The filter equations are

X (k+#1) = o(k)x* (k) (2.25)

xHk) = x(k) + K(k)y(k) (2.26)

where K(k) is the Kalman gain matrix, and y(k) is the residual, given by
k) = y(k) - c(k)x(k) (2.27)
The Kalman gain matrix is given by
K(k) = P (k) IM (k) (2.28)
where P7(k) is the covariance of the estimation error

e (k) = x(k) - x~(k) (2.29)

and M(k) is the covariance of x(k), given by

M(k) = c(k)p~(x)cT(x) + R(k) (2.30)

-18-




The covariance is propagated by

P (k+1) 2P (k) 8T (k) + o(k) (2.31)

P (k) [I - K(k)C(k)1P (k) (2.32)

The LR may then be written in terms of the residual sequence (k) rather
than the measurement sequence. Because the residual sequence is (condi-
tionally) a white Gaussian sequence, the LR is easier to determine in

terms of y(k) than in terms of yk).

Due to the linearity of the state equation and the filter equa-

tions, the residual may be expressed under each hypothesis as

Hj: (k) = X, (k) (2.33)
Hir y(k) = y (k) + g(k,0)v (2.34)

where _'_yo(k) is a zero-mean, white Gaussian sequence with covariance

M(k). g(k,8) is the failure signature of a failure occurring at time 6.

g(k,8) is given by

a(k,8) = c(k)£(k,8) + d(k)n(k, 8) (2.35)

where f(k, 8) is the influence of the failure mode n(k,8) on the state

estimation error. £(k, 8) may be generated recursively by

£(k+1,0) = &(k)[I - K(K)C(k)I£(k, ) + [blk) - &(k)K(k)d(k)In(k, o)
(2.36)

with the initial condition

£(k ,0) = 0 (2.37)
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It can be seen therefore that

£(k, 0)

= 9_’

k<o

(2.38)

Because the residual sequence is (conditionally) Gaussian and

white, the Log Likelihood Ratio (LLR) ratio has a particularly simple

form:

where

IL(kf, 6, v)

x(kf,e)

S(kf,e)

1 2
v x(kf,e) -= v S(kf,e)

k

f T

4

k=90

k

Xf

T

k=9

2

g (x, )M (x) y(k)

g (x, M (K)g(k)

Now, the generalized likelihood ratio is given by

Z(kf)

Performing the maximization over

Hence,

V(kfl e)

the GLR test statistic is

Mkf)

max z(kf,é,s)
8, v

3 first, we have that

ﬂkf,e)
s(kf,e)

given by

max =-

8
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(2.40)

(2.41)

(2.42)

(2.43)

(2.44)



As a matter of convenience, the GLR decision function is defined by

Xz(kflé)
DF(kf) = 22,(kf) = max ~————— (2.45)
'é S(kfre)

A failure is detected when the decision function exceeds the detection
threshold.

A closed-form solution to the above maximization does not exist
in general. Therefore, in order to implement the GLR, the statistic
2(k¢,0) must be computed for all possible times of failure, 6. As a
result, a bank of matched filters that grows linearly with time is
required. To avoid this unlimited growth in the amount of computation,
the assumed time of failure may be restricted, say, to be in the range
kg - N < 6 < kg. Even so, the amount of computation required to
implement the GLR can be quite large, especially if N is large. This
problem arises because the unknown parameter 6 enters the equations in a
nonlinear fashion. Hence, a nonlinear estimation structure is required
to estimate §. This problem is typical of FDI tests in which the onset
time of the failure appears as an unknown parameter of the failure hypo-

thesis.

2.3.4 Orthogonal Series Generalized Likelihod Ratio (OSGLR) Test"

The OSGLR test (Reference 11) is similar in many ways, to the GLR
test discussed previously. The discrete-time version will be presented
here. A linear, time-varying system is assumed. The unfailed system is
the same as the unfailed system assumed for the GLR test (Egs. 2.17 and

2.18). However, the OSGLR failure hypothesis is assumed to have the form

H s x(k+1) 2(k)x(k) + w(k) + b(k)£(k) (2.46)

y(k)

ck)x(k) + v(k) + d(k)£(k) (2.47)

* This description of the OSGLR test was partially taken from
Reference 14.
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where b(k) and d(k) are known vectors that depend on the type of the
failure, and f(k) is the mode shape, or simply mode, of the failure.
Because the failure mode is generally not known a priori, it would be
desirable to allow the failure mode f(k) to be completely arbitrary. The
approach that will be taken here is to represent the mode shape f(k) by a
truncated series expansion. The motivation is that if the basis func-
tions of the expansion are chosen properly, it should be possible to ap-
proximate any well-behaved failure mode. In this sense, the OSGLR test
is similar to the detection filter which assumes the failure mode to be

unknown.

The data is assumed to be observed over the interval [ko,kf]. A
constraint is imposed on the form of the series expansion, namely, that

it has the form

P
f(k) = 121 a; (ko) ¢, (k k) (2.48)

where p is the number of basis functions used in the series expansion.
That is, the series expansion is expressed in terms of basis functions
which are defined relative to the end of the observation interval, k_.

f
Eq. 2.48 may be expressed more conveniently in vector form as

£k) = § (k~K)a(k,) (2.49)

Egs. 2.46, 2.47, and 2.49 specify the failure hypothesis H1.

4
Note that the left side of Eq. 2.49 is a function only of k,

whereas the right side is a function of both k and kf. This apparent
contradiction is resolved by choosing the basis functions and
coefficients such that the right side of Eq. 2.49 is invariant with
respect to kf. This requires thatlgjkf) satisfy the difference
equation

a(k #1) = A_a(k.) (2.50)
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where Aais a constant matrix. Furthermore, the vector of basis functions

4(i) must satisfy the difference equation

Hli+1) = A¢¢(i) (2.51)

where A¢is a constant matrix and i is a dummy time index defined
by

i = k_-k (2.52)

That is, i defines a time scale that runs backwards from the end

of the observation interval, kf. The matrices Aa and A are

related by

-T
A = A¢ (2.53)
The measurement process y(k) over the interval [ko,kf] is used
to form the likelihood ratio for the hypotheses HO and H1. Because

the measurement process is correlated in time, it is difficult to deter-
mine the likelihood ratio in terms of y(k). 1Instead, the data are
filtered using a Kalman filter based on H0 to produce the residual
process, y(k). Because the residual process is white (when no failure
has occurred), it is more easily used to obtain the likelihood ratio.
The Kalman filter discrete-time equations are given in the GLR test
description (Egs. 2.25 - 2.32).

Due to the linearity of the state and measurement equations

and of the Kalman filter, the OSGLR hypotheses may be written as

Hyo Y(k) =y (k) (2.54)

Ho: y(k) T (k) + Glk)alk) (2.55)
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where 1o(k) is a zero-mean, Gaussian white processes with intensity
M(k). G(k) represents the influence of the coefficient vector a(k)

on the residual. The residual influence matrix G(k) is given by
T
G(k) = C(k)F(k) + d(k) ¢ (0) (2.56)

where F(k) is the matrix that represents the influence of a(k) on

the estimation error. F(k) satisfies the difference equation

F(k) = {A(X)[I - K(k)C(k)]F(k)
T T
+ [b(k) - A(k)K(k)d(k) |¢ (0)}A¢ (2.57)
with initial condition
Fk)) = 0 (2.58)

The information in the residual process may be reduced to a
sufficient statistic yx(k) that contains all the information in the
residuals about the two hypotheses (Reference 15). x(k) satifies the

difference equation
X(k+1) = A x(K) + GT(k+1)M~1(k+1) y(k+1) (2.59)

with initial condition
= T -1 .
x(ko) G (ko)M (ko) I(ko) (2.60)

Now, x(k) is a Gaussian random vector, because y(k) is a Gaussian

random process. Under HO, the mean of x(k) is the zero vector.

The covariance of x(k), S(k), satisfies the difference equation

S(k+1) = A¢S(k)A$ + GT(k+1)M~1(k+1)G(k+1) (2.61)
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with initial condition
S(k,) = GT(ko)M-1(ko)G<ko)
Under H1, x(k) has the same covariance, but its mean is given by
E[x(k)‘HJ = s(x)a(k)
Therefore, the OSGLR hypotheses may be rewritten as
Ho: x(kg) 7 N(O,S(kg))
Hy: x(kg) 7 N(s(kg)a(ke) ,S(ke))

Finally, the log likelihood ratio for these hypotheses is given by

T

1
3 g_(kf)S(kf)gﬁkf)

T
l(kf._a_(kf)) = a (kf)_x(kf) -
Because the vector of coefficients a(kg) is unknown, an appro-

priate test statistic to use is the generalized likelihood ratio.

this case, the decision function DF(k) is defined by

DF(k) max 2¢(kg,alk:))

atky)
T -1
= X (kg)s (k) x(ke)

A failure is detected whenever the decision functions exceeds a

threshold. That is, the detection test is given by

declare a failure

DF(k) > Tz

<
continue testing
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(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

In

(2.67)

(2.68)



where T2 is the detection threshold. The decision function is

written with k as the time argument, rather than k to emphasize

f’
the fact that the test is to be implemented as a sequential test, al-

though it is derived as a fixed-data test.

Note that the OSGLR test has a relatively simple structure. The
differential equations for y(k) and S(k) are simply the Kalman filter
equations for estimating a(k) in information form. The state equation
for a(k) is given by Eq. 2.50, and the measurement equation is given by
Eg. 2.55. The only other equation required to implement the OSGLR test
is the decision function calculation of Eq. 2.68. Hence, the OSGLR test

is no more difficult to implement than a single Kalman filter of order p.

In many respects, the OSGLR test is similar to the GLR test. The
GLR test also employs a Kalman filter to estimate the unknown failure
magnitude, v. Because v is a constant, and the Kalman filter is imple-
mented in information form, the resulting estimator is simply a matched
filter. However, a bank of filters is required, because v must be esti-
mated for each possible time of failure, 6. Thus, the GLR test may be
computationally burdensome, especially if the number of possible failure

times (i.e., the width of the "data window") is large.

2.4 Evaluation and Comparison of the FDI Algorithms

The evaluation and qualitative comparison of the four FDI algo-
rithms described in Section 2.3 in detecting and isolating control sur-
face failures is presented here (Reference 6). The evaluation was con-
ducted as follows. Each algorithm was designed and tested at a single
flight condition of 1000 ft. altitude and 150 knot airspeed. An addi-
tional flight condition was tested to determine the effects of modeling
errors. Only the time-invariant, steady state implementation of the GLR
and OSGLR algorithms was tested. The assumed failure mode of each GLR
failure hypothesis was a step function of unknown magnitude occurring at

time 0. For each OSGLR failure hypothesis, six basis functions were used
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in the truncated series expansion. The basis functions used were the
discrete-time equivalent of the Laguerre function with a 3 s time con-
stant. The GLR and OSGLR algorithms were tested in turbulence of inten-
sity 1.98 m/s (6.5 ft/s) while the detection filter and the modified de-
tection filter were tested mostly in turbulence of intensity 0.3 m/s (1
ft/s) although turbulence intensity of 1.98 m/s (6.5 ft/s) was also
briefly considered. The Kalman filter, used by both the GLR and OSGLR
algorithms, incorporated the turbulence model. Bias failures were intro-
duced into the nonlinear C-130 simulation to test the two detection fil-
ter algorithms. To test the GLR and OSGLR algorithms, bias failures were
introduced into a linear simulation of the C-130 aircraft. In addition,
the nonlinear C-130 simulation was used to determine the effects of non-
linearities on the GLR and OSGLR algorithms and to test their ability to
detect ramp and stuck failures. Thresholds were not selected for the two
detection filter algorithms and a general detection and isolation logic
was not developed. In spite of these limitations, we believe that a suf-
ficiently accurate picture of the capabilities of each algorithm was ob-

tained to allow the algorithms to be qualitatively compared.

In comparing the four algorithms, the following issues were con-

sidered:

* Failure modes (bias, stuck, ramp, etc.) that can be detected

* Type of failure (rudder, elevator, etc.) that can be detected
and isolated

* Magnitude (or degree) of failures that can be detected

* False alarm performance

e Detection time (time delay between failure and detection)

* Computational burden

¢ Robustness

* Maturity

Each issue will now be individually addressed.
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2.4.1 Failure Modes

Failure modes describe the behavior of the failed surface. Some
of the important failure modes for restructurable control applications
are stuck, hardover, and bias failures and the loss of part or all of a
surface. The ability of the algorithms to detect these and other failure

modes will be considered here.

The GLR test uses models of failure modes to detect failures. It
is therefore, most capable of detecting the modes that are modeled. How-
ever, each mode modeled requires a separate bank of filters which makes
modeling even a small number of possible modes computationally costly.
With only the bias failure mode modeled, the GLR algorithm was able to
detect bias and ramp failures. The GLR algorithm had difficulty deciding
if a stuck failure existed with only a 2 second data window; but had no

difficulty in doing so with a 5 second data window.

In the OSGLR algorithm, the failure modes are represented by a
truncated series expansion rather than a fixed function. The series
expansion chosen and the number of terms used determine how well a parti-
cular failure mode can be represented. Using the first six terms in the
expansion, the OSGLR test was able to detect bias, ramp, and stuck fail-
ures (the only failure modes tested). These same six terms should be

adequate to detect most other failure modes.

One advantage of both the unmodified and the modified detection
filter is that all failure modes should be detectable as the residual
direction is independent of the failure mode, depending only on the sur-

face which failed.

2.4.2 Type of Failure

All four algorithms were able to detect elevator, rudder, right
and left aileron, and right and left flap failures. The left and right
elevators were assumed to move together as a unit. Elevator and rudder

failures could be isolated by all four algorithms. However, isolating
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wing surface (aileron and flap) failures was difficult for all of the
algorithms. Based on the few test cases simulated, the modified detec-
tion filter could isolate a moderate wing surface failure (0.0349 rad
(2°) aileron bias, 10% flap bias) to one of two possible surfaces in
minor turbulence. The detection filter algorithm could eliminate one
wing surface from consideration at most. It was demonstrated that false
isolation could result with the GLR algorithm. Isolation to a specific
wing surface is possible with the OSGLR algorithm with a significant de-

lay of perhaps 10 seconds or more.

2.4.3 Magnitude of Failure

The magnitude of the failures that can be detected depends on the
sensor noise, disturbances, and modeling errors. The GLR and OSGLR
algorithms were able to detect moderate (0.01745 rad or 1° elevator,
rudder and aileron) bias failures in the presence of noise and severe

turbulence (om = 1.98 m/s or 6.5 ft/s).

The detection filter and the modified detection filter were able
to detect moderate (-0.0349 rad or -2° elevator, aileron, and 10% flap)
failures in minor turbulence (cw = 0.3 m/s or 1 ft/s). However,
detecting moderate failures in severe turbulence was more difficult.
While hardover failures were not tested, they should be easily detected

even in severe turbulence.

Modeling errors also degraded the ability of all the algorithms to
detect small failures. Detection of hard failures, though, should still

be possible.

2.4.4 False Alarm Performance

False alarm rates can only be determined via simulation because
analytic estimates are not available. (The analytic estimates of false
alarm rates for the OSGLR algorithm cannot account for the effect of
modeling errors.) However, determining even large false alarm rates

using simulation is difficult because of the limited number of conditions
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that can be tested and the large computational burden. Therefore, the
false alarm performance of each of the algorithms will be gualitatively
assessed by its sensitivity to noise, turbulence, and modeling errors.
Algorithms that are sensitive to these effects can be expected to have

larger false alarm rates than algorithms that are less sensitive.

The OSGLR and GLR algorithms were least sensitive to noise and
turbulence. This is true for two reasons: the system model incorporated
into these algorithms included a turbulence model, and a Kalman filter is
used to provide an estimate of the state. The unmodified detection fil-
ter was sensitive to turbulence while the modified detection filter was

very sensitive to turbulence.

Since each algorithm incorporated a linear model of the aircraft,
all four of the algorithms were very sensitive to modeling errors. The

OSGLR algorithm appeared to be the most sensitive to modeling errors.

2.4.5 Detection Time

The failure detection times depend on the magnitude of the fail-
ure, the sensor noise, the disturbances present, and the thresholds
selected. Selecting thresholds for the GLR and OSGLR algorithms higher
than the largest no-failure decision function levels at the nominal
cruise flight condition (nonlinear simulation) would result in detection
time for 0.01745 rad (1°) elevator and right aileron bias failures in
severe turbuleance on the order of a second. Using the same thresholds
for detecting rudder failures as for other control surface failures,
would result in longer detection times. The rudder decision functions
are smaller than those of the other control surface decision functions
for the same magnitude failure. However, the effects of mismodeling
affect the rudder decision functions less than the other decision func-
tions. Therefore, smaller thresholds for the rudder decision function
could be used, allowing the rudder detection times to be comparable to

the other control surface detection times.
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Detection times for both the modified and unmodified detection
filters also depend on the filter eigenvalue chosen and the time constant
of the low-pass filter, if any, required to suppress noise in the resi-
dual. The detection times were estimated based on the time delay between
failure onset and a clear indication that a failure has occurred. For
the unmodified detection filter, approximately two seconds would be
required to detect 0.0349 rad (2 deg) elevator or right aileron failure
in minor turbulence with the residual being low-pass filtered with a time
constant of one second. A 0.0349 rad (2 deg) rudder failure would take a
second longer. Detection times for the modified detection filter would

be on the same order as for the unmodified detection filter.

While the detection times were comparable for all the algorithms,
the GLR and OSGLR algorithms were tested in turbulence of intensity 1.98
m/s (6.5 ft/s) as opposed to 0.3 m/s (1 ft/s) turbulence intensity for

the detection filter algorithms.

2.4.6 Computational Burden

The computational burden of all of the algorithms has not been
quantitatively determined. Yet, some approximate comparisons will be
made here. Each of the algorithms consists of a filter of the system to
generate a residual, some type of residual processing, and a test for
failures. The filter portion of each algorithm is computationally equiv-
alent. Therefore, the relative computational burden can be determined by
examining the computations required to process the residual and to test
for the failure.

The least additional computations are required by the unmodified
detection filter. The residual processing would likely consist of sever-
al banks of low-pass filters to give the algorithm the ability to quickly
detect hard failures and still detect soft failures. To test for a fail-
ure, the residual must be projected onto the failure signature plane seg-

ments for each control surface.
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The modified detection filter requires slightly more computational
processing than the detectiton filter. The additional computations
result from the secondary filtering of the residual which restores the
property of a unidirectional residual in response to a control surface

failure.

The relative computational burden of the OSGLR algorithm is pri-
marily determined by the number of actuators or control surfaces and by
the number of terms in the series used to represent the possible failure
modes. The residual is used to drive an additional filter for each con-
trol surface to produce an information vector whose dimension is the
number of terms used in the series expansion to represent the failure
mode. The test for a failure in each actuator or control surface is the
information vector weighted by an information matrix. For the time-
invariant case considered in the preliminary evaluation, the information
matrix is a constant matrix. For a large number of both actuators and
terms used in the series, the computational burden would be very heavy.
However, keeping only the first six terms of the series expansion was
found to be adequate in the preliminary evaluation. With the six control
surfaces considered in the preliminary evaluation, the computational
burden of the OSGLR algorithm is at least 50% greater than the unmodified

detection filter.

The relative computational burden for the GLR algorithm is mainly
a function of the number of actuators, the number of failure modes model-
ed, and the data window chosen. Each actuator requires N correlation
receivers for each failure mode modeled where N is the length of the data
window divided by the time step. For a realistic data window of 2
seconds, a 0.02 second time step, six actuators, and only modeling the
bias failure mode, the GLR algorithm would be computationally very bur-
densome. A comparison of CPU times for this window suggests that the
GLR algorithm would require approximately 18 times more computation than

the OSGLR test.
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2.4.7 Robustness

As each of the algorithms considered here relies upon a linear
model of the system to detect and isolate failures, these algorithms will
be sensitive to modeling errors. Modeling errors caused large GLR and
OSGLR decision functions. However, The OSGLR test was shown to be more
sensitive to modeling errors than the GLR test. An off-nominal cruise
flight condition produced biases in the unmodified and modified detection
filter residual projections. With these biases, detecting small wing
failures at the nominal flight condition would be difficult, if not im-
possible, unless dynamic thresholds or some other compensating approach

is used.

Another source of modeling errors for the GLR and OSGLR algorithms
are the failure mode models incorporated into each of the algorithms.
The OSGLR algorithm is likely to be robust to actuator failure mode
modeling errors as the model is sufficiently general to represent most
modes adequately. However, the GLR algorithm required specific models of
failure modes such as bias failures. As only bias failures were modeled
in the preliminary evaluation, the GLR algorithm is likely to be less ro-

bust to other failure modes than the other three algorithms.,

2.4.8 Maturity

The GLR algorithm is mature in both theory and in application.
The OSGLR algorithm is almost as mature in theory as the GLR algorithm.
However, as the OSGLR test is a recently developed FDI algorithm, there

is very little experience in applying it.

Detection filter theory is mature for restructurable controls appli-
cation to linear, time-invariant systems with no input-to-output coup-
ling (i.e. no acceleration measurements). However, no theory exists for
applying the detection filter to time-varying systems. 1In addition, for
systems with input-to-output coupling, systematic methods of using the

extra degrees of freedom in the gain matrix calculation (which result
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from having more measurements than states) and scaling to improve detec
tion filter performance are needed. Finally, there is limited experience
in applying the detection filter with only a couple of applications hav

ing been reported.

The modified detection filter, developed for this application,
needs additional investigation to be considered mature in both theory and
application. The problems of time-varying systems, improving performance
through scaling, and the extra degrees of freedom in the gain matrix cal-
culation mentioned above for the detection filter also apply to the modi-

fied detection filter.

2.4.9 Summary and Overall Comparison

The eight issues addressed in this memorandum are summarized in
Table 2.3. The GLR and OSGLR algorithms performed the best, especially
in severe turbulence. However, the computational burden of the GLR algo-
rithm is heavy and its ability to isolate wing surface failure modes is
uncertain. The most significant advantage of the detection filter algo-
rithms is their relatively low computational processing requirements. If
the sensitivity of the detection filter algorithms to turbulence could be
reduced, their performance might be comparable to the GLR and OSGLR algo-
rithms. The most significant disadvantage of the OSGLR algorithm is its
sensitivity to modeling errors. Still, the OSGLR algorithm is the most

promising of these four algorithms evaluated.

2.5 System Monitoring Strategy

A second program task was to develop a system monitoring strategy
for the detection and isolation of aircraft actuator and control surface
failures. Before discussing the issues, the advantages and limitations
of three applicable FDI techniques will be considered: local actuator
FDI, analytic FDI algorithms such as those considered in this program,

and the use of surface position measurements.

-34-




*sosayzodiAy ¥IO 9Y3} UT pounsse Sem apoul 2INTTRF SBTJ Vsx

*po3o®

19s 30U sem

OTHOT UOT3IRTOST pueE UOT1O9319p TeIsuab © pue seses TTe UT USSOUD 30U 9a9M SpToysaayz se aatzezrrenb st

uostieduod ay3 ‘osIv¥

*poleTNUTS 9I9M SIUSWUOITAUS PUBR SUCTITPUOD 3JUDBTITI IO Iaqunu paj3TUTT e ATUo

suoTzenTea® AxeutwiTeoad 2y3 wy3zTaoble yYosea o23eNTRA2 O3 PIsn S9sSed 3§93 9Y3z UO paseq ST UOSTIRdUWOD SYLy

sxoaxe butTspow 03
2AT3ISUSS {a0uUaTnNgany
03 9AT3TSUSS AxoA

S$I03193
butTepou pue aouaT
-nqany 03 SAT}TSuUaS

sxoxx® burlrapou

03 °AT3TSUSS Axsa
{gousTnqany 03 |ATI
-TSUSSUT !{8TqeTTeae
s3Tnsax oT3ATeuy

sxoaxe butTapou
03 SATITSUSS !{90UdT
-nqany o3 SAT3ITSUaSUI

2oURWIOJIDI
wIeTy @sTed

saoxIe burTepou

pue aouaIngany
I9TARSY UT saian
-T11e3 asbaer !saoaas
burtepow ou pue
@ouaTnNgInNy JOouTul uTt

s1011® buiTepow ou
pue 8duLTNYIN] IOUTW

sIoaxs
buttepow ou pue
aouUaTNqIN] 9A9A9S UT

sSI011d
buiTapow ou pue
aouaTNgiIny 9IBASDS UT

SeTq (oZ)Pex 6%E€0°0 |UT seTq (o.Z)PeX 6VE0°0 Se1q (ol)PeRI SPLLO°O SeTq (ol)PeX S¥LLO®0 spn3ituben
arqrssod
KeTep auwTy o3eI9pou saoanytey soezans butm
® Y3Tm soejans DBbutm JO uoTje[osST IasTed aanyted
aappnyd ‘aoj3easard aoppny ‘aojzeadTd ‘aoppnd ‘xojeasTtd ‘I9ppny ‘aozeasTd @3eTOoSI
Jo
1Y 11V 11 1TV 30938q ad4y,
(pe3se3 serq ATuo) (pe3se3 setq ATuo) aTqeloalrad
1TVv TIY sopou aanTtey 3sOW xyduey ‘setd SOpPOW 2auTTedq
JALIId I IIA 1580 qJ1o WHLIYOOTY
NOIILOHLIA NOIXLOALIA
AI4IJIAON
*»SUYITIOHTVY Iad Jo uostaedwo) <g°z STqel

-35-



uot3zeoTTddy

oousTaadxe snotasad oN auos sousTiadxe snoTasad oN Yonp uT aousTasdxm
buttdnoo 3ndino
-03-3nduT ou y3zIMm
uotieb |sweysds juetavAUT-WT]
-T3S2AUT |8I0U SPaaN JeBUTT I0J aanjel 2an3eN aanjel KAxosyg, ut A3TaInjen
suyjtaobie s8ay3 asylo KjuTtejasoun
aood aood aya ueyy asaom ‘xood 1004 I9pow 03 ssaulsngoy
Kjutejasoun apou
poos poos pooo poob o3 x00d a2aInTTRI 03} SSsaUISNgoy
3yb11 yb11 93 RI9PON Kaeasy uspang uotjzeindwod
aouUaTNINg BI9ADS sousTnqany

ut xsbuor A1qeqoad
{doudTngany IouTw ut
aanitey se1q (o.Z)pex
S¥€0°0 03I SPuOOSS
omy A1ezeutxoaddy

218A9S Uul aabuot
{oousTnqany Ioutw

Ut aanytey serq (oZ)
pex 6V€0°0 103 SpuODIS
omy A1ejeutxoxddy

20oUSTNQING DIDAIS

ut a2anyTey serq (ol)
pex SyLl0°0 a03 puo
-098 JTPY ® uey3 SS9T

20USINQIN] BI2ASS

Ut 2anTte3y serq
(ol)PeI S¥LLO°0 03I
SPUODDS G*( URY3} SSOT

aWTL uUoTIOSISd

¥a1TId YAITII Y1950 o) WHII¥OOTY
NOILOELIA NOILOEIEd
QaIIIAOW

(*3uoD) SwyY3lTIOHTY IQd 3o uostiedwod *g£°Z o1qel

~3H-



2.5.1 Local Actuator FDI

Direct duplication of actuation has been the practice for most
military and large commercial aircraft for quite some time. Whole actua-
tion channels may be duplicated several times. There have been several
methods devised for dealing with failures of elements in these channels.
The subsystems and channels must be substantially identical in order to
give the same control inputs and to enhance the performance of the
system. Some differences are inevitable because of tolerances, and these
must be taken into account so that disengagement of a channel will occur
only under genuine failure conditions. The performance of the subsystems
and channels is continuously adjusted, in a process called equalization
(Reference 16). As a part of equalization, inter-channel differences are
minimized through feedback. If a difference is too great, then the fail-
ed channel is disengaged or bypassed. Frangible elements (shear pins,
for example) have also been used, allowing a jammed actuator to be broken
by the others. Thus, a large degree of actuator FDI (and reconfigura-
tion) already takes place on a local level. However, there are failures
such as jams, actuator bias, inappropriate overall actuation gain, or
control surface damage which the local FDI scheme will be unable to de-

tect.

2.5.2 Analytic FDI

Analytic FDI schemes, such as those considered in this program,
look for control surface failure signatures in the whole-system
dynamics. That they detect failures at the system level (aultimately the
most important one) is what makes these schemes potentially of great
value. They can be considered most useful in the context of aircraft
actuator FDI in identifying failures that the low-level FDI schemes have
missed. Such failures might include inaccuracy or breakdown of the local
schemes and actual physical damage to the control surface itself. How-
ever, analytic FDI schemes have been shown to have difficulty in fully

isolating failures among control surfaces that are functionally redun-
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dant. Thus, isolating a wing surface failure to a specific flap or aile-
ron was difficult. The quantitative measures developed to determine the

maximum discrimination of such failures showed the inherent difficulty.

The value of actually isolating a failure of a surface that is
functionally redundant might be questioned to some degree. After a sur-
face fails, it is required that sufficient capability remain to end the
flight in an acceptable way. If there is sufficient capability and if
this can be appropriately determined then complete failure isolation
might be considered optional. However, the ability to quickly and accu-
rately determine the functional capability of the aircraft while in
flight does not exist at the present time. Furthermore, there are rea-
sons why isolation to a specific surface would be preferred. It is like-
ly that a failure could be more quickly and appropriately compensated if
it were fully isolated. Moreover, full isolation might allow for more
flexibility and confidence in continuing a flight after a failure has oc-
curred. Therefore, full isolation capability is taken as the simpler and

more desirable option.

2.5.3 Control Surface Position Sensors

Position sensors mounted on or near the control surface itself
could be considered to provide information on a level just below that of
the whole system. Information from these transducers can be expected to
be reasonably easy to obtain and use. Position transducers of the syn-
chro, potentiometer, and linear variable differential (LVDT) types have
been extensively used and are simple (Reference 17). For these position
transducers to be an independent source of information on any type of
failure, however, they should not be part of the actual flight control
loop. (Position sensors are not presently used by aircraft control sys-

tems.)

Flight control systems in which control loops are closed using
aircraft dynamic information will automatically compensate for some actu-

ator failures, such as small surface bias errors. To identify larger
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biases, comparing actuator position expected (using a reference model)
with that actually measured by position transducers might suffice to iso-
late a failed surface. Alternately, in a separate actuator positioning
flight control mode in benign flight conditions, commanding the surface
to move to some absolute position or to move a certain fixed amount could
suffice to detect and isolate biases or incorrect gains. If the surface

is jammed, FDI using outputs from position transducers is also possible,

using tests similar to those described for biases.

Employing an FDI scheme based on surface position measurements
involves additional hardware and perhaps the design of separate flight or
test modes. 1In addition, FDI of the surface position sensors may also be
required. It should be stressed, too, that position transducers would
still be of only limited use in identifying certain types of failures,

such as actual control surface damage.

2.5.4 System Monitoring Strategy Selected

An analytic whole-system FDI scheme is preferable as it can detect
failures that may not be detectable by either the local FDI scheme or by
position sensors. However, since analytic algorithms have some
difficulty isolating failures, they could be augmented with direct sur-
face position sensors to provide information for complete failure isola-
tion, eliminating the uncertainties inherent in fully identifying the
failure of a functionally redundant surface. Only a limited nunmber of
transducers might then be required, and limited use made of their infor-
mation. Use of position sensors to augment analytic FDI schemes also im-
plies that each scheme could serve as a limited check on the other, pro-
viding a more reliable FDI system. While information from the local act-
uator FDI scheme may be of limited use also in this regard, this informa-

tion will not be considered.

The system monitoring strateqgy for the C-130 aircraft considered

in this evaluation (assuming that the elevators move together) would be a
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combination of the best analytic FDI algorithm (the OSGLR test) with

position sensors on each of the wing surfaces.

2.6 Conclusions

The major conclusion which may be drawn from the results of this
study is that algorithmic failure detection and isolation may be feasible
for restructurable control applications. This conclusion must be quali-
fied by the results obtained during this preliminary evaluation which
have been basically limited to a single operating condition and to the
investigation of a small subset of the potential failures. 1In particu-
lar, failure detection at the nominal flight condition does not appear to
be a problem. Each of the algorithms was able to detect small elevator,
rudder, aileron and flap failures for the C-130 aircraft in turbulence.
The isolation of control surface failures was not a problem for elevator
and rudder failures. However, difficulties arose in the isolation of
wing surface, i.e., aileron and flap, failures. These failures have a
similar effect on the responses of the aircraft system. This difficulty
highlights the potential need to augment the analytic FDI algorithms with
the direct measurement of failures using, for example, position sensors

on some of the control surfaces,

The OSGLR algorithm performed best of those evaluated. The gener-
al representation of the failure mode implies that most failure modes
should be detectable. All failure types investigated during this study
were detected and isolated, although there was a long time delay associ-
ated with isolating the wing surface failures. Bias failures on the or-
der of a degree of surface deflection were detected in approximately a
second for a system without modeling errors. The computation and burden
associated with this algorithm is moderate relative to the others, and
the theory associated with it is mature. However, robustness properties
of the OSGLR test are worse than those of the other algorithms. In addi-
tion, the OSGLR algorithm has not been previously applied to any system.
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The GLR algorithm also performed well in the C-130 application.
The major drawbacks associated with it are its heavy computational bur-
den, its lack of robustness to failure mode uncertainty, and its poor
wing surface isolation performance. The most significant advantage of
the detection filter algorithms is their relatively low computational
processing requirements. If the sensitivity of these algorithms to tur-
bulence could be reduced, their performance might be comparable to the
GLR and OSGLR algorithms. None of the algorithm was robust to model un-

certainty.

In our judgement, the OSGLR algorithm is the most promising of the
algorithms evaluated and, therefore, will be investigated further. The
poor robustness to modeling errors of the OSGLR algorithm can, we
believe, be improved; reducing the sensitivity to these errors of the
OSGLR algorithm is the subject of Section 4. Many of the ideas presented

there are applicable to other FDI algorithms as well.
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SECTION 3

A SURVEY OF FDI TECHNIQUES APPLICABLE TO AIRCRAFT
CONTROL SURFACE FAILURE DETECTION AND ISOLATION

3.1 Introduction

In order to determine if there are practical FDI alternatives to
the three algorithms already evaluated, a survey of FDI techniques that
might be applicable to detecting and isolating aircraft control surface
and actuator failures is presented. This survey is based largely on
Reference 18. A discussion of several general categories of FDI algo-
rithms will follow, with attention to those algorithms that might be
usable in the aircraft application. The conclusions section summarizes

the results of this search.

3.2 Failure Sensitive Filters

The detection filter can be considered one of the class of failure

sensitive filters used for FDI. This class also includes limited memory

filters and filters augmented with the parameters of hypothesized fail-
ures included as state variables. Limited memory filters are effectively
used only for failure detection, because they are not failure specific.
By keeping the residual gain high, it is hoped that a failure can be
expected to result in a sudden and pronounced change in the filter
behavior. Filter state augmentation does help in this regard, but at the
expense of potentially quite large dimensionality. The augmented filter
will not be able to match the detection filter's ability to respond to
any failure manifested in a known direction, and the augmentation serves

to decrease performance of the filter when there are no failures.
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3.3 Innovations-based Systems

The GLR and OSGLR algorithms belongs to the group of FDI schemes

known as innovations-based systems. These monitor the innovations of the

(typically) Kalman filter designed for the unfailed system. This group
also includes simple residual magnitude monitoring for failure detec-
tion. The GLR algorithm attempts to detect and isolate additive failures
using knowledge of the different effects such failures have on the
(linear) system innovations. Because the exact form of the failure is
generally unknown, some estimate is needed in order to have an accurate
indication of failure. This failure estimation is inherent in any GLR
scheme. Matched correlation detectors, in general each assuming a
particular direction, mode, and time of failure, use as inputs the
residuals of the normal mode filter and estimate the unknown associated
with the failure. These estimates are then used in composite tests for

the presence of particular failures.

The OSGLR algorithm is similar to the GLR algorithm in many ways.
However, the OSGLR algorithm represents the failure mode by a truncated
series expansion. A matched filter for each control surface is used to
estimate the coefficients of the truncated series expansion. The order
of the matched filter is the number of terms in the truncated series ex-
pansion. Also, no explicit estimation of the time of failure is required

by the OSGLR approach.

In aircraft application, in which the direction of the failure is
known, effective use of the traditional GLR algorithm would probably in-
volve hypothesizing one or more different failure modes, e.g., bias or
ramp. Assuming only certain limited modes can give the GLR algorithm
some robustness with respect to other, different modes of failures. The
OSGLR algorithm, however, avoids the complexity of specifying different

modes, since inherently it allows for any.
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The traditional GLR algorithm explicitly estimates time of fail-
ure onset, resulting in a time-linear growth in the number of detectors.
Limiting the possible times of failure onsets to the recent past limits
this growth. However, this "windowing" may degrade detection and isola-
tion performance, especially if the window is chosen such that the GLR
algorithm is computationally efficient. The windowing approximation need
not be made in the OSGLR algorithm, however. Although the OSGLR
algorithm cannot explicitly estimate time of failure, no new matched

filters need be created.

The FDI algorithms evaluated so far have been used with a linear-
ized model of the C-130. FDI performance suffers when the operating con-
dition is far from nominal. Caglayan and Lancraft have applied the GLR
ideas to systems for which the no-failure filter is an EKF (Reference
19) . The nonlinear filter formulation gives a more complex but flight
path-independent scheme, eliminating the need for gain scheduling. 1In
the C-130 application, much of the model information is available only
through tables. This makes the prospect of EKF filtering unlikely with-
out extensive changes in the modeling representation. This may merit

some consideration, however,

3.4 Multiple Hypothesis Filtering

Multiple hypothesis filtering schemes have also been proposed for
FDI. 1In the exact application of this concept, a "bank" of full-order
linear filters is constructed, with each filter based on a different
hypothesis concerning system behavior. The innovations from the filters
are then used to compute the probability that each system model is the
correct one. This type of scheme has all of the drawbacks of the tradi-
tional GLR algorithm, in that the number of filters grows with time.
Windowing of data is also possible here. Unlike the GLR algorithm, state
estimation for the failed system is immediately available with the
multiple hypothesis filter schemes since there is a filter valid for each

failure hypothesis. However, state estimation for the failed system with
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the innovation-based systems is possible by approximately compensating
for the effects of an additive failure on the no-failure filter. 1If a
complete set of failure types and modes can be delineated, multiple

hypothesis filtering schemes can be expected to give the best possible

FDI performance. Their complexity, however, renders them impractical.

3.5 Generalized Bayesian Tests

Generalized Bayesian tests (Reference 20), as another class of se-
quential algorithms, seek to provide optimal failure detection and isola-
tion through the assignment of costs for making certain decisions at cer-
tain times. The optimal FDI strategy minimizes the expected overall
cost. This class of algorithms can be considered the most general at the
present time. Potential application is to any system for which a priori
information concerning possible failures is available. (This is implied
in the term Bayesian.) Moreover, unlike most schemes, probabilistic in-

formation about the overall FDI scheme is a byproduct of the optimiztion.

The optimal FDI rule is generally not computable, but the struc-
ture of the approach can be expected to be useful in deriving a practical
suboptimal FDI algorithm. Reference 20 considers several possible

approximations.

3.6 Conclusions

The detection filter can readily be considered the best of the
failure-sensitive filters and the OSGLR algorithm the best of the innova-
tions-based schemes for the linear time-invariant system with additive
failures. They have been implemented, and it is doubtful that more comp-
lex schemes would significantly enhance practical FDI performance. It is
likely that simpler schemes would not be able to provide timely and accu-
rate full failure identification. It should be noted that generalized
Bayesian schemes are relatively new and undeveloped; a good characteriza-

tion of their potential suitability will come only as a result of future
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research. The attractive decision-cost optimality comes, however, with

solution of a difficult problem.

Based on this survey and the results of the initial evaluation
(described in Section 2), the OSGLR algorithm, in our opinion, has the
most potential of the algorithms that are mature for the Restructurable
Controls Application. Therefore, only the OSGLR algorithm will be inves-

tigated further.
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SECTION 4

ACCOMMODATION OF MODELING ERRORS FOR THE OSGLR ALGORITHM

Effective analytic fault detection and isolation schemes require
accurate system models. All the FDI algorithms investigated in the
preliminary evaluation, especially the OSGLR algorithm, were found to be
sensitive to modeling errors. Certain modeling errors are introduced in
linearizing aircraft nonlinear dynamics and in using a model during
periods of off-nominal flight conditions. These errors will, at least to
some extent, be attributed to control surface failures, and, consequent-
ly, lead to larger decision functions than if there were no such errors.
In fact, with significant mismodeling, the decision functions are
unbounded in their growth. Therefore, it is not always possible to avoid
false alarms associated with modeling errors by judicious selection of

the detection thresholds.

There are several ways of better accommodating modeling errors in

analytic FDI algorithms. These might be considered as the following:

+ Dynamic thresholding - choosing decision thresholds based on
estimates of the system state or, perhaps, the disturbances

present (e.g., turbulence).

* Dynamic decision regions - determining the statistics of the
FDI residual, and choosing the threshold given those

statistics.

*+ Actual model error estimation, and use of those estimates in

offsetting residual errors.

* Robust design of the actual residual generator, leading to a

sub-optimal scheme over the expected range of model errors.
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While some of the above approaches have been used to reduce modeling

errors in a number of FDI applications, no applications of FDI techniques

in which the errors are propagated through a filter have been discover-

ed. The F-8 study (References 21 and 22), for example, uses some fairly

sophisticated modeling error accommodation, but the FDI is for sensors

whose output can be more or less directly compared.

This section will consider each of the four approaches in

attempting to reduce the sensitivity of the OSGLR algorithm to

midmodeling.

4.1 Dynamic Thresholds

Detection thresholds can be tied to estimates of the state or of

system disturbances or expressed as increasing functions of time during a

maneuver, perhaps, e.g., T = (a + bt)2,

While it is difficult to see

how dynamic thresholds can be systematically designed for filter

residual-based FDI schemes

approach was investigated.

(like the detection filter and OSGLR), one

One measure of the sensitivity of the OSGLR algorithm to

mismodeling is

where y is the information vector, S is the nominal information matrix

(4.1)

used to calculate the decision function, and S is the actual information

matrix. A graphical interpretation of this measure is shown in Figure

4.1. This minimization both determines the direction (in X space) in

which the nominal implementation is sensitive to a particular mismodeling

T -1
and the largest ¢ ellipse of the actual decision function x S y that is

contained in the 1 ¢ ellipse of the nominal decision function x?g_{x.
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Figure 4.1 Sensitivity measure for the OSGLR algorithm
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If determining the actual information matrix S is possible, one
approach for compensating for the mismodeling effects might be to
increase the threshold, T2, of the nominal decision function such that
the T ¢ ellipse would contain or mostly contain a Tyo ellipse for
X?S-1Xf Tf is the threshold that yielded adequate performance with no
mismodeling.

For mismodeling that results in changes in the linear model, the
actual information vector S can be determined by combining the Kalman
filter and OSGLR equations as implemented with the actual linear model

(including the effects of mismodeling) into a single linear system.

x(k+1) ) 0 0 x(k)
x&x+1) | = | e*k¥c o*(1-x*c*) o x~(k)
*T %=1 *T %=1 _«
X4 (k+1) G''M" C -G"M" C % _X1(k)
B w(k)
+ | B*+e*k*AD | u(x) + | &*k*v(x) (4.2)
c*Tu* 1 ap G*TM*-1_\_7_(k)

where Eﬂk) and gf(k) are the linear system state and the Kalman filter
state estimate respectively. Xq(k) is the information vector time

shifted one time step:

Xq(k) = x(k=1)
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The superscript (*) indicates that the matrix is either a nominal linear
model matrix or steady-state Kalman filter and OSGLR matrices based on
the nominal linear model. The actual linear model matrices are not

superscripted and

D - D (4.4)

The process and measurement noise are represented by w(k) and v(k).
Since the information matrix is simply the covariance of X» the actual
information matrix S is the lower right-hand block of the augmented state

covariance matrix:

Elx(K)x (k)] E[x(K)RT(K)] oo

LN E[};(k)ﬁT(k)] e (405)

One difficulty with this approach is that the actual information
matrix is a function of the covariance of the inputs unless modeling
errors do not affect the B and D matrices. Instead of trying to appro-
priately describe the covariance of the inputs, the control system could
be included in the augmented linear system (Eg. 4.2). However, the
actual information matrix then becomes a function of the covariance of
the commands to the control system. One approximation might be to assume
the covariance of the commands to be zero. A much better approximation

would be to assume the pilot is a feedback system.

Assuming the covariance of the inputs is somehow described, the
actual information vector can be determined by propagating forward in

time the augmented state covariance matrix or by solving a Lyapunov
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equation for the steady-state covariance matrix. In the latter case, the
actual linear model must be stable unless the control system is
included. Then the sensitivity of the OSGLR algorithm to this change in
the linear model could be determined and the threshold compensated. This
analysis alone is not adequate in selecting thresholds as nonlinearities
not represented in the linear models are not taken into account. Also,
mismodeling may cause the information vector to become biased, or worse,
to grow without bound.

This sensitivity analysis was not performed in this effort as
describing the control system of the C-130 aircraft was prohibitive.
Without a systematic method to design dynamic thresholds, a trial-and-

error procedure would have to be used.

4.2 Dynamic Decision Regions

Filter sensitivity results can also be used to implement dynamic
decision regions for the detection test used in the OSGLR algorithm. The
form of the detection test is the information vector weighted by the

information matrix and compared to a threshold.

XsTx ¥ T, (4.6)

The information matrix reflects the expected uncertainty associated with
the basis function coefficient estimates. The certainty predicted in the
filter generally does not take into account modeling errors, however. In
order to reduce false alarms, one might like S to reflect the uncertain-

ties associated with modeling errors even in the absence of failures.

The basic idea then is to use the actual information matrix as
opposed to the nominal information matrix in calculating the decision
function XF§-1X3 The actual information matrix could be calculated as
outlined in the previous section. 1Instead of continuously updating the

information matrix, it would be more efficient to bound S in an
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approximate manner, Even better would be to approximate S as a function
of operating parameters, states, or inputs. As discussed in the previous
section, certain nonlinearities and biases or unbounded growth in the
information vector caused by mismodeling cannot be dealt with using this

approach.

4.3 Model Error Estimation

A third option in accommodating modeling errors in FDI involves
estimating these errors directly. This could be, of course, a highly
effective option, but it would probably be difficult to account for much
of the error and would thus be computationally prohibitive. Moreover,
this extensive estimation could probably be foregone without bad

consequences if one of the other accommodation options were employed.

4.4 Robust Residual Generation

The OSGLR algorithm nominally depends on residuals produced by a
Kalman filter to detect and isolate failures. Either improving the
robustness of the Kalman filter or using a more robust filter than the
Kalman filter will reduce the effects of modeling errors on the OSGLR
algorithm. The need for reducing the sensitivity of the Kalman filter to

modeling errors is apparent even at the nominal cruise flight condition.

Figure 4.2 shows the predicted state covariance and the actual
aircraft state estimation errors for a segment of nominal, no-failure
flight, using a single linear model in the Kalman filter. Even here, a
case for which the modeling errors are expected to be small, the estima-
tion errors are not well bounded by the covariance. Figure 4.3 shows the
corresponding OSGLR decision functions, which are large.1 Practical

improvements might involve adding process noise to the Kalman filter (in

1 Appendix A contains a summary of test cases presented in this report

for easy reference and comparison.
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Decisions Functions (x10)
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Figure 4.3 Decision functions for the nonlinear,
no-failure, nominal cruise flight
condition test case.
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addition to the turbulence process noise already present), or perhaps
using so-called limited memory filtering in the OSGLR. Either technique
curtails growth of the actual estimation error covariance and increases
predicted covariance. Use of either technique could also be expected to
desensitize the decision functions to errors due to both linearization of

the nonlinear dynamics and off-nominal maneuvering of the aircraft.

There is no method of systematically selecting process noise to
reduce the effects of mismodeling on the Kalman filter. The designer
must resort to a trial-and-error procedure of selecting the process noise
and testing the resulting Kalman filter. The other difficulty with this
approach is that the choice of process noise may reduce the effect of a
failure on the Kalman filter residuals, degrading the ability of the
OSGLR algorithm to detect and isolate that failure. 1In spite of these
difficulties, this approach was briefly investigated. A set of state
covariance weightings were determined such that 0.01745 rad (1°) elevator
and right aileron bias failures, 0.0349 rad (2°) rudder bias failures,
and 5% right flap bias failures still could be detected and isolated at
the nominal cruise condition 77.2 m/s (150 knots) at 304.8 m (1000 ft)
while greatly reducing the no-failure decision function at the off-
nominal cruise condition 102.9 m/s (200 knots) at 1524.0 m (5000 ft).
(The process noise added was in addition to the turbulence process noise
already driving the system.) The decision functions for the 0.01745 rad
(1°) elevator bias failure and the off-nominal no-failure test cases
using the nominal (no process noise) Kalman filter and OSGLR algorithm
are shown in Figures 4.4 and 4.5, respectively. The decision functions
for the same two test cases using the Kalman filter and OSGLR algorithm
designed using process noise are shown in Figures 4.6 and 4.7. Schedul-
ing the threshold in terms of distance from the nominal point might allow
for quick detection of failures close to the nominal cruise condition

while reducing the effects of mismodeling.

Limited memory filtering is to be preferred as it can be implemen-

ted in such a way that it is general, simple, and quite effective. The
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Decision Functions (X104)
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Figure 4.4 OSGLR decision functions for a -0.01745 rad
(-1°) elevator bias failure which occurred
at 10 seconds at the nominal cruise flight
condition of 77.2 m/s (150 knots) and |
304.8 m (1000 ft)

_58_




)

Decision Functions (X10

40.00 60.00 80.00 100.00

-

20.00

.00

.00 10.00  '20.00  30.00  40.00  50.00

Time (s)

Figure 4.5 OSGLR decision functions for a no-failure case
at an off-nominal cruise flight condition of
102.9 m/s (200 knots) and 1524 m (5000 ft)
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Decision Functions (X10)
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Figure 4.6 OSGLR decision functions for a -0.01745 rad
(-1°) elevator bias failure at 10 seconds at'
the nominal cruise condition of 77.2 m/s and
304.8 m using a Kalman filter with process
noise added
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OSGLR decision functions for a no-failure
case at an off-nominal cruise flight condi-
tion of 102.9 m/s and 1524.0 m using a
Kalman filter with process hoise added
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basic idea of limited memory filtering is the more or less gradual elimi-
nation of old data, as it is no longer thought to be meaningfﬁl. One ap-
proximate method that can be used in the current application is the age-
weighted filter (Reference 23), In this filter, discarding old measure-
ment data is accomplished by weighting them according to when they oc-
curred. In other words, the covariance of the measurement noise is in-
creased for past measurements. For assumed constant measurement noise

covariance R, one manner of accomplishing this is to set

emAt/T)R, m = 0'1,2-'- (407)

! =
R m (
where R' is the new noise covariance and k denotes the current time in
the filtering. At is the measurement (sampling) interval, and T is a

time constant associated with the length of time the model is considered

valid.

A recursive filter can be constructed under these assumptions.

The only difference between the resulting algorithm and the standard

Kalman filter is the appearance of the age-weighting factor s = eAt/T in
the state covariance update equation:
P'(-) = so P’ (#)¢T + 0 (4.8)
k k-1 k-1 k-1 k-1

Otherwise the age-weighted filter equations are the same as the Kal-
man filter equations (Egs. 2.25-2.30 and Eq. 2.32). Compared with the
original Kalman filter, the factor s, being greater than 1, leads to
larger state and measurement covariances and, consequently, a larger
filter update gain. The result is a faster tracking filter. Only the
steady-state implementation of the age-weighted filter is tested in

this report.

If the measurement noise covariance matrix is actually constant

and the age-weighting is being used to produce a faster tracking filter
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. . LI N .
as in this report, the Pk is not the state error covariance matrix

E[(ik— xk)(ik—xk)T]. The state error covariance matrix can be calculated
using results for a filter of the form of the Kalman filter but with an
arbitrary gain matrix. The measurement error covariance matrix is calcu-
lated by using the correct state error covariance matrix. For convenien-
ce, since the actual covariance matrices are not of interest, the covari-
ance matrices including the effects of age-weighting will be referenced

to the age-weighted filter state error and residual covariance matrices.

The (normal) OSGLR FDI scheme involves the use of a no-failure
Kalman filter and what are essentially matched Kalman filters for the
various control surface failure hypotheses driven by the residuals of the
no-failure filter. (Recall that for each control surface there is basi-
cally an estimator for the coefficients of the failure signature func-
tion.) Implementing an age-weighting filter for only the first, no-
failure filter has been found to result in little change in the size of
the decision functions. Age-weighting should thus be implemented in the
matched filters as well. These filters are implemented in "information

form”, a form equivalent to the more common form of the Kalman filter.

The change in the standard filter equations can be mapped into the
information form equations. This results in changes in the propagation
equations for the information vector and information matrix. In the

matched filters,

x' (k+1)

SAX 0+ 6T (k+1M ™ (k+1) y (k+1) (4.9)

s' (k+1)

I

n|-=

A¢S' (k)AE: + GT(K+1 )M_1 (k+1)G(k+1) (4.10)
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Here,

A is the single-step transition matrix for the coefficients,
a, being estimated;

G is the residual influence matrix for the system;

Y is the residual of the no-failure filter; and

M is the residual covariance of the incoming measurements ¥y

including the effect of age-weighting.

As with the age-weighted filter, only the steady-state implementation of
matched filters with age-weighting will be tested in this report.

The effect of age-weighting on the OSGLR algorithm can be seen
from Figures 4.8 and 4.9. The decision functions for the off-nominal,
no-failure test case and the -0.01745 rad (-1° deg) elevator bias failure
(occurring at 10 s) test case with age-weighting time constant of 15 s
are shown in Figures 4.8 and 4.9, respectively. The largest value of the
decision functions for the off-nominal test case is reduced by age-
weighting from 1,100,000 (at 50 s and increasing) to 45,000 for this
age-weighting time constant of 15 s. The major benefit of age-weighting
is to limit the decision functions caused by modeling errors. Otherwise,
false alarms would be certain to occur. However, age-weighting also re-
duces and limits the decision functions caused by failures. The largest
value of the decision functions for the -0.01745 rad (-1 deg) elevator
bias failure test case was reduced by age-weighting from 400,000 (at 50 s
and increasing) to 40,000 (and increasing at 50 s although more slowly)

for the time constant of 15 s.

The effect of age weighting ultimately depends on the age-weight~
ing time constant chosen. As the time constant is decreased, past infor-
mation will be discarded sooner and the size of the decision functions
caused by both modeling errors and failures will decrease. However, in
order to allow the state estimates to converge, the age-weighting time
constant should be larger than the time constant associated with the

smallest closed-loop filter eigenvalue. With no age-weighting, the
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Figure 4.8 Decision functions produced by an age-weighted
OSGLR algorithm

e no failures

e off-nominal cruise flight condition of
102.9 m/s and 1524.0 m

® age-weighting time constant of 15 s

~65~

100.00




3

Decision Functions (X10

20.00 30.00 40.00 50.00

10.00

.00

1
. 00 10.00 20.00 30.00 40. 00 50. 00

Time (s)

Figure 4.9 Decision functions produced by an age-weighted
OSGLR algorithm

® -0.01745 rad (-1°) elevator bias failure
at 10 s |

e nominal flight condition of 77.2 m/s
and 304.8 m

® age-weighting time constant of 15 s
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largest filter time constant is 1.4 s. Small age-weighting time
constants may also cause difficulty in the convergence of the higher
order basis function coefficient estimates. Figure 4.10 shows the
estimated rudder basis function coefficients for a 0.001745 rad/s
(0.1°/8) rudder ramp failure starting at the beginning of the test case.
The age-weighting time constant is 3 s. The first four coefficients
converge reasonably well, whereas the last two, although they remain
fairly well behaved, have more difficulty. Still, the convergence of the

basis function coefficients was adequate for this case.

The 3 s age-weighting time constant was investigated in addition
to the 15 s time constant already considered. The decision functions for
the off-nominal, no-failure test case and the -0.01745 rad (-1.0 deg)
elevator bias failure test case with age-weighting time constant of 3 s
are shown in Figures 4.11 and 4.12. The 3 s time constant reduces the
largest value of the decision functions for the off-nominal test case
from 45,000 for the 15 s time constant to 1600. Likewise, the maximum
magnitude of the decision functions for the -1 deg elevator bias failure
test case was reduced from 45,000 (and increasing) to 3500. Based on
these two test cases, the 3 s time constant produces the greatest
reduction in the decision function caused by mismodeling while causing
the least reduction in the decision functions resulting from a failure.
But an age-weighted time constant this small will make detecting failures
of limited time duration difficult as the OSGLR algorithm will forget
that a failure had occurred. These failures may not be significant
though. Therefore, in the interest of keeping the decision functions as
insensitive to modeling errors as possible, the 3 s age-weighting time

constant will be used from henceforth.

4.5 Summary and Conclusions

Several options for accommodating modeling errors in failure de-
tection and isolation have been discussed. These included dynamic

thresholds, dynamic decision regions, model error estimation, and robust
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residual generation. Using dynamic thresholds is a simple approach to
reducing false alarms caused by modeling errors. However, since modeling
errors will, in general, cause the decision functions to grow in an un-
limited manner, this approach would not give satisfactory performance
alone. Also, there is no convenient systematic approach for selecting
the dynamic thresholds. The dynamic decision region approach alters the
information matrix used to weight the information vector in calculating
the decision function to better reflect the uncertainties associated
with modeling errors. Similar to the dynamic threshold approach, this
approach alone could not reduce the effects of mismodeling satisfactori-
ly. In addition, the procedure suggested to design these dynamic deci-
sion regions may as in the case of the C-130 aircraft, require signifi-
cant effort. Model error estimation probably would be the most difficult
and computationally burdensome of the four approaches. Two ideas were
presented to improve the robustness of the filter used to generate resid-
uals for the OSGLR algorithm. The first was to add process noise in
certain directions (e.g., specific states). While adding process noise
worked well for the few cases tested, the selection of the noise is an
iterative process and may only be valid for that particular linear system
model. The second idea, age-weighted filter, was found to be simple,
general, and very effective. Age-weighted filtering allows the consider-
ation of only the more recent information for estimating aircraft state
and the basis function coefficients. Consequently, modeling errors due
to linearization or aircraft maneuvering do not cause the filters to di-

verge.

Age-weighted filtering, because of its simplicity and effective-
ness, will be used to reduce the effects of modeling errors. The age-

weighting time constant will be 3 s.
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SECTION 5

DETAILED EVALUATION OF THE OSGLR ALGORITHM
USING A SINGLE CRUISE LINEAR MODEL

5.1 Introduction

In the preliminary evaluation described in Section 2, the
steady-state implementation of the OSGLR algorithm was tested at a nomi-
nal and an off-nominal cruise flight condition. Furthermore, only a few
failure cases at the nominal cruise flight condition were tested. This
section further examines the flight regime in the neighborhood of the
nominal cruise flight condition 77.2 m/s (150 knots) at 304.8 m (1000
ft). The effects of sensor errors, off-nominal flight conditions includ-
ing maneuvers, different turbulence intensity levels, steady winds, and
nonzero flap deflections are considered.! Also, a number of bias fail-
ures are tested. Based on these results, the magnitude of bias failures
that can be detected and the detection times (for this nominal flight

condition) can be determined for a particular threshold.

In this and the following section, DFj is the decision function
whose failure hypothesis is that the ith control surface has failed. The

control surfaces are defined in Table 5.1

1 a summary of the test cases is presented in Appendix A for easy re-
ference and comparison of the test cases presented in this section and
in sections 4 and 6.
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Table 5-1. C-130 control surface definition

Input Control Surface
1 elevator
2 right aileron
3 left aileron
4 rudder
5 right flap
6 left flap

5.2 Sensor Errors and Dynamics

Misalignment, scale factor error, and quantization were added to
the acceleration and angular rate measurements. Biases were added to the
acceleration, angular rate, and attitude measurements. Sensor models
including first-order lag filter dynamics were included for all the

measurements except for the altitude rate.

The altitude rate measurement was eliminated because a sensor
model was not readily available. The performance of the OSGLR algorithm
was not affected in detecting and isolating elevator, right aileron, and
right flap failures. However, eliminating the altitude rate measurement
reduced the ability of the algorithm to isolate a 0.01745 rad (1 deg)
rudder bias failure. Larger rudder failures, such as a 0.0349 rad (2
deg) bias failure, still could be easily isolated. Therefore, the
elimination of the altitude measurement caused only a minor degradation

in performance.

The OSGLR algorithm was tested with the sensor noise, errors, and
dynamics shown in Table 5.2; the effect on the performance was too small
to be evident. All the results presented in this report were produced

with these effects of sensor noise, errors, and dynamics included.
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5.3 Of£f-Nominal, No-Failure Flight Conditions

The steady-state implementation of the OSGLR algorithm based on
the 77.2 m/s (150 knot) linear model was tested for a variety of
maneuvering and other off-nominal flight conditions to determine their
effects on the performance of the algorithm. This testing served to
determine the range of flight conditions for which the 77.2 m/s (150
knot) linear model is valid for the purposes of FDI. Light and

thunderstorm turbulence and steady wind conditions were also tested.

5.3.1 Maneuvering Test Case

The first test case considered was a combination of cruise flight
conditions and turning, acceleration, and climb maneuvers as described in
Table 5.3. This test case will be referred to as the maneuvering test
case. The aircraft begins cruising at 77.2 m/s (150 knots), then turns
at 0.0524 rad/s (3 deg/s), returns to level flight, accelerates with full
thrust, climbs at first with nominal thrust level and later full thrust,
and finally turns slowly while climbing at full thrust. The decision
functions for this test case are shown in Figure 5.1. The decision func-
tions increase slightly as the aircraft rolls to begin the turn and again
as the aircraft rolls to level flight. As full thrust is applied and the
aircraft accelerates at an approximately constant altitude, the decision
functions increase significantly. The decision functions decrease and
become small again with the thrust level returning to the nominal value
and the velocity decreasing with the aircraft climbing. In order to
maintain the climb, the thrust level is increased and the decision func-

tions increase significantly once again.

As thrust level, or alternatively thrust, is an actual input to
the system, incorporating thrust level or thrust into the linear model as
an input might reduce the decision functions at off-nominal thrust
levels. Thrust was found to be more effective than thrust level. Thrust
is actually a nonlinear function of both thrust level and velocity. With

thrust level as the input, some of the velocity dependence of thrust
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Table 5.3 Maneuvering test case

Time(s) Maneuver
0-20 Nominal cruise condition 77.2 m/s (150 knots) at

304.8 m (1000 ft), no flaps, 55% thrust level

20-25 Roll to 0.4363 rad (25 degrees)

20-55 Turn at approximately 0.0524 rad/s (3 deg/s)
50-55 Roll back to level flight

55-60 Nominal cruise condition

60-100 Thrust level increased to 100% causing the ve-

locity to increase from 77.2 m/s (150 knots) to
102.9 m/s (200 knots)

100-125 Thrust level decreased to nominal value

105-165 Climb at an average rate of 6.7 m/s (22 ft/s)
125-165 Thrust level increased to 100%

145-165 Roll and turn slightly in addition to the climb
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could be accounted for in the linear model. Still, less mismodeling will
result with thrust as the input. (Thrust was added to the linear model

simply by adding another column to the B and D matrices.)

The decision functions for the maneuvering test case with thrust
incorporated as an input are shown in Figure 5.2. The decision functions
during the periods of off-nominal thrust levels are significantly de-
creased. The largest decision functions are now during the acceleration
at constant altitude portion of the test case rather than the climb with
100% thrust portion. The decision functions during the acceleration at
constant altitude portion increase as the velocity and therefore dynamic
pressure increases. As the thrust level begins to decrease to the nomi-
nal value at 100 s, the decision functions also decrease. The increased
thrust level during the climb portion of the trajectory does not cause
any difficulty. The probable reason for this is that the dynamic pres-
sure is close to the nominal dynamic pressure. Based on this test, the
largest no-failure decision functions occur when both the dynamic pres-

sure and the thrust are significantly off-nominal.

All further results use thrust as an input.

5.3.2 Turning Test Case

A longer turning maneuver, where the aircraft rolls and begins a
0.0524 rad/s (3 deg/s) right turn at 5 s, was also considered. At 65 s,
the aircraft returns to level flight having turned 190 deg. The aircraft
then turns left starting at 75 s, returning to level flight at 130 s.
The decision functions, shown in Figure 5.3, are small with the two
largest spikes occuring when the aircraft first rolls to turn right and
when the aircraft returns to level flight after the left turn. These
spikes appear to correspond to off-nominal aileron activity required to

roll the aircraft.
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5.3.3 Maximum Rate-o0of-Climb Test Case

In the maneuvering test case, the climbing rate of the aircraft is
significant but less than the maximum possible. In order to determine
the largest decision functions that could be produced by a sustained
climbing maneuver, the algorithm was tested with the aircraft climbing at
an average rate of 10 m/s (33 ft/s) which is approximately the maximum
rate of climb. At the beginning of the test case, the aircraft is flying
at the nominal cruise condition. Five seconds into the flight, the
thrust level is increased to 100% with the climb initiated at 15s. The
decision functions (Figure 5.4) are larger than in the climbing portion
maneuvering test case but only 800 larger than the largest decision

function produced by the maneuvering test case.

5.3.4 Accelerating Test Cases

A number of accelerating cases were tested with the most severe
case being the acceleration from 51.44 m/s (100 knots) to 102.9 m/s (200
knots) test case. The decision functions for this test case are shown in
Figure 5.5. The largest decision functions are at the beginning of the
test case. 1Initially, the airspeed of the aircraft is 51.44 m/s (100
knots) but the airspeed drops a few seconds later to 33.44 m/s (65
knots). This airspeed drop is caused partly by a large turbulence level
at the beginning of the simulation run and also because the control
surfaces are being moved to control the aircraft. The result of this
airspeed drop is that the actual dynamic pressure a few seconds after the
beginning of the test case is only 20% of the nominal dynamic pressure of
the 77.2 m/s (150 knot) linear model. The linear model is clearly not
valid in the neighborhood of 51.44 m/s (100 knots). The thrust level was
increased to 100% starting at 10 s, causing the airspeed to increase. As
the actual dynamic pressure approaches the nominal dynamic pressure,
decision functions decrease. At 41 s, the airspeed is approximately 77.2
m/s (150 knots) which is the nominal airspeed of the linear model and the

decision functions are very small in this region. They increase again as
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the velocity increases to 102.9 m/s (200 knots). Based on this test
case, there appears to be more mismodeling at low dynamic pressures than

at high dynamic pressures.

5.3.5 Decelerating and Descending Test Cases

To investigate decelerating flight, the aircraft was started at an
airspeed of 102.9 m/s (200 knots) with a thrust level of 30%. (The
thrust level required to maintain 102.9 m/s airspeed at 304.8 m (1000 ft)
is 80%.) The altitude of 304.8 m (1000 ft) was approximately maintain-
ed. The airspeed at the end of the simulation run is approximately 51
m/s (100 knots). The decision functions, shown in Figure 5.6, are small
until the airspeed drops below 61 m/s (118.5 knots). As in the maneuver-
ing test case, the 150 knot linear model is not adequate for airspeeds in

the neighborhood of 51 m/s (100 knots).

Decision functions for a descending test case are shown in Figure
5.7. The aircraft has an initial airspeed of 103 m/s at an altitude of
1524 m (5000 ft) with a thrust level of 20%. The aircraft descends to an
altitude of 762 m (2500 ft) at the end of the test case. The final air-
speed is approximately 77 m/s (150 knots). The decision functions are
small with the larger magnitudes occurring in the first 35 s where the

dynamic pressure is the most off-nominal.

5.3.6 Non-Zero Flap Deflections

In addition to maneuvers, the OSGLR algorithm was tested with the
flaps extended 50, 75, and 100%. In each of the test cases, the flaps
were extended starting at 5 s, and reached 50% to 100% in 5 to 15 s. The
decision functions for the 50% test case shown in Figure 5.8 are small.
However, the decision functions for the 75% test case, shown in Figure
5.9 are large. The decision functions for the 100% test case are approx-
imately four times larger than those of the 75% case. One explanation

for the large decision functions is that large deflections of the flaps
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causes significant changes in the dynamics. Also, large flap deflections
cause a significant decrease in the airspeed and therefore dynamic

pressuree.

5.3.7 Off-Nominal Turbulence and Steady Winds

The nominal turbulence used to test the OSGLR algorithm is the
Dryden model with clear air scales and intensity of 1.98 m/s (6.5 ft/s)
(Reference 12). As the turbulence model is incorporated into the linear
model of the system, the nominal turbulence does not cause significant
no-failure decision functions. To determine the effect of off-nominal
turbulence, light turbulence of intensity 0.3 m/s (1 ft/s) and thunder-
storm turbulence of intensity 6.4 m/s (21 ft/s) were tested. The deci-
sion functions for the maneuvering test case with light turbulence, shown
in Fiqure 5.10, are slightly smaller than with the nominal turbulence
intensity. The decision functions for the aircraft cruising at the
nominal flight condition in thunderstorm turbulence are shown in Figure
5.11. The validity of this test case is questionable for the first 20 s
as the turbulence causes the angle of attack to exceed the largest angle
of attack for which the aerodynamic forces are modeled. (The simulation
needs a pilot to control the aircraft adequately in thunderstorm turbu-
lence.) In general, the decision functions due to thunderstorm turbu-
lence are significant. One approach to reduce the effect of thunderstorm
turbulence might be to develop the age-weighted filter gain and the OSGLR
influence and information matrices for the thunderstorm case and schedule
these matrices as a function of turbulence level. A simpler approach
would be to use a higher nominal turbulence level. This approach should
be adequate if detection and isolation at lower turbulence levels is not

significantly degraded.

The effect of steady winds on the performance of the algorithm was
determined by testing a number of wind conditions. The steady winds
tested were headwinds, crosswinds, and a direction in between. These

horizontal winds were all 10.3 m/s (20 knots). A downwind of 2.57 m/s
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(5 knots) was also tested. The crosswind test case produced the largest
decision functions (Fiqure 5.12). The large decision functions in the
first ten seconds of the test case are caused by the aircraft responding
to the crosswind. In response to the crosswind, the thrust was increased
momentarily and the ailerons and rudder were used to control the air-
craft. After the initial transient, steady winds do not result in

increased decision functions.

5.4 Failures

Elevator, right aileron, rudder, and right flap bias failures are
considered in this section. With two exceptions, all the failures occur
with the aircraft flying at the nominal cruise flight condition of 77.2
m/s (150 knots) at 304.8 m (1000 ft). The exceptions are elevator bias
failures with the aircraft flying at two off-nominal airspeeds, 64.3 m/s
(125 knots) and 90.0 m/s (175 knots). All the failures occurred 10 s

into the simulation run.

A representative failure test case for each of the surfaces tested
as well as the two off-nominal flight condition test cases will be
presented. In lieu of the individual failure cases, results for the
nominal £light condition failure test cases are then summarized, for each
surface tested, in terms of the maximum decision function as a function
of the time from the occurrence of the failure and the failure magni-
tude. The ability to isolate a failure of each of the surfaces tested is

similarly examined.

5.4.1 Elevator Failure Test Case

The decision functions for the -0.0873 rad (-5 deg) elevator bias
failure with the aircraft at the nominal cruise flight condition are
shown in Figure 5.13. The growth of the decision functions is limited by

the age-weighting, as in the off-nominal, no-failure cases. The failure
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is easily detected if the detection threshold is less than 60,000. The
failure can be detected in approximately 2 s if the threshold is less
than 20,000. Four of the isolation decision functions, DFij, are shown

in Figure 5.14 where DF; 5 is defined to be

Isolation decision function DFq4, not shown in Fiqure 5.14, would have
been even larger than those shown. Isolating this failure is

straightforward.

5.4.2 Off-Nominal Elevator Failure Test Cases

The decision functions for the same failure with the aircraft
flying at an airspeed of 64.3 m/s (125 knots) at the time of the failure
are shown in Figure 5.15. The decision functions rise more slowly than
for the same magnitude failure occurring with the aircraft flying at the
nominal cruise flight condition. The effect of the failure is 1less
because the dynamic pressure for this case is less than the nominal
flight condition. Still, a detection threshold that could detect a
failure of the same magnitude at the nominal airspeed could detect this
failure. At approximately 35 s, the decision functions peak and decrease
afterwards. This decrease is caused by a decrease in the airspeed. In
Section 5.3, the OSGLR algorithm based on the 77.2 m/s (150 knot) linear
model produced large no-failure decision functions at low speeds in the
neighborhood of 100 knots. Apparently, the 77.2 m/s (150 knot) linear
model does not model the aircraft well at these low speeds. Also, as
just mentioned, a decrease in dynamic pressure will reduce the effect of

the failure.

The decision functions for the -0.0873 rad (-5 deg) elevator bias
failure with the aircraft flying with an airspeed of $0.0 m/s (175 knots)

are shown in Figure 5.16. The decision functions rise more quickly than
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the nominal flight condition -0.0873 rad (-5 deg) elevator bias failure
test case. Again, this is to be expected because of the higher dynamic
pressure. The steady-state magnitude of the elevator decision function
is approximately the same as for the nominal flight condition failure

test case.

5.4.3 Right Aileron Failure Test Case

The decision functions for a 0.0873 rad (5 deqg) right aileron bias
failure at the nominal cruise flight condition test case are shown in
Figure 5.17. The wing surface decision functions (DF_, DF_., DF

2 3 5’
become large quickly. As with the -0.0873 rad (-5 deg) elevator bias

DF6)

failure at the nominal flight condition test case, a detection threshold
of 20,000 would allow detection of a failure within 2 s. Isolating the
failure to the right aileron surface is more difficult. The isolation

decision functions DF__, DF

23 25’
isolation threshold of 100 was realistic, this failure could be correctly

and DF26 are shown in Figure 5.18. If an
isolated. However, testing of right aileron failures in a variety of
flight conditions would be required to determine if this isolation

threshold is realistic.

5.4.4 Rudder Failure Test Case

The decision functions for a -0.0873 rad (-5 deg) rudder bias
failure are shown in Figure 5.19. For the same magnitude failure, the
decision functions produced by a rudder failure are much smaller than
produced by the other surfaces. Apparently, the rudder has less effect
on the motion of the aircraft than the other surfaces. If the same
detection threshold was used for each of the decision functions, this
rudder failure could not be detected. Based on the no-failure results
presented in Section 5.3, the smallest detection threshold that could be
possibly selected would be 5000. This assumes the aircraft is flying
near the nominal flight condition, the aircraft is not flying in thunder-

storm turbulence, the flaps are not deflected and the maneuvers presented
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were the most severe normally attempted by commercial aircraft. However,
in the no-failure test cases presented in Section 5.3, the rudder deci-
sion function is always small. The rudder decision function, excluding
the times the airspeed was in the neighborhood of 51.44 m/s (100 knots),
is less than 200 except for the large flap deflection and the thunder-
storm turbulence test cases. With some compensation for thunderstorm
turbulence and large flap deflections, a detection threshold of 400 for
only the rudder decision function might be possible. If so, this rudder

failure could be detected in approximately 3 s.

Isolation of this rudder failure is easy since the other decision
functions are all less than 100. However, in general, isolation would
have to be based simply on the magnitude of the rudder decision function
since the decision functions of the other surfaces may be larger due to
modeling errors. One approach would be to simultaneocusly detect and iso-
late a rudder failure when the rudder decision function reaches the rud-
der detection threshold. Since failures of other control surfaces also
produce large rudder decision functions, a rudder failure should not be

declared if another failure has already been detected.

5.4.5 Right Flap Failure Test Case

The decision functions for a 5% right flap failure test case are
shown in Figure 5.20. For a detection threshold of 20,000, this failure
would be detectable in 12 s. The failure would not be detectable for
higher thresholds. As with the right aileron test case, isolating this
failure to the correct wing surface may not be possible. Isolation deci-
DF

sion functions DF and DF are shown in Figure 5.21. If an

52’ 53' 56

isolation threshold of a 100 was realistic, this failure could be isola-
ted at the same time the failure was detected. Again, failure test cases
at off-nominal flight conditions and wind conditions are required to de-

termine realistic isolation thresholds.
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5.4.6 Largest Failure Decision Functions as a Function

of Time and Failure Magnitude

The purpose of testing the OSGLR algorithm with a number of fail-
ure cases is to determine, for a given detection threshold, the size of
the failures that can be detected and the time required for detection. A
number of bias failures with the aircraft flying at the nominal flight
condition were used to test the algorithm. The results were then plotted
for each surface to readily answer the two questions raised. The largest
values of the decision functions as a function of the size of the bias
failure are plotted for each surface tested in Figures 5.22 - 5.25. Each
figure contains five curves where each curve is for a particular time
after the failure onset. For example, one curve describes the largest
value of the decision functions 1 s after the failure. The symbols and
their corresponding times after the failure onset are defined in Table
5.4. The symbols correspond to actual test results. Considering the
decision functions for only the first 15 s following a bias failure is
sufficient because the decision functions, in most cases, grow slowly if
at all after this. Since only a few bias failure cases for each surface

were tested, the curves are approximate.

In addition, the elevator and rudder plots only considers negative
bias failures, and the right aileron plot only considers positive bias
failures. Yet, one might expect the plots to be approximately the same

for failures with opposite signs but the same magnitude.

First consider elevator, right aileron, and right flap failures.
Excluding the 75% and full flap deflection and the acceleration from
51.44 m/s (100 knots) test cases, the largest value of the decision func-
tions for the off-nominal flight conditions have been less than 10,000.
Therefore, selecting a threshold of 20,000 might be reasonable at least
for some flight regimes. Based on Figure 5.22, -0.0524 rad (-3 deg)
elevator bias failures should be detectable with a 20,000 threshold.
Similarly, 0.0436 rad (2.5 deg) right aileron and 5% right flap bias
failures should be detectable. These bias failures would take 10 to 15 s

~106-



70.00 80.00

60.00

40.00 - $0.00

Largest Decision Function Values (X1000)
30.00

20.00

00

10.

=

.00 -2.00 -4.00 -6.00 -8.00 -10.00
(-0.0349) (-0.0698) (-0.1047) (70.1396) (-0.1745)
|

Size of elevator bias failure i
degrees (radians) ‘

Figure 5.22 The largest decision function values
produced by elevator bias failures

-107-




lLargest Decision Function Values (X1000)

20.00

70.00

80.00

40.00 50.00 60.00

30.00

10.00

P: 00

.00 2.00 4.00 6.00 8.00 10.00

(0.0345) (0.0698) (0.1047) (0.1396) (0.01745)
|

Size of right aileron bias failure

Figure 5.23

degrees (radians)

The largest decision function values
produced by right aileron bias failures

~108-



Largest Decision Function Values (X1000)

20.00

80.00

40.00 50.00 60.00 70.00°

30.00

10.00

‘oo

.00 5.00 10.00 15.00 20.00 25.00

Size of right flap bias failure (percent)

Figure 5.24 The largest decision function values produced
by right flap bias failures

-109-

30.00



Largest Decision Function Values (X10)

300.00 350.00 400.00

250.00

150.00  200.00

50.00

&.oo
8

-§.00  -10.00 -15.00 -20.00 -25.00
(-0.0873) (-0.1745) (-0.2618) (-0.3491) (-0.4363)
Size of rudder bias failure [
degrees (radians) }

Figure 5.25 The largest decision function values T
produced by rudder bias failures

=110-




Table 5.4 Symbols for time after onset of bias failure

Symbol Time After Onset of Bias Failure
@ 1 sec
a 2 sec
+ 5 sec
X 10 sec
& 15 sec
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to detect. However, -.1222 rad (-7 deg) elevator, 0.1571 rad (9 deg)
right aileron, and 21% right flap bias failures, should be detectable in
approximately 1 s. Ignoring thunderstorm turbulence, a threshold of
10,000 would be reasonable. With this threshold, a -0.0873 rad (-5 deg)
elevator bias failure, a 0.1134 rad (6.5 deg) right aileron bias failure,

and a 15% right flap bias failure could be detected in 1s.

In the rudder bias failure test case discussion, a separate detec-
tion threshold for the rudder decision function of 400 was motivated.
This threshold may be reasonable for some operating envelope about the
nominal flight condition that excludes thunderstorm turbulence and large
flap deflections. With this threshold, a -0.07 rad (-4 deg) bias failure
should be detected in approximately 15 s and a -0.1396 rad (-8 deg) bias

failure in approximately 1 s.

As detection thresholds will be selected to minimize false alarms,
the size of the decision functions produced by off-nominal, no-failure
flight conditions will determine the thresholds. Since these plots ap-
proximately define the detection performance or a given detection thresh-
0ld, they help determine the off-nominal flight conditions for which the

decision functions need to be reduced to achieve acceptable performance.

While these figures are only for bias failures, they still might
be of use to estimate the detectability of other failures whose failure
modes can be reasonably approximated by a bias failure. For example, a
failure that ramps at 0.01745 rad/s (1 deg/s) to a bias failure of 0.0873
rad (5 deg) will produce larger decision functions than a 0.0873 rad (5

deg) failure that occurs 5 s after the ramp-to-a-bias failure.

It should be emphasized that Figures 5.22 - 5.25 are only valid in
a neighborhood of the nominal airspeed of 77.2 m/s (150 knots). At lower
airspeeds, the decision functions are likely to be smaller for the same
magnitude failure as less aerodynamic forces are produced for the same
deflection. Similarly, the decision functions are likely to be larger

for the same magnitude failure at higher airspeeds.
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Similar plots of the smallest failure isolation decision functions
as a function of the time after failure and the failure magnitude can be
used to determine the isolation performance. 1In Figure 5.26, the minimum
of the isolation decision functions DF12, DF13, DF14, DF15, and DF16 are
plotted for two elevator bias magnitudes of -0.01745 rad (-1 deg) and
-0.0873 rad (-5 deg). Approximate curves for the minimum of these isola-
tion decision functions for five times after the failure onset are also
shown in the fiqure. No effort was made to define what might be reason-

able isolation thresholds. VYet, even small failures on the order of

0.045 rad (2.58 deg) should be easily and quickly isolated.

The minimum of the isolation decision functions DF21, DF23, DF24,

DF25, and DF are plotted for the right aileron bias failure test cases

26
in Figure 5.27. Even for a small isolation threshold of 100, only 0.07
rad (4 deg) and larger bias failures that can be isolated. The OSGLR

algorithm might be able to quickly isolate large right aileron failures

if an isolation threshold of 500 was reasonable,

The minimum of the isolation decision functions for the right flap

bias failure test case DF51, DF52 53 547 and DF56 are plotted in

Figure 5.28. While larger than the minimum of the isolation decision

, DF__, DF
functions for the right aileron failures, an isolation threshold of less

than 400 would be required to isolate 10% and smaller bias failures.

No figure for the rudder bias failure test cases is shown because
there might be circumstances where a rudder failure would be detected and
isolated even though the decision functions for the other surfaces are
larger due to an off-nominal flight condition. The detection and isola-
tion of a rudder failure would be based simply on the rudder decision

function unless another failure has already been detected.

5.5 Summary and Conclusions

The OSGLR algorithm, based upon the linear model developed for the
nominal cruise flight condition of 77.2 m/s (150 knots) at 304.8 m
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(1000 ft), was tested with sensor errors and dynamics at a number of
off-nominal flight conditions. These off-nominal flight conditions
included maneuvers, nonzero flap deflections, off-nominal turbulence
intensity levels, and steady winds. Also, a number of bias failures were

tested. Based on these tests, the following conclusion have been made.

O Sensor errors and dynamics have a negligible effect on the

performance of the OSGLR algorithm.

© Including thrust as an input to the linear model reduces the

mismodeling caused by off-nominal thrust.

© Mismodeling increases as the actual dynamic pressure diverges

from the nominal dynamic pressure.

o The 77.2 m/s (150 knot) linear model is not valid for large
(75% and greater) flap deflections. The decision functions
produced by these flap deflections were 50,000 and larger. The
same linear model also had difficulty in the neighborhood of
51.44 m/s (100 knots) and slower. In one case, the decision
functions produced in this low airspeed environment were almost
40,000. Setting thresholds to accommodate these large decision
functions would result in fair to poor FDI performance. For
example, a threshold of 60,000 could detect a -0.1571 rad
(-9 deg) elevator bias failure, a 0.1396 rad (8 deg) right
aileron bias failure, and a 20% right flap bias failure in 2
s. Yet, flap deflection greater than 75% would still produce
false alarms with this threshold.

o The cruise linear model was adequate for maneuvering flight.
Ignoring airspeeds in the neighborhood of 51.44 m/s (100 knots)
for which the linear model is not valid, the largest decision
function produced by maneuvering f£light was 4500 for the maxi-
mum rate-of-climb test case. Therefore, a threshold of 10,000
in the neighborhood of 77.2 m/s (150 knots) and excluding

larger flap deflections should provide excellent false alarm
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performance. With this threshold, a -0.0873 rad (-5 deq)
elevator bias failure, a 0.1134 rad (6.5 deg) right aileron
bias failure, and a 15% right flap bias failure could be
detected in 1s. A -0.0611 rad (-3.5 deg) elevator bias
failure, a 0.0611 rad (3.5 deg) right aileron bias failure, and

an 8% right flap failure could be detected in 2s.

Light turbulence of intensity 0.3 m/s (1 ft/s) and steady winds
did not significantly effect the performance of the OSGLR
algorithm, Thunderstorm turbulence of intensity of 6.4 m/s (21
ft/s) may possibly cause decision functions on the order of
6,000 to 8,000 when the aircraft is flying at the nominal
cruise flight condition. Thunderstorm turbulence combined with
maneuvers will most likely produce decision functions greater
than 10,000. Some compensation for thunderstorm turbulence may

be desirable.

A separate detection threshold is required for the rudder deci-
sion function. A rudder failure produces a rudder decision
function several orders of magnitude smaller than the same
magnitude elevator and aileron failures. Therefore, if the
same detection threshold used for the other surface was also
used for the rudder, rudder failures would not be detectable.
Fortunately, the rudder decision function is much smaller than
the other decision functions in the off-nominal, no-failure
cases tested. A detection threshold of 400 for the rudder
decision function appears reasonable if low airspeeds in the
neighborhood of 51.44 m/s (100 knots), large flap deflections,
and thunderstorm turbulence are excluded. With this threshold,
~0.1396 rad (-8 deg) rudder bias failure can be detected in 1
s, a -0.1047 rad (-6 deg) bias failure in 2 s and a -0.0648 rad
(-4 deg) in 10 to 15 s.
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o Isolation of elevator failures should be straightforward. It
may be possible to isolate large aileron and flap failures with
the OSGLR algorithm. Failure test cases at off-nominal flight
conditions are required to define adequate isolation thresholds
for the ailerons and the flaps. Rudder failures should be
simultaneously detected and isolated when the rudder decision
function reaches the rudder detection threshold unless another

failure has already been detected.

The next section will examine reducing the decision function pro-

duced at off-nominal dynamic pressures and nonzero flap deflections.
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SECTION 6

SCHEDULING

6.1 Introduction

Airspeeds of 51.44 m/s (100 knots) and less and flap deflections
of 75% and greater were shown in Section 5 to produce large no-failure
decision functions with an OSGLR algorithm based on the 77.2 m/s (150
knots) cruise linear model. The large decision functions are due to the
fact that the 77.2 m/s cruise linear model does not adequately character-
ize these off-nominal flight conditions. The scheduling of the linear
models of the aircraft, the steady-state age-weighted filter gain and
covariance matrices, and the steady-state OSGLR influence and information
matrices is considered in this section as a means of reducing these

mismodeling effects.!

First, a simple approach of scheduling zero flap
deflection linear models only is described and tested with no-failure
cases. Scheduling for nonzero flap deflections is then examined. The
effect of scheduling only the linear models on the detection of failures
is also briefly investigated. Finally, the scheduling of the
age-weighted filter and OSGLR matrices in addition to the linear models

is discussed.

6.2 Scheduling of Zero Flap Deflection Linear Models

Mismodeling was found in Section 5 to increase as the dynamic

pressure deviated more from the nominal value. Scheduling only the

1 a summary of the test cases is presented in Appendix A for easy

reference and comparison.
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linear models used by the age-weighted filter as a function of dynamic

pressure was investigated as a means of reducing this mismodeling. (See
Appendix B for further details.) By reducing the effects of mismodeling
as reflected in the residwal of the age-weighted filter, the no-failure
decision functions should also be reduced. A linear model is chosen for

use to minimize the ratio

where @ is the actual dynamic pressure and ﬁh. is the nominal dynamic
pressure of the ith linear model. :

Three linear models corresponding to cruise flight conditions at
304.8 m (1000 ft) for airspeeds of 51.44 m/s (100 knots), 77.2 m/s (150
knots), and 102.9 m/s (200 knots) were developed to test this simple
scheduling approach. Using these linear models, the scheduling approach
was tested on the acceleration from 51.44 m/s test case. The decision
functions for this test case with the age-weighted filter and OSGLR
steady-state matrices corresponding to the 77.2 m/s linear model are
shown in Figure 6.1. The decision functions for the same test case with
no scheduling of the linear model are shown in Figure 5.5. The decision
functions are reduced by the scheduling approach except in the neighbor-
hood of 77.2 m/s (41 s) with the maximum decision function levels reduced
from 39,000 to 11,500. One possible reason the decision functions are
still large at the beginning of the test case is that the dynamic
pressure drops 57% below the nominal value of the 51.44 m/s linear model
in the first several seconds. (As mentioned earlier, this drop in
dynamic pressure is caused mainly by a large turbulence level and also by
the control surfaces moving to control the aircraft as the control system

starts up). Another linear model with nominal airspeed less than 51.44
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m/s may reduce the decision functions at the beginning of the test case

further.

Finding a steady-state cruise flight condition at low speeds about
40 m/s (77.75 knots) with no flap deflection was not possible as the
angle of attack required exceeded the validity of the simulation.
Instead, a linear model corresponding to a cruise flight condition of
46.3 m/s (90 knots) at 304.8 m (1000 ft) was developed and tested. Using
the 46.3 m/s linear model as the fourth model with the age-weighted
filter and OSGLR steady-state matrices corresponding to the 77.2 m/s
linear model produced the decision functions shown in Figure 6.2. Even
though the dynamic pressure for the 46.3 m/s model (1274.6 N/m2 or
26.62 lbs/ftz) was not significantly lower than the dynamic pressure
for the 51.44 m/s model (1573.8 N/m2 or 32.87 lbs/ft2), adding the
46.3 m/s linear model was sufficient to reduce the decision functions
from 11,500 to 3,500 during the first 15 s of the test case. The largest
decision function levels are reached at approximately 20 s when the age-
weighted filter switches from the 51.44 m/s linear model to the 77.2 m/s

linear model.

Another reason that the decision functions are not reduced even
more at low speeds is that the 51.44 m/s linear model does not as accu-
rately describe the aircraft dynamics at its nominal flight condition as
well as the 77.2 m/s linear model characterizes the 77.2 m/s cruise
flight condition. The decision functions for a no-failure test case with
the aircraft flying at 51.44 m/s and 304.8 m using the 51.44 m/s linear
model and associated steady-state Kalman filter and OSGLR matrices (no
age-weighting) are shown in Fiqure 6.3. These decision functions are
significantly larger than the decision functions for a no-failure test
case at 77.2 m/s with the 77.2 m/s linear model and associated Kalman
filter and OSGLR steady-state matrices (no age-weighting) shown in Figure
6.4, Either the nonlinearities are much greater at slow airspeeds and
high angles of attack or the linear model needs improvement to better

describe the aircraft dynamics., Even with this large mismodeling, the
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51.44 m/s model used with an age-weighting of time constant 3 s is ade-
quate to reduce the effects of mismodeling for the acceleration from
51.44 m/s test case. Some effort was made to determine why the mismodel-
ing is larger for the 51.44 m/s linear model in the limited time avail-

able but without success.

Despite the inadequacy of the 51.44 m/s linear model, scheduling
of only the linear models used by the age-weighted filter was effective

in reducing the decision functions at off-nominal dynamic pressures.

6.3 Nonzero Flap Deflections

Flap deflections of 75% and larger were shown in Section 5 to pro-
duce very large no-failure decision functions using only the 77.2 m/s
linear model. The scheduling of zero-flap linear models as discussed in
the previous subsection actually increases the no-failure decision func-
tions. The decision functions for a 50% flap deflection test case with
the scheduling of the 46.3, 51.44, 77.2, and 102.9 m/s linear models and
the age-weighted filter and OSGLR steady-state matrices corresponding to
the 77.2 m/s model are shown in Figure 6.5. The flaps are deflected
approximately 10%/s, starting at 5 s, until the desired deflection is
achieved. Extending the flaps causes the airspeed to drop. With the
scheduling of the linear models used by the age-weighted filter as a
function of dynamic pressure, linear models more accurate at low
airspeeds than the 77.2 m/s model are used. Interestingly, as a result,
the decision functions increase. The 77.2 m/s linear model, for some
reason, is not as sensitive to the combination of the flaps extending and
the airspeed dropping as the 51.44 m/s linear model is to the flaps
extending. Similarly, scheduling with zero-flap deflection linear models
does not help the 75% and 100% flap deflection test case. Scheduling

based on flap deflection as well as dynamic pressure appears necessary.

Using linear models of 38.6, 51.44, and 77.2 m/s with a nominal
flap deflection of 50% and age-weighted filter and OSGLR steady-state
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matrices corresponding to the 77.2 m/s with 50% flap linear model signi-
ficantly reduced the decision functions for the 50% and 75% test cases
(Figures 6.6 and 6.7). The sudden increase in one of the decision func-
tions in Figure 6.7 may be caused by a switch from the 77.2 m/s to the
51.44 m/s models. The decision functions for the 100% flap test case
using the 50% flap linear models, however, were larger than with the
zero-flap deflection linear models. Using linear models with 100% nomi-
nal flap deflection to reduce the decision functions for the 100% flap
test was also briefly investigated without success (Figure 6.8). More
effort is required, though, to determine why scheduling the 100% flap
linear models was not adequate for the 100% flap test case. Also, the
transition from zero to nonzero flap deflections still needs to be test-

ed.

6.4 Failure Detection and Scheduling

The scheduling of linear models has been generally effective in
reducing the effects of mismodeling on the no-failure decision func-
tions. Detecting failures with the linear models scheduled is briefly
considered here. Two failures at off-nominal flight conditions are pre-
sented. The first case igs a -0.0873 rad (-5 deg) elevator failure at a
cruise flight condition of 90.0 m/s (175 knots). The decision functions
for this test case with the linear models scheduled and the 77.2 m/s
Kalman filter and OSGLR steady-state matrices are shown in Figure 6.9.
The failure causes a decrease in dynamic pressure and therefore a switch
from the 102.9 m/s linear model to the 77.2 m/s linear model 5 s after
the failure occurred. The change of linear models does not cause any
noticeable change in the decision functions. However, this is not true

for the second case.

The decision functions of a -0.0873 rad (-5 deg) elevator failure
at a cruise flight condition of 64.3 m/s (125 knots) is shown in Figure
6.10. For the first five seconds following the failure, the decision

functions increase. However, when the linear model used by the age-~
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weighted filter switches from the 77.2 m/s model to the 51.44 m/s model
because the dynamic pressure has decreased, the decision functions
decrease signficantly. The decision functions increase again when the
dynamic pressure increases and the 77.2 m/s model was used again. Two
possible reasons for this undesirable behavior are that the 51.44 m/s
linear model is inadequate or that the 77.2 m/s age-weighted filter and
OSGLR steady-state matrices are not appropriate for the 51.44 m/s linear
model. The second possibility is eliminated as a reason for the decrease
in the decision functions in the following subsection on scheduling of
the age-weighted filter and OSGLR steady-state matrices. The 51.44 m/s
linear model was shown in Section 6.2 not to model the 51.44 m/s cruise

flight condition well so the first reason is the probable explanation.

6.5 Scheduling of Age-Weighted Filter and OSGLR Steady-State Matrices

Scheduling the linear models used by the age-weighted filter while
assuming constant age-weighted filter and OSGLR steady-state matrices is
unlikely to be acceptable over an entire flight envelope. Therefore, the
scheduling of the steady-state age-weighted filter gain and residual
covariance matrices as well as the steady-state OSGLR influence and
information matrices was also investigated. (See Appendix B for more
details.) The simple scheduling approach used for the linear models was

employed (see Section 6.2).

The decision functions for the -0.0873 rad (-5 deg) elevator fail-
ure at 64.3 m/s (125 knots) is shown in Figure 6.11. There are several
discontinuities in the decision functions due to changes in the steady-
state information matrix used to calculate the decision functions. 1In
fact, the elevator decision function jumps to 1.8 x 106. A smaller
vertical scale was chosen to show that even with the correct 51.44 m/s
age-weighted filter and OSGLR steady-state matrices, the decision func-
tions decay to very small values with the 51.44 m/s linear model. As
discussed in the last subsection, the most probable reason for this unde-~

sirable behavior is a poor 51.44 m/s linear model.
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The discontinuities resulting from changes in the steady-state in-
formation matrix reveal the difficulty with the simple approach of sched-
uling the steady-state information matrix. Using the simple scheduling,
the linear model as well as the age-weighted filter and OSGLR steady-
state matrices all change at the same time. The difficulty is that the
steady-state information matrix is not valid for the o0ld linear model,
age-weighted filter matrices, and the OSGLR influence matrix, all of
which were used to produce the information vectors up to the time of the
switch of models. 1In order to avoid this difficulty, one might simply
use a constant information matrix. However, in implementing this algo-
rithm over an entire flight envelope, some change in the information

matrix will most likely be required.

Another scheduling approach of linearly interpolating between the
linear models and their associated age-weighted filter and OSGLR matrices
based upon the actual dynamic pressure was tried. The decision functions
for the -0.0873 rad (-5 deg) elevator failure at 90.0 m/s (175 knots)
test case for this scheduling is shown in Figure 6.12. The effect of
turbulence on the dynamic pressure can be seen in the elevator decision
function. The dynamic pressure could be smoothed, however. Still, this
scheduling approach is not very satisfactory either. The elevator deci-
sion function for this test case after the failure occured using the 77.2
m/s model and associated steady-state age-weighted filter and OSGLR
matrices is approximately 55,000. For the 102.9 m/s model and associated
steady-state age-weighted filter and OSGLR matrices, the elevator deci-
sion function is approximately 130,000. For the linear scheduling of the
steady-state information matrix to have validity, one would expect the
elevator decision functions to be within the range of 55,000 to 130,000.
Instead, the elevator decision function is much larger. Scheduling the
steady-state information matrix probably will not be satisfactory when-
ever the linear model, age-weighted filter gain and covariance matrices
and OSGLR influence matrix are changing. Therefore, the information mat-

rix probably needs to be time-varying.
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6.6 Summary and Conclusions

Scheduling of the linear models used by the age-weighted filter as
a function of dynamic pressure was investigated as a means of reducing
the mismodeling effects in the residuals of the filter and, therefore,
reducing the no-failure decision functions. The age-weighted filter
steady-state gain and covariance matrices and the OSGLR steady-state in-
fluence and information matrices were assumed to be constant and corre-
sponded to one of the linear models scheduled. The scheduling approach
simply selected the linear model whose dynamic pressure was closest to
the actual dynamic pressure. Using this scheduling approach, the deci-
sion functions produced by the acceleration from 51.44 m/s test case were
reduced from 39,000 to 6,000. This reduced decision function levels are
comparable to the decision function levels produced by a maximum rate-
of-climb maneuver. Further reductions are possible if a more accurate

51.44 m/s linear model can be developed.

Scheduling linear models as a function of dynamic pressure actual-
ly increased the decision function produced by nonzero flap deflections
in some cases. As these no-failure decisions are large, scheduling on
flap deflection is also necessary. Using linear models with a nominal
flap deflection of 50% reduced the decision functions for the 50% and 75%
flap deflection test cases to less than 3,000. (The age-weighted filter
and OSGLR steady-state matrices corresponded to one of the 50% flap
linear models.) However, the decision functions produced by 100% flap
deflection test case were very large even with the 50% flap linear
models. Using linear models with a nominal flap deflection of 100% did
not reduce the decision function levels for the 100% flap test case
either. More effort is required to explain why scheduling 100% flap
linear models was not sufficient to reduce the decision functions

produced by the 100% flap test case.

Two off-nominal elevator failure cases were tested with the linear
models scheduled. One case showed no difficulty in detecting the failure

with the scheduling. The other case further demonstrated the need for a
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better 51.44 m/s linear model. Further testing of failure cases is re
quired to determine the effect of scheduling only the linear models on

detecting and isolating failures.

The scheduling of the age-weighted filter steady-state gain and
residual covariance matrices and the OSGLR steady-~state influence and
information matrices was also briefly investigated. Some scheduling of
these matrices will be necessary for the OSGLR algorithm to be extended
over the entire flight envelope. Two scheduling approaches were tested:
the simple approach described earlier and linear interpolation. The same
scheduling approach was used for both the linear model and the age-
weighted filter and OSGLR steady-state matrices. The results from sever-
al failure cases using both scheduling approaches suggested that time-

varying information matrix may be required.

The information matrix reflects the uncertainty in the information
vector. The two scheduling approaches assume the change in uncertainty
in the information vector caused by the change in the filter gain and
residual covariance matrices and the OSGLR influence matrix is instantan-
eous. However, there is a time lag before the effect of the changes in
the gain, covariance, and influence matrices is reflected in the informa-
tion vector. Further work is needed to define the extent of the schedu-
ling required for the age-weighted filter gain and residual covariance

matrices and the OSGLR influence matrix.
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SUMMARY AND CONCLUSIONS

This report has evaluated the orthogonal series generalized like-
lihood ratio (OSGLR) test for detecting and isolating commercial aircraft
control surface and actuator failures. The OSGLR algorithm was chosen
based on a preliminary evaluation of three failure detection and isola-
tion (FDI) algorithms: the detection filter, the generalized likelihood
ratio test, and the OSGLR test. The OSGLR test offered the best perfor-
mance with moderate computational requirements. However, the OSGLR algo-
rithm was also more to sensitive to modeling errors than the other two
algorithms. This preliminary evaluation is summarized in Section 2. 1In
addition, FDI algorithms are surveyed in Section 3 searching for addi-
tional practical techniques that might be applicable for Restructurable
Controls. The most promising algorithms appeared to be those already .
considered and, therefore, the effort concentrated on the OSGLR algo-

rithm.

For the OSGLR algorithm to be feasible, it was necessary to im-
prove its robustness to model uncertainty. Methods of improving the ro-
bustness of the algorithm were examined with the incorporation of age-
weighting into the algorithm being the most effective approach, signifi-
cantly reducing the sensitivity of the algorithm. With age-weighting,
the covariance of the past measurements and residuals is increased, caus-
ing the algorithm to rely more on the new measurements than the past mea-

surements.

In the preliminary evaluation, the algorithms were tested basical-
ly at the nominal cruise flight condition of 77.2 m/s (150 knots) at
304.8 m (1000 ft). In this more in-depth evaluation, a number of no-
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failure test cases at off-nominal flight conditions including maneuvers,
nonzero flap deflections, different turbulence levels and steady winds
were used to test the OSGLR algorithm. Maneuvering flight typical of
commercial aircraft near the nominal dynamic pressure, light and nominal
turbulence levels, and steady winds did not produce significant no-
failure decision functions. Large (75% and greater) flap deflections and
airspeeds of 51 m/s (100 knots) and less produced large no-failure deci-
sion functions. The 77.2 m/s (150 knots) cruise linear model was not

valid for these flight conditions.

Since detection thresholds will be chosen such that false alarms
are improbable, the no-failure decision functions produced by the off-
nominal flight conditions determine the realistic detection thresholds
possible in the neighborhood of the nominal flight condition. The detec-
tion performance was examined by running a number of failure test cases,
mostly at the nominal flight condition. For maneuvering flight near the
nominal dynamic pressure, small flap deflections, light and nominal tur-
bulence levels, and steady wind, selecting a threshold to detect 5 deg
elevator, 7 deg aileron, 8 deg rudder, and 15% flap bias failures in 1 s
at 77.2 m/s (150 knots) appears possible. If there is no compensation
for thunderstorm turbulence, a larger detection threshold would be re-

quired resulting in slightly worse detection performance.

Finally, extending the validity of the algorithm to off-nominal
airspeeds and large flap deflection flight conditions by scheduling was
considered. The approach investigated was to schedule the linear models
used by the age-weighted filter, choosing the linear model with the
nominal dynamic pressure closest to the actual dynamic pressure. The
steady-state age-weighted filter and OSGLR matrices corresponded to one
of the linear model scheduled. Scheduling on dynamic pressure was used
because modeling errors increased with increasing off-nominal dynamic
pressure. This approach successfully reduced the no-failure decision
functions produced at low airspeeds. Scheduling on flap deflection was

also investigated with some success to reduce the no-failure decision
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functions produced by large flap deflections. Since simply scheduling
the linear models over the entire flight envelope of a commercial air-
craft is unlikely to be adequate, scheduling of the age-weighted filter
gain and covariance steady-state matrices and the OSGLR influence and in-
formation steady-state matrices in the same manner as the linear models
was briefly investigated. The scheduling of the steady-state information
matrix was unsatisfactory; a time-varying information matrix may be re-
quired. Scheduling of the linear model matrices, the age-weighted filter
gain and covariance steady-state matrices, and the OSGLR influence

steady-state matrix, however, appears feasible.

Depending on the requirements of restructuring the control system,
the OSGLR algorithm should be capable of detecting aircraft control sur-
face failures for Restructurable Controls application. Moderate and
large failures can be detected quickly. Small failures require longer
detection times or cannot be detected. However, failures that are diffi-
cult to detect may not be important and could be partially compensated
for by a control system robust to small control surface failures. Isola-
tion of some failures may be difficult if there are several surfaces
which produce similar effects on the aircraft. Even for these surfaces,
isolation may be possible if the failure is moderate or large. If re-
structuring the control system requires isolation for all failures, posi-
tion sensors on some of the surfaces will most likely be required.
Finally, extending the algorithm over the entire operating envelope of a
commercial aircraft, while not demonstrated, appears feasible based on
the experience of extending the algorithm to a number of flight condi-

tions.

Further investigation of the scheduling of the linear models and
the implementation of the OSGLR algorithm is required, though, before the
algorithm can be extended over the entire envelope. Some of the issues

requiring consideration are:

o the number of linear models required to cover the entire flight

envelope.
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o the complexity of the implementation approach versus

performance.

« 1Is the steady-state implementation of the O0SGLR
algorithm (except for the information matrix)
adequate or is the time-varying implementation

necessary?

+ Are there significant performance benefits to a

time-varying implementation?

e 1If scheduling is adequate, how much scheduling of the
age~-weighted filter gain and covariance matrices and

the OSGLR influence matrices is required?

o the computational and storage requirements of the different

approaches.

< Can the requirements be reduced by, for example,

fitting scheduled matrices?

These issues are important since there is not much experience in imple-

menting multivariable systems for practical real-time use.
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APPENDIX A

SUMMARY OF TEST CASES

This appendix contains a table (Table A-1) summarizing the test
cases presented in this report for easy reference and comparison. Only
the steady-state implementation of the OSGLR algorithm was tested. 1In
addition, all the test cases included the effects of sensor noise,

errors, and dynamics.
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APPENDIX B

SCHEDULING IMPLEMENTATION DETAILS

B.1 Introduction

This appendix describes in more detail the scheduling considered
in this report. First, the linear model formulation and the OSGLR
steady-state equations will be presented and then the scheduling of the

linear models and OSGLR steady-state algorithm described.

B.2 Linear Model Formulation

The continuous-time linear model can be written

M = £(x_,u) + AMK + B (B.1)
y = g(go,go) + CA§ + DAE (B.2)
where
x = _f.()-{,g) (B.3)
Yy = glx,y) (B.4)

are the nonlinear state differential and output equations. x and

u_ are the nominal state and input vectors. Ax and M are defined to be

b

n
[
[

(B.5)

g

11}
1=

1

(B.6)
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An equivalent discrete-time linear model can be written

Ax(k+1)

£f.(x ,u) + oax(k) + BMu(k) (B.7)
-d =o' -0 - -

y(k) g4(x su ) + CAx(k) + Dau(k) (B.8)

where the matrix B now is the discrete state input matrix (consistent

with Eq. (2.17)). The discrete linear model may be rewritten as

x(k+1) #x(k) + Bu(k) + g(k) (B.9)

y(k) Cx(k) + Du(k) + h(k) (B.10)

by using Eqs. (B.5) and (B.6). The constant bias vectors, g(k) and h(k),

are given by

gk) = f(x,u) +x - & - Bu_ (B.11)
lj(k) = gd(J_(o'Eo) - C)_(o - DEO (3012)

B.3 Steady-State OSGLR Equations

The steady-state OSGLR equations consist of the steady-state age-
weighted filter equations and the OSGLR information vectors and decision

function equations.

The steady-state age-weighted filter equations are

x"(k+1) = &*(k) + Bu(k) + g(k) (B.13)
xt(k) = x"(k) + Ky(k) (B.14)
yk) = yik) - y(k) (B.15)
y(k) = Cx(k) + Du(k) + h(k) (B.16)



The steady-state information vector equation is
1 T -1
X(k+1) = 'S'A¢l<(k) + G'M  y(k+1) (B.17)

where s is the age~weighting constant, A¢ is the basis function
transition matrix, G is the steady-state influence matrix, and M is the

residual covariance matrix (with the effects of age-weighting included).

The decision function is given by

DF(k) = y (k) s ' x(k) (B.18)

where S is the steady-state information matrix.

B.4 Scheduling

The scheduling approach given the most consideration was the
approach of scheduling the linear model used by the age-weighted filter
(Eqs. B.13 and B.16) as a function of dynamic pressure. At each time
step, the linear model whose nominal dynamic pressure was closest to the
actual dynamic pressure was chosen. While scheduling of all the ¢, B, C,
and D matrices and the g and h vectors which represent the linear model

may not be necessary in practice, this was the approach taken in this

report.

The scheduling of the steady-state age-weighted filter gain and
residual covariance matrices (K and M respectively) and the steady-state
OSGLR influence and information matrices (G and S respectively) was also
briefly examined. Scheduling of the A¢ matrix and the age-weighting
factor s is not necessary as they remain constant. Actually, the product
GTM-1 found in Eq. B.17 was scheduled instead of scheduling the steady-

state influence and residual covariance matrices (G and M) separately.
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