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Abstract

Sampling theory is that branch of mathematics that seeks to reconstruct
functions from its values at a discrete set of points. The fundamental result
in sampling theory known as “Shannon’s sampling theorem” has many ap-
plications to signal processing and communications engineering. I demon-
strate Shannon’s result via complex interpolation methods. I then quote a
result that uses these methods to solve interpolation problems on unions of
noncommensurate lattices, which are created via a specific number of the-
oretic guidelines. These interpolations give Shannon-type reconstructions
on these lattices. I close by doing simulations in MATLAB of the sampling
reconstructions on these noncommensurate grids.
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1. Introduction

Sampling theory is the distinctive branch of mathematics that attempts
to solve the interpolation problem of a function with fixed growth from
known sampled values by reconstructing the original function. The the-
ory is a subset of the general theory of interpolation, which constructs
functions that satisfy the known values. Sampling theory uses interpola-
tion with other knowledge of a function to find methods that reconstruct
the original function. This involves restrictions on the samples of known
values.

The most significant contribution to this theory is called the “classical sam-
pling theorem.” This theorem is known by a myriad of names—Whittaker,
Kotel’nikov, and Shannon—but the result is essentially the same. The theo-
rem tells us that if a signal f is a function of finite energy on R (f ∈ L2(R))
with Fourier transform f̂(ω) = 0 for all |ω| ≥ Ω, and if T ≤ 1/2Ω, then for
all t ∈ R,

f(t) = T

∞∑
n=−∞

f(nT )
sin( π

T (t− nT ))
π(t− nT )

. (1)

In other words, if f is sampled uniformly at a sufficiently high rate, f can be
reconstructed from these samples by the formula in equation (1). This for-
mula has a rich history extending back as far as the 1600s. However, much
of the crucial research in developing and establishing the theory has oc-
curred in the twentieth century, primarily because of the research in the
various engineering fields. With the motivation of obtaining useful and
practical results, the classical sampling theorem has been generalized and
extended to a number of applications.
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2. Preliminaries in Harmonic Analysis

Before I discuss the main results of this report, I first introduce a number
of preliminary definitions and theorems. Much of what follows is standard
notation in the literature and can be found in any text covering Fourier
analysis. (For example, see Benedetto [1], Dym and McKean [2], or Körner
[3]. Also see Apostol [4], Higgins [5], Marks [6], and Zayed [7].) First, I
define in the following what are absolutely and square integrable functions:

Function f. A function f is called absolutely integrable, i.e., f ∈ L1(R), if∫
R

|f(x)| dx ≡ ||f ||1 < +∞ .

If f is in L1, one can say that ||f ||1 is the L1 norm of f . Similarly, a function
is called square integrable, i.e., f ∈ L2(R), if∫

R

|f(x)|2 dx ≡ ||f ||2 < +∞ .

If f is in L2, one can say that ||f ||2 is the L2 norm of f .

In this section, all functions are considered absolutely and square integrable
functions on the real line, unless otherwise noted. Likewise, all integrals
are assumed to be over the whole domain (either R or C, depending on the
context) unless noted otherwise. The Fourier series and Fourier transform
play integral parts in the sampling theory and Fourier analysis. Their def-
initions, from Benedetto [1] and Dym and McKean [2], are defined in the
following:

Fourier Series. Let f be a periodic, integrable function on R, with period 2Ω.
Then the Fourier series of f is represented as

f(x) =
∞∑

n=−∞
cn exp−iπnx/Ω , (2)

where the Fourier coefficients cn are defined by

cn =
1

2Ω

∫ Ω

−Ω
f(x) expiπnx/Ω dx . (3)

Fourier Transform and Inversion Formula. The Fourier transform of f ∈ L1(R)
is defined as

f̂(ω) =
∫

R

f(t) exp−2πitω dt , (4)
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and its inversion formula for f̂ ∈ L1(R̂) is

f(t) =
∫

R

f̂(ω) exp2πiωt dω . (5)

The factor 2π in the exponential simplifies Plancheral’s formula, i.e., ||f ||2 =
||f̂ ||2. Often, the Fourier transform of f is also denoted F . The Fourier trans-
form can be extended to square integrable functions via a density argument
on C∞

↘ (R), the space of infinitely differentiable, rapidly decreasing func-
tions on R. The transform is an isometry in L2(R). By itself, the Fourier
transform has useful applications in signal and image processing. If I con-
sider the function f to be a signal, then I refer to the domain of f as the
time domain and the domain of the transform as representing the signal
frequency. The following definitions are useful when referring to the time
or frequency domain of a signal or function:

Support. The support of a function f : R → R, denoted supp(f ), is the
closure of the set on which f is nonzero, i.e., supp(f ) = {x ∈ R : f(x) 
= 0}.
The function f is said to have compact support if supp(f ) is a compact set.

Band-limited. The function f : R̂ → R̂ is called Ω band-limited if the support
of its Fourier transform f̂ is contained in the bounded interval [−Ω,Ω] in R̂,
i.e., supp(f̂ ) ⊂ [−Ω,Ω].

The Fourier transform has a multitude of mathematically convenient and
useful algebraic properties: linearity, symmetry, conjugation, translation
(time shifting), modulation (frequency shifting), and time dilation [1]. Also,
the transform has a number of important analytic properties: boundedness,
continuity, Riemann-Lebesgue Lemma, time differentiation, and frequency
differentiation [1–3,5]. One of the more relevant properties of the Fourier
transform involves a mathematical operation called a convolution.

Convolution. For f, g ∈ L1(R), the convolution of f and g is defined by

h(x) = f ∗ g(x) =
∫

f(y)g(x− y) dy (6)

for x ∈ R.

Convolution is a mathematical operation that consists of the filtering of
one signal (the source) passing it through a filter, which is simply another
signal.

Convolution is commutative, i.e., f ∗g = g ∗f , and if f , g, and h are of com-
pact support, convolution is associative. The subject of convolution is im-
portant to signal reconstruction. The operation is the filtering of one func-
tion by passing it through a filter, which is simply another function. More
on this topic will be discussed in section 4.1. For now, I note the following
two significant properties from the Fourier perspective:

f̂ ∗ g = f̂ · ĝ, and
f̂ · g = f̂ ∗ ĝ .
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These properties prove to be extremely useful in developing the theory on
deconvolution.

Finally, I conclude with the Paley-Wiener theorem:

Paley-Wiener. The Fourier-Laplace transform of an infinitely differentiable
function f with compact support contained in {|t| ≤ A} is an entire func-
tion f̂(ζ) in C, which satisfies the following property:

For every integer N ≥ 0, a positive constant C = C(N) exists, such that

|f̂(ζ)| ≤ C(1 + |ζ|)−Nexp2πA|Imζ| for all ζ ∈ C . (7)

Conversely, every entire function in C satisfying this property is the
Fourier-Laplace transform of a C∞ function, with compact support within
{|t| ≤ A}.

The classical Paley-Wiener theorem says that a square-integrable complex-
valued function, defined over the real line, can be extended off the real line
as an entire function of exponential type if and only if its Fourier transform
f(x) is identically zero for |x| > a, i.e., if and only if f is band-limited to
[−a, a]. (For a derivation, see literature by Dym and McKean [2]. )

The Shannon series is a means of extending to the entire complex plane C.
The extension of the Paley-Wiener theorem to generalized functions (to
tempered distributions) is called the Paley-Wiener-Schwartz theorem. Ad-
ditional background material can be found in literature by Benedetto [1],
Dym and McKean [2], and Körner [3].
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3. Classical Sampling Theory

3.1 Classical Sampling Theorem

Sampling theory is an area of high interest and interacts with numerous
other mathematical fields. The idea behind sampling is to convert continu-
ous time signals into appropriate discrete signals that represent the original
signal and vice versa. Reconstruction reverses the process to retrieve the
original signal from the samples. This theory of sampling was created via
an amalgam of mathematical, scientific, and engineering research. Without
dispute, the fundamental result from the conglomeration of these sources
has been what is called the classical sampling theorem: Let f be a function
of finite energy on R (f ∈ L2(R)) with Fourier transform f̂(ω) = 0 for all
|ω| ≥ Ω, i.e., f(t) is Ω band-limited.

If T ≤ 1/2Ω, then for all t ∈ R,

f(t) = T
∞∑

n=−∞
f(nT )

sin( π
T (t− nT ))

π(t− nT )
. (8)

If T ≤ 1/2Ω and f(nT ) = 0 for all n ∈ Z, then f ≡ 0. The rate 1
2Ω is known

as the Nyquist rate.

This theorem, though it is simple to state, has far-reaching consequences.
The theorem basically states that some signals, or functions, can be per-
fectly represented by sample values of the function taken at regular, or eq-
uispaced, intervals. Knowledge of the frequency bound is required, since
this determines the minimum rate at which the signal must be sampled
to reconstruct the signal completely. Because Nyquist discovered this min-
imum rate, it is commonly referred to as the Nyquist rate [8]. No infor-
mation is lost if the signal is sampled at this rate, and also no additional
information is acquired by sampling faster than this rate. That is, the signal
is already perfectly reconstructed. Essentially, the band-limited condition
guarantees that sufficiently close sampling reveals a nicely behaved func-
tion between the sample points. Since f is band-limited, one can gather
data sufficiently faster than the signal’s oscillation in time and then recover
f using the “sinc” function sin(2πx)

x as an interpolator. Thus, one can think
of classical sampling as a uniqueness theorem from the theory of analytic
splines.

There is also a duality in the theorem. Not only can one reconstruct the
function in time, assuming the function is band-limited, but also in fre-
quency, assuming that the function is time-limited. In this case, the function
and its transform switch roles.

There is an intriguing history involving the development of this theorem.
A dispute prevailed over who initially discovered this result and who is
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credited. Consequently, the theorem has several names associated with it:
the cardinal series, the Whittaker sampling theorem, the Kotel’nikov theo-
rem, and the Shannon sampling theorem. Often, the names are combined
in various forms. For simplicity, it is referred to in this report simply as the
classical sampling theorem.

3.2 A Proof

There are numerous proofs of the classical sampling theorem [1,5–7,9,10],
some more rigorous and satisfying than others. A simple proof of the theo-
rem follows:

Proof. Let f be Ω band-limited, i.e., supp(f̂ ) ⊂ [−Ω,Ω]. Since this condition
holds, f̂ can also be represented as the restriction of a 2Ω periodic function
to the support of f̂ as

f̂(u) =
∞∑

n=−∞
cn exp−iπnu/Ω ·X[−Ω,Ω](u) , (9)

where the Fourier coefficients are simplified with the use of the Fourier
inversion formula and the nature of X . Note, XA is the characteristic func-
tion defined to be unity in the set A and zero elsewhere. Then the Fourier
coefficients are found to be

cn =
1

2Ω

∫ Ω

−Ω
f̂(u) expiπnu/Ω du

=
1

2Ω

∫ ∞

−∞
f̂(u) exp2iπ(n/2Ω)u du (10)

=
1

2Ω
f(

n

2Ω
) .

Substituting equation (10) back into equation (9) and solving for f with
the use of the inverse Fourier transform in equation (5) and the uniform
convergence of Fourier series, the classical sampling theorem is the result

f(x) =
∫ ∞

−∞
f̂(u) exp2πiux du

=
∫ ∞

−∞

1
2Ω

∞∑
n=−∞

f(
n

2Ω
) exp−iπnu/Ω ·X[−Ω,Ω] exp2πiux du

=
1

2Ω

∞∑
n=−∞

f(
n

2Ω
)
∫ Ω

−Ω
exp(2πix−πin/Ω)u du (11)

=
1

2Ω

∞∑
n=−∞

f(
n

2Ω
)2Ω

sinπ(2Ωx− n)
π(2Ωx− n)

=
∞∑

n=−∞
f(

n

2Ω
)
sinπ(2Ωx− n)
π(2Ωx− n)

.

The third equality, where the integral and summation are exchanged, is
permitted by uniform convergence. So, if T = 1/2Ω, then equation (11) is
identical to equation (1).

6



3.3 An Example

The sampling theory with this band-limited condition, at first, appears too
restrictive for practical use. The formula

f(t) = T

∞∑
n=−∞

f(nT )
sin( π

T (t− nT ))
π(t− nT )

requires that the signal’s frequency be bounded for the reconstruction to be
stable. However, in practice, this condition is not restrictive. The physical
interpretation of an Ω band-limited function is that it is a signal with a
frequency no greater than Ω cycles per second. In countless examples, this
reflects the reality of the physical world. For instance, many sounds are
band-limited naturally; i.e., the frequency of orchestral music is less than
20 kH and the human voice is less than 8 kH. Even our hearing is limited
to a certain range of frequencies, and outside of these frequencies, we miss
the signal. For instance, not many people can hear the frequency of a dog
whistle.

Suppose, one had a signal that was Ω band-limited. Then its Fourier trans-
form would be equivalent to the product of S(ω) and F (ω) = X[−Ω,Ω](ω),
the characteristic function of [−Ω,Ω]. Then the signal is defined by the
convolution of the inverse Fourier transform of S(ω), perhaps s(x), and
f(x) = sin(2πx)

πx . For simplicity, let Ω = 1 and the function S(ω) = 1, then the
signal is represented just by f(x). (See fig. 1.)

According to the sampling theorem, since f is band-limited, it can be re-
constructed from its values at the points nT , where T ≤ 1/2Ω = 1/2 and
n ∈ Z:

g(x) = T

∞∑
n=−∞

f(nT )
sin( π

T (x− nT ))
π(x− nT )

,

where x ∈ R.

In the reconstruction in figure 2, I set T = 1/2Ω = 1/2. Because of the band-
limited condition, there is no gain to oversampling. To further illustrate
the significance of the band-limited condition, i.e., the need to sample at
or above the Nyquist rate, the signal function is undersampled. The next
sample, in figure 3, is taken at T = 1

2∗0.8 ≥ 1
2Ω , i.e., below Nyquist.

Knowledge of the frequency bound allows one to periodically extend the
transform to the real line. But when the sample is taken below the Nyquist

Figure 1. Original signal
f(x) and its Fourier
transform f(ω).
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Figure 2. Original signal
f and reconstruction g.
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Figure 3. Aliasing
caused by
undersampling.
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rate, those periodic extensions contain overlapping sections and the infor-
mation is not weighted appropriately. This effect, demonstrated in figure 3,
is known as aliasing.

3.4 Deriving the Cardinal Series

There are numerous ways in which to derive the cardinal series, or sam-
pling formula, as attested in the literature concerning this. The histori-
cal development of its construction follows in section 3.5. In this report,
I display several methods that successfully derive the cardinal series. The
first, which is called the delta method [5], is natural in its approach but is
not rigorous! The second derivation uses the Cauchy integral formula and
shows this to be equivalent to the classical sampling theorem under certain
conditions.

3.4.1 Delta Method

For this derivation, the function is sampled equidistantly. Mathematically,
this is using a series of generalized functions with point support, i.e., delta
functions. Thus, a sampled version of f is

fs(t) = f(t)
∑
n∈Z

δ(t− nτ) =
∑
n∈Z

f(nτ)δ(t− nτ) , (12)

where τ controls the rate of the sampling. This hints at the following recon-
struction formula that uses some function g:

f(t) =
∑
n∈Z

f(nτ)g(t− nτ) . (13)

The task is now to find an appropriate interpolating function g and rate τ .
Then equation (13) can be rewritten as

f(t) =
∫

R

f(u)g(t− u)
∑
n∈Z

δ(u− nτ) du . (14)

The Fourier series expansion of the delta sum is
∑

n∈Z
δ(u − nτ) =

1/τ
∑

n∈Z
exp−2πinu/τ with the use of equation (12) [1]. So, again equation

(14) is rewritten as

f(t) =
∫

R

f(u)g(t− u)
1
τ

∑
n∈Z

exp−2πinu/τ du

= f(·)
∑
n∈Z

exp−2πin·/τ ∗1
τ
g(·)(t) , (15)

where the convolution operator ∗ is defined in section 2. Then, the Fourier
transform of both sides results in

f̂(x) =
1
τ
ĝ(x)

∑
n∈Z

f̂(x +
n

τ
) . (16)

9



Thus, the transform of f is equivalent to some weighted spectral repeti-
tion of itself. To make sense, g must be such that it chooses only one copy
of the spectrum. This is inherently impossible if the repetitions overlap.
Supposing that f is ω band-limited, then 1/τ ≥ 2ω is needed to prevent
overlapping repetitions. This reveals the importance of the rate τ ≤ 1/2ω
in sampling the function. Now, ĝ(x)/τ is a window in which to keep the
desired copy of the spectrum, where n = 0. Thus, define g so that

ĝ(x) = τ · X[− 1
2τ

, 1
2τ

](x) , (17)

and note that ĝ needs only to be equivalent to the characteristic function
over the interval [−ω, ω] ⊂ [−1/2τ, 1/2τ ]. This is equivalent to equation
(17) and keeps the consistency in the formula dependent on the sampling
rate exclusively. This reveals the interpolator to be

g(t) = τ · sin 2π 1
2τ t

πt
=

sin π
τ t

π
τ t

, (18)

and therefore, the final rewriting of equation (13) becomes the sampling
formula

f(t) =
∑
n∈Z

f(nτ)g(t− nτ)

=
∑
n∈Z

f(nτ)
sin π

τ (t− nτ)
π
τ (t− nτ)

. (19)

Again, the classical sampling formula is derived. This is not the only
method of deriving the classical sampling theorem. A method that uses
complex variables is demonstrated in the next section (3.4.2).

3.4.2 Complex Method

The sampling theorem is intimately connected to a wide variety of mathe-
matical theories. Under certain conditions, it has been shown to be equiva-
lent to a number of other important formulas: the Poisson summation for-
mula, the Cauchy integral formula, etc [5]. Its connection to Cauchy inte-
gral theory is demonstrated here.

The relation between complex integration theory and the sampling formula
is inherently obvious. The contour integral around a set of simple poles
is simply a linear combination of some function’s values at the poles (of
course, with the poles removed). This is a kind of sampling relationship,
made obvious when one considers that in the classical sampling theorem,
the “sinc” function contains the appropriate zero values at the sampled
data points of the signal function. This technique fits under the umbrella
of general complex interpolation. The splitting of the integral is called the
Jacobi interpolation formula. This technique was used by Berenstein, Casey,
Yger, and Walnut to solve deconvolution problems.

To show this connection mathematically, I will start with Cauchy’s integral
formula. See Marsden and Hoffman [11] for the necessary background in
complex analysis.
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Cauchy Integral Formula Theorem [11]. Let f be analytic on a region D and let
C be a closed curve in D that is homotopic to a point, i.e., let C be a simple,
closed, and rectifiable curve in C and also let z ∈ D be a point in D inside
C. Then, for r ∈ N0,

η(C, z) · f (r)(z) =
r!

2πi

∮
C

f(γ)
(γ − z)r+1

dγ , (20)

where η(C, z) = 1/2πi
∮
C 1/(γ−z) dγ is the winding number. Note, η(C, z) =

1 if C is positively oriented and loops around z ∈ int C only once.

Given this theorem, I can derive the classical sampling formula. For sim-
plicity, assume that Ω ≤ 1/2T and place the sample values at the integers,
n ∈ Z. Thus, the sampling rate T = 1 and Ω ≤ 1/2. Let f be a function
that satisfies the conditions in the theorem. By the Paley-Weiner theorem
in section 2, f is an analytic function in t ∈ R, which analytically contin-
ues to the entire complex plane. Moreover, this entire function satisfies the
Paley-Weiner growth bound, i.e., for Ω > 0,

|f(z)| ≤ A exp−2πΩ|Imz| =
A1

(1 + |ζ|)N
exp−2πΩ|Imz| . (21)

Now, define µ̂(ζ) = sinπζ. This has zeros at the integer values, i.e., the
sampling rate. So the contour will need to avoid the zeros of µ̂(ζ). I define
Cm to be a square contour with corners on

(±1 ± i)(m +
1
2
) .

Thus, η(C, z) = 1. Now, first use the Jacobi interpolation formula (see Casey
and Walnut [12]) that gives

f(z) =
1

2πi

∮
Cm

f(ζ)
ζ − z

dζ

=
1

2πi

∮
Cm

f(ζ)
ζ − z

· µ̂(ζ)
µ̂(ζ)

dζ (22)

=
1

2πi

∮
Cm

f(ζ)
ζ − z

· µ̂(ζ) − µ̂(z)
µ̂(ζ)

dζ +
1

2πi

∮
Cm

f(ζ)
ζ − z

· µ̂(z)
µ̂(ζ)

dζ

= (1) + (2) .

Next, I shall show that (2) → 0 as m → ∞, where

(2) =
µ̂(z)
2πi

∮
Cm

f(ζ)
(ζ − z)µ̂(ζ)

dζ . (23)

Recall, that Cm is a square contour with corners (±1± i)(m+1/2). Let R be
a closed, compact disc centered at 0. Then when m + 1/2 > R and ζ ∈ Cm,
|ζ − z| ≥ m + 1/2 −R, such that

|(2)| = | µ̂(z)
2πi

∮
Cm

f(ζ)
(ζ − z)µ̂(ζ)

dζ|

≤ |µ̂(z)|
2π

∮
Cm

|f(ζ)|
|(ζ − z)| · |µ̂(ζ)| dζ (24)

≤ |µ̂(z)|
2π(m + 1

2 −R)

∮
Cm

|f(ζ)|
|µ̂(ζ)| dζ .
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Now, let ζ = u + iv. Then, define C
(1)
m as the side of Cm that joins (1 −

i)(m+ 1/2) and (1 + i)(m+ 1/2), C(2)
m that joins (1 + i)(m+ 1/2) and (−1 +

i)(m + 1/2), C(3)
m that joins (−1 + i)(m + 1/2) and (−1 − i)(m + 1/2), and

C
(4)
m that completes the square contour that joins (−1 − i)(m + 1/2) and

(1 − i)(m + 1/2).

On the side C
(1)
m , ζ = m + 1/2 + iv, thus

| sin(πζ)|2 = sin2(πu) + sinh2(πv) = 1 + sinh2(πv) = cosh2(πv) ≥ exp2π|v| .

Also |f(ζ)| ≤ A exp−2πΩ|v| in equation (21), so that if Ω < 1
2 ,∮

C
(1)
m

|f(ζ)|
|µ̂(ζ)|dζ ≤ A

∫ m+ 1
2

−m− 1
2

exp−π|v|(2Ω+1) dv

= A
exp−π(2Ω+1)(m+ 1

2
) −1

π(2Ω + 1)
, (25)

which disappears as m → ∞, since Ω > 0. However, if Ω = 1/2, then∮
C

(1)
m

|f(ζ)|
|µ̂(ζ)| dζ ≤

∫ m+ 1
2

−m− 1
2

A1

(1 + |ζ|)N
dζ

=
∫ m+ 1

2

−m− 1
2

A1

(1 + (m + 1
2)2 + v2)N

dv (26)

=
A1 · (2m + 1)

(1 + (m + 1
2)2)N

.

Thus, the integral goes to 0 as m → ∞. A similar approach can show
the same for C

(3)
m . On the side C

(2)
m , ζ = u + i(m + 1/2), and | sin(πζ)| ≥

sinh(π(m + 1/2)). Thus, if Ω ≤ 1/2, then∮
C

(2)
m

|f(ζ)|
|µ̂(ζ)| dζ ≤

∫ m+ 1
2

−m− 1
2

A1

(1 + u2 + (m + 1
2)2)N

exp−2π|m+ 1
2
|Ω

sinhπ(m + 1
2)

du

=
A1 · (2m + 1)

(1 + (m + 1
2)2)N

exp−2πΩ(m+ 1
2
)

sinhπ(m + 1
2)

, (27)

which also disappears as m → ∞, since Ω > 0. Likewise, C(4)
m is integrated

in the same manner. So, equation (22) becomes

f(z) = (1) =
1

2πi

∮
Cm

f(ζ)
ζ − z

· µ̂(ζ) − µ̂(z)
µ̂(ζ)

dζ

=
µ̂(z)
2πi

∮
Cm

f(ζ)
ζ − z

·
[

1
µ̂(z)

− 1
µ̂(ζ)

]
dζ . (28)

At this point, I need to note a couple items before proceeding. First,

sinπζ = lim
N→∞

sN (ζ) = lim
N→∞

πζ
N∏

j=1

(
1 +

ζ2

j2

)
(29)

12



is the product representation of a sine function. Second, note the following
partial fractions decomposition:

1
(ζ − z)sN (ζ)

=
1

(ζ − z)sN (z)
+

∑
|n|≤N

1
(ζ − n)(n− z)s′N (n)

. (30)

To show this, I need the following: Let p(ζ) be a polynomial with only sim-
ple zeros at {rj}s

j=1, then (shown in app A)

1
p(ζ)

=
s∑

j=1

1
(ζ − rj)p′(rj)

. (31)

Then, if m < N and defining Rm = (2) on Cm,

f(z) =
µ̂(z)
2πi

∮
Cm

f(ζ)
ζ − z

·
[

1
µ̂(z)

− 1
µ̂(ζ)

]
dζ + Rm

= lim
N→∞

sN (z)
2πi

∮
Cm

f(ζ)
ζ − z

·
[

1
sN (z)

− 1
sN (ζ)

]
dζ + Rm

= lim
N→∞

sN (z)
2πi

∮
Cm

·
∑

|n|≤N

f(ζ)
(ζ − n)(n− z)s′N (n)

dζ + Rm

= lim
N→∞

sN (z)
2πi

∑
|n|≤N

·
∮

Cm

f(ζ)
(ζ − n)(n− z)s′N (n)

dζ + Rm (32)

= lim
N→∞

sN (z)
∑

|n|≤m

f(n)
(z − n)s′N (n)

+ Rm

= sinπz
∑

|n|≤m

f(n) · (−1)n

π(z − n)
+ Rm

=
∑

|n|≤m

f(n)sinc(z − n) + Rm .

Thus, as m → ∞, then Rm → 0, and this is the classical sampling theo-
rem. After the limit, the contour integral covers over all the zeros of the
sampling function and thus integrates over the whole function. Note, the
switch between limit and integration in the second equality and between
summation and integration in the fourth is permitted because of uniform
convergence. A similar approach is undertaken by Higgins [5], and he also
demonstrates other and more general equivalence relations involving the
classical sampling formula.

3.5 A Bit of History

Sampling theory grew out of a plethora of other mathematical fields. It is
intimately connected with interpolation theory and approximation theory.
In fact, for certain cases, it can be shown that the cardinal series (the classi-
cal sampling formula), the Cauchy integral formula, and the Poisson sum-
mation formula are equivalent [5]. Sampling theory also has applications
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in numerous other fields of systems theory, prediction theory, information
theory, stochastic processes, signal and image processing, etc. The theory
of interpolation grew out of the need to calculate intermediate values of
functions with some known values. In 1624, Briggs introduced methods
for achieving this by using successive and modified differences. Wallis also
had some influence in this area in the 1650s and is credited with coining
the term “interpolation.” However, it was not until the work of Gregory
and Newton that the polynomial nature of these methods began to be rec-
ognized. In 1670, Gregory introduced the first interpolation series, and later
Newton introduced divided and adjusted divided differences. Both meth-
ods derive from taking the polynomial as a close approximation to the (con-
tinuous) function to be interpolated [13].

Although these methods were somewhat successful in providing approxi-
mations, it became desirable to construct a polynomial interpolant without
the need of finding successive differences. This was achieved with the iden-
tity below:

f(λ0) + (t− λ0)f(λ0, λ1) + · · · + (t− λ0) . . . (t− λM−1)f(λ0, . . . , λM ) (33)

=
M∑

j=0

f(λj)
GM (t)

G′
M (λj)(t− λj)

,

where

f(λ0, λ1) =
f(λ1) − f(λ0)

λ1 − λ0

f(λ0, λ1, λ2) =
f(λ1, λ2) − f(λ0, λ1)

λ2 − λ0
. . .

and

GM (t) =
M∏

j=0

(
1 − t

λj

)
.

Both sides are identical because both are polynomials of degree M taking
on the same values on {λj}. The right side of the equality in equation (33)
is known as Lagrange’s formula. Essentially, the Lagrange interpolator acts
as a delta function over the known values. This formula first appeared in
Lagrange’s lectures given in 1795. However, it was previously discovered
by Waring in 1779 [5].

Parallel to the above approach, it became desirable to have a periodic inter-
polant rather that a polynomial one. Given a periodic function of the form
p(t) =

∑M
j=−M cj expijt, then appropriate formulas were found for these

cases. One such formula is

p(t) =
1

2M + 1

2M∑
j=0

p

(
2πj

2M + 1

)
sin[(2M+1

2 )(t− 2πj
2M+1)]

sin 1
2(t− 2πj

2M+1)
.
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This finite sampling series is credited to Cauchy (1841), although Gauss in-
troduced primitive forms as far back as 1805 [5]. Cauchy’s other significant
contribution was to be the first to note the importance of the rate of the
sampling.

The research conducted in the nineteenth century extended Lagrange’s for-
mula from interpolation on a finite number of points to the more general
case of infinitely many points {λn}. Assuming f(λn) = an for all n ∈ N,

f(z) =
∑

n

an
φ(z)

φ′(λn)(z − λn)
,

where φ is a function with simple zeros at {λn}. A more general formula
was also constructed: ∑

n

an(
z

λn
)sn

φ(z)
φ′(λn)(z − λn)

,

where (sn) is a sequence of integers appropriately chosen to ensure conver-
gence [14]. These formulas were found useful by Cazzaniga in 1882 for con-
structive purposes. The century ended with the first explicit statement of
the cardinal series by Borel. In 1899, Borel set λn = n and noted that sin(πz)
has the appropriate zeros, returning the classical sampling formula [5].

During the first half of the twentieth century, this special case of the La-
grange formula with knowledge of equidistantly spaced points, i.e., the
cardinal series, was rediscovered in this form several times [5,14]. Whipple
did so in 1910, and E. T. Whittaker in 1915 [10]. Whittaker would also point
out the band-limited nature of the sum. His son, J. M. Whittaker, would
coin the phrase ”cardinal series” in 1929. Ogura, in 1920, was the first to
provide a fully rigorous proof of the cardinal series by using the calculus of
residues. In 1928, Nyquist established the time-bandwidth component of
a signal, the importance of rates, in connection with telegraphy. His work
showed that stability and reconstruction were not possible below a cer-
tain sampling rate. In 1941, Hardy noticed that the cardinal series is an
orthogonal expansion, an important development contributing to Hilbert
and Banach spaces. In 1933, Kotel’nikov introduced sampling theory into
communication theory. However, this fact was unknown in the west until
the 1960s. For the Western world, Shannon introduced it in 1949 [14]. Shan-
non’s original statement of the theorem is ”If a function f(t) contains no
frequencies higher than W cps, it is completely determined by giving its
ordinates at a series of points spaced (1/2 W) s apart.”

In fact, he claims that this fact is common knowledge in communication
and credits Whittaker for an earlier form of the theorem. He also notes
Nyquist’s and Gabor’s use of this fact. However, his name remains attached
to the theorem.

Since Shannon’s use of the sampling theorem, much has been developed in
this field of research. Parzen [15] in 1956 and Petersen and Middleton [16] in
1962 extended the sampling theorem to multiple dimensions, and Kramer
developed a generalization of the classical sampling theorem in 1959 [17].
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4. Multirate Sampling Theory

The classical sampling theorem shows that one can effectively recover a sig-
nal using a regular sampling rate determined by knowledge of the signal
frequency’s bandwidth. However, if the sampling rate is slower than the
Nyquist rate, the function cannot be reconstructed via the classical theo-
rem. Research in this direction has proven effective via other methods. The
procedure here relies on both the classical theorem and deconvolution the-
ory to show how a band-limited function that is sampled below Nyquist
can still be completely recovered.

4.1 Multichannel Deconvolution

Deconvolution has proven itself to be a useful mathematical tool in the field
of signal and image processing. For images, it acts as an enhancing filter to
correct blurs in a picture. For signals, it can be used to correct distorted
line shapes without a loss of signal-noise ratio. In essence, deconvolution
is useful in signal and image processing, where the incoming data contains
a high degree of information. The reason this works so naturally is because
the convolution equation models a number of linear systems.

Before I progress further, it is appropriate to understand what convolu-
tion is defined as mathematically. Recall the definition of convolution, also
given earlier (sect. 2), for f, g ∈ L1(R), the convolution of f and g is defined
by

f ∗ g(x) =
∫

f(y)g(x− y) dy

for x ∈ R.

For the purpose of this report, the convolution equation s = f ∗ µ mod-
els linear, translation invariant systems (e.g., sensors, linear filters). In this
model, f is the input signal function, µ is the system impulse response dis-
tribution, and s is the output (received) signal. However, in many physical
applications, s is often a poor approximation of the signal f . This moti-
vates one to deconvolve f from µ to attain the original signal. Results have
shown that if the convolver µ is time-limited (i.e., compactly supported)
and nonsingular (i.e., not a delta generalized function), then this problem
is ill-posed, in the sense of Hadamard [12]. It has been shown to be ill-posed
for all realizable convolvers—all convolvers that can be built. For the cir-
cumvention of this scenario, a theory of multichannel deconvolution has
been developed to solve these equations. A multichannel system preserves
information about the signal that would otherwise be lost. Thus, data lost
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by one convolver can still be retained by another convolver. The signal is
now overdetermined, i.e.,

si = f ∗ µi, i = 1 . . . n .

Then, if the convolvers {µi} satisfy the condition of being strongly coprime,
then deconvolving for f is now a well-posed problem.

Strongly coprime. Strongly coprime is defined as a set of convolvers {µi} that
satisfy the inequality(

n∑
i=1

µ̂i|(ζ)|2
) 1

2

≥ A exp−B|Imz| ·(1 + |ζ|)−N (34)

for every ζ ∈ C, where A and B are positive constants and N is a positive
integer, is said to be strongly coprime.

Note, this tells us that 1/
∑n

i=1 |µ̂i(ζ)|2 satisfies the Paley-Weiner growth
bound. If this is so, then there exists a set of time-limited deconvolvers {νi}
such that

µ1 ∗ ν1 + · · · + µn ∗ νn = δ ,

and consequently,

µ̂1 · ν̂1 + · · · + µ̂n · ν̂n = 1 ,

where δ is the Dirac delta function. The second of these two equations is the
analytic Bezout equation. The existence of such deconvolvers is guaranteed
by the following theorem:

Hörmander [12]. For compactly supported distributions {µi}n
i=1 on R, com-

pactly supported distributions {νi}n
i=1 exist such that

δ = µ1 ∗ ν1 + · · · + µn ∗ νn .

That is, they satisfy the analytic Bezout equation if and only if the set of
distributions {µi}n

i=1 is strongly coprime.

By Hörmander’s theorem, a strongly coprime set has a solution in the ana-
lytic Bezout equation. Thus, given the deconvolvers and output signals, f
is naturally produced:

∑
i

si ∗ νi =
∑

i

(f ∗ µi) ∗ νi =
∑

i

f ∗ (µi ∗ νi) = f ∗
∑

i

(µi ∗ νi) = f ∗ δ = f .

The system is such that no information is lost in this process. This occurs
because the condition of being strongly coprime guarantees that the zeros
in the analytic Bezout equation do not cluster quickly as |ζ| → ∞. If the
{µ̂i} did have a common zero, then ŝi(ζ) = 0 at that zero and information
about f would be lost. Because the system is engineered toward eliminat-
ing any common zero, no information about f is lost (and the problem is
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well-posed). Thus, the signal f is gathered by this strongly coprime system,
and these received signals are then filtered by the deconvolvers to recon-
struct f .

These methods are linear and realizable; thus deconvolution at a time sam-
ple only depends on the information near that time sample. Unfortunately,
Hörmander’s theorem is an existence theorem; it does not reveal what the
deconvolvers might be. One obvious solution is

νi =
µi∑
i |µi|2

.

The deconvolvers have been shown not to be unique, and so, for certain
scenarios, one set of deconvolvers may be better than another. More in this
direction is given by Casey and Walnut [18].

4.2 Noncommensurate Sampling Lattices

The theory developed here merges together the two ideas of multichan-
nel deconvolution and classical sampling theory. It has been developed by
Casey [19], Casey and Sadler [20], and Casey and Walnut [12,18].

By the results in multichannel deconvolution, a set of strongly coprime con-
volvers {µi} needs to be created for the problem to be well-posed. First, a
definition is needed, then the following theorem will be useful in creating
this set.

Definition. A real number α is said to be poorly approximated by rationals
if an integer N ≥ 2 and a constant C = C(α) exist such that for all integers
p, q with q ≥ 2, ∣∣∣∣α−

(
p

q

)∣∣∣∣ ≥ C|q|−N . (35)

This class of numbers will be denoted by P.

Theorem. Let 0 < r1 < · · · < rm, m ≥ d = 1 satisfy the condition that for
all i 
= j, ri/rj are in P, then {X[−ri,ri]d} is a strongly coprime set. Then to
create a set of appropriate convolvers, one needs only to find such a set
whose ratios are inadequately approximated by rationals.

4.2.1 Two Sampling Lattices

Suppose f ∈ L2(R). Let α be an irrational in the class P. Now, the pair µ1 =
X[−1,1], µ2 = X[−α,α] are strongly coprime. Thus, the problem of solving the
analytic Bezout equation for ν1 and ν2

µ̂1 · ν̂1 + µ̂2 · ν̂2 = 1

is well-posed. Now, µ̂1(ω) = sin(2πω)
πω and µ̂2(ω) = sin(2παω)

πω have zeros

Zµ̂1
=

{n

2

}
, Zµ̂2

=
{ n

2α

}
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for n ∈ Z\{0}. Thus, one solution to the analytic Bezout equation is ν̂1(ω) =
1/2µ̂1(ω) for ω ∈ Zµ̂1

and, likewise, ν̂2(ω) = 1/2µ̂2(ω) for ω ∈ Zµ̂2
. Then, the

problem simply becomes an interpolation problem on the set of zeros Γ =
Zµ̂1

⋃
Zµ̂2

. So, one has a new reconstruction formula for f from its values
on Γ. However, this can be done for any poorly approximated rational. The
following theorem results:

Theorem. Let

Γ =
{±k

2

} ⋃ {±k

2α

}
(36)

for n ∈ N, and let λi ∈ Γ. Let f be a (1 + α)-band-limited function, then f
can be conditionally reconstructed by the formula

f(t) =
∑
λi∈Γ

f(λi)
G(t)

G′(λi)(t− λi)
+ [f(0)K1(t) + f ′(0)K2(t)] , (37)

where

G(t) = sin(2πt) · sin(2παt) (38)

K1(t) =
G(t)

G′′(0)
2! t2

(39)

K2(t) =
G(t)
G′′(0)

2! t
. (40)

Note that the interpolators at the origin appropriately model the function at
the origin, i.e., K1(0) = 1 while K ′

1(0) = 0 and K2(0) = 0 while K ′
2(0) = 1.

How these interpolators are calculated will be demonstrated later in sec-
tion 4.3.1. Also, note that the information in the signal can be reconstructed
uniquely by its samples on Γ∪{0}. Here, it is also important to note that
the sampling rates correspond to 1-band-limited functions and α-band-
limited functions. These add up to the band-limit of the function to be sam-
pled. Thus, a (1+α)-band-limited function is reconstructed via significantly
lower sampling rates.

4.2.2 An Arbitrary Number of Lattices

This result generalizes for an arbitrary number of sampling rates. Let
{ri}n

i=1 be rates such that all ri/rj , i 
= j, are in P, the class of irra-
tionals poorly approximated by rationals. Then, {ri} is a strongly coprime
set. Thus, our convolvers have the form µi(t) = X[−ri,ri](t). These {µi}
model the impulse response of a multichannel system. The convolvers have
Fourier transforms

µ̂i(ζ) =
sin(2πriζ)

πζ

with zero sets Zi = {±k
2ri

}, both respectively, for k ∈ N. Note that exclusive
of the origin, the zeros sets are nonrepetitive. Let Γi = Zi and Γ =

⋃n
i=1 Γi =
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{λi}. Thus, f can be reconstructed on its values at Γ. This can also be done
via techniques in complex interpolation theory.

Thus, the following theorem results: Let {ri}n
i=1 be a set whose ratios are

poorly approximated by rationals, and let f be a (
∑

ri)-band-limited func-
tion. Let

Γi =
{±k

2ri

}
for k ∈ N and i = 1, . . . , n. Also, let

n⋃
i=1

Γi = Γ = {λi} .

Then f is uniquely determined by

{f(λi)}
⋃ {

f(0), . . . , f (n−1)(0)
}

.

Furthermore, f can be reconstructed from its values on Γ
⋃
{0} by the fol-

lowing formula:

f(t) ≈
∑
λi∈Γ

f(λi)
G(t)

G′(λi)(t− λi)
+

n∑
i=1

f (i−1)(0) ·Ki(0) , (41)

where

G(t) =
n∏

i=1

sin(2πrit) (42)

and the interpolating functions Ki(t) at the origin are a linear combination
of G(t)/tj , j = 1, . . . , n, chosen so that K(l−1)

i (0) = δi,l, i, l = 1, . . . , n.

4.3 Interpolators at Origin

What remains for this interpolating function in equation (41) is to find ap-
propriate interpolators at the origin. To remove this ambiguity, I construct
interpolators here. Under the assumption that there are two interpolators,
then G(z) = sin(2πz) · sin(2παz), where α is the square root of any prime
number. What is desired, as stated in the theorem in section 4.2.2, is for
the interpolators to satisfy the following condition: {Ki(t)} is a linear com-
bination of G(t)/ti, i = 1, . . . , n, chosen so that K

(j−1)
i (0) = δi,j , where

j = 1, . . . , n.

4.3.1 Two Interpolators

Assume that there are two interpolators. As stated earlier in equation (42),

G(t) = sin(2πt) · sin(2παt) .
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To find the appropriate interpolators at the origin, I need to manipulate this
function. Remember that the Taylor expansion formula of a sine function is

sin(t) = t− t3

3!
+ O(t5) . (43)

Thus, inserting equation (43) into G(t) obtains

G(t) = sin(2πt) · sin(2παt)

=

[
2πt− (2πt)3

3!
+ O(t5)

]
·
[
2παt− (2παt)3

3!
+ O(t5)

]

= 4π2αt2 −
[

16π4α3

3!
+

16π4α

3!

]
t4 + O(t6) .

And so, the following are representations for the linear combinations of
G(t)/ti, i = 1, . . . , n:

G(t)
t

= 4π2αt−
[

16π4α3

3!
+

16π4α

3!

]
t3 + O(t5)

G(t)
t2

= 4π2α−
[

16π4α3

3!
+

16π4α

3!

]
t2 + O(t4) .

Their respective derivatives follow:

d

dt

G(t)
t

= 4π2α− 3

[
16π4α3

3!
+

16π4α

3!

]
t2 + O(t4)

d

dt

G(t)
t2

= 2

[
16π4α3

3!
+

16π4α

3!

]
t + O(t3) .

Next, note the limits of the functions and their derivatives at t = 0 —

lim
t→0

G(t)
t

= 0

lim
t→0

G(t)
t2

= 4π2α

lim
t→0

d

dt

G(t)
t

= 4π2α

lim
t→0

d

dt

G(t)
t2

= 0 .

The first interpolant K1 is desired to be such that K1(0) = 1 and K ′
1(0) = 0.

Also, K2 is desired such that K2(0) = 0 and K ′
2(0) = 1. Setting the follow-

ing relations satisfy these requirements:

K1(t) =
G(t)

G′′(0)
2! t2

, K2(t) =
G(t)
G′′(0)

2! t
, (44)

where, conveniently, one can see that G′′(0)/2! = 4π2α.
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4.3.2 Arbitrary Number of Interpolators

It is convenient to further construct this idea to an arbitrary multiple of in-
terpolators. In this scenario, assume that there are n interpolators involved.
Thus, as the theorem in section 4.2.2 dictates, there are n sampling rates
{ri} = {√p0 = 1,

√
p1, . . . ,

√
pn−1}, where p1, . . . , pn−1 are the first n − 1

primes, which generate the following reconstruction interpolant:

G(t) =
n∏

i=1

sin(2πrit) . (45)

Now, the process of finding the interpolants at the origin continues as be-
fore. With the use of the Taylor expansion formula for the sine function,
then

G(t) =
n∏

i=1

[
2πrit−

8π3r3
i

3!
t3 + O(t5)

]

=
n∏

i=1

[
2πrit−

8π3pi−1 · ri

3!
t3 + O(t5)

]

= 2nπn

(
n∏

i=1

ri

)
tn − 2n+2πn+2

3!

(
n∏

i=1

ri

)(
1 +

n−1∑
i=1

pi

)
tn+2 + O(tn+4) (46)

= 2nπn√p1p2 · · · pnt
n − 2n+2πn+2

3!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)
tn+2 + O(tn+4) .

Now, the interpolants at the origin {Ki} again will be linear combinations
of G(t)/ti, i = 1, . . . , n, chosen appropriately so that K(j−1)

i (0) = δi,j ,where
j = 1, . . . , n. The general form of G(t)/ti is

G(t)
tk

= 2nπn√p1p2 · · · pnt
n−k − 2n+2πn+2

3!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)
tn−k+2 + O(tn−k+4) . (47)

Let Hk(t) = G(t)/tk. Then, the formula for the jth derivative of Hk is

H
(j)
k (t) = 2nπn (n− k)!

(n− k − j)!
√
p1p2 · · · pnt

n−k−j

−2n+2πn+2

3!
(n− k + 2)!

(n− k − j + 2)!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)
tn−k−j+2 + O(tn−k−j+4) . (48)

Allowing t to approach 0, the following results are obtained:

lim
t→0

Hk(t) = 2nπn√p1p2 · · · pnδn,k

=
G(n)(0)

n!
, (49)
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and

lim
t→0

H
(j)
k (t) = 2nπn (n− k)!

(n− k − j)!
√
p1p2 · · · pnδn,k+j (50)

−2n+2πn+2

3!
(n− k + 2)!

(n− k − j + 2)!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)
δn,k+j−2 .

Now, using these evaluations in equation (50) as before, I can construct a
formula of appropriate interpolants using the set {Hk}. First, note that each
interpolant is of the form

Kk(t) =
k∑

i=1

ciHi(t)

for all k = 1, . . . , n. Note that the ci’s vary with the k’s. As required of the
sampling theorem, coefficients ci are needed such that K(j)

k (0) = δk−1,j . By
linearity of differentiation, I have

K
(j)
k (0) =

k∑
i=1

ciH
(j)
i (0)

=
k∑

i=1

ci ·
[
2nπn (n− i)!

(n− i− j)!
√
p1p2 · · · pnδn,i+j

−2n+2πn+2

3!
(n− i + 2)!

(n− i− j + 2)!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)
δn,i+j−2

]

=
k∑

i=1

[
ci2nπn (n− i)!

(n− i− j)!
√
p1p2 · · · pn

−ci+2
2n+2πn+2

3!
(n− i)!

(n− i− j)!
√
p1p2 · · · pn

(
1 +

n−1∑
i=1

pi

)]
δn,i+j (51)

=
k∑

i=1

2nπn (n− i)!
(n− i− j)!

√
p1p2 · · · pn

[
ci − ci+2

22π2

3!

(
1 +

n−1∑
i=1

pi

)]
δn,i+j

= 2nπn√p1p2 · · · pn · j!
[
cn−j − cn−j+2

22π2

3!

(
1 +

n−1∑
i=1

pi

)]

=
G(n)(0)

(n)!
· j!

[
cn−j − cn−j+2

22π2

3!

(
1 +

n−1∑
i=1

pi

)]
= δk−1,j .

In equation (51), ck+1, ck+2 = 0 is defined so the summation evaluates cor-
rectly. Now, remember the following relation must hold: K(k−1)

k (0) = 1,
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since

K
(k−1)
k (0) =

G(n)(0)
(n)!

· (k − 1)!

[
cn−k+1 − cn−k+3

22π2

3!

(
1 +

n−1∑
i=1

pi

)]
. (52)

Since K
(j)
k (0) = 0 if j 
= k − 1, then[

cn−j − cn−j+2
22π2

3!

(
1 +

n−1∑
i=1

pi

)]
= 0 . (53)

Thus, via cancelation, cn−k+1 = (G(n)(0)/(n)! · (k − 1)!)−1. Note, also from
the summations just mentioned, that there is the restriction n − j ≤ k, or
restated as j ≥ n − k. So, continuing in this direction, I find the following
recursive equations:

cn−k+1+2m =
[2

2π2

3! (1 +
∑n−1

i=1 pi)]m

G(n)(0)
(n)! · (k − 1)!

(54)

cn−k+2+2m = 0 . (55)

This generates interpolants at the origin with the desired properties. Thus,
the interpolants can be formulated as

Kn−k+1(t) =
n−k∑
i=1

ciHi(t)

=

∑�(n−k)/2

m=0

(
22π2

3!

(
1 +

∑n−1
i=1 pi

))m
t2mG(t)

G(n)(0)
(n)! · (k − 1)! · tn−k+1

. (56)

Now, with these interpolants, I can use this new reconstruction method
to recover a function of a larger bandwidth than our individual sampling
rates.

4.4 Simulations

Here I present a number of simulations of the reconstructions of a signal
using the multirate sampling formula. The same function (signal) used in
section 3.3, f(t) = sin(2πt)/πt. Recall that this is an Ω = 1 band-limited
function. The classical sampling theory stipulates that the sampling rate be
T ≤ 1/2Ω = 1/2. The classic theory dictates that the Nyquist rate condi-
tion holds to successfully reconstruct the function. As shown earlier, it was
sufficient for the signal to be sampled at Nyquist. Now, I wish to sample
slower than the Nyquist rate and still reconstruct the function. First, the
signal will be sampled twice below Nyquist at the sampling values

Γ1 =

 ±k

2 1
(1+

√
2)

 , Γ2 =

 ±k

2
√

2
(1+

√
2)

 .
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Note that these sample rates are both slower than the Nyquist rate. Also,
note that these are appropriately chosen, i.e., 1/(1+

√
2)+

√
2/(1+

√
2) = 1,

and the ratio of the two samples is
√

2 ∈ P. Recall, that P is the class of
irrationals poorly approximated by rationals. Thus, by either theorem in
section 4.2.2 or 4.2.3, the signal can be reconstructed by

g(t) =
∑
λi∈Γ

f(λi)
G(t)

G′(λi)(t− λi)
+ [f(0)K1(t) + f ′(0)K2(t)] ,

with

G(t) = sin
(

2πt
(1 +

√
2)

)
· sin

(
2π

√
2t

(1 +
√

2)

)

K1(t) =
G(t)

G′′(0)
2! t2

K2(t) =
G(t)
G′′(0)

2! t
.

Essentially, G(t) looks exactly as it should, i.e,. the product of two sine func-
tions. The reconstruction of the signal is in figure (4). It gives the appear-
ance of completely reconstructing the function signal; however, upon closer
analysis, minor variations can be seen between the orignal signal and the
reconstruction. These points of aliasing are due to locations in the sampling
grid where the samples are close. Methods of eliminating this error are dis-
cussed by Casey and Walnut [12,19]. The best way to improve this sampling
scheme is to back off the bandwidth slightly, i.e., increase the sampling rates
by about 10 percent or more. Then, the signal can be reconstructed, practi-
cally, within an acceptable margin of error.

Figure 4. Original signal
f(t) and bisample
reconstruction g(t).
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Again, as in the classical formula, the rate is critically important in achiev-
ing an accurate reconstruction of the signal. Research on the bounds of
these rates is ongoing.

Two items of interest are the interpolator and its derivative and, most im-
portantly, the reconstruction of the signal. The interpolator and its deriva-
tive are displayed in figure 5.

In figure 6, I demonstrate the reconstruction of the same signal but use three
noncommensurate sampling rates below Nyquist. Here, I use the following
sampling rates:

Γ1 =

 ±k

2 1
(1+

√
2+

√
3)

 , Γ2 =

 ±k

2
√

2
(1+

√
2+

√
3)

 , Γ3 =

 ±k

2
√

3
(1+

√
2+

√
3)

 .

Figure 5. (a) Interpolator
and (b) its derivative.
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Figure 6. Original signal
f(t) and trisample
reconstruction g(t).
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Note that these rates are still below Nyquist. The reconstruction formula
used is the same as presented in section 4.2.2. The only real point of interest
to present is the interpolators at the origin. From the derivations in section
4.3.2, the set of interpolators is shown to be

K1(t) =
G(t) + 4π2

6 · (1 +
√

2 +
√

3) · t2 ·G(t)
G(3)(0)

3! t3

K2(t) =
G(t)

G(3)(0)
3! t2

K3(t) =
G(t)

G(3)(0)
3! t

.

A number of other simulations were run with an encouraging success rate,
demonstrating the viability of this multisampling technique. The success
rate is somewhat improved when the sampling rates are more equally
spaced. A brief discussion of applications follows in the next section.

4.5 Applications

A benefit to using this technique is that the individual sampling rates are
lower than the traditional Nyquist sampling rate in the classical sampling
theorem. For example, for a (1+α)-band-limited function, the Nyquist rate
is 1/2(1+α), but when sampling with two lattices, the sampling rates are
only 1/2 and 1/2α. Both these results are below Nyquist. The generaliza-
tion shows that the comparisons between the sampling rates and the fre-
quency band limit are more outstanding as the number of lattices increase.

Suppose that I have an Ω band-limited signal, but the sampling rate is re-
stricted to 1/2β, then choose the first n primes so that

(1 + p1 + p2 + · · · + pn) · β

pn
≥ Ω . (57)

Then, n + 1 sampling lattices can be constructed via the theorem in section
4.2.3 that can effectively reconstruct f with sampling rates no faster than
1/2β.

Unfortunately, this structure has some difficulties. The first is that the sam-
pling grid is extremely rigid; perturbations on the lattices result in losing
information. Also, because the sampling points might become arbitrarily
close, ripples occur at points near each other. If the bandwidth is backed
off, the simulations results improve, but exact bounds are unknown.

These results also extend to higher dimensions, where one can think of
the grids and the interpolating function as Cartesian products. Casey and
Sadler [20] have used these techniques to develop new analog-digital trans-
formers for signal processing. In their signal processing literature, these are
known as A-D converters.
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Appendix A. Proof of the Polynomial Expansion

I shall show the result in section 3.4.2 of the main report via induction on
the degree of the polynomial.

Proof. Suppose p(ζ) is a one degree polynomial with leading coefficient 1
and one simple zero, then p(ζ) = ζ − r1. Thus, clearly,

1
p(ζ)

=
1

ζ − r1
. (A-1)

Now, assuming that this statement is true for any k degree polynomial with
leading coefficient 1 and k distinct simple zeros, where k = 1, . . . , s, I want
to show the same result for an s + 1 degree polynomial with s simple zeros.
Suppose p(ζ) is such a polynomial. Then, I have a representation for p using
the set of its zeros:

p(ζ) =
s∏

j=0

(ζ − rj) . (A-2)

I can equivalently state this as p(ζ) = (ζ − r0) · q(z), where q is an s de-
gree polynomial with only s simple zeros. Thus, I have a formula by the
assumption in the induction for q. Using this, I obtain the following:

1
p(ζ)

=
1

(ζ − r0)
· 1
q(z)

=
1

(ζ − r0)
·

s∑
j=1

1
(ζ − rj) · q′(rj)

(A-3)

=
s∑

j=1

1
(ζ − r0)(ζ − rj)q′(rj)

.
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Now, let m(ζ) = (ζ − r0)(ζ − rj)q′(rj), then m′(ζ) = (ζ − rj)q′(rj) + (ζ −
r0)q′(rj). Also, note that p′(ζ) = q(ζ) + (ζ − r0)q′(ζ). So continuing, I have

1
p(ζ)

=
s∑

j=1

1
(ζ − r0)(ζ − rj)q′(rj)

=
s∑

j=1

1
(ζ − r0)m′(r0)

+
1

(ζ − rj)m′(rj)

=
s∑

j=1

1
(ζ − r0)(r0 − rj)q′(rj)

+
1

(ζ − rj)(rj − r0)q′(rj)
(A-4)

=
1

(ζ − r0)

s∑
j=1

1
(r0 − rj)q′(rj)

+
s∑

j=1

1
(ζ − rj)p′(rj)

=
1

(ζ − r0)
· 1
q(r0)

+
s∑

j=1

1
(ζ − rj)p′(rj)

=
1

(ζ − r0)
· 1
p′(r0)

+
s∑

j=1

1
(ζ − rj)p′(rj)

.

Equation A-4 gives the desired result.
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Appendix B. MATLAB Code

The following MATLAB *.m files were used to perform the simulations. I
used MATLAB version 5.3 by The Mathworks, Inc.

B-1 Shannon.m
%SHANNON EXAMPLE % This m-file generates plots for the demonstration of

Shannon's formula. Three plots will be created. The first will show the signal and its

Fourier transform, the second will demonstrate the reconstruction procedure, and

the last plot will show the effects of aliasing in the sampling.

% Terrence Moore, 3/6/2000

% Revision: 1.3 Date: 7/5/2000 18:59:33

%begin of code

%generate the domain

x = linspace(-5,5,1000);

%the signal function

y = sin(2*pi*x)./(pi*x);

%plot of signal

figure;

subplot(3,2,3);

plot(x,y);

title('original signal f(x)');

xlabel('x');

ylabel('f(x)');

%the transform of the signal

x1 = [-2 -1 -1 1 1 2];

y1 = [0 0 1 1 0 0];

%plot of the transform

subplot(3,2,4);

plot(x1,y1);

axis([-2 2 -1 2]);

title('Fourier transform f(\ omega)');

xlabel('\ omega');

ylabel('f(\ omega)');
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%our recontruction formula only for this signal

%omega = 1

s=1;

z=0;

count=0;

for n=-20:20

if n=0

z=z+sin(pi*n/s)./(pi*n/(2*s)).*sin(pi*(2*s*x-n))./(pi*(2*s*x-n));

count=count+1;

end

end

z=z+2*sin(pi*(2*s*x))./(pi*(2*s*x));

figure;

plot(x,y,'-',x,z,':');

hold;

%the sampled data

N = -20:20;

N = N/(2*s);

yN = sin(2*pi*N)./(pi*N);

plot(N,yN,'o');plot(0,2,'o');

axis([-5 5 -0.5 2.5])

xlabel('x');

legend('f(x)','g(x)','samples');

%omega = 0.8 (undersampling - aliasing)

s=0.8;

z=0;

count=0;

for n=-20:20

if n =0

z=z+sin(pi*n/s)./(pi*n/(2*s)).*sin(pi*(2*s*x-n))./(pi*(2*s*x-n));

count=count+1;

end

end

z=z+2*sin(pi*(2*s*x))./(pi*(2*s*x));

figure;

plot(x,y,'-',x,z,':');

hold;

%the sampled data

N = -20:20;

N = N/(2*s);

yN = sin(2*pi*N)./(pi*N);
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plot(N,yN,'o');plot(0,2,'o');

axis([-5 5 -1 2.5])

xlabel('x');

legend('f(x)','g(x)','samples');

%omega = 1.2 (oversampling -- aliasing)

s=1.2;

z=0;

count=0;

for n=-20:20

if n =0

z=z+sin(pi*n/s)./(pi*n/(2*s)).*sin(pi*(2*s*x-n))./(pi*(2*s*x-n));

count=count+1;

end

end

z=z+2*sin(pi*(2*s*x))./(pi*(2*s*x));

figure;

plot(x,y,'-',x,z,':');

hold;

%the sampled data

N = -20:20;

N = N/(2*s);

yN = sin(2*pi*N)./(pi*N);

plot(N,yN,'o');plot(0,2,'o');

axis([-5 5 -0.5 2.5])

title('reconstruction function g(x) and signal f(x)');

xlabel('x');
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B-2 MultirateShannon.m
t = linspace(-5,5,1000);

y = sin(2*pi*t)./(pi*t);

r0 = 1 + sqrt(2);

r = [1 sqrt(2)];

r = r./r0;

N = 20;

rates = 1./(2*r);

Ns = round(N*(1./rates) +1);

tsamp = zeros(length(r),2*max(Ns)+1);

for i = 1:length(r)

tsamp(i,:) = [(-1*Ns(i):Ns(i)) zeros(1,2*max(Ns)-2*Ns(i))];

end

samp = diag(rates)*tsamp;

samp = samp(:);

indz = find(samp == 0);

samp(indz) = [];

lambda = sort([samp.']);

lambda = lambda;% + .001;

ST = sin(2*pi*r.'*t);

St = prod(ST,1);

CT = 2*pi*diag(r)*cos(2*pi*r.'*t);

CT = flipud(CT);

Sp = sum(ST.*CT,1);

figure;

subplot(2,1,1);

plot(t,St);

subplot(2,1,2);

plot(t,Sp);

Sl = sin(2*pi*r.'*lambda);

Cl = 2*pi*diag(r)*cos(2*pi*r.'*lambda);

Cl = flipud(Cl);

bp = Sl.*Cl;

bp = sum(bp,1);

%sample values to be interpolated

tp = sin(2*pi*lambda)./(pi*lambda);

fp = tp./bp;
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temp = zeros(size(t));

for i = 1:length(lambda)

temp = temp + fp(i)./(t-lambda(i));

end

f = temp.*St;

ST2 = 2*4*pi*pi*prod(r,2);

K1 = St./(t.*t);

K1 = K1/ST2*2;

K2 = St./(t);

K2 = K2/ST2*2;

f = f + 2*K1 + 0*K2;

figure;

plot(t,y,'-',t,f,':');

hold;

%the sampled data

N = lambda;

yN = sin(2*pi*N)./(pi*N);

plot(N,yN,'o');plot(0,2,'o');

axis([-5 5 -1 2.5])

xlabel('x');

legend('f(x)','g(x)','samples');
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