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ABSTRACT
This paper describes particle evolution measurements taken

in the Particulate Aerosol Laboratory (PAL). The PAL consists of
a burner capable of burning jet fuel that exhausts into an altitude
chamber that can simulate temperature and pressure conditions
up to 13,700 m. After presenting results from initial tempera-
ture distributions inside the chamber, particle count data mea-
sured in the altitude chamber are shown. Initial particle count
data show that the sampling system can have a significant effect
on the measured particle distribution: both the value of particle
number concentration and the shape of the radial distribution of
the particle number concentration depend on whether the mea-
surement probe is heated or unheated.

Nomenclature
B Buoyancy flux

d0 Nozzle diameter

d∗ Equivalent source diameter, d∗ = d0

√
ρ0
ρ∞

g Gravitational constant

J Momentum flux

lc Coflow length scale

lM Morton length scale

m Mass flux

Q Volume flux

R Richardson number

r Radial coordinate

Re Reynolds number

T Temperature

u Velocity

x Axial distance from the jet exit plane

xE Axial distance from the virtual origin to the jet exit plane

ρ Density

θ Normalized temperature difference, T−T∞

T0−T∞

ζ Particle number concentration

Subscripts

0 Nozzle exit

CL Centerline

∞ Chamber
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FIGURE 1: The Particulate Aerosol Laboratory: (a)sketch and (b)photograph. Note that in (b), the burner is covered by a pressure
housing. The gas (nitrogen or air) from the cold gas supply simulates the atmosphere, and the burner exhaust simulates aircraft engine
exhaust.

1 Introduction
Although particulate emissions from aircraft engines were

initially of concern because of the visible smoke [1, 2], recent
research has focused on the health and environmental effects of
ultrafine particulate emissions. Due to the negative health effects
of ultrafine particles, the regulations on particles smaller than 2.5
microns have become increasingly stringent [3]; most particu-
lates emitted by aircraft are smaller than 2.5 microns [1, 4].

A major environmental effect of aircraft particulate emis-
sions is their effect on the the formation and properties of cirrus
clouds in the troposphere; however, this effect is not well under-
stood [5]. Several areas require further research, including the
microphysical and chemical processes governing the evolution
of aviation particulates. Previous work has sought to character-
ize aircraft engine emissions using combustion rigs, on-ground
engine tests [4, 6–8], and measurements taken in the aircraft en-
gine plumes at altitude [6]. The work described in this paper
complements these efforts.

This paper describes measurements taken in the Particulate
Aerosol Laboratory (PAL) at NASA Glenn Research Center. In

this unique facility, a combustor capable of burning jet fuel ex-
hausts into an altitude chamber capable of simulating tempera-
ture and pressure conditions up to 45,000 ft, allowing the par-
ticle evolution to be studied at altitude conditions. A scanning
mobility particle sizer (SMPS) measures the particulate profile
at the combustor exit and in the altitude chamber. The probe
used to sample the exhaust plume in the altitude chamber can be
placed at discrete axial positions that range from the exhaust noz-
zle exit to the top of the altitude chamber. This paper will present
initial measurements of the particle size distribution taken from
the combustor and measurements of the particle size distribution
taken in the altitude chamber.

2 Facilities and Instrumentation
2.1 Facility Description

The Particulate Aerosol Laboratory (PAL) consists of a
burner connected to an altitude chamber, as shown in Figure 1.
The burner is capable of burning conventional jet fuels and al-
ternative fuels such as Fischer-Tropsch. A 1.6-m long transition
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pipe connects the burner exit to the altitude chamber; the transi-
tion pipe terminates in a 1.27-cm diameter nozzle that exhausts
the combustion products into the altitude chamber. The altitude
chamber can simulate standard day pressures and temperatures
up to altitudes of 13,700 m.

As shown in Figure 1a, the burner is composed of two parts:
a combustion chamber and a mixing chamber. The upstream
section of the combustion chamber is surrounded by the mixing
chamber. The main combustion air enters the burner in the an-
nular area between the combustion chamber and the combustion
chamber casing. (A bulkhead prevents mixing between the main
air in this annular area and the combustion products in the mixing
chamber.) Flowing upstream, the main air enters the combustion
zone through a 3.81-cm diameter opening in the upstream end
of the combustion chamber. Fuel and a small quantity of atom-
ization air enter the combustion chamber through an air assist
fuel injector. The combustion products enter the mixing cham-
ber through a 0.635-cm annular slot in the downstream end of
the combustion chamber. The entire burner is surrounded by a
housing, as shown in 1b. The burner pressure is one to two at-
mospheres.

After exiting the burner, the combustion products flow
through a 2.43-cm inner diameter transition pipe into the alti-
tude chamber. An orifice in the transition pipe drops the pressure
of the combustion products to near the pressure of the altitude
chamber. Ports in the transition pipe upstream of the orifice allow
combustion product samples to be drawn for gas and particulate
analysis.

A cold gas supply (nitrogen or air) provides the working
fluid for the altitude chamber. This working fluid simulates the
atmosphere and allows the effects of mixing between the hot
combustor exhaust and a cold atmosphere to be studied. Nitrogen
was the working fluid for all measurements reported here.

The chamber diameter is 0.597-m, and the height of its
cylindrical test section in 1.83-m. Four window ports, each 1.52-
m tall by 0.102-m wide, are located 90o apart from each other.
The window ports can be fitted with windows, instrumentation
plates, or blanks. When a window is installed, two panes of
glass are used, and the space in between the panes is kept at vac-
uum;this prevents condensation on the windows and also pro-
vides good insulation. (When a blank or instrumentation plate
is used, it is a single thickness of aluminum and does not pro-
vide good insulation.) For the measurements reported here, three
ports contained windows and one port contained an instrumen-
tation plate; Figure 1a shows the instrumentation plate that was
used during these measurements.

2.2 Instrumentation
A TSI scanning mobility particle sizer (SMPS) system

model 3936NL76 — consisting of a TSI model 3776 condensa-
tion particle counter (CPC), a TSI model 3080 electrostatic clas-
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FIGURE 2: Baseline chamber temperature distribution with the
burner off.

sifier, and a TSI model 3085 nano differential mobility analyzer
— was used to measure the particle size distribution. The CPC
was also used alone to measure the particle count.

A blunt-tipped sampling probe with a 0.32-cm inner diam-
eter was inserted into the transition pipe facing normal to the
flow. This probe was used to sample the particle distribution at
the burner exit. To minimize agglomeration and condensation in
the sampling system, the combustion products were diluted with
dry nitrogen slightly downstream of the probe tip.

A blunt-tipped sampling probe was also used to measure the
particle count in the altitude chamber. The probe face was paral-
lel to the primary flow direction except for the measurements at
0.18 m downstream of the nozzle exit at 12,190 m standard day
conditions; in this single case, the probe face was approximately
normal to the primary flow direction. This probe had a 0.4-cm
inner diameter and could be covered with heat tape to prevent
ice formation inside the probe. It was connected to a translation
stage that allowed it to be moved radially.

2.3 Test Conditions
Four burner conditions (see Table 1) and four altitude cham-

ber conditions were studied. The altitude chamber conditions
corresponded to standard day temperatures and pressures at
6,100 m; 9,140 m; and 12,190 m [9] as well hot day tempera-
ture and pressure conditions at 9,140 m [10] (see Table 2). The
chamber Reynolds number indicates that the flow was turbulent
for all cases. As Figure 2 shows, the baseline temperature in
the altitude chamber (when no combustion products are added)
is nearly uniform except in the thermal boundary layer. (Note a
double-paned window is installed on the negative r side of the
altitude chamber, and an uninsulated instrumentation plate is in-
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TABLE 1: Burner conditions

Condition Fuel/Air Total Mass lM at xE at

Number Ratio Flow Rate 6,100 m 7,620 m 9,140 m 12,190 m 6,100 m 7,620 m 9,140 m 12,190 m

kg/min m m m m cm cm cm cm

1 0.045 0.166 2.16 2.82 3.02 4.55 3.0 3.1 2.9 2.8

2 0.032 0.230 2.98 3.88 4.18 6.28 3.0 3.1 2.9 2.8

3 0.017 0.342 4.50 5.88 6.28 9.43 3.1 3.2 3.0 2.9

4 0.007 0.336 4.99 6.65 6.75 9.95 3.5 3.6 3.4 3.3

FIGURE 3: Combustion product temperature as combustion
products exit the nozzle into the altitude chamber at x=0. For
all cases the temperature rapidly returned to the baseline temper-
ature as the radial distance r increased, so only the region near
the nozzle exit is shown.

stalled at the positive r side of the instrumentation chamber; this
accounts for the asymmetry in the temperature distribution near
the chamber walls.)

Figure 3 shows the temperature distribution at the nozzle
exit. Note that this temperature distribution does not change sig-
nificantly with altitude, indicating that the section of the transi-
tion pipe that enters the bottom of the altitude chamber is well-
insulated.

3 Facility Temperature Distribution
Because the particle evolution depends strongly on temper-

ature, the temperature distribution in the altitude chamber was
characterized; the temperature distribution depends on the con-

ditions at the nozzle exit, the conditions in the altitude chamber,
and the type of flow field that is established. From several noz-
zle diameters downstream of the nozzle exit to the axial location
where the effects of the altitude chamber walls become impor-
tant, the flow field in the PAL should act as either a buoyant jet
or a momentum-dominated jet. The relative effects of jet exit
momentum and buoyancy are usually expressed in terms of the
Richardson number, R, or the ratio of the axial distance from the
nozzle exit, x, to the Morton length scale, lM [11, 12]. These are
defined in terms of the jet volume flux, Q, the jet momentum
flux, J, and the jet buoyancy flux, B, as:

R =
Q(B/ρ∞)

1
2

(J/ρ∞)
5
4

(1)

lM =
(J0/ρ∞)

3
4

(B0/ρ∞)
1
2
, (2)

where

Q =
∞∫

0

u(x,r)2πr dr, (3)

B =
∞∫

0

g∆ρ u(x,r)2πr dr, (4)

J =
∞∫

0

ρ u2(x,r)2πr dr, (5)

u is the axial velocity, ρ is the density, and the subscripts 0 and
∞ refer to conditions at the jet exit and in the altitude chamber,
respectively. In the jet-like limit, R and x/lM are small; in the
plume-like limit, R approaches 1 and x/lM is large. Papanicolaou
and List [12] have shown that R ∝ x in the jet-like limit and R is
constant in the plume-like limit. They have also shown that flows
with x/lM < 1 exhibit jet-like scaling and flows with x/lM > 5
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TABLE 2: Chamber conditions

Altitude Altitude Day Type Temperature Pressure Density Chamber
Reynolds
Number

Nominal
Chamber
Coflow
Velocity

(m) (ft) (K) (kPa) (kg/m3) (m/s)

6,100 20,000 Standard 249 46.601 0.653 17,900 0.7

7,620 25,000 Hot 259 37.650 0.490 18,700 1.0

9,140 30,000 Standard 228 30.149 0.459 25,800 1.4

12,190 40,000 Standard 217 18.823 0.303 32,100 2.5

exhibit plume-like scaling.
For the measurements reported here, the axial locations of

interest range from several nozzle diameters to 71 cm down-
stream of the nozzle exit. In this region, R is small and x/lM� 1
(see Table 1), so the effects of buoyancy should not be signifi-
cant. A similar length scale analysis of the effects of the cold
nitrogen coflow [13] shows that the coflow effects should also
be small. Therefore, the flow field is momentum-dominated and
should follow nonbuoyant jet scaling laws.

For momentum-dominated jets, it can be shown [14,15] that
a conserved scalar, such as the normalized temperature differ-
ence, θ ≡ T−T∞

T0−T∞
, is inversely proportional to the normalized dis-

tance from the virtual origin, (x+xE)/d∗, where x is the distance
from the jet exit, xE is the distance from the virtual origin to the
jet exit, and d∗ = d0

√
ρ0
ρ∞

. Diez & Dahm [11] 1 show that for
a momentum-dominated or buoyant jet the distance xE that the
virtual origin is upstream of the nozzle exit is given by:

xE = lM


 I2

1

I5/2
2 cδ c3

u, j

[ (J0/ρ∞)5/2

(m0/ρ∞)2 (B0/ρ∞)

]
− 1

2

, (6)

where (7)
I1 = 0.262, (8)
I2 = 0.131, (9)
cδ = 0.36, and (10)

cu, j = 7.2 (11)

In other words, θ = cθ

( x+xE
d∗
)−1, where cθ is approximately 5.4

1The formula given here does not match the one given by equations 42 and 47
in [11]. There seem to be several typographical errors in [11], with the missing
exponent of -1/2 in equation 47 being the most important. The missing expo-
nent can be found by following the derivation described in the text of [11] and
substituting equation 46 into equation 44.

[16]. Furthermore, momentum-dominated jets are self-similar,
so a conserved scalar normalized by its centerline value is a
function of the radius normalized by the jet width, δ ; that is,
θ/θCL = f (r/δ ). For both momentum-dominated and buoyant
jets, δ is proportional to axial distance from the virtual origin;
therefore, θ/θCL = f ′

(
r

x+xE

)
. Figures 4a and 4b support this

scaling: Figure 4a is consistent with θ/θ0 = 5.4( x+xE
d∗ )−1 scal-

ing until the effect of the altitude chamber wall becomes impor-
tant at x+xE

d∗ ≈ 130. Figure 4b shows that θ/θCL is a function
of r/(x + xE) for r/(x + xE) values that are sufficiently far from
the chamber walls. (When interpreting Figure 4b, note that the
temperature increase due to the chamber walls is more important
on the poorly-insulated instrument plate side of the chamber (+r)
than on the relatively well-insulated window side (−r) and that as
the axial distance increases the r/(x+xE) value at which the wall
effects become important decreases.) Also shown in Figure 4b
are a curve fit to the data, the normalized concentration profile,
ζ/ζCL, used by Diez & Dahm [11], and the normalized velocity
profile, u/uCL, used by Hussein et al. [17]. The curve fit used
to model the current data and the profiles used by the Diez &

Dahm and Hussein et al are of the form ξ = e−α( r
x+xe )

2
, where ξ

is θ/θCL, ζ/ζCL, or u/uCL. The width parameter α of the θ/θCL
is between the α values for ζ/ζCL and u/uCL, further indicating
that the jet scaling is appropriate for the normalized temperature
difference θ .

4 Initial Particle Evolution Measurements
Particle measurements were taken both in the transition pipe

(see Figure 1) and in the altitude chamber for burner condition 1
from Table 1 and at all chamber conditions listed in Table 2. For
the particle measurements made in the transition pipe, the sample
was diluted with nitrogen with a dilution ration of 1.91 to prevent
condensation and agglomeration in the sampling line; the sample
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FIGURE 4: (a)Normalized jet centerline temperature θCL as a function of normalized axial distance (x+ xE)/d∗ and (b) the normalized
temperature distributions as a function of the normalized radial distance. The symbol color indicates the altitude conditions, the ’outer’
symbol indicates the axial position, and the ’inner’ symbol indicates the fuel-air ratio. Note that the effects of the chamber wall are
important when (x+ xE)/d∗ > 130.

was not diluted for measurements made in the altitude chamber.

4.1 Burner Measurements
A representative particle number distribution in the transi-

tion pipe is shown in Figure 5. Integrating the particle number
distribution gives a total number concentration of 1.2×107 par-
ticles per standard cubic centimeter, where standard pressure and
temperature are defined as 101.325 kPa and 298.15 K, respec-
tively.

Note, however, that the particle measurements taken in the
chamber suggest that the combustor particle output is not steady
(see the next section). The variation of combustor particle output
with time is being measured, and for future tests, two particle
measurement systems will be used so that the particle distribu-
tions in the transition pipe and in the altitude chamber can be
measured simultaneously.

FIGURE 5: Particle number distribution in the transition pipe for
burner condition 1 (f/a = 0.045)
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4.2 Initial Measurements in the Altitude Chamber
Initially, attempts were made to take particle evolution mea-

surements in the altitude chamber with standard day pressure
and temperature conditions corresponding to 9,140 m. Unfortu-
nately, at these conditions, the water vapor in the jet condenses,
and in some cases freezes, in the sampling probe. Therefore, heat
tape was wrapped around the sampling probe and the altitude
chamber conditions were changed to the considerably warmer
hot day conditions at 7,620 m. For these chamber conditions and
burner condition 1, Figure 6 shows the particle number concen-
tration as a function of radial distance at axial distance 0.30 and
0.51 m downstream of the jet exit. (Note that in Figure 6 and
in all other figures showing the particle number concentration,
the number concentration is given in particles per actual cubic
centimeter at the particle counter, not in particles per standard
cubic centimeter. At the particle counter, the temperature is ap-
proximately standard temperature but the pressure is the altitude
chamber pressure.)

After successfully measuring the particle number concentra-
tion with a heat tape-wrapped probe at hot day conditions corre-
sponding to 7,620 m, initial particle number concentrations were
measured at standard day conditions corresponding to 6,100 m,
9,140 m, and 12,190 m, as shown in Figures 7 and 8. In all
cases, it was possible to measure the particle number concentra-
tion with the heat tape turned on. However, when the heat tape
was turned off, it was not possible to measure the number con-
centration near the jet centerline at 6,100 m and 9,140 m because
the number concentration was above the maximum concentration
that the CPC could measure.

(Note that in several of the plots, there appear to be two sep-
arate particle curves. This is most apparent in the measurements
taken with the heat tape on at 6,100 m conditions in Figure 7a. In
all cases, the measurements were taken at different times, and the
difference between the measurements appear to be a real change
in the particle concentration, not a lack of precision in the CPC.
For example, the ”upper” curve in 7a was taken earlier in the
day than the ”lower” curve. The change in particle concentration
could be caused by either a change in the chamber conditions or
a change in the particle output from the combustor. Because the
chamber conditions were constantly monitored to ensure the tem-
perature and pressure remained as constant as possible, it seems
to be more likely that a change in particle output from the com-
bustor was responsible for the change in the chamber particle
concentration. In the future, the combustor particle size distri-
bution will be monitored continuously; for the measurements re-
ported here, the same CPC was used for the combustor and the
chamber particle measurements and these measurements could
not be taken simultaneously.)

In addition, icing continued to be a problem. It was possi-
ble to prevent ice from forming in the sampling probe and at the
sampling probe tip by avoiding sudden changes in the radial lo-
cation of the probe and by briefly turning on the heat tape to melt

the ice if it began to form. However, it is unclear how many of
the particles measured when the heat tape was turned off were
present in the plume and how many were formed in the probe.

Unfortunately, it is also unclear that measurements taken
when the heat tape was turned on accurately reflect the number
of particles in the jet plume. For the heated-probe measurements
taken at 12,190 m conditions, the peak particle concentration oc-
curs off the centerline, which is an unexpected result. However,
for the heated-probe measurements taken at all other chamber
conditions, the peak particle concentration occurs on the cen-
terline, as expected. Research groups measuring the particulate
emissions of jet engines on the ground have also noticed unex-
pected and as yet unexplained effects when using heated probes2,
so it appears that using a heated probe is not an ideal solution.

Figure 9 shows the normalized particle number concentra-
tion profiles, ζ/ζmax vs. r/(x+xE). The profiles at chamber con-
ditions corresponding to altitudes of 6,100 m and 9,140 m mea-
sured with a heated probe were consistent with the normalized
temperature profiles, θ/θCL. Both profiles at a chamber condi-
tion corresponding to 7,620 m, also taken with a heated probe,
collapsed onto each other but the profiles were narrower than the
normalized temperature profile. The profiles taken with an un-
heated probe at a chamber condition corresponding to 12,190 m
are wider than the normalized temperature profile, and the pro-
files taken with a heated probe at the same chamber conditions
have a maximum value off the centerline. Both of the heated-
and unheated-probe 12,190 m profiles are very different in shape
than the normalized temperature profiles.

Figure 10 shows the maximum concentration at each axial
location and chamber condition as a function of the normalized
downstream distance, x/d∗. If the particle number concentration
is a conserved scalar, the maximum concentration will decrease
with axial distance from the nozzle exit. However, as the tem-
perature in the jet cools, volatile particles will form; if a large
enough number of volatile particles is formed, the particle num-
ber concentration will increase with axial distance. In addition,
the heated probe may revaporize some or all of the volatile par-
ticles formed in the jet. (Because all particle measurements are
done at room temperature, some particles may also revaporize in
the sampling line between the altitude chamber and the conden-
sation particle counter for both the heated and unheated probe
cases.)

The results from Figure 10 are inconclusive. At the warmest
chamber temperature — which occurs at the 7,620 m hot day
conditions — the maximum particle concentration decreases with
axial distance when the probe is heated. At the coldest cham-
ber temperature, — which occurs at the 12,190 m standard day
conditions — the particle concentration increases with axial dis-
tance when the probe is heated. So far, because more volatile
particles will form at the cold 12,190 m standard day conditions
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FIGURE 6: Particle count at 7,620 m hot day conditions and at (a)x=0.30 m and (b)x=0.51 m downstream of the nozzle exit. Heat tape
is wrapped around the particle probe for both cases.
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FIGURE 7: Particle number as a function of radial location at (a) 6,100 m conditions and x=0.30 m and (b) 9,140 m conditions and
x=0.71 m. Red symbols indicate that the heat tape wrapped around the particle probe was turned on, and blue symbols indicate that it
was turned off.

than at the much warmer 7,620 m hot day conditions, this could
be consistent with volatile particles forming in the jet and then
revaporizing in the heated probe. However, unheated probe mea-
surements at the 12,190 m standard day conditions show particle
number concentration decreasing with increasing axial distance;
although this could be consistent with particles revaporizing in
the sampling line, it is inconsistent with the heated probe mea-
surements.

When particulate emissions measurements are taken on the

ground or in a test cell, the particulate sample is diluted at the
probe tip to prevent condensation and to freeze the particulate
chemistry. In this study, the altitude chamber particulate mea-
surements were not diluted because the mixing in the jet dilutes
the combustion products by a factor of between five and ten to
one, depending on axial location. However, because the ambi-
ent temperature in the altitude chamber is much colder than the
temperature in the jet — especially on the jet centerline and at
the lower axial locations — more dilution may be necessary. For
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FIGURE 8: Particle concentration with and without heat tape at 12,190 m standard day conditions at (a) 0.18 m and (b) 0.71 m down-
stream of the nozzle exit. Red symbols indicate that the heat tape wrapped around the probe was turned on, and blue symbols indicate
that it was turned off.

future measurements, diluting the particulate sample so that the
vapor pressure of water in the sample is below the saturation va-
por pressure at the ambient chamber conditions could prevent
condensation in the probe.

Before further particle measurements are made in the alti-
tude chamber, it would be best to do a modeling study of the
particle sampling system. This study could help determine the

degree of condensation in the unheated particle probe and the ef-
fects of heating the particle probe. It could also provide guidance
for choosing a sampling flow rate and help determine if a larger
diameter sampling probe or tip dilution could reduce the particle
probe effects.
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FIGURE 9: Normalized particle number distribution plotted with
the curve fit for θ/θCL. Unfilled symbols are used for measure-
ments taken when the heat tape was turned on, and filled symbols
are used for measurements taken when the heat tape was turned
off.
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FIGURE 10: Maximum concentration as a function of the normalized axial distance. Unfilled symbols are used for measurements taken
when the heat tape was turned on, and filled symbols are used for measurements taken when the heat tape was turned off.

5 Conclusions

Initial temperature and particle number concentration pro-
files were measured in the Particulate Aerosol Laboratory. This
unique facility simulates engine exhaust at altitude by exhausting
hot combustor exhaust into an altitude chamber. The small nitro-
gen coflow in the altitude chamber is kept at pressure and temper-
ature conditions corresponding to aircraft cruising altitudes. Re-
sults from the normalized temperature distribution, θ , show that
the combustor exhaust flow field follows momentum-dominated
jet scaling. Initial particle number concentration measurements
were taken with a heated probe at four altitude chamber condi-
tions and with an unheated probe at one altitude condition. Re-
sults show that whether the probe is heated or unheated affects
the particulate measurements. Particle number concentrations
measured with an unheated probe can be more than five times
as great as those measured with a heated probe. In addition, the
shape of the radial particle number concentration profile can be
different when using an unheated probe than when using a heated
probe. A modeling study of the particle sampling system should
be done before further testing to determine the effects of probe
heating and of condensation in the particle probe.
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