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Abstract 

Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission 
power systems. The heat rejection system currently comprises heat pipes with a graphite saddle and a 
composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. 
The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as 
well as evaluating several heat pipe radiator designs. The testing includes thermal modeling and 
verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-
gravity environments. Future thermal testing of titanium-water heat pipes includes low-gravity testing of 
thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well 
as Small Business Innovation Research funded deliverable prototype radiator panels. 

Introduction 

The NASA Enabling Technology Development and Demonstration Program’s Fission Power Systems 
(FPS) Project develops technologies to enable the option of using fission power systems for future space 
explorations missions. Heat pipes and heat pipe radiator technology are part of the heat rejection system 
for various space fission power systems power applications. Conceptually, heat from a reactor would be 
utilized to power several Stirling convertors to generate electricity. For a 40-kWe installation, radiators 
would be needed to dissipate approximately 140 kWt of waste heat. The notional design utilized large 
radiators of 185 square meters radiating area and operated at heat rejection temperatures ranging from 350 
to 500 K. The current radiator designs are envisioned to operate at a temperature near 400 K. A heat pipe 
is an efficient heat-dissipation and heat-spreading device and in its simplest form is a passive two-phase 
heat transfer device in a sealed tube. 

Nomenclature 

ALIP A Linear Induction Pump 
DOE Department of Energy 
FPS Fission Power Systems 
ISS International Space Station 
kWe kilowatts electric 
kWt kilowatts thermal 
LHP loop heat pipe 
MSFC Marshall Space Flight Center 
NASA National Aeronautics and Space Administration 
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PCAD Power Conditioning and Distribution 
QCM Quartz Crystal Microbalance 
RGA Residual Gas Analyzer 
SBIR Small Business Innovation Research 
T Temperature (K) 
TDU Technology Demonstration Unit 

Hardware Testing 

A radiator concept design can be seen in Figure 1 (Siamidis, 2006). Several technology challenges 
quickly became evident. The large size meant traditional metal radiators, such as those used on the 
International Space Station (ISS), would carry a large mass penalty. Second, the rejection temperature 
was well beyond the capability of existing large flight radiators and would require new heat rejection 
fluids, or use of existing fluids at temperatures beyond their typical range. Copper-water heat pipes are 
well established in the electronic cooling industry with operating temperatures in the 300 to 400 K range. 
The need for heat pipes to operate in the 500 K range led to the development of heat pipe materials that 
could operate at elevated temperatures and pressures. Copper-nickel and titanium alloys were investigated 
as well as a variety of potential heat pipe working fluids. Titanium-water compatibility tests have shown 
promising results, while use of other working fluids would require further investigation and development. 
Thus water was selected water as the primary heat rejection working fluid, and the work with alternate 
fluids was stopped. Titanium was chosen as the envelope material for its potential long-term compatibility 
with water, high strength, and low density. NASA determined that the design and fabrication of multiple 
titanium-water heat pipes was necessary to accelerate heat pipe development and address questions about 
their true performance capability, long-term durability, and readiness of the manufacturing sector. 

Titanium-Water Life Test Heat Pipes 

Over 3 years of thermal testing on nine titanium-water heat pipes has been achieved in the Heat Pipe 
Thermal Testing Laboratory at NASA Glenn Research Center (GRC). The titanium-water heat pipes are 
being tested at 500 K on a continuous 24-hour/7-day basis. Three manufacturers, Advanced Cooling 
Technologies, Thermacore, Inc., and Swales Aerospace Inc. (ATK), each produced three 1.25-cm-
diameter by 1.1-meter-long titanium-water heat pipes. Each vendor used different internal wick 
characteristics resulting in slightly different performance. The nine heat pipes have performed as expected 
with negligible degradation over the 3 years. The life test setup can be seen in Figure 2. 
 

   
Figure 1.—Heat pipes integrated in a radiator panel.  Figure 2.—Titanium-water heat pipe life test setup. 



 

NASA/TM—2012-217205 3 

Thermal Interface Evaluation 

The heat exchange from a closed-loop heat source to the evaporator of a thermosyphon was 
investigated. The evaporator section was either immersed in the closed-loop heat source, with the closed-
loop heat source fluid delivering the heat to the evaporator through the evaporator wall, or the evaporator 
section was clamped adjacent to the closed-loop heat source, with the closed-loop heat source delivering 
heat to the evaporator wall via conduction through the clamshell arrangement of hardware surrounding 
the evaporator. Essentially identical thermosyphons were either immersed in the closed-loop heat source 
or clamped adjacent to the closed-loop heat source, and the wattage transported from the closed-loop heat 
source through the heat pipe and out through the condenser was carefully measured by a surrounding 
calorimeter. Thermocouples measuring temperature difference between the closed-loop heat source and 
the evaporator section of the heat pipes, along with the flow through the calorimeter as measured by a 
calibrated flow meter, were used to obtain thermal conductance through the immersed or clamped 
interface. A temperature control unit (manufactured by Sterling, Inc.) operating on tap water was utilized 
to provide a constant temperature closed-loop heat source. With the immersion hardware installed, 
stainless steel plumbing allowed fluid flow past the evaporator. With the titanium clamshell hardware 
installed, flow through the clamshell arrangement could also be achieved enabling the closed-loop heat 
source to operate at temperatures as high as 394 K. The CP–2 titanium-water thermosyphons were 
manufactured in house; each was 1.27 cm in diameter and 74 cm in length with a titanium screen wick to 
line the evaporator wall section only. The thermal interface test setup can be seen in Figure 3. A selection 
of interface materials were evaluated in the clamped configuration, selected based on high-temperature 
durability, pliability, and availability. Two GrafTech International grafoil products were evaluated: 
eGRAF® HITHERM™ 705 and eGRAF® HITHERM™ 1205. The HT–705 has a typical through-
thickness thermal conductivity of 6.0 W/mK, while the HT–1205 has a through- thickness thermal 
conductivity of 10 W/mK. Both grafoil products were plain, with no coatings or adhesives applied. One 
Aavid Thermalloy product was evaluated: Aavid Sil-Free™ thermal grease. Copper and silver leaf were 
selected owing to their pliability. The two leaf products were purchased through an art supply house, and 
were simply wrapped around the evaporator at the time of installation. T-Mate™, a phase change product 
by Laird Technologies, was selected owing to its attractive phase change temperature in the range of 323 
to 343 K combined with its maximum operating temperature of 398 K. Figure 4 shows the many different 
evaporators tested. 
 

     
Figure 3.—Thermal interface evaluation system.     Figure 4.—Thermal interface machined evaporators. 
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RDU (Lamps) Freeze Tests 

Radiator panels utilizing titanium-water heat pipes are flat panels approximately 2.54 cm thick by 
0.5 m wide and 1 meter long. High thermal conductivity carbon-polymer facesheets are adhesively 
bonded to an aluminum honeycomb core and three titanium-water heat pipes are embedded within the 
core to provide heat transport. The heat pipes are adhesively bonded to a graphite foam saddle and the 
foam is in turn bonded to the PMC facesheets for the purpose of simultaneously providing a thermal 
pathway and addressing mismatch in coefficients of thermal expansion. A traditional sandwich structure 
is envisioned where heat pipes are embedded between two high-thermal conductivity facesheets. The heat 
pipe evaporators are to be thermally connected to the heat source through one or more manifolds 
containing coolant. Initial radiator operation on the lunar surface would likely follow a cold soak where 
the water in the heat pipes is purposely frozen. To achieve heat pipe operation, it is necessary to thaw the 
heat pipes. One option is to allow the sunlight impinging on the surface at sunrise to achieve this goal. 
Testing was conducted in a thermal vacuum chamber to simulate the lunar sunrise and additional 
modeling was conducted to identify steady-state and transient response. It was found that sunlight 
impinging on the radiator surface at sunrise was insufficient to solely achieve the goal of thawing the 
water in the heat pipes. However, starting from a frozen condition was accomplished successfully by 
applying power to the evaporators. Figure 5 shows a radiator panel on framework with quartz lamps and 
inside the vacuum chamber cold wall. 

Second Generation Radiator Demonstration Unit 

In support of the FPS project, the Second Generation (2nd GEN) Radiator Demonstration Unit (RDU) 
was developed by Material Innovations Inc. (MII) in Huntington Beach, California, and delivered to 
NASA GRC in Cleveland, Ohio. The 2nd GEN RDU is shown in Figures 5, 6, and 7. It consists of a 
titanium-water fluid manifold coupled to 16 titanium-water heat pipes that are sandwiched between two 
composite facesheets enhanced with white thermal control paint. The radiator assembly is supported by 
an aluminum frame that can be suspended in the vacuum facility. A thermocouple patch panel below the 
water manifold provides the interface for instrumentation cabling. The 2nd GEN RDU was designed to 
reject at least 6000 W to a 250 K thermal sink with 400 K water inlet temperature and both manifolds at 
0.25 kg/s. The radiator also was operated over a wide range of water inlet temperatures, flow rates, and 
sink temperatures.  
 

Figure 5.—Framework above the RDU panel with 
four quartz lamps. 

Figure 6.—2nd GEN radiator panel. 
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Figure 7.—Infrared camera image (T Inlet 430 K).                Figure 8.—Thermal testing of ammonia LHP. 

 

   
Figure 9.—Square heat pipe.    Figure 10.—Low-g flight test. 

Loop Heat Pipe 

The loop heat pipe (LHP) with ammonia working fluid is a common heat transport device used in 
spacecraft. The LHP used here was manufactured in 1997 by Thermacore, Inc., and shipped to Goddard 
Space Flight Center (GSFC). The LHP was shipped to GRC in 2002. In the summer of 2007, the LHP 
was removed from storage and tested at GRC as part of NASA’s Exploration Technology Development 
Program. The LHP survived an approximate 10-year dormant period and was in good working order. 
There were several important accomplishments during this investigation: 1) A mini-loop heat pipe was 
tested after approximately 10 years in storage and appeared to work normally, 2) this testing demonstrates 
that this novel method for surviving the cold lunar environment is practical, 3) this testing has shown that 
an ordinary loop heat pipe was robust enough to withstand temperatures well below the design 
temperature and well below the temperature of frozen ammonia, 4) it appears that larger startup heat is 
necessary under these conditions when compared to room temperature startup conditions, and 5) it was 
shown that the reduced gravity of the Moon does not affect the performance of this LHP, when compared 
to performance in a zero-gravity environment. Figure 8 shows LHP test setup.  

Low-g Heat Pipes 

There are several concepts for evaluating thermosyphon performance in a reduced-gravity 
environment. The simplest technique is to tilt the thermosyphon. The angle of tilt is selected utilizing the 
cosine function, such that the gravity vector in the axial direction of the thermosyphon is reduced by the 
desired amount. An angle of 9.5° simulates the lunar surface. Figures 9 and 10 shows a square heat pipe 
to simulate low-g operation by evaporating and condensing on one surface. Figure 10 shows 
thermosyphon array controlled operation for zero g flight test article. 
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Figure 11.—SBIR contributions to the fission power systems project. 

Small Business Innovative Research 

SBIR grants are an important and continuous source of component development hardware. The FPS 
Project is continuously seeking unique and innovative component technology innovations. SBIRs have 
developed several heat pipe radiators, material evaluations such as high-temperature coatings, and life test 
of materials and reliability models of system functions. Figure 11 illustrates the many SBIR contributions 
to the FPS Project. 

Component Radiation 

An important area of space fission power systems is reliability of components. Fission Power 
Systems components in the proximity of an operating reactor must tolerate radiation exposure, or be 
shielded. Most FPS components can be constructed of high radiation-tolerant materials; however, the 
radiation tolerance some radiator materials needed to be characterized for the prescribed configuration 
and environment of their application in a space fission power system. At the Sandia National Laboratories 
radiator components will be exposed, which includes titanium-water heat pipes with a composite fin, 
foam saddle, and a candidate epoxy to hold the components together. 

 
 

Allcomp heat pipe radiator, Creare pyrolytic fin radiator, Creare heat pipe radiator, Thermacore, Inconel 718 life test 
 

 
 

ACT heat pipe development, ACT Stirling VCHP, ACT intermediate heat pipe fluids, Alion high temperature coating 
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Sodium-Potassium (NaK) Eutectic Detection 

The pressure of NaK during a leak event is difficult to measure. The Technology Demonstration Unit 
(TDU) piping will have multilayer insulation so knowing the exact temperature and pressure of the NaK 
during an unexpected leak event would be unknown. Several different methods and instruments were 
reviewed to determine which hardware would be best suited for the task. At completion of the evaluation 
it was determined that a Residual Gas Analyzer (RGA) and a Quartz Crystal Microbalance (QCM) were 
the best candidates for near-term evaluation. The test results have given conclusive data that detection of 
NaK in a space simulated environment can be achieved using both the QCM and RGA methods together. 
Using sodium as the signature atomic mass, the RGA will be the primary detector with a partial pressure 
range down to 1.0×10–10 torr. Quantifying the amount of NaK being released will be done using the QCM 
by monitoring the deposition thickness and rate. Together, these instruments should provide enough data 
to successfully detect a NaK leak and provide opportunity to follow shutdown procedures and minimize 
any potential damage to the facility and test hardware.  

Future Work/Conclusion 

The Fission Power Systems Project is in the process of procuring components for a TDU, which will 
simulate an operating fission power reactor at NASA GRC. All the components (except a fission reactor) 
have been tested individually and are being upgraded and integrated into an operating system. The reactor 
simulator loop has been fabricated at NASA Marshall Space Flight Center (MSFC) and satisfactorily 
tested. A Linear Induction Pump (ALIP) has been fabricated by the Department of Energy (DOE) and 
installed in the reactor simulator loop and successfully tested. A full-scale radiator panel was fabricated 
my Material Innovations, Inc., and successfully tested at GRC. Stirling convertors have been successfully 
tested using pumped liquid metal (NaK) as the heat source at MSFC. A Power Conditioning and 
Distribution (PCAD) System is jointly being developed by NASA and DOE.  
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