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Abstract

We present here a convergence proof for spectral approximations for

hyperbolic systems with initial and boundary conditions. We treat in detail

Chebyshev collocation, but the final result is readily applicable to other

spectral methods, such as Legendre collocation or tau-methods.
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INTRODUCTION

In the paper [I], we derived stability results for spectral methods

applied to inltial-boundary value problems for hyperbolic systems. The paper

demonstrates that one can bound certain weighted L2 spatial norms of the

solution in terms of norms of the boundary data (homogenous initial conditions

are assumed). The bounds also contain powers of N, which is the degree of

the approximating polynomials.

Here we show that the approximations discussed above actually converge to

the exact solution, at least when this solution is smooth. We bound the error

in the numerical method by a power of N multiplying a term which depends

only on the exact solutlon--more precisely, this is the interpolation error of

the initial value and boundary derivatives. For sufficiently differentiable

functions, this interpolation error will decay fast enough to drive the full

approximation error to zero. We have not attempted to derive the sharpest

bound of this type, but merely to show that such a bound exists.

The method of proof here is similar to the one in [1,2], where basic

results are first deduced for a scalar equation, and then extended to the full

system. Accordingly, the paper is divided into two sections, the first

dealing with the scalar case and the second with the system. By the means of

Gauss-Lobatto quadrature formulas, we first bound the error at outflow for a

single scalar equation. Then we use this estimate, together with the basic

stability result of [i], to bound the overall error for a system.
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1. THE SCALAR CASE - CHEBYSHEV COLLOCATION

Given the equation

ut =u Ixf< 1,t > 0x

(1.1) u(x,0) = f(x)

u(l,t) = g(t),

we consider the pseudospectral method based on collocating at the extrema of

TN+I, where Tm is the Chebyshev polynomial of degree m

Tm(X) = cos(m eos-l(x)).

It is shown in [3,4] that the pseudospectral approximation v = VN(X,t )

satisfies

8v _v

8t - 8x + _(t) T_+I(X)

(1.2) v(x,0) = PN f

v(l,t) = g(t),

with the projection operator PN defined by

PN f is a polynomial of degree < N

(1.3)

(PN _Jf)(x) = f(x) at x = xj = cos _ , 0 < j < N.
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Define now 6N(X,t) as the difference between vN and the projection of u

6N(x,t) = v - PN u.

This function satisfies the equation:

_u _ PN u] + T TN+ I_ _N (x't) - [PN _x x_-_ _N(X, t) = _-_

(1.4) 'iI _N(X,0) = 0
_N(l,t) = 0.

We note at this stage that the polynomial (l+x)6 N T_+ 1 is of degree 2N+I

and therefore may be integrated exactly by the Gauss-Lobatto quadrature

rule. This results in the following

N+I
1 (l+x)6 N TN+ 1 _ 1

f dx = _ j_0 T. (I + xj) _N(Xj) TN+I(X j) = 0,-I ¢ l_x 2 "= 3
(1.5)

co = CN+ 1 = 2, cj = 1 for 0 < j _< N,

since i + XN+ I = 0, 6N(X 0) = 0 and T_+l(X j) = 0 for j = I,..-,N. In

fact, because of the term (l-x) and the boundary condition, the indices in

the quadrature sums may run only from i to N (instead of 0 to N+I).

Defining

_u

- (PN u) -QN _x _-x 'PN

multiply (1.4) by (I + x)_ N and integrate to get
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1 d 1 (l+x)6_ (x,t) 1 (l+X)6N(X,t)
2 dt f dx = f _--_6N(X,t)dx

-i _ 1 - x2 -I _ 1 - x2

(1.6)

1 (l+X)6N(X,t)Q N
+ _ dx.

-I J 1 - x2

An integration by parts on the right-hand side produces:

I (l+x)62(x,t)dx 1 _2(x,t)
1 d i dx= 1 i dx

d-{-I / 1 - x2 - _-I (l-x) / 1 - x2

(i.7)

1 (I+X)6N(X,t)QN(X,t)
+ _ dx.

-I / 1 - x2

We again use the Gauss-Lobatto formula and reach

1 d 1 (l+x)6_(x,t)

2 dt f dx

-I _ 1 - x2

N 62(xj ,t) N

= --- _ _-i t) + _ 7 (I + )6N(Xj,t)QN(x j t)I 1-x 8N6N ' Nj=I xj2N j=l 3

(i.8)

N 62(xj 62(x iIT ,t) N ,t)2

- 2-_ l 1 - x 8N 6N (-l,t) +-i-N [" 1 - x.
• _ • .31 3 31 3

N

)2 2(xj+_-_ Z (I + x. (I - x )Q ,t).
.] 1 .l j
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Equation (1.8) yields immedlately--slnce _N(X,0) = 0 --

i (l+x) _ t t
(1.9) S _ 62(x't)dx +TN _ 62(-l't)dt < _ IIIQN (x't)lll2 dt

-I Jl_x 2 0 0

where

N

(I.I0) lllQ(x,t)lll 2 = _-N I (l+xj)2 (l-x.)Q2(xj,t)'J
j=l

In the next section we will need a different version of (1.9), in which

-2nt
the time integral is weighted by e , n > 0:

(1.11) S e-2nt S (l+x)_(x,t)dxdt + 8--_- S e-2_t 6_(-1,t)dt
0 -I _ l_x2 0

I e-2_t 2
< _ I IIIQN(X,t)II I dt.

0

This form matches the Laplace-Fourier transforms which are used in the basic

stability estimates.

It should be noted that the bound on 6_('l,t) obtained in (1.11)

(1.12) I e-2nt 62(-l,t)dt < =(N) S e-2nt IIIQN(X,t)lll2 dt,
0 0

4N
e(N) = --

is very crude. A better estimate can be found for the boundary error u(-l,t)

- v(-l,t) by taking the Laplace transform of (i.I) and (1.2) and analyzing

the difference. This approach was used by Dubiner [5] who obtained
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~ 1
(u-v)(-1,t) ~ _. The same bound holds for PN u - v, since, for smooth

1
functions, PN u approaches u faster than any power of _ .

2. CONVERGENCE PROOF FOR SYSTEMS

Consider the first-order hyperbolic system of partial differential

equations

(2.1) 3u _ A 3u_t _-_, Ixl< 1,t>0

where

u = u(x,t) = (u(1)(x,t), u(2)(x,t),...,u(n)(x,t))-

is the vector of unknowns and A is a fixed nxn coefficient matrix. Since by

hyperbolicity A is similar to a real diagonal matrix we may, without loss of

generality, take it diagonal:

I )
0

A=

0 All

(2.2)

AI • All •= ". <0, = • >0.

a£ "an

The solution of this system is uniquely determined if we specify initial

conditions
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(2.3) u(x,0) = f(x) = (fl(x), fll(x))

and boundary conditions

I(ul(-1,t) = Lull(-1,t) + g t)

(2.4)

ull(l,t) = Rul(l,t) + gll(t).

In these formulas, f and g = g(t) = (gl(t), gll(t)) are prescribed n-

vectors, and

(uI, uIl)

(2.5) (fl, fll)

igl,gii)

is the partition of these vectors into inflow and outflow components--

corresponding to the partition of A in (2.1b). L and R are constant

reflection matrices of order _ x (n-_) and (n-_) x _, respectively.

We shall discuss only problems whose solutions decay in time and

therefore postulate:

ASSUMPTION I. There exists a constant y > 0, such that

IRl ILl < I - y < I.
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(IAI and Ivl denote the Euclidean norm of a matrix A or vector v,

respectively. )

In a pseudospectral Chebyshev approximation to (2.1), one seeks a vector

v = vN of N-degree polynomials such that

(2.6a) _v A _v .
_--_= -_ + T(t) TN+I(X).

The multiplier r = (TI, TII) is determined by the boundary conditions

vl(-l,t) = Lvll(-l,t) + gl(t)

(2.6.b)

vll(l,t) = Rvl(l,t) + gll(t).

Initially, v is defined by collocation:

I vl(x,O) = fl[x) at x = x., j = 1,2,---,N+I

P %

3

(2.6c)

vll(x,0) = fll(x) at x = x., j = 0,1,-..,N.
3

In [I] the stability of the approximation (2.6) has been established, under

zero initial conditions. Here we shall prove the convergence of VN(X,t )

to u(x,t) as N tends to infinity.

We define a pair of projection operators p= (pl, pll) by requiring that

for any function F, pl F and pll F be polynomials of degree N at most,

satisfying:
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(pl F)(xj) = F(xj), j = 1,2,...,N+I

(2.7)

(pll F)(xj) = F(xj), j = 0,1,...,N.

Note that two distinct sets of nodes are used for collocation - cf. (2.6c).

We can state now the main convergence result:

THEOREM. Let g = SN(X,t) = v-Pu be the error in the pseudospectral

approximation (2.6) to the hyperbolic system (I.1). Let Q = (QI, QII) be

the approximation error

QI = Al(pl auI a pl uI)ax ax

(2.8)

QII = A£1(pll auII a pll ull)ax "

Then

oo oo

(2.9) f e-2qt lls(x,t);;2 dt < KNa(N) e-2nt 2
0 2_ f lllQ(x,t)lll at0

with K independent of N, a(N) as defined in (1.12) and
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(2.10)

1 1

llc(x,t)l'2= / (l-x)I_l(x,t)l 2 dx + / (1+x)]€ll(x,t)l2 dx

-I / 1 - x2 -I / i - x2

N

IIIQ(x,t)ll]- _ Y (l-x.)2(l+x.) IQl(xj,t)l2N j=l 3 3

N

+ N_j=l_ (l+xj)2 (l-xj) IQll(xj,t)l2

(Here we generalize the seminorm defined in (i.II).)

Proof: Let r be the solution of

_r 8r
_t _x

r(x,O) = u(x,O)
(2.11)

rI(-1,t) = uI(-1,t)

rlI(1,t) = ulI(1,t),

and let s be the pseudospectral Chebyshev approximation to (2.11), i.e.:

8s = A _s
8--{ _-_x+ T_+I(X)0(t)

s(x,O) = Pu(x,O)

(2.12)

sI(-1,t) = uI(-1,t)

sII(1,t) = ulI(1,t).
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It is obvious that r _ u, but s does not satisfy the boundary conditions

(2.6c) and therefore its multiplier e is distinct from T. In any case, for

= s - Pr, we have:

(2.13)
OO CO

I e-2qt 61 2
f e-2_t ll6(x,t)ll2 dt +2-N_n f I (l,t) I dt0 0

0o

1 e-2q t
+ _- _ 1611(_l,t)idt _ 1 _ e-mnt lllQ(x,t)lll 2 at.

0 n 0

This is clearly a restatement of (i.Ii). Next, we compare the spectral

solution s with v -- as defined by (2.6). We can show that

oo Go

(2.14) _ e-2qt lls-vl,2 dt < --cN _ e-2nt[161(l,t)12 + [_ll(-l,t)12]dt.
0 n 0

Indeed, v-s satisfies:

a (v-s) a
a--{ =_-_ (v-s) + r_+l(T-e)

(v-s)(x,0)= 0

_ _ I(vI sl)(-l,t) = L(vII sll)(-l;t) + Lsll(-l,t) - ul(-l,t) + g

= L(v II - sll)(-l,t) + L611(-l,t),

(vII - sII)(-l,t)= R(v[ - sI)(1,t)+ R6I(1,t),
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and the inequality (2.14) follows from the stability estimate in [I, Theorem

5.1].

Now, since Pr = Pu we have

g - _ = V-S,

and, hence,

_ CO

/ e-2at lls(x,t)il2 dt < / e-2_t ]16(x,t);l2 dt + / e-2_t llv-sll2 dt.
0 0 0

The first term is majorized in (2.13) and the second in (2.14), thus

establishing the theorem.

Again, we emphasize that the bound for u - vN is the same as the bound

for Pu - vN --which we just have computed--for smooth functions u, which

Pu approaches rapidly.

We conclude with two remarks:

a. The stability estimate of (2.14) explicitly uses boundary values.

This is why these have to be bounded beforehand, which was done in the

preceding section, formula (I.I0).

b. Our result applies not only to Chebyshev collocation, but also to

other spectral methods (which, however, have to satisfy assumptions I, II and

III of [I]). Indeed, the only quantity that varies with the spectral method

employed is the coefficient weight at ±I for the Gauss-Lobatto quadrature.

~ I
Once it is known that this weight is .... which is the case for Gegenbauer

Nk

collocation, as shown in [1]--the same proof follows through. In particular,

it is sufficient to evaluate outflow errors for a scalar equation in order to

estimate errors at both boundary points for a system.
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