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ABSTRACT

We consider the problem of uniformly distributing the load of a parallel program
over a multiprocessor system. We analyze a program whose structure permits the
computation of the optimal static solution. We then describe four strategies for load
balancing and compare their performance.

The four strategies are (1) the optimal static assignment algorithm which is
guaranteed to yield the best static solution, (2) the static binary dissection method which
is very fast but sub-optimal (3) the greedy algorithm, a static fully polynomial time
approximation scheme, which estimates the optimal solution to arbitrary accuracy and
(4) the predictive dynamic load balancing heuristic which uses information on the
precedence relationships within the program and outperforms any of the static methods.

It is also shown that the overhead incurred by the dynamic heuristic (4) is reduced
considerably if it is started off with a static assignment provided by either (1), (2) or (3).

Supported by NASA Contracts NASl·11010 and NASl-18101 while the authors were in residence at
the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research
Center.
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1. Introduction

Efficient utilization of parallel computer systems requires that the task or job being
executed be partitioned over the system in an optimal or near optimal fashion. In the
general partitioning problem, one is given a multicomputer system with a specific inter­
connection pattern as well as a parallel task or job composed of modules that communi­
cate with each other in a specified pattern. One is required to assign the modules to the
processors in such a way that the total execution time of the job is minimized.

An assignment is said to be static if modules stay on the processors to which they
are assigned for the lifetime of the program. A dynamic assignment, on the other hand,
moves modules between processors from time to time whenever this leads to improved
efficiency.

Given an arbitrarily interconnected multicomputer system and an arbitrarily inter­
connected parallel task, the problem of finding the optimal static partition is very
difficult and can be shown to be computationally equivalent to the notoriously intract­
able NP-Complete problems [1]. However, many practical problems have special struc­
ture that permits the optimal solution to be found very efficiently.

In this paper we will compare the performance obtained through the use of a
dynamic load balancing method, a suboptimal but very inexpensive static load balancing
method and the optimal static load balancing on a problem with a structure that per­
mits the computation of the optimal balance. We also consider a fully polynomial time
approximation scheme, the solution of which can be made to approach the optimal load
balance. These methods for balancing load are suitable for distinct but overlapping
varieties of problems. These problems can arise, among other places, in the solution of
systems of linear equations using point or block iterative methods, in problems of adap­
tive mesh refinements, as well as in time driven discrete event simulation. We describe
our experience with four different algorithms that we have used to solve a problem for
which all these methods are applicable.

The first method finds the optimal static assignment using the bottleneck path algo­
rithm described in [2]. This algorithm captures the execution costs of the modules or
processes of the task as edge weights in an assignment graph. A minimum bottleneck
path in this graph then yields the optimal assignment. This algorithm has moderate
complexity and is guaranteed to yield the optimal static assignment.

The second method that we evaluate is the binary dissection algorithm which is
derived from the work of Berger and Bokhari [3],[4]. This algorithm is very fast but does
not always yield the optimal static solution.

The third scheme that we consider is based on a widely used greedy method
described in [5], which when combined with a binary search yields an approximate solu­
tion to the static partitioning problem.

Finally we evaluate the predictive dynamic load balancing method developed by
Saltz[6]. This is a dynamic algorithm in that modules are reassigned form time to time
during the course of execution of the parallel program. This heuristic takes the pre­
cedence relationships of the subtasks into account when deciding whether and when to
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relocate modules. This additional information and the capability to relocate dynamically
permits this algorithm to usually outperform the optimal static algorithm.

The following section discusses in detail the problem addressed in this research.
Section 3 contains a brief description of the optimal static algorithm. In Section 4 we
describe the binary dissection algorithm. The greedy algorithm is described in section 5.
Section 6 contains a description of the heuristic dynamic algorithm and Section 7 com­
pares the performance of these four algorithms.

2. Formulation of Problem

We consider the partitioning on a multiprocessor system of a problem which is com­
posed of a number of processes or modules with a predictable, repetitive pattern of
inter-module data dependencies. The computation is divided into steps, and each
module requires data from a set of other modules at step 8-1 to begin the computations
required for step 8.

Problems that exhibit this pattern of data dependence include explicit schemes for
solving partial differential equations [7], iterative and block iterative methods such as
Jacobi and multicolor SOR for the solution of systems of linear equations [8] & [9], and
problems in discrete event simulation [10] and time driven discrete event simulation*.

The importance of good load balancing strategies is accentuated when the work
involved in solving a problem separates naturally into a number of subunits that is rela­
tively small compared to the number of processors utilized, and when partitioning any
one of these subunits across several processors is inconvienient or expensive.

For example, consider the solution of an elliptic partial differential equation through
the use of a block iterative method. The factored submatrices that represent portions of
the domain of the partial differential equation are used repeatedly to iteratively improve
an approximate solution of the equation. The computations that must be performed
using each factored submatrix are forward and back substitution. If there are more fac­
tored submatrices than processors, it may be computationally more efficient not to
spread the forward and back substitutions across processors. If the work required to
iterate using the factored submatrices cannot be evenly divided amongst the processors,
dynamic balancing of load may be useful in preventing processors from becoming idle
due to load imbalances.

Dynamic load balancing becomes particularly desirable in problems in which the
time needed for a process to complete one step is difficult to determine before the prob­
lem is mapped onto a machine, or when the time required to complete a step changes
during the problem's execution.

Consider the simulation of physical processes, either by means of solving a partial
differential equation or by means of a discrete event simulation. The computations relat­
ing to a particular spatial region may be assigned to a specific process which handles all
computations describing events occurring in that region. In the case of discrete event
simulations and methods that solve time dependent partial differential equations using
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an adaptive grid as part of an explicit timestepping scheme, the activity in a given
region may vary during the course of the solution of the problem.

In this paper a method for dynamic load balancing that exploits the repetitive pat­
tern of data dependencies is presented, and is compared with two static load balancing
methods. The first finds the optimal solution exactly using the computationally expen­
sive optimal algorithm or approximately by means of the greedy algorithm and the
second is an inexpensive heuristic.

The static load balancing methods yield a. mapping of modules to processors. The
time required to complete a problem is determined by the processor with the heaviest
load. With the dynamic load balancing method, each module may proceed at a rate
constrained only by the local availability of computational resources and its data depen­
dence on other modules. Load balancing is performed in a way that is explicitly
designed to prevent processor inactivity due to a lack of data availability.

The performance of the dynamic load balancing method may be expected to depend
to some extent on the initial balance of load at the time dynamic load balancing is ini­
tiated. One would expect the performance of the dynamic load balancing method to be
favorably influenced by the use of static load balancing to improve the initial load bal­
ance.

3. The Optimal Static Algorithm

In this section we discuss briefly Bokhari's algorithm for optimally partitioning a
chain structured parallel or pipelined program over a chain of processors [2]. We assume
that a chain structured program is made up of m modules numbered l..m and has an
intercommunication pattern such that module i can communicate only with modules
i +1 and i-I as shown in Fig. 1. Similarly, we assume that the multiprocessor of size
n<m also has a chain like architecture. We work under the constraint that each proces­
sor has a contiguous subchain of program modules assigned to it. Thus the partitions of
the chains have to be such that modules i and i +1 are assigned to the same or adjacent
processors. This is known as the contiguity constraint. The optimal partitioning would
then be the assignment of subchains of program modules to processors that minimizes
the load on the most heavily loaded processor.

The above problem is solved by first drawing a layered graph (Fig. 2) in which
every layer corresponds to a processor and the label on each node corresponds to a sub­
chain of modules. Every layer in this graph contains all subchains of modules i.e. all
pairs <i,j> such that l~i~j~m. A node labeled <i,j> is connected to all nodes
<j+1,k> in the layer below it for all j except 1 and n. All nodes <1,i> in the first layer
are connected to node 8 while all nodes <i,m> in every layer are connected to node t.
Any path connecting nodes 8 and t corresponds to an assignment of modules to proces­
sors. For example the thick edges in Fig. 2 corresponds to the assignment of Fig. 1.

* D. Nicol a.nd J. Saltz, "A Statistical Methodology for the Control of Dynamic Load Balancing," to
be published as an ICASE Report.
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Weights can now be added to the edges of this layered graph as follows. In layer k,
each edge emanating downwards from node <i,i> is first weighted with the time
required for processor k to process nodes i through i which accounts for the computation
time. Now we add the time to communicate between modules band b+1 over the link
connecting processors k and k+1 to the weight of the edge joining node <a.,b> in layer k
to node <b+1,d> in layer k+l. It is clear now that there is a path in this graph
corresponding to every possible contiguous subchain assignment and the weight of the
heaviest edge in a path corresponds to the time required by the most heavily loaded pro­
cessor to finish. Thus to find the optimal assignment, we have to find the path in the
layered graph in which the heaviest edge has minimum weight - the bottleneck path.

The bottleneck path can be found by using the following labeling procedure. Ini­
tially all nodes are given labels L (i) =00 except in the first layer, in which all nodes are
labeled zero. Then starting at the top and working downwards we examine each edge e
emanating downwards from a layer. If this edge connects node a (above) to node b
(below) then replace L(b) by min(L(b),max(W(e),L(a)) where W(e) is the weight asso­
ciated with edge e. Once the graph has been labeled, we then find the edge incident on
node t which has maximum weight. Suppose the edge joining node <i,m> of layer k
with node t has maximum weight, then it means that the bottleneck path would contain
the node <i,m> of layer k and thus modules i through m would be assigned to proces­
sor k. The rest of the bottleneck path can be found in the same manner by working
upwards from layer k to the top.

The number of nodes per layer in the layered graph is O(m2) and thus the total
number of nodes in the graph is O(m2n). The number of edges emanating from a node is
at the most m, thus the total number of edges would be O(m3n). As the labeling algo­
rithm looks at each edge once, therefore the space as well as time required by this algo­
rithm is O(m3n).

4. The Binary Dissection Method

The binary dissection approach to the solution of the basic partitioning problem
addressed in this paper is very efficient in terms of run time and gives solutions that are
very close to ~optimal. This algorithm is a simplified version of the two dimensional par­
titioning strategy developed by Berger and Bokhari [4],[5].

The algorithm proceeds as follows. The given chain of m modules is split up into
two halves such that the difference of the sums of execution costs in each half is
minimum. The two halves are then recursively subdivided as many times as desired.
Clearly, the number of pieces into which the chain can be partitioned must be exactly 2k

where the integer k represents the depth of partitioning.

Thus this algorithm is useful for problems in which the number of processors is a
power of 2. The time required by this algorithm is O(mlogn) for a problem with m
modules and n processors since there can be no more than logn levels of partitioning
with each level requiring at most one access to each module weight.



6

At first sight this algorithm may seem capable of yielding the optimal solution.
This is not always so, as the example in Fig. 3 demonstrates. In the next paragraph we
will find an upper bound on the difference between the optimal solution and the solution
yielded by the binary dissection method.

Let WT represent the sum of the weights of all m modules. A lower bound on the
weight of the heaviest subchain WOPT in the optimal partition will be WT/ n under the
special case when all the n processors are uniformly loaded. Let us designate the weight
of the heaviest module by wmax and the weight of the heaviest subchain assigned to a
processor using the techniques of binary dissection by WMAX' Then whenever a chain is
divided into two parts, the maximum difference between the two halves will be bounded
by Wmax' Thus if n=2 then WMAX ~ WT /2 + wmax/2. Similarly if there are n processors
then an upper bound on WMAX will be:

1 1 1
WMAX ~ WT/n + wmax(-+-+"'+-)

2 4 n

Thus the maximum difference between WMAX and WOPT will be given by the fol­
lowing equation under the assumption that m>n.

•

(1)

5. The Greedy Algorithm

This algorithm is based on a greedy method, which is a widely used technique and
is applied to a variety of problems [3]. Sahni [1] has devised a polynomial time approxi­
mation scheme to solve the knapsack problem using a greedy method while Kernighan
uses a similar approach [11] for finding optimal sequential partitions of graphs. Utilizing
this method one can devise an algorithm which works in stages and at each stage a deci­
sion is made regarding whether or not the next input be included in the partially con­
structed solution. If the inclusion of the next input will result in an infeasible solution
then this is not added to the partial solution. Greedy methods may not necessarily pro­
vide optimal answers. For example consider the binpacking problem: Given a finite set
W={ wl,w2'''''wm } of m different weights, find a partition of W into n disjoint subsets
WI' W2, ... , Wn , such that n is minimum and the sum of the weights in each subset Wi is
no more than a fixed constant. The First Fit algorithm for the above problem is essen­
tially a greedy method in the sense that it tries to place each weight in the lowest
indexed subset as far as possible, but this does not result in the optimal solution [1]. If
however we put an extra condition on the problem that weights Wi and Wi +1 are to be
placed in either the same subset or subsets Wj and Wj +l respectively then the same
greedy approach will be able to find the optimal solution.

The greedy algorithm is based on the function PROBE (described below) and takes
advantage of the fact that the weight assigned to the most heavily loaded processor in
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the optimal partition lies somewhere between WTI nand WTI n + Wmax as discussed in
the previous section. The algorithm selects a trial weight w in the above range and then
uses the function PROBE. The function PROBE(w) returns true if it is possible to parti­
tion the chain of modules into subchains such that the weight of each 8ubchain is less
than or equal to w, the resulting partition is called the greedy partition(w) and false oth­
erwise.
function PROBE(Processors[l..n], Modules[l..m], w):boolean;
begin

i = 1; i = 1; P = 1;
while p~n do

begin
Assign the subchain Modules [i..i] to processor p;
repeat

i=i+1;
until weight of subchain Modules[i..i] > w or i=m;
If i = m (all modules have been assigned) then return(true)j
i = i+1; i = ij p = p+1j

endj
return (false )j

end.

The greedy algorithm then makes a binary search in the range WTln, WTln+wmax
using the above function to find the partition for which the weight of the heaviest sub­
chain is minimum. For each trial weight w the function PROBE has to look at each
module only once. If the above range is resolved to an accuracy of f then the greedy
algorithm will find a greedy partition(w) in time proportional to O(mlog2(wmax/f)) with
the assurance that w is no more greater than the weight of the heaviest subchain in the
optimal assignment by f. It is important to note that the order of the greedy algorithm
is proportional to log(wmaxlf) unlike other fully polynomial time approximation schemes
in which the time complexity is polynomial in 1/f as described in [1].

In the following paragraphs we will prove that if there exists an assignment with
the weight of its heaviest subchain equal to w then the procedure PROBE will always
find that or an equivalent assignment assuming that subchains with no modules in them
(empty subchains) are allowed.

Definition: The weight 0/ a partition is the weight of its heaviest subchain.

Notation:

'irw,n

a partition with weight wand n subchains.

"'tw,n

a greedy partition with weight w and n subchains.
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J1. w,n ,Ie

a mixed partition with weight wand n subchains in which. the partition up to the
first k subchains is greedy and the remaining partition ~~y or may not be greedy.

Observe that J1. w,n,O=1rw,n and J1. w,n,n="tw,n'

Claim 1:

Proof:

1.

2.

Claim 2:

Proof:

Result:

J1. w,n,Ie can always be transformed into J1. w,n,Ie+1

Move the right hand partition of Elubchain k+l to the right until any further
movement would cause the weight of subchain k+l to ~xceed w or exhaust
the modules.

If this is possible without disturbing the right halld partition of subchain
k+2 then J1. w,n,Ie been transformed into J1.w,n,Ie+l and the claim is correct.

If during the course of this movement the r.h. partition of subchain k+l
coincides with the r.h. partition of subchain k+2, this means that subchain
k+2 is now empty (which is permitted). Continue movement of both parti­
tions together, combining with any further partitions that may be encoun­
tered. When the threshold point is reached, 1:"w,n,k been transformed into
J1.w,n,Ie+1' one or more subchains to the right of k+l are empty but the claim
is still correct.

If there exists a 1rw,n then there must also exist a "tw,n'

Recall that 1rw,n =J1. w ,n,O'

By repeatedly applying transformation (1) above we can transform:

If there exists an assignment of weight w then the procedure PROBE will
find that or an assignment of equal weight.

6. The Predictive Dynamic Load Balancing Method

We assume that a computation is composed of a fixed numher of computational
processes or modules. The computation is divided into steps, and each module requires
data from a set of other modules at step 8-1 to begin the computations required for step
8. Each module may proceed at a rate constrained only by the time required for the .'
processor to perform the computations required by the modul~, the local availability of
computational resources and data dependence on other modules. Load balancing is per-
formed in a way that is explicitly designed to prevent processor inactivity due to a lack
of data availability.

The potential work of a processor is defined as the amount of time that will be
required to advance all modules in a processor as many steps as possible given the data
currently available from other processors. The parallel efficiency of a processor may be
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defined as the percentage of time a processor spends performing the computations
required by the modules assigned to it. Transfers of modules between processors impact
parallel efficiencies in a machine dependent way. The communication time required to
transfer a module from one processor to another along with the degree to which that
communication can be masked with computation are essential factors in this depen­
dency.

In the predictive dynamic load balancing method to be discussed here, load is
shifted between processors in a way that attempts to equalize the potential work in each
processor. When the potential work of a processor falls below a predetermined thres­
hold, load balancing is considered. A module is shifted from a neighboring processor
when the neighboring processor has stored an amount of potential work greater than or
equal to the threshold plus a pre-determined safety factor. If more than one neighboring
processor fits this criterion, the processor with the largest potential work contributes a
module.

The ability to efficiently calculate the potential work in a processor is central to the
usefulness of this method. Simple and inexpensive methods for calculating potential
work will now be described. The potential work stored in a processor may have to be
calculated from scratch in some situations. When the computations involved in solving
a problem are initiated or when modules are shifted in or out of a processor after load
balancing, one must take into account both the pattern of data dependencies within a
processor and the availability of data from other processors in order to calculate poten­
tial work. Given a processor which has assigned to it a value for potential work, a
simpler set of computations can be performed to update the value of potential work in
response to the receipt of a new datum from another processor.

It is useful at this point to describe in more detail the interaction between step
numbers achievable by the modules assigned to a processor and the external data avail­
able to the processor. A linked data structure representing an undirected graph
DEPEND, with weighted vertices is defined for each processor P. The vertices represent
the modules in P as well as the modules in other processors directly coupled to modules
in P. Let zi l~i~B represent boundary vertices and let vi l~i~I represent vertices
within the processor. The weight wi of each vertex vi represents the largest step reach­
able by each module, given the currently available boundary information. The weight qi
of each of the vertices Zi, represents the step of the largest available boundary variable
data for the module.

The largest step reachable by a vertex Vi in the processor given currently available
boundary data is determined by adding one to the minimum of; (1) the largest steps
reachable by all internal vertices vi linked to v and (2) the step number of the latest
available boundary data for the boundary vertices z, linked to v. The weight assigned to
vi may be written as

where vi and Zl are linked to Vi'

w.=min(w o,q,) +1
• . I 11 ,

(2)
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Denote the current step number of Vi as 8i and the time required to advance vi one
step t i • The potential work associated with P at a given point in the computations may
be written as

E(Wi-Si)ti
i

(3)

where the sum is over all i corresponding to Vi in P. For each boundary vertex Zi the
graph DEPEND may be divided into equivalence classes based on the minimum number
of edges that have to be traversed to get to Zi. We define rk,j as the equivalence class of
zk to which Vi belongs. Note that each internal vertex belongs to B different equivalence
classes, one corresponding to each boundary vertex Zk, l~k~B. The proposition below
states a sort of superposition principle that holds for the determination of the maximum
achievable cumulative microstep for internal vertices in response to constraints arising
from boundary vertices.

Proposition: The weight of Vi is given by

W· = min (qL+rL .)
I l~k~B '" ""I

(4)

The proof is carried out by substituting the postulated solution into (2). Fix atten­
tion on an internal vertex Vi. Corresponding to each rk,i where rk,i~2 there must be an
internal vertex Vi linked to Vi with rk,j=rk,i-l. If there were not, it would not be possi­
ble to find a shortest path from Vi to zk consisting of rk i edges. Moreover, there cannot,
be an internal vertex Vi connected to Vi with rk,j<rk,i-1, if there were, then Vi would
have a shortest path to zk consisting of fewer than rk,i edges. Corresponding to each rk,i
where rk,i=1 there is a direct edge from Vi to zk.

Now substituting (4) for each Vj into (2) yields

wi=~in[ min (qk+ rk,j),q/]+1 (5)
1,' l~k~B

for all j,l such that Vi and z, are linked to Vi. Equation 5 may be rewritten as

wi= min [~in((qk +rk,i) ,q,)] +1
l~k~B 1,1

For each k, there exists an internal vertex Vi with rk,j=rk,i-1 connected to Vi and there
cannot be a vertex Vi where rk,i<rk,i-l. Hence from (5) we obtain (6)

wi= min [qk+(rk,i-1),q,]+1 (6)'
l~k~B,'

For boundary vertices z, to which Vi is directly connected, r"i=l. Since all quantities
involved are positive in sign, we obtain from (6) the equation (4) for Vi as desired.

We are now in a position to calculate the potential work from scratch, given values
of 8i and t i corresponding to all vertices Vi in P. For each Vi in P one may calculate Wi
from (4) in O(B) operations per vertex. Since there are I vertices the calculation of
potential work from scratch requires O(IB) operations.
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If a processor has a value of potential work assigned to it the potential work may be
updated in response to the receipt of a boundary datum. One finds the weights for each
vertex Vi in P in the following way. By equation (4) incrementing the weight of a single
boundary vertex can either leave the weight of interior vertices unchanged or increase
the weight by one unit. Moreover, only interior vertices currently constrained by the
incremented boundary vertex will have their weights incremented.

In response to an increment in a boundary vertex Zk' the weights in equivalence
classes may be adjusted in order of increasing equivalence class number with only one
pass necessary. Assume that ZIc has had its weight incremented from qk-1 to qk. Before
Zk was incremented, the constraint on the weight of vertices in equivalence class rk=n

was q/c-l+n. The constraint on the weight of vertices in equivalence class rk=n-l after
Zk is incremented is qk+(n-l). The adjusting of equivalence class ric = n will have no
effect on the adjustment of equivalence class ric = n-l.

If a vertex in equivalence class rk = n has a weight of less than qk+n-1 before
being considered for readjustment, it is not being constrained by zk. Incrementing zk'S

weight will consequently not affect the vertex. Since the only vertices which can possi­
bly have their weights incremented have weights qk+n-1, the order in which vertices in
an equivalence class are considered is unimportant.

Updating DEPEND may proceed as follows. The weight of the vertex in DEPEND
representing zk is first incremented. In a breadth first manner beginning with the vertex
representing Zk' DEPEND is searched for vertices whose weights must be incremented.
When a vertex v is found that does not require a weight increment, the search does not
continue to examine other vertices linked to v.

In the model problem, the time and space requirements of this updating algorithm
algorithm are O(nm) and O(m) where n is the number of modules in the problem and
m is the number of steps over which advancement is to proceed.

7. Comparison of Results

We have compared the performance of both the static load balancing methods and
the predictive dynamic method through a variety of simulations. Note that with
minimal computational effort, on a set of weights consisting of single precision floating
point numbers numbers, the greedy approximation scheme produces a balance identical
to the optimal load balance. Thus, the performance obtained through the use of the
optimal method and the greedy approximation scheme were identical, and in this section
we shall simply refer to the performance of the optimal load balancing method.

Static and dynamic methods can be combined; a static load balancing may be per­
formed before beginning work on a problem, and a dynamic load balancing policy may
be utilized once work on the problem has begun. It is found that the initial use of static
load balancing policies can enhance the performance of the dynamic policy and that
both the optimal and the binary dissection static load balancing methods yield rather
comparable performance when used with the dynamic predictive load balancing method.
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Used without a dynamic load balancing method, the optimal load balance was found to
be notably superior to binary dissection, while there was hardly any difference between
the optimal load balance and the greedy load balance on the test problems described
here.

We consider a system with 16 processors and a fixed number of modules. In each
trial, random deviates representing the weights of modules are drawn from a truncated
normal distribution. For each set of random deviates, both the optimal static load bal­
ance and the binary dissection balance are calculated and the performance is tabulated.
Simulations utilizing the predictive dynamic policy are also run using the same set of
random deviates. These simulations utilize both static policies and the assignment of a
fixed number of modules to each processor as starting conditions. Performance is meas­
ured by calculating the average percentage of time processors are occupied advancing
modules over the course of the simulations. Performance results are averaged over 50
trials differing only in the values of the random deviates generated.

In Fig. 4 and Fig. 5 the performance obtained through the use of the static and
dynamic policies is depicted. In these figures, the performance of the policies is plotted
against the variance of the truncated normal distributions from which the module
weights were drawn. In the experiments depicted in the above figures, the weights for
the modules were drawn from truncated normal distributions with variances of 0.5, 1.0
and 2.0 and mean 1, and the problem was assumed to run for 200 steps. In Fig. 4 dur­
ing each trial 64 modules were assigned to the system while in Fig. 5 96 modules were
assigned to the system. In both of these cases, for all variances tested, the dynamic load
balancing method outperformed both static load balancing methods. Note however, that
this measure of performance does not take into account the machine dependent cost of
shifting modules between processors, a cost that will be studied in more detail below.
The binary dissection static method was in all cases noticeably inferior to the optimal
static load balance. The use of a static load balancing method initially had a relatively
minor positive impact on performance in the experiments with 96 modules, and no dis­
cernible impact at all in experiments with 64 modules. The performance impact of the
initial use of a static load balancing method is quite dependent on the number of steps
required to solve a problem. It will be seen later that for problems that continue for a
relatively small number of steps, the initial use of a static load balancing method can
markedly improve performance.

In the dynamic load balancing method, the moving of modules from one processor
to another will exact a cost that will depend on the details of the machines' interproces­
sor communication network. In Fig. 6 and Fig. 7 the average number of modules that
must be moved from one processor to a neighbor per step of the computation is plotted
against performance for a range of values of the dynamic method's safety factor. In each
of the two figures, the use of static load balancing does play a notable role in increasing
performance and decreasing the frequency with which blocks have to be shifted. On each
curve in Fig. 6 and Fig. 7 both the cost and performance were strictly decreasing func­
tions of the safety factor used.

\>
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The number of steps advanced are varied and the performance and the overhead in
modules moved per step are depicted for the dynamic load balancing method in Fig. 8
and Fig. 9 respectively. In both figures, the effects of using the two static load balancing
methods as well as using no load balancing at the beginning of the computation are
compared. In all cases, the performance increases with the number of steps advanced.

For problems that do not require a large number of steps, the performance obtained
by starting out with a static load balancing method is superior to that arising from the
dynamic load balancing method without initial static load balancing. Perhaps somewhat
counter-intuitively, initially balancing load with binary dissection leads to better perfor­
mance than initially performing an optimal balance for problems requiring over 10 steps.
The optimal static load balance is not necessarily the initial load distribution that best
allows the dynamic load balancing method to move modules so that processor idleness is
avoided. As the number of steps increases, the performance differences obtained through
the use of different initial load distributions becomes less marked.

The initial use of static load balancing also leads to marked reduction in module
transfer overhead as depicted in Fig. 9. In this figure the overhead per step generally
increases with the number of steps. For problems with very large numbers of steps, the
overheads for the initial load distributions all approach a single value. When no initial
static load balancing is used in a problem that is advanced a small number of steps,
both low performance and relatively high costs in number of modules transferred are
incurred. It is noted that in Figure 9, when of initial static load balancing was not used,
the number of modules transferred reaches a local maximum for problems of 10 steps,
and then declines briefly before resuming its long term increase. This phenomena has
been observed in a number of similar experiments, its cause is unclear.

The performance obtained through the use of binary dissection as a static load
balancing method was notably poorer than that produced by the optimal balance. We
have observed in these and other experiments that initial static load balancing used
along with the predictive dynamic load balancing method improves performance and
reduces the frequency with which modules must be moved. The choice of method used
to initially balance load does not appear to have a marked impact on performance or
cost.

8. Conclusions

The four load balancing methods discussed in this paper each have their own dis­
tinct advantages and disadvantages. Finding an optimal static load balancing is in gen­
eral an NP-Complete problem unless special structure is present to permit a low order
polynomial solution. For the test problems that we have considered, the greedy algo­
rithm was an order of magnitude faster than the optimal load balancing algorithm and
it provided results as good as the optimal solutions. The binary dissection method and
the predictive dynamic load balancing algorithms are both quite useful in situations in
which low order polynomial solutions to the optimal static load balancing problem do
not appear to be available. The predictive dynamic load balancing method as formulated
here however is applicable only to algorithms with considerable regularity in subtask
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precedence relations.

The experimental results presented here revealed that the predictive dynamic load
balancing method led to processor utilizations that were consistently above those
obtained by the optimal static load balancing method. As one would expect, the optimal
static load balancing method, in turn, consistently out performed the binary dissection
method.

The initial partitioning of load at the point dynamic load balancing was initiated
proved to have a marked effect on the performance of the dynamic load balancing algo­
rithm. All three static load balancing methods used in conjunction with the dynamic
load balancing method lead to a substantial improvement in performance. The magni­
tude of these effects depended on the number of steps the problem is advanced, being
most pronounced when a problem is finished after relatively few steps. It is interesting
to note that the binary dissection algorithm appeared under some circumstances to con­
sistently lead to results that were superior to optimal load balancing when used in con­
junction with dynamic load balancing.

One of the principal costs of the predictive dynamic load balancing method is
expected to be the machine dependent cost of transferring the computational modules
between processors. The effect of initial load distribution on this cost was examined and
it was found that the frequency with which blocks were transferred between processors
was markedly reduced when either form of static load balancing was initially employed.

The initial distribution of load in a multiprocessor system is clearly an important
determinant of the performance gains achievable by the dynamic load balancing policYi
this initial distribution also has a strong influence on the overhead costs of the dynamic
policy.
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Fig. 1 A 9 module chain mapped onto a 4 processor chain.
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Fig. 2 The layered graph for a problem with 9 modules and 4 processors.
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Fig. 3(a) A 9 module chain, with each module represented by its
execution cost, mapped onto a 4 processor chain using the Binary
Dissection method. The load on the most heavily loaded processor is
8 units.

6 I 2 1 1

•

Fig. 3(b) Under an optimal mapping of the 9 module chain on the
processor chain, the load on the most heavily loaded processor.
would only be 6.
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