

November 2011

NASA/TM–2011-217300

Loft: An Automated Mesh Generator for
Stiffened Shell Aerospace Vehicles

Lloyd B. Eldred
Langley Research Center, Hampton, Virginia

NASA STI Program . . . in Profile

 Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page at

http://www.sti.nasa.gov

 E-mail your question via the Internet to

help@sti.nasa.gov

 Fax your question to the NASA STI Help Desk

at 443-757-5803

 Phone the NASA STI Help Desk at

443-757-5802

 Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2011

NASA/TM–2011-217300

Loft: An Automated Mesh Generator for
Stiffened Shell Aerospace Vehicle

Lloyd B. Eldred
Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

1

Abstract

Loft is an automated mesh generation code that is designed for
aerospace vehicle structures. From user input, Loft generates meshes for
wings, noses, tanks, fuselage sections, thrust structures, and so on. As a
mesh is generated, each element is assigned properties to mark the part
of the vehicle with which it is associated. This property assignment is an
extremely powerful feature that enables detailed analysis tasks, such as
load application and structural sizing.

This memorandum is presented in two parts. The first part is an
overview of the code and its applications. The modeling approach that
was used to create the finite element meshes is described. Several
applications of the code are demonstrated, including a Next Generation
Launch Technology (NGLT) wing-sizing study, a lunar lander stage
study, a launch vehicle shroud shape study, and a two-stage-to-orbit
(TSTO) orbiter. Part two of the meorandum is the program user manual.
The manual includes in-depth tutorials and a complete command
reference.

Introduction

The ability to rapidly create, modify, and update a structural finite element model is a substantial asset
in conceptual analysis. A wide variety of shapes, concepts, and layouts may be considered during the ear-
ly trade study phases of a project. The large commercial finite element model creation programs are not
well suited for this kind of operation. Such commercial codes can be used to quickly create a mesh of
questionable quality for analysis using the code’s automeshing capabilities. Or significant analyst effort
can be expended to manually generate and set up a well-designed-for-analysis mesh. For the stiffened-
shell class of vehicles, Loft can produce a well designed mesh that is parametrically generated and suita-
ble for conceptual trade studies for significantly less effort than required for a well-designed mesh with
the commercial code. As an illustration, compare the TSTO orbiter meshes in Figure 1 and Figure 2. Fig-
ure 1was produced by Loft. Figure 2 was produced by using the automeshing capability of Patran on a
CAD model of the outer mold line (OML). In particular, note mesh details at the wing leading edges. Fur-
ther, the colors in Figure 1 illustrate the different sizing analysis regions that are automatically created
using Loft. This partitioning of the mesh would need to be performed manually on the Patran model.

Figure 1. TSTO Orbiter Model created with Loft

2

A large commercial meshing program is certainly capable of generating similar meshes to those pro-
duced by Loft, but at significantly more effort in positioning cutting planes, mesh seed positioning, proper-
ty assignments, etc. And that commercial code can then be used to add a lot of small detail that is impossi-
ble in Loft. (A more efficient approach might be to add those details to the mesh that started in Loft). But,
for rapid generation of high fidelity meshes for conceptual level design, Loft is clearly superior.

An initial application of the Loft code was to produce a two-stage-to-orbit (TSTO) upper stage model

that was based on a NASA Intercenter Systems Analysis Team (ISAT) reference configuration. This mod-
el, which is illustrated in an expanded view in Figure 3 can be fully defined in a 100 line ascii-text Loft
input file and the input file can be created in a few hours. A similar model that was created manually with a
commercial code required substantial efforts on the part of three engineers over a period of one year. The
commercial code based model did include significant additional detail, such as fillets; however, this level
of detail is of little interest at the conceptual study stage.

The model shown in Figure 3 includes tanks, thrust structure, wing, winglet, and tail. The wings use
NACA four-digit airfoil cross sections and include ribs and spars. Ring frames are used around one tank,
and longitudinal stiffeners are created along the other.

A powerful feature of Loft is its method for assigning properties to elements during model creation.
Users specify the name of each engineering component. This name is then assigned to the corresponding
elements’ physical property fields. The user may optionally subdivide the component by specifying the
number of material property definitions to be used across the object. These user-labeled definitions
streamline the analysis and sizing process significantly. Contrast the effort that is associated with an anal-

Figure 2. TSTO Orbiter model created with Patran automeshing

Figure 3. ISAT TSTO upper-stage created with Loft

3

ysis code that reports that element 58 has a negative margin of safety with that of a code that reports that
“FWD LOX DOME” has the same failed result. This labeling significantly reduces the bookkeeping that
is required to set up, post-process, and evaluate the results of a structural analysis.

Modeling Approach

The basic geometric entity in Loft is the “curve”. This can be a two-dimensional (2-D) shape of any
kind*. Loft contains a library of standard curve shapes, as well as three different ways in which the user
can specify a nonstandard cross section. At its core, Loft linearly interpolates a three-dimensional (3-D)
section between two arbitrary curves†. Commercial codes call this operation “lofting,” thus the choice of
program name. Loft can also taper a cross section down to a single point to create a dome, nose cone, or
bulkhead. Figure 4 illustrates the 3-D shape that results from connecting a semicircle on the right to a
half-diamond at center and then to an “M” shaped (user-defined) cross section on the left. The white lines
on the figure are conformal ring frames that follow the interpolated shape along the left portion of the
model.

Figure 4. Lofting of three 2-D curves into a 3-D object

* The term “curve” refers to a planar path requiring two coordinates (e.g. x,y) to describe. A mathematician would
view such an entity as having only one dimension, length, and no thickness. Indeed, the actual lofting functionality
of the program uses this one-dimensional view of the curve (see tutorial projects 3 and 5). Further, for most
applications, curves within Loft should not be self intersecting other than possibly having coincident end points
when a closed shape is desired.
† Similarly, the term “section” refers to a surface requiring three coordinates (e.g. x,y,z) to describe. A
mathematician would consider this surface to have two dimensions, length and depth, and no thickness.

4

Wings are created by using a similar approach. The user specifies span, chord, taper, sweep, and any
desired 4- or 5-digit NACA airfoil shape for the wing root and wing tip. The code creates the correspond-
ing trapezoidal wing section, complete with ribs, spars, and (as desired) carry through. Partial wings may
be created to model ailerons. Figure 5 illustrates a wing and an expanded view of the same wing. The fig-
ure was created in Loft exactly as shown by requesting and offsetting different portions of the full wing
mesh. Four ribs and two spars are shown.

Figure 5. Expanded and normal view of a Loft-created wing

User Interface

Loft uses an ascii-text input file as its user interface. Loft outputs a variety of standard mesh data files
including NASTRAN bulk data [1], I-DEAS universal [2], ABAQUS input [3], and VRML 2.0 [4]. All of
the figures in this article were created by using a third-party VRML viewing program. Loft is written in
portable C and has been compiled and used on a variety of computing platforms.

The Loft user creates a text input file with the text editor of his choice (e.g., notepad, vi, or emacs).
Each engineering component, such as a nose, dome, barrel, intertank, and so on, is called an “object” in
Loft. The user defines the first object by selecting an initial cross-sectional shape (curve) and its 2-D scal-
ing. The user then specifies a second shape for the other end of the object, as well as the length, and the
desired number of nodes in the circumferential and axial directions.

Each of these options is called a “parameter” in Loft. All parameters have a default value. Thus, the
user need only supply values if the default value is not the desired value. When the user begins work on a
second object, the default sizing and shape are set to those of the previous object to smoothly connect the
two components. The default new object position is immediately aft of the previous object. Thus, if a user
is creating an aircraft fuselage with a constant cross-sectional shape and dimension, those values only
need be specified once; the input values then become the default values for all later objects. This treat-
ment of default settings encourages the user to start at one end of the vehicle and move sequentially to the
other end. Furthermore, it substantially simplifies the user’s task of defining a model and enables the 18-
component, 4500-element model that is shown in Figure 3 to be completely defined in a 100-line input
file.

In addition, this continuous updating of default values makes Loft a parametric modeling tool. The user
can change the dimensions of the fuselage in one location and those changes propagate through the rest of

5

the model. If the user changes the length of an object, later objects shift appropriately and retain their rela-
tive positions.

Mesh Manipulation

Loft also contains a powerful collection of mesh manipulation capabilities. These include translation,
rotation, warping, inversion of element normal vectors, rotation of element material alignment vectors,
and cloning. Figure 6 shows a shuttle-like stack that was created from the TSTO upper-stage half-model
that is shown in Figure 3 That model was cloned and reversed, and the normal vectors of the mirror half
were flipped. A single booster model was created and similarly cloned to form a second booster. A single
external tank model was then created. Finally, each vehicle component was appropriately positioned.

Loft can manipulate a mesh at a much finer level. Elements can be specified by object name, by prop-
erty ID, by the arbitrary user “marks” that can be assigned during object creation, or by a specified vol-
ume. These selected elements can be queried, modified, or deleted. This capability allows damage to be
modeled, partial models to be saved (e.g., only those elements labeled as part of the outer mold line
(OML)), and so on. Figure 7 shows shroud doors that were created by changing the properties within a
specified rectangular region of a mesh. The door frames were created with the same process. The ability
to save partial models based on this mesh labeling is discussed in more detail with the TSTO orbiter ex-
ample later in the document.

Figure 6. A shuttle-like configuration created with Loft's cloning tools

6

Figure 7. Shroud doors created by changing properties in a rectangular volume

Limitations

Loft is intended as a tool for the conceptual design stage. Thus, some important limitations should be
kept in mind and taken into account when the time comes to convert to a more time-consuming and more
general mesh-creation tool.

While Loft does have a variety of beam creation options, it is not well suited for creating truss struc-
tures. These can be created with another tool and merged with a panel mesh created in Loft. This merging
can be accomplished either in that tool or the data can read into Loft for merging.

Another limitation has implications even at the conceptual level. While Loft does merge finite element
nodes that are coincident, it does not attempt to merge or stitch dissimilarly meshed objects. A long fuse-
lage model will stitch correctly as long as the circumferential node counts do not change. However, the
wing, tail, and winglet of the booster in Figure 3 require manual stitching to the adjacent components be-
fore any analysis can be performed. This process can be simplified by positioning of ring frames at the
desired attachment stations, but the final connection must be made manually. Stitching is discussed fur-
ther in the lunar lander stage and the TSTO orbiter discussions in the applications portion of this docu-
ment.

Applications

Loft has been applied to a wide variety of aerospace analyses. Several of these applications will be
discussed to demonstrate the code’s capabilities.

NGLT Wing Sizing

Loft was used to determine the optimum rib and spar count for a Next Generation Launch Technology
(NGLT) vehicle wing. A simple Visual Basic front-end tool was created that allowed the user to vary the
basic wing geometry settings. Then, the user could push a button to: (1) call Loft to generate a mesh for

7

the specified wing, (2) call the finite element code I-DEAS to apply a specified pressure load and solve
the FEA system, and (3) call HyperSizer [5] to compute the required weight of the wing, report back the
weight, and report if any negative margins of safety were computed.Figure 8 shows the Visual Basic in-
terface for the wing sizing tool.

This approach allowed a broad survey of the design space to be completed, including a variety of
structural materials, in just a few days. For this particular work the wing planform was fixed and the rib
and spar counts were varied to determine the lowest weight configuration. Figure 9 illustrates a portion of
the computed wing weight results.

107500
108000
108500
109000
109500
110000
110500
111000
111500
112000

4 5 6 7

W
ei

gh
t (

lb
)

Spars

NGLT4 Wing Weights

11 Ribs 10 Ribs 9 Ribs 8 Ribs 7 Ribs

Figure 8. Visual Basic Front End for Wing Sizing tool

Figure 9. Variation of Wing Weight with Rib and Spar Count

8

Lunar Lander Stage

In the preliminary stages of NASA’s Constellation program, a variety of lunar lander concepts were
studied. The “DASH Lander” design consists of three stages: an ascent stage, a decent stage, and a retro
stage. The retro stage is responsible for the lunar orbit insertion (LOI) burn and for a substantial portion
of the lander’s decent to the surface before being discarded to crash downrange of the actual landing site.
Both the ascent and decent stages have substantial structural truss components and are not well suited to
being modeled in Loft. However, the concept for the retro stage is similar to that of the Apollo service
module shown in Figure 10.

Both the CAD and finite element models of the full lander stack are illustrated in Figure . On the right
of the illustration, the external skin of the retro module has been removed from the sides and top, to show
the internal detail. Loft was used to create the tanks, the external skin including the lander adaptor at the
top, the cross module bulkheads, and all of the stiffening and attachment beams that lie along the skin and
tanks. A few additional beams were manually added to actually connect the prepositioned load-bearing
frames on the skin and bulkheads to those on the tanks.

Figure 10. Apollo Service Module

9

 Following construction of the three component models (i.e., the ascent, decent, and retro modules), de-
sign loads were applied in NASTRAN, and the components were sized in HyperSizer. The beams on the
right side Figure are shown at the actual sizes that were computed by the structural sizing analysis.

Ares V Shroud

Loft was used to create all of the finite element models that were used by the Ares V Shroud pre-phase
A design team. Over the life of the project to date, this constituted approximately 20 distinct models. Of
particular interest here are the 12 models that were developed in support of a shape optimization study for
the shroud. These shapes are illustrated in Figure and show conic, biconic, hemisphere, and ogive, pow-
er-law, and blunted Haack shapes.

Each of the shroud concepts was modeled in Loft, and then analyzed, and sized. Other team members
performed aerodynamic, thermal-protection and trajectory analyses to determine the changes in the
delivered payload mass for each concept.

Figure 11. DASH Lander CAD and FEA Models with FEA outer skin
removed

10

Figure 12. Ares V Shroud shapes considered

One of the biconic-shape analysis models is shown in Figure 3. The model includes separation joints,
large access doors, and small fuel and purge doors. The color changes indicate the different sizing design
regions of the shroud. These regions were defined completely within Loft. Prior to the analysis, boundary
conditions were applied to the base of the structure, aerodynamic loads were mapped onto the finite ele-
ment mesh, and the combined and scaled load cases were defined in the finite element analysis deck.

Figure 13. Bi-conic shroud model created entirely in Loft

The Loft input file to create the four petal, bi-conic shroud in figure 13 is 134 lines of ascii text. This
count includes substantial comments for clarity. The following listings show the first 16 lines of the Loft

11

input file for this model. They are provided to illustrate the process that is used to define a model. More
comprehensive and in depth tutorials are provided in part two of this memorandum.

The first line of the partial input file is a comment. It explains that the next 4 line block of input de-
fines a new curve named “qc” (for quarter circle). The first line of the block defines the type of user-
defined curve (compound) and specifies the “qc” name. The second line identifies the built-in “circle”
curve as the basis of the new shape. The last two lines of the block defines the parameters “sstart” and
“sstop” which specify that the new curve is defined as the section of the “circle” curve from one-eighth
to three-eighths of its circumference.

define "qc" curve as quarter circle
curve compound qc
 child circle
 sstart 0.125
 sstop 0.375

The next block of the input file then uses this “qc” curve to construct the dark blue spherical cap by
creating a dome object named “Nose Cap.” The next three parameter lines specify dimensions for the ob-
ject in the x, y, and z (length) directions. The “taper” parameter specifies a parabolic curvature and “zdist”
controls the spacing of nodes along the length of the dome. The last four parameters define the node and
component (structural sizing region) counts in the axial and circumferential directions.

object dome Nose Cap
 curve1 qc
 c1_xscale 50.688
 c1_yscale 50.688
 length -29.266
 taper para
 zdist 0.6
 nodes_circ 27
 nodes_axial 16
 components_circ 1
 components_axial 2

The remainder of the input file (not shown here) defines the rest of the quarter circumference petal,
creates three clone petals (for a total of four), marks the doors, and saves the completed model.

TSTO Orbiter

As part of a two-stage-to-orbit (TSTO) design study, a finite element model of the orbiter stage was
constructed by using Loft. Because the fuselage cross section is not a shape that is contained in Loft’s
curve library, a user-defined compound curve was specified. This compound curve combined a circular
top, an angled flat side, a round bottom corner, and a flat bottom as shown in Figure 14. Figure 15 shows
the finite element half-model of the vehicle. The last 34 pages of part 2 of this memorandum discuss the
full orbiter input file in fine detail.

12

Figure 14. User-defined Compound Curve used for Fuselage Cross Section

Figure 15. TSTO Orbiter FEA model

Figure16 shows an expanded view of the model to illustrate wing and tank detail. After the manual
stitching was accomplished, simple loads and boundary conditions were applied to the model. A finite
element solution was performed to check for any mechanism behavior that would indicate insufficient
stitching.

13

The input file for the orbiter contains commands to mark the components that are on the vehicle outer
mold line with the label “OML.” Similar marks are applied to the two tanks. These labels can be used to
output a partial model, with all of the node and element indices intact. These partial models make the
mapping of external aerodynamic loads or internal pressure loads to the appropriate portions of the vehi-
cle easier and faster. The mapped data sets can then be applied directly to the full model. Figure 17 shows
OML-only and tank-only models that were created from the full vehicle input file. Note that the OML
model contains only the skins of the wings.

Figure16. Expanded view of TSTO Orbiter FEA model

Figure 17. Three partial vehicle models created by labeling the full model.

14

Cerro, et. al. [6] describe the use of Loft as part of a complete conceptual vehicle sizing process.

User Manual

An extensive manual for users has been created for the Loft program and is included as part two of this
document.

Chapter 1 of the user manual describes the basic terminology and the user interface for the program.
Chapter 2 contains a variety of tutorials, beginning with a very basic commercial aircraft model and pro-
gressing to more advanced subjects, such as user-defined curves and the region mode. Chapter 3 describes
the region mode in significant detail. A programmer’s reference is included in Chapter 4. Chapter 5 is a
quick reference for all of the commands, parameters, curves in the library, and taper types that are used
for domes and noses. Finally, two complete input files are provided with discussion and illustrations for
each section of the files.

Summary

Loft is a very powerful automated mesh generator that is designed to allow the rapid production of de-
tailed conceptual finite element models that are suitable for analysis and sizing. Its focus on stiffened
shell aerospace vehicles allows it to produce cleaner meshes than auto-meshing models from commercial
codes. Suitable models for analysis can be produced much more quickly with Loft than with a commercial
code, since the latter requires creation of the geometry and then manual definition of the mesh. The inher-
ent parametric nature of Loft makes it ideal for rapidly updating models for trade studies or for design
refinement.

References

1. MSC Nastran, http://www.mscsoftware.com/products/msc_nastran.cfm

2. Siemens I-DEAS NX, http://www.plm.automation. siemens.com/en_us/products/nx/

3. Simulia Abaqus FEA, http://www.simulia.com/ products/abaqus_fea.html

4. The Virtual Reality Modeling Language Specification, Version 2.0 ISO/IEC WD 13772,
http://graphcomp.com/info/specs/sgi/vrml/spec/

5. Collier Research Corporation HyperSizer, http://hypersizer.com/

6. Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd; “Reference Models for Structural Technology Assessment and
Weight Estimation”, SAWE Paper No. 3355, 4th International Conference of the Society of Allied Weight Engi-
neers, Inc., Annapolis, Maryland, 16-18th May, 2005

15

Part 2

Loft User Manual

16

Loft
An Automated Mesh Generator
For Stiffened Shell Aerospace Vehicles
Program Manual

Lloyd B. Eldred

Chapter 1: Introduction

Loft is an automated mesh generation code designed for aerospace vehicle structures. Based on user
input, it can generate meshes for wings, noses, tanks, fuselage sections, thrust structures, etc. As the mesh
is generated, each element is assigned properties that mark what part of the vehicle it is associated with.
This property assignment is an extremely powerful feature making possible detailed analysis tasks such as
load application and sizing.

Loft can save its meshes in NASTRAN bulk data deck, EDS’ I-DEAS Universal File format, Abaqus
input file format, and VRML 2.0 (Virtual Reality Modeling Language). The property assignment scheme
was designed to make sizing in Collier Research’s HyperSizer easy. Support for other mesh storage for-
mats can be added as needed.

This Manual

This manual consists of five parts. The first part is an introduction and overview of the program and
how it works. The second section is a practical tutorial on constructing a variety of vehicles and
components. The third part of the manual discusses the powerful region concept in detail. The fourth
section of the manual is a technical/programmer’s reference describing how the code is written and how
to add to it. The final part is a reference guide giving details on all commands and objects.

17

Mesh Construction

Loft uses very basic finite elements: 4-node quadrilaterals, 3-node triangles, 2-node bars, and 2-node
beams. It uses these simple elements and user input dimensions to build complex full vehicle finite ele-
ment meshes.

A vehicle is described starting at one end, typically the nose in the case of a fuselage. The user
specifies that first component’s shape, dimensions, mesh density, and position. The adjacent component is
described next and the process is repeated until the entire structure has been defined. Loft copies the
dimensions and mesh density from object to object, and automatically positions a new object directly
behind the previous one, allowing easy construction of a sequential stack of objects. This minimizes user
input, with only changes from the default values needing to be specified. In the exploded view above, the
example booster object contains 18 “objects” including ring frames and longerons. Yet it can be built
from a 100-line text input file.

Node ordering is set so that element normal vectors point outward. In situations where this is not the
desired behavior (such as a concave tank dome), most object types support a “flip” parameter that re-
verses element node ordering.

Nomenclature

A variety of fonts and styles are used in this manual for distinct purposes. Italics are used to introduce
new terms and when the Loft program itself is named. The courier font is used for input file exam-
ples and references.

Terminology

The lowest level geometric entity used by Loft is a “curve”. A curve is a two-dimensional object such
as a circle, semi-circle, or box. Loft includes a library of basic curves and others may be added to the code
as needed. Alternatively, Loft also features a number of ways for a user to specify a curve in the input file
including linearly interpolated curves and compound curves built up from any previously defined curves.

18

An object is a three-dimensional meshed part made by either extruding one curve or linearly interpo-
lating an extrusion between two curves. (Some objects, such as bulkheads or a ring frame, are actually
two-dimensional). Objects include parts such as nose cones, tank domes, tank barrels, bulkheads, etc.
Each object is defined separately and has its own name and parameters.

A stack is a collection of objects that may make up an entire vehicle. Each object is added to the current
stack as it’s created, and the full stack is written by the write command. The new command can be used
to start a new stack. The store command can be used to assign a name to the current stack, to save it in
memory (to a temporary internal clipboard which is lost when the program exits), and to start a new stack.
The recall command is used to copy a stored stack back into the current stack. Store and recall
can be used to control the scope of object movement, sizing, and distortion commands, as well as to build
different configurations of a multi-part vehicle (e.g. Shuttle with ET and SRBs, Shuttle with just ET, Shut-
tle alone).

Object Types

There are a few basic types of objects. Meta-objects are simply macros that combine several of the
basic types. Any number and combination of these object types can be created and merged into a single
mesh.

Domes are the class of extruded objects taking a single curve to a single nose point. These objects can
taper to the nose point in a number of ways, resulting in elliptical domes, conical domes, parabolic noses,
ogive noses, power-law noses or flat bulkheads. Optionally, a droop can be added to a dome to produce
simple aircraft nose objects. Domes are meshed with quadrilateral panel elements, except at the nose
point where triangular elements are used.

Sections are the class of objects that are extruded between two curves. This extrusion is linear and re-
sults in parts that can represent tank barrels, fuselage barrels, thrust structures, payload bays, etc. Sections
are meshed with quadrilateral panel elements.

Frames and Dframes are the classes of objects that distribute beam elements along a curve. These can
use a single curve as their basis to align with a dome object, or be positioned between two curves to align
with a panel section. They can run circumferentially or longitudinally (ring frames or longerons). The
frame object type is used to stiffen a section object and the dframe object type is used to stiffen a dome
object.

A wing is an extruded surface with internal stiffening (ribs and spars). Wings are meshed with quadri-
lateral panel elements except at the leading edge of each rib where a triangular element is used.

A tank is an example of a meta-object macro that combines two dome objects and a section object in a
consistent way. It allows for somewhat fewer options than building the tank up from lower level objects.
A Stifftank is a meta-object that produces a ring frame stiffened tank

Property Marking

One of the powerful features of Loft is the labeling of elements corresponding to their location on the
model. This is accomplished by assigning dummy properties with descriptive names. (Actual property
values are replaced in the analysis or sizing stage). With an I-DEAS output file, each element has a phys-

19

ical and material property reference. Each type of property has a 40-character name available. For
NASTRAN, property names are indicated as PATRAN-compatible comments on the element property
and material cards. VRML output files are colored to indicate their property assignments.

For simple domes and sections, the name of the object is placed in the physical property, referenced by
all of its elements. The material property is used to indicate where on the object the elements are. The
resolution of the material property name is controlled by the “components axial” and “components cir-
cumferential” object parameters. A typical material property name could be “Axial 3 Circ 5”. Note that
these are not element coordinates; there are generally more than one element per component in each di-
rection (but there need not be).

For wing objects and meta-objects like tanks, the physical property name will be more descriptive. It
will start with the object name but then add details such as “RIB”, “SKIN UPPER” or “DOME AFT”. For
these kinds of objects, a short object name is recommended so that the full property name will fit in 40
characters. An object name longer than 27 characters will be occasionally truncated. This truncation will
be just enough to allow the full inclusion of the detail string.

Hypersizer concatenates the physical and material property names to make component names. Thus,
each group of elements with a unique combination of property names will be collected into a component.
Typical component names will look like:

“LOX TANK | AXIAL 5 CIRC 2”
“CANARD SKIN LOWER | SB 2 CB 5”

I-DEAS universal files that Hypersizer generates will contain property names that start with
“(HSGEN)” and are followed by as much of the component name as will fit in 40 characters.

Loft also generates a variety of groups when running. These groups mark nodes that are on curve end-
points, lines of symmetry, wing attachment points, etc. These groups are named based on their object
name. Thus, for an object called “MyWing”, there will be groups called: “MyWing Root Nodes”,
“MyWing Tip Nodes”, “MyWing All Nodes”, etc.

The user can specify additional groups to which an object’s nodes or elements can be added to, using
the Mark object parameter. Any number of marks can be specified per object and a particular group name
can be used by any number of objects. For example, a small nose-cap object might belong to marked
groups “Booster Nose Elements” and “Booster OML Elements”.

User Interface Introduction

Loft is controlled by a text file input deck. The user specifies each object that is desired in the model.
For each object, geometric data such as diameter, length, and position are supplied. Meshing variables
such as the number of elements and the number of sizing components in each direction are also needed.
Most input values are optional; default values will be used for any not supplied by the user.

A Loft input deck is read line by line. Each line can be a comment, command, or a parameter for the
most recent command. Any number of parameter lines can be given (including zero), with a new com-
mand line marking the end of the previous command and its parameters. All input is case-insensitive.

20

Comment lines start with a pound sign “#,” followed by any amount of text. Comments are ignored by
the Loft code. Comments can also be placed on a line after a command or parameter by using the pound
sign marker.

Command lines cause objects to be created, output to be written, and meta-variables to be set (such as
units type). There is a very short list of legal commands.

Parameters are optional lines that specify details for commands. All parameters are optional and are
used when the program default is not what is desired. Some defaults are fixed, but most defaults will
change based on previous user input. For instance, the default position for a new object is immediately
behind the previous object, and the default curve to extrude is the previous curve. Thus, the defaults will
attempt to produce a stack of smoothly connected objects.

To specify a parameter, add a line after the command with the parameter name followed by the new
value. Parameter ordering does not matter for Object parameters; an object is actually generated when the
next command is encountered. Parameter ordering does matter for the “Move” command.

Input lines may contain basic mathematical operations, specified in infix notation with equal priority for
all operations, e.g., multiplication and division are not given precedence over addition and subtraction.
Currently supported operations include addition, subtraction, multiplication, and division.

Loft also supports user-defined variables using the “define” command. These variables may be
combined or modified using the basic math operations.

Here is a short example.

Comments start with the # symbol, either alone on a line, or after some input.
This creates a circular to breadbox transition
for a half vehicle
object section MyTransition
 curve1 sc # semi-circle
 curve2 sbb # semi-breadbox
 length 12
save
write vrml MyTransition.wrl

The three parameter lines for the section object are indented for clarity. This is not required by Loft.

Loft is designed to be run from a command line. Windows users may call this a “dos shell.” One way
to open a command line interface in Windows is to select “Run…” from the Start Menu, then type “cmd”
as the name of the program to be run. Then use the “cd” command to change directories to where the in-
put file and Loft executable are located. The input file name is given as an argument when Loft is run,
such as:

loft mytransition.txt

21

Positioning in Loft

Each object is automatically positioned by Loft in such a way as to produce a single, continuous vehi-
cle. From time to time, this default positioning will need to be overridden. There are a wide variety of
positioning, rotation, scaling and warping options available to the user. Most of these operations can be
done at both the object and stack levels, with some significant ordering related differences between the
two approaches.

The default axes for a vehicle have x as the lateral direction, y as the vertical direction, and z as the
vehicle axial direction. These axes are aligned in a right-hand rule configuration. Z increases as the stack
is built. Another way to state this is that all of the 2-D curves are defined in the X-Y plane, with Z as the
extrusion direction. If, as in the example vehicle included in this manual, the stack starts at the nose then
the positive z direction is aft on the vehicle. Use of the rotation commands prior to saving the mesh can
align the mesh as the user prefers. NASA models will typically use X as the vehicle axial direction. Con-
verting to this alignment requires two lines before saving the model:

move
roty 90

Each object has a local origin that is placed at the current default location. For wings, the local origin
is the leading edge root node. For domes, sections, and frames, the local origin is the center point of curve
1.

Most Loft vehicles start with an outward dome object (vehicle nose). Consequently, that nose will be
specified with a negative length and will be created with most nodes residing on the negative z-axis. The
global origin will be at the rear of the nose (the center of curve 1). A translation must be specified if mov-
ing the global origin to the vehicle nose tip is desired.

When a new section object is created, the default position for any subsequent objects is moved to the
center point of curve 2 (to position it behind that section object). Other object types do not move the de-
fault creation point. However, any use of object level or stack level positioning commands (see the head-
ing below) will change the default creation point of all following objects. Note that meta-objects, such as
the tank type that contain sections, will also move the default creation point.

The default positioning for a new object can be set back to the global origin with the reset command
(which also resets all object dimension defaults to their initial values). A store command moves the
current stack to an internal clipboard then resets the default position values as well.

Object vs. Stack Level Positioning

To use a positioning parameter at an object level, just add a line specifying the parameter name and
value(s) to the file section describing that object. The ordering of object level parameters does not matter.
Once all parameters for the object have been read, the mesh is generated, and then the positioning is per-
formed in the following order: warping, rotations, and then translations.

To position the entire current stack, the move command is used. Position parameters that are given,
following a move command, are acted upon in the order in which they are read.

22

Translations

There are two types of translation setting options: absolute and relative. The parameters transx,
transy, and transy override the default position setting and assign an absolute position to the item.
The parameters relx, rely, and relz can only be used at the object level. They add the user-specified
value to the default value, rather than just replacing the default. In most cases, the relative translation
parameters are preferable, as a dimension change much earlier in a vehicle stack will not cause inaccurate
positioning.

Usage: <parameter> <value>
Example: relx 2.0

Rotations

Similarly, there are absolute and relative rotation commands. They are rotx, roty, rotz,
relrotx, relroty, and relrotz. As with the translation commands, the relative rotation com-
mands can only be used at the object level.

Usage: <parameter> <value>
Example: relrotx 2.0

Scaling

The three scaling commands can only be used at the stack level. They are scalex, scaley, and
scalez. (Use the curve xscale and yscale parameters at the object level to perform a similar function.)

Usage: <parameter> <value>
Example: scalex 2.0

Warping

Warping allows the distortion of part of a mesh. All of the warp commands use a coordinate axis as the
dividing line between parts of the mesh that are modified and parts that are not. The last two letters of the
parameter specify the side of the axis (p for positive, n for negative) and the axis to use as the division.
For instance, the warppx parameter will distort all nodes that start with positive x coordinates.

There are two types of warping available: constant and gradient. Constant warps (warppx, warppy,
warppz, warpnx, warpny, and warpnz) will scale all nodes in the specified zone by the given val-
ues. Gradient warps (gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, and gwarpnz) increase
the distortion the further the node is from the given axis. The user-supplied value is the scaling applied for
nodes that start one unit away from the axis. Nodes that start two units away from the axis are distorted
twice as much, and so on.

Each of the warp parameters takes three arguments: the amounts to scale the x, y, and z coordinates of
affected nodes. For example, the parameter “gwarpny 1.0 1.0 2.0” will scale the z coordinates of
any node that starts with a y coordinate less than zero. A node that starts at y = –1 will have its z coordi-
nate doubled, if it starts at y = –1.5 it will have its z coordinate tripled, etc.

23

Only one warp operation can be specified at the object level per object (the last one read will be the
one that is performed.) A warp operation combined with a scale operation can produce the effect of two
warp operations. Any number of warp operations can be performed at the stack level. Interleaving warp
parameters with translation parameters can give a very fine control over the nodes being distorted.

These commands can significantly change element aspect ratios and lead to poorly-formed elements.
Use with care and verify that the desired effect is being obtained before proceeding.

Usage: <parameter> <x scale> <y scale> <z scale>

Example: warpnx 0.1 2.0 5.2

Flipping

By default, node ordering for elements is chosen such that element normals will point outward. The
flip parameter can be used to reverse this ordering. It is valid for both objects and the full stack. Only
panel node ordering is affected.

Usage: flip

Turning

This option is valid only at the stack level. A turn parameter reorders the nodes with the intention of
changing the material orientation vector to be parallel to a different element axis. A quad that started with
nodes 1-2-3-4 when turned will be connected 2-3-4-1. The actual result of this operation will depend on
the FEA package used.

Usage: turn

User Specified Curves

Loft supports three ways of defining new curves in the input file. Once defined, a user-defined curve
can be used in exactly the same ways that a curve from the built in curve library is used. As part of the
definition process, the user specifies a mnemonic for the new curve. Whenever a curve mnemonic is en-
countered after that point, Loft will search its internal curve mnemonics, then the list of user-defined
curves.

Interpolated curves are built from user-specified x,y coordinates pairs. At the moment, only linear in-
terpolation between the user’s points is supported; options for curved interpolation may be added in the
future.

Compound curves are built by tracing the outside of sequentially listed curves until the next curve is
encountered, then tracing its outside until it intersects with the next curve, etc. This curve option can be
used to define the shape of multi-lobe tanks, etc.

Lofted curves are curves created by blending two parent curves. These curves are temporarily created
in most mesh creation processes that Loft performs where the cross section of the object is changing along
its length from the curve specified at one end to the curve specified at the other end. The user-defined

24

lofted curves allow the user to store and use these blended shapes. One application of the lofted curve
type is to create a bulkhead in the middle of a section.

Curves are defined by using the curve command, followed by the type (interpolated, com-
pound, lofted etc.) and a user supplied name. Parameter lists for the curve command are discussed in
the reference chapter, and tutorials on using all types of user-defined curves are in the tutorial chapter.

25

Chapter 2: Tutorials

Introduction

Loft is an easy-to-use program that takes very simple finite elements and builds detailed finite element
meshes. A user controls Loft by creating a text input deck with their favorite editor such as notepad in
Windows and vi or emacs in Unix/Linux.

The input files developed in these tutorials are all available in their finished forms in the “tutorials”
subdirectory. They are named “project1.txt”, etc. and will produce output files named “project1.wrl”, etc.

List of Tutorials

Project 1: A Simple Commuter Jet
Project 2: Converting Project 1 Mesh to a full vehicle
Project 3: Creating and using User-defined Curves

Part A: Interpolated Curves
Part B: User-defined Compound Curves
Part C: User-defined Lofted curves

Project 4: A Tapered Four-Lobe Tank
Project 5: Controlling Circumferential Node Distribution
Project 6: Introduction to Regions
Project 7: Variables and Math

26

Project 1: A Simple Commuter Jet

The examples in these tutorials will consist mostly of symmetric or half models, where only one side
of the vehicle is generated. This is done so that internal details of the meshes can be viewed easily. Pro-
ject 2 will show how to modify the input file to produce a full vehicle model.

A good practice is to start the file with a number of comment lines describing the file. The tutorial pro-
jects will also use comments throughout the files being created for ease of reading and to explain what is
going on. These are completely optional. So, the input deck starts:

Loft Tutorials: Project 1
A Simple Airliner
Created 4/16/03 by N. Jineer

Generally a user will want to describe a vehicle starting at one end and moving sequentially from ma-

jor component to major component. This example starts with the nose:

The nose
object dome Nose

“Object” is a Loft command. As might be inferred from its name, it creates a new object. That’s all that
is needed, assuming the desired result is a spherical dome that is one unit in radius and one unit in length.
But, let’s change from the default values. To do that, parameters are supplied for the object command.
All parameters are optional. It’s only when the default values need to be overridden or when the user
wants clarity that they are needed. For instance, the initial default value for the “curve1” parameter (as
found in the reference part of this manual) is “sc”, so the first new line below isn’t actually necessary at
this stage.

curve1 sc

27

length –15.0
c1_xscale 10.0
c1_yscale 10.0

The curve library section of the reference manual shows the various curve shapes that Loft currently
supports and the mnemonics that a user references them by. The “sc” mnemonic produces a semi-circle.
The length parameter controls how long the dome is. Since the positive axial direction for Loft is aft, and
the nose should be generated in the other direction, a negative value is given. The next two lines change
the radius of the circle in the horizontal (x) and vertical (y) directions. Here both scale factors, c1_xscale
and c1_yscale, are set to be the same value of 10.0.

Now, let’s see the result. To do that, an output command is added to the file:

Save and exit
write vrml project1.wrl
end

The “write” command tells Loft to write the current mesh to a data file, in a variety of possible formats

(see the command reference for supported formats). The “end” command is optional; Loft will exit when
it runs out of input. Save the file, then run Loft at a command line prompt (under Windows open a MS-
Dos Shell window)

 loft project1.txt

Loft will produce a variety of text output describing what it is doing. If all went well, Loft created a
new VRML 2.0 file called “project1.wrl”. Open this file in an appropriate viewer (one is not included
with Loft), rotate the image for better view, to see something these pictures:

Obviously, the model could use some improvements. Open the input file in the editor again.

More parameters will be added to the end of the nose object definition, so move the cursor above the
“# Save and exit” line. From now on save, run Loft, and view the current object whenever desired
to see how things are going. Note that write commands can be added wherever desired in the input file, so
“write vrml project1-nose.wrl” could be added after all the nose object parameters and
“write vrml project1-nose-and-body.wrl” after the body is added, etc. Remember, how-
ever, that all parameters for a command (such as the object command currently being edited) need to fol-

28

low that command directly; once another command is encountered (i.e. a write command) the previous
command is finished.

The first thing to change is the curvature of the nose. Referring to the “taper library” section of the ref-
erence manual, there are illustrations of differently shaped dome objects and the mnemonics necessary to
use them. Change from the default spherical tapered dome to a parabolic tapered one.

taper para

Now, drop the nose tip down a little so the pilots can see out.

zdroop 4.0

And make the mesh a little denser.

nodes_circ 21
nodes_axial 15

29

Now, create a fuselage body. That requires a new section object.

Fuselage
object section Fuselage
length 50
nodes_axial 60

Notice that many fewer parameters are needed compared to the nose. Most of the nose shape parame-

ters are now the default for the next object. Only those that change need to be specified.

Next, add a flat bulkhead to show a little bit of internal detail. Note that a bulkhead is created by mak-
ing a dome object and specifying another taper schedule. A parabolic taper was used for the nose; here a
bulkhead taper is used.

Bulkhead
object dome Bulkhead
taper bulk
nodes_axial 10

30

Each new object is automatically positioned behind the previous object: the fuselage is behind the
nose, and the bulkhead is behind the fuselage. This makes building sequential structures like this very
simple. Manually positioning objects will be covered shortly.

Next, add the rear part of the fuselage. In this case, it will look very much like the nose, but drooping
in the opposite direction.

Rear Cap
object dome Rear cap
taper para
length 15.0
zdroop -4.5
nodes_circ 21
nodes_axial 15

Next, move onto the wing.

Main Wing
object wing Main Wing
span 40

31

chord 20
taper 0.5
sweep 20
mesh 1
rootnaca 3412
tipnaca 3410
sparpos 10
sparpos 25
sparpos 75
ribpos 33
ribpos 66
wingbox 5
boxfront 2

That’s a lot of parameters, but the meaning of most of them should be obvious (refer to the reference
part of this manual if needed). Spars are positioned at 10, 25, and 75 percent of chord and ribs at 33 and
66 percent (ribs are automatically created at 0 and 100 percent). The last two lines ask for Loft to create a
wingbox carrythrough. The default behavior is to extrude the front most and rear most spars to make this
box, but the “boxfront” parameter here says to use the second front-most spar instead (thus extruding
from the 25 and 75 percent spars, not the 10 percent.) The resulting model looks like this:

The wing shape is correct, but it’s in the wrong place. Why is that? First, dome objects’ lengths do not
alter the default starting point of the next object. And the origin of a wing object is at its leading edge
root. So, the leading edge root point of the wing is sitting at the rear center point of the Fuselage section.

There are a couple of ways to move the wing. It is possible to specify the exact position of the leading
edge root point with the “transx”, “transy”, and “transz” parameters. There are cases when this is the way
to go, but in most cases, the relative translation parameters “relx”, etc. are better. These values are transla-
tions relative to the default position. Doing things this way will result in the wing staying in the same spot
at the rear of the fuselage even if the fuselage length is later changed.

relx 5
rely -9.5
relz –25

32

The x translation moves the carrythough to the centerline. The y translation moves the wing down to
the bottom of the fuselage, and the z translation moves the wing forward.

Now, add a vertical tail to the top of the rear cap.

Vertical Tail
object wing Vertical Tail
span 18
chord 15
rootnaca 0412
tipnaca 0410
halfwing bottom
wingbox 1
rotz 90
rely 19.5
relz 25
relx –5

Here symmetric airfoil sections were chosen, and since the tail is on the line of symmetry, only half of
it was generated by specifying the “halfwing” parameter. The default position for the tail object is at the
leading edge root point of the main wing, so the x translation moves the origin (leading edge root) of the
tail back to the centerline, the y translation moves it to the top of the fuselage, and the z translation moves
it back to the end of the fuselage section object. The rotation command spins the tail to be vertical.

With the halfwing option, it’s possible to see the internal spars and ribs on the tail, which are in the
same position as on the main wing (since no change was specified).

Finally, add a high horizontal tail to the top of the vertical tail:

33

Horizontal Tail
object wing Horizontal Tail
chord 7.5
span 11.0
rely 18
relz 6.551
rotz 0

The “rotz” parameter needs to be reset back to zero, from its new default of 90. Notice, however that
the “halfwing” parameter did not have to be turned off – as seen in the reference section of this manual it
always defaults to “off”. The chord length and y and z translations are chosen to position the horizontal
tail aligned with the top of the swept vertical tail.

Note that the various wing objects are not actually connected (in a finite element sense) to the fuselage

or each other at this stage. Before actually using this model to perform an analysis, some work should be
done with the mesh density on the horizontal tail (to make it match that on the vertical tail), and some ring
frames should probably be added where the wing and tail connect to the fuselage to provide beefed up
attachment points.

34

Project 2: Converting Project 1 Mesh to a Full Vehicle

There are two different ways to accomplish this task. Both will be demonstrated in this tutorial. The
choice as to which option is better depends on the situation. The first approach is to modify a few lines in
the input deck to change the half pieces to full ones and to make portside wing surfaces. The second ap-
proach is to use Loft’s internal clipboard to clone and mirror the half vehicle. The first option is better if
only a full model is desired. The second is convenient if both models are needed for different reasons.

Approach 1: Change from half objects to full

Copy project1.txt file to project2a.txt. Open the new file in the editor and move down to the second
non-comment line: “curve1 sc”. Change the “sc” to “cir”. Running Loft on this modified file produc-
es:

The new full circle curve1 parameter becomes the default for the rest of the fuselage objects by only
changing the one line at the beginning of the file. You may also want to double the circumferential node
density so that the spacing is the same as before: “nodes_circ 41”. Now, fix the wings.

After the Main Wing object (which could renamed as Starboard Wing), add the following:

object wing Port Wing
wingside port
wingbox 5
relx -10

This can be short because all of the Main Wing geometric parameters have become the default for any
subsequent “wing” object. The “wingbox” parameter, however, always defaults to zero (see the reference
section of this manual) so it needs to be set again. And other than the two parameters specified in the new
lines above, that’s exactly what is wanted.

35

Why has the vertical tail moved? This is one of the hazards of using relative position parameters: the
vertical tail is now 5 units to the port of the origin of the port wing (leading edge root), rather than the
origin of the starboard wing. Instead of changing the tail’s “relx –5” parameter to “relx 5,” change it to:

transx 0.0

Also, delete the tail’s “halfwing” parameter. Finally, create a port horizontal tail object by adding these
two lines after the starboard horizontal tail object:

object wing P Horizontal Tail
wingside port

With all of the edits, the final input deck is:

Loft Tutorials: Project 2a
A Simple Airliner
Created 4/16/03 by N. Jineer
The nose
object dome Nose
curve1 cir
length -15.0
c1_xscale 10.0
c1_yscale 10.0
taper para
zdroop 4.0
nodes_circ 41
nodes_axial 15
Fuselage
object section Fuselage
length 50
nodes_axial 60
Bulkhead
object dome Bulkhead
taper bulk
nodes_axial 10
Rear Cap

36

object dome Rear cap
taper para
length 15.0
zdroop -4.5
nodes_circ 21
nodes_axial 15
Main Wing
object dwing Starboard Wing
span 40
chord 20
taper 0.5
sweep 20
mesh 1
rootnaca 3412
tipnaca 3410
sparpos 10
sparpos 25
sparpos 75
ribpos 33
ribpos 66
wingbox 5
boxfront 2
relx 5
rely -9.5
relz -25
object dwing Port Wing
wingside port
wingbox 5
relx -10
Vertical Tail
object dwing Vertical Tail
span 18
chord 15
rootnaca 0412
tipnaca 0410
wingbox 1
rotz 90
rely 19.5
relz 25
transx 0.0
Horizontal Tail
object dwing SB Horizontal Tail
chord 7.5
span 11.0
rely 18

37

relz 6.551
rotz 0
object dwing P Horizontal Tail
wingside port
Save and exit
write vrml project2a.wrl
end

Which produces the complete model shown below. As with the half model, manual stitching of the wing
surfaces to each other and the fuselage would be necessary prior to any finite element analysis.

Approach 2: Clone the half model into a full model

This part of the tutorial will create a very similar mesh another way. Start by copying project1.txt file
to project2b.txt. Open the file and move the cursor down past all the object commands and parameters
and before the “# Save and exit” line. Add the following lines:

Store the starboard half model
store SB
Recall and mirror it
recall SB
move
scalex -1.0
flip

These commands start by moving the half model to the internal clipboard and naming it “SB”. The
store command clears and resets the active workspace. So, the next command recalls it back into active
memory. The next three lines perform two stack level move operations. The “scalex –1.0” parameter
changes the sign of all nodes’ x coordinates. This mirrors the mesh, but also has the undesired effect of
causing all the element normal vectors to point inward rather than outward. The “flip” parameter reverses
all the normal vectors. At this stage, the model looks exactly like before, but mirrored onto the port side:

38

Now, to get the original starboard mesh recalled and merged, just add:

Recall it again
recall SB

The merge part of the operation, which is performed automatically, can be a little slow, particularly

when the same object is being combined. The final mesh looks like:

The meshes produced by these two approaches are in many ways identical. The nodes and the ele-
ments are in the same places (the cloned approach may have extra nodes and elements in the vertical tail
due to being created as two halfwings). The real differences are subtle. If I-DEAS universal files were
created by adding lines like

write unv project2a.unv

to each file and these universal files were imported into I-DEAS, the differences could be located. In the
first case, the two wing and the two horizontal tail meshes each have differently named properties and
groups associated with them. With the second approach, the two wings share properties and groups, and
the two horizontal tails do as well.

39

Project 3: Creating and using User-defined Curves

Part A: Interpolated Curves

Loft’s curve and curve family library covers the basic shapes used for many aerospace vehicle compo-
nents. But, the library can’t contain everything. This project explains how to use the interpolated curve
definition capability to create user-defined shapes.

Defining an interpolated curve is easy. Just provide a sequential list of nodes that define the corners of
the shape. Start at the top of the curve (12 o’clock), and define nodes in a clockwise fashion.

In general, try to define your curve with a nominal radius of 1.0. The user then defines an object’s size
with the “xscale” and “yscale” parameters. Alternatively, give full-scale coordinates for the curve’s defi-
nition points and keep the object scale parameters close to 1.0.

The figure above is generated using the built-in semi-circle shape on the right end and two user-
defined interpolated curves at the center and left end. The center shape is a half diamond. The cross sec-
tion looks like:

40

To define this shape to fit in a unit circle, start at the top. The coordinates are x=0, y=1. The midpoint
of the shape is at x=1, y=0, and the bottom point is at x=0, y=-1. Converting this into a Loft interpolated
curve named “sd” produces:

half diamond shape
curve interpolated sd
start 0.0 1.0
line 1.0 0.0
line 0.0 -1.0

Once defined, the “sd” mnemonic can be used in any subsequent objects as if it were a curve in the li-
brary.

The user should keep in mind that due to the sampling scheme used by Loft to distribute nodes, the
points given when defining the shape may or may not appear exactly in the final meshed objects that use
the curve. When the user has finished defining a curve, Loft will compute the lengths of each segment and
the total length of the curve. Then, when the curve is used it will evenly distribute the meshed points
along the total length of the curve.

For example, if the user specifies the above “sd” curve and has a “nodes_circ” parameter of three, Loft
will generate nodes at 0, 50, and 100 percent along the curve, and by coincidence, create the exact in-
putted shape:

But, if the user instead had a “nodes_circ” parameter of four, Loft would generate nodes at 0, 33, 66,

and 100 percent along the curve, giving a cross-sectional shape that looks like:

41

By the way, Loft will show this same corner-rounding behavior when using library and the other types
of user-defined curves. The user may need to play some with the number of nodes specified if hitting the
corners exactly is important. See project 5 on some additional ways to address this issue.

To finish this project, define a second interpolated curve (the M-shaped left side of the original figure)
and then use both curves:

curve interpolated toothout
start 0.0 1.0
line 1.0 1.0
line 0.25 0.0
line 1.0 -1.0
line 0.0 -1.0
object section Barrel
curve1 sc
curve2 sd
c1_xscale 15.589
c1_yscale 15.589
c2_xscale 15.589
c2_yscale 15.589
nodes_circ 21
length 50
nodes_axial 30
components_axial 6
object section Barrel2
curve2 toothout
length 40
nodes_axial 25
object frame Ring Frames
Set units and save
units feet
write vrml project3a.wrl
end

42

The complete file specifies two user-defined curves, and then builds two sections. The first section
blends a semi-circle to the user’s semi-diamond shape. The second section blends the semi-diamond to
the letter “M” shaped “toothout” curve. Note that in the finished mesh the corner of the “sd” curve is
sampled exactly, as is the middle corner of the “toothout”, but the two intermediate corners are slightly
rounded. Finally, a frame object is added to the second section. The white lines in the figure show the cir-
cumferential beam elements that make up the frame.

43

Part B: User-defined Compound Curves

A more powerful option for user-defined curves is the compound curve. As the name implies, com-
pound curves are combinations of previously defined curves. In fact, any previously defined curve can be
used as a “child” curve to build up a more complex parent compound curve. Any library curve, as well as
any previously defined interpolated, compound, or lofted curve can be used.

This power comes at a price. Loft is currently unable to compute the intersections of two arbitrary
curves, so the user must tell the code where to stop using one child curve and where to start using the
next. Loft can locate the intersection points of circles and semi-circles with other circles or semi-circles.
However, any other curve combination will need user intervention to specify intersection locations.

The Compound Curve Concept

To picture the basic idea of a compound curve, imagine a sheet of rolled dough and a handful of inter-
estingly shaped cookie cutters. Imagine selecting a cutter and making an impression in the dough with it
but not removing the cookie. Then, select another (or perhaps the same) cutter and make another impres-
sion – that intersects the first. Continue this process as long as desired. Now imagine using a finger to re-
blend all of the internal lines leaving only the outer-most indention. This could produce a very strange
shape. That’s basically what the compound curve type allows one to do.

The “s” Parameter

Internally, Loft’s curves are generated based on percentages along their perimeter. This perimeter co-
ordinate is called “s” and varies between zero and one. If the user generates a barrel object with three
nodes in the circumferential direction, Loft will generate nodes at s = 0.0, s = 0.5, and s = 1.0 on each
curve and linearly connect them.

The library curve subroutines’ only function is to accept an “s” value as input and to return the two-
dimensional coordinates of the point at that percentage along the curve. All library curves are defined
with s = 0 at the 12 o’clock position, and s increasing as one moves clockwise around the curve to s = 1 at
its end.

This is the semi-circle subroutine:

44

angle = (90.0 - 180.0 * s) * pi / 180.0;
x = cos(angle);
y = sin(angle);

The full circle routine uses instead:

angle = (90.0 - 360.0 * s) * pi / 180.0;

Looking at these two code snippets confirms that s = 0 generates the (x,y) coordinates of a node on the
curve at 12 o’clock and a nominal radius of 1.0. Any other s value generates the coordinates for that per-
centage along the curve.

Of Parents, Children, and Arcs

Return to the dough and cookie cutter metaphor above. Each time a cookie cutter was used a “child”
curve was created. Now picture the outer-most “parent” boundary line. Each portion of that curve con-
tributed by a new child is called an “arc.”

The task when defining a compound curve is to sequentially specify the child curves necessary to gen-
erate each arc of the final curve. In many cases, a particular child will be specified more than once since it
may contribute to more than one section of the parent curve.

For each child curve, specify the mnemonic for the child curve, its center coordinates, and its radius.
The next step is to specify what portion of the child will contribute to the parent curve. This is done with
the “sstart” and “sstop” parameters. These are the “s” coordinates of the child curve that mark the end-
points of the arc being specified. Optionally, Loft can automatically compute these parameters when two
circle or semi-circle children intersect.

For proper extruding and connection of panels, the final compound curve should start on the horizontal
centerline at the 12 o’clock position and trace clockwise around to the end of the curve. Typically, the end
will be either at 6 o’clock or back at 12 o’clock. Put some planning into the radius values used for the
child curves. Ideally, the resulting parent curve should have a nominal unit radius. This will make later
use of the compound curve and selection of x and y scale values consistent with the scale values used
with the library curves. Alternatively, the compound curve can be specified with actual dimensions. In
such a case, the x and y scale values for objects using those curves will be near unity. Just keep in mind
that the radii and center points specified when defining the curves will be scaled later by the meshing rou-
tines.

How Loft Uses a Compound Curve

Once a compound curve has been defined, Loft calculates the circumference of each arc (by a piece-
wise-linear approximation for non-circular arcs) and sums them to compute the total circumference for
the compound curve. Each child’s contribution to the total circumference is used to determine what range
of the parent’s “s” coordinate for which it is responsible. When the compound curve code is asked for an
(x,y) coordinate based on a particular “s,” Loft will figure out which child is responsible for that location
and where on that child’s arc the point is. This information is used to compute a “local s” parameter for

45

the child curve. The coordinates returned by the child are scaled and translated to generate the coordinate
of that spot on the parent curve.

A Compound Curve Example

The first example project is a half-model of a three lobe tank cross section. Looking at the picture
above imagine making the shape by combining a semi-circle on the left with a full circle on the right.

Start with the user specified curve command, specify “compound” as the type of user curve, and sup-
ply a curve name:

curve compound half3lobe

From the picture above, there are three “arcs” that make up the full compound curve. So, three “child”
blocks must be specified to define the curve. In this case the first and the last arc are made from the same
child, but this is not necessarily always the case. For this first project the semi-circle and circle library
curves are used. Since they are circular shapes, Loft can compute the intersection points rather than re-
quiring the user to specify the endpoints of each arc with the sstop and sstart parameters.

So, the first child is a semi-circle centered at (0,0) with a radius of 5:

child sc
x 0.0
y 0.0
radius 5.0

Then, the next arc uses the full circle library curve:

child cir
x 3.5
y 0.0
radius 4.0

46

The last arc is part of the first curve, so that block is copied here:

child sc
x 0.0
y 0.0
radius 5.0

Finally, to generate the picture above, create a very short section object using the new compound curve

object section Barrel
curve1 half3lobe
curve2 half3lobe
length 1
nodes_circ 51
nodes_axial 2
save
write vrml project3b1.wrl
end

The next step is to generate a different compound curve. This time, using a half square and a circle to

generate a shape like this:

47

First, start a new compound curve:

curve compound roundbox

The mnemonic for a half (or semi) square is “ss.” The compound curve parameter “radius” can be used
for any child curve to scale it up from the default nominal unit radius. The two corners of the square occur
at 25 and 75 percent along the curve. For the first arc only the top edge of the curve is needed, so the arc
goes from s = 0.0 to s = 0.25. Since sstart = 0.0 is the default, it does not have to be specified.

child ss
x 0.0
y 0.0
radius 3.0
sstop 0.25

Next, a full circle is specified with the same radius and an sstop parameter of 0.5:

child cir
x 3.0
y 0.0
radius 3.0
sstop 0.5

(Yes, a semi-circle could have been used here with no sstop parameter necessary.) Finally, to specify the
bottom flat arc, return to the semi-square and specify portion between s = 0.75 and 1.0.

child ss
x 0.0
y 0.0
radius 3.0
sstart 0.75

To generate a sample representation of the new compound curve just add:

curve1 roundbox
curve2 roundbox
length 1
nodes_circ 51
nodes_axial 2
object frame Ring Frames
Set units and save
units feet
write vrml project3b2.wrl
end
object section Barrel

48

Finally, create the picture at the top of this tutorial by combining the two compound curves in a file
that contains the two curve specifications. The ring frame object is optional, but demonstrates that beams
can be created that will follow the interpolated shape between the two user-defined compound curves
(they are the white lines at either end and the center in the figure).

curve1 roundbox
curve2 half3lobe
c2_xscale 1.0
c2_yscale 1.0
length 20
nodes_axial 21
nodes_circ 31
components_axial 3
object frame Ring Frames
save
 write vrml project3b3.wrl
end

49

Part C: User-defined Lofted curves

The third type of user-defined curve is the “lofted” curve. Loft generates, but does not save, curves au-
tomatically when building a section object. At each station along the section object the program computes
the intermediate cross section as it transitions from the “curve1” end to the “curve2” end. The “lofted”
curve type allows the user to do the same thing, with or without actually creating a corresponding section
object. Another way to look at these curves is that they create a cross-sectional slice shape from a (possi-
bly virtual) section.

To create a lofted curve, the user specifies the curves at that are to be blended to form the new cross
section. As with the compound curve, any type of curve including user-defined curves can be used as the
end shapes. The user then specifies the percentage along the transition from curve1 to curve 2 with the
“station” parameter. A station value of 0.0 would result in a curve exactly matching curve1. A value of
1.0 would match curve2. The example below uses 0.5, which is 50% along the transition from 1 to 2 and
results in the cross section shown.

curve lofted lcurve1
curve1 sc
curve2 ss
station 0.5
object section test-section
curve1 lcurve1
curve2 lcurve1
length 0.1
nodes_axial 3
nodes_circ 30
write vrml project3c1.wrl
end

One use of this curve type is to generate mid-section bulkheads:

test of mid-section bulkheads
curve lofted lcurve1
curve1 sc
curve2 ss
station 0.5
object section test-section
curve1 sc
curve2 ss
length 4.
nodes_axial 11
nodes_circ 29
object dome bulkhead
taper bulk
curve1 lcurve1

50

relz -2
write vrml project3c2.wrl
end

Care should be taken if node-stitching is desired to make sure that the bulkhead is positioned at a spot
on the section object with nodes. In the above example, an odd number of nodes was used axially to in-
sure that a node line existed at the 50% axial station on the section. The lofted curve was defined as a
50% blend of the two end curves. And the created bulkhead, which by default would have been posi-
tioned at the rear (square end) of the section, had a “relz” of –2 applied to position it at the midpoint of a 4
unit long section.

If the desired position of the bulkhead is not at an easy-to-align position (e.g., 46.4543% of the section
length), then the best approach will be to create the lofted curve and use it to create a forward section
(curve1 to the bulkhead), the bulkhead, and the aft section (bulkhead to curve2) as three objects rather
than two. This approach allows for easy and exact positioning and node-stitching at completely arbitrary
axial stations. The following input file generates the same result as before, but creates three objects:

curve lofted lcurve1
curve1 sc
curve2 ss
station 0.5
object section forward
curve1 sc
curve2 lcurve1
length 2.
nodes_axial 6
nodes_circ 29
object dome bulkhead
taper bulk
object section aft
curve2 ss
length 2.
nodes_axial 6
write vrml project3c3.wrl
end

A very similar approach can be used to create a bulkhead that supports an internal structure such as a
tank. The bulkhead would be constructed using a zero-length section object with one end curve defined as
a lofted curve extracted from the desired position along the fuselage section and the other end as a lofted
curve extracted from the tank object.

51

Project 4: A Tapered Four-Lobe Tank

This project represents a tank that might be used in a vehicle nose cone if very tight packaging were
necessary.

The first step to building this tank is to define our compound four-lobe curve.

Remember, our task is to define this curve in a clockwise fashion starting at 12 o’clock. Thus, we start
with the upper-right circle:

curve compound 4lobe
child cir
x 1.0
y 1.0
radius 2.0

The default for any child curve is to start at s = 0. This is not what we need here. Some trigonometry
will show that the 12 o’clock point is at (0.0, 1.732). This corresponds to 30 counter-clockwise from ver-
tical, or 330 clockwise. Using the full circle formula from project 4, we get:

sstart 0.916666667

52

We don’t need to specify “sstop” since loft can automatically calculate it for the intersection of two
circles. So, we can just specify our remaining three lobes:

child cir
x 1.0
y -1.0
radius 2.0
child cir
x -1.0
y -1.0
radius 2.0
child cir
x -1.0
y 1.0
radius 2.0

Since we’re not specifying any further child curves, we again need to do some math to find that the
point (0, 1.732) is 30 clockwise from curve four’s start, resulting in:

sstop 0.083333333

To generate the rest of the pictured tank you can add:

object dome front
curve1 cir
c1_xscale 1.5
c1_yscale 1.5
nodes_circ 37
length -1
nodes_axial 5
object section Barrel
curve2 4lobe
c2_xscale 1.0
c2_yscale 1.0
length 5
nodes_axial 21
components_axial 3
object frame Ring Frames
object dome back
length 3
nodes_axial 13
Set units and save
units feet
write vrml project4.wrl
end

53

Project 5: Controlling Circumferential Node Distribution

By default, Loft distributes nodes spaced evenly along a curve’s circumference (with a couple of minor
exceptions – see the breadbox and filleted square curves in the reference portion of the manual). This is
the best general approach for producing a smooth finite element mesh, but it may fail to capture details in
some cases. This “sampling error” was discussed briefly in the tutorial on creating interpolated curves.

This project discusses a number of advanced approaches to addressing problems with the circumferen-
tial node distribution. Some are rather involved.

Approach 1: Change the Node Count

By far the easiest technique to address a sampling problem is to change the value of the nodes_circ
parameter. Generally, increasing this value will do a better job of accurately capturing any particular
curve’s shape.

But, if you have insight into where a particular feature occurs along a curve, choosing a value of this
parameter that places a node that percentage along the shape can also improve the modeling of that fea-
ture. This may mean decreasing the nodes_circ value. The interpolated curve tutorial showed an ex-
ample where a value of 3 did a better job of catching a sharp point than a value of 4.

Approach 2: Local s-distribution

A relatively easy way to address sampling problems with user-defined curves is to switch to local ra-
ther than global s-distribution. Each child-arc of a user-defined curve contributes some fraction of the to-
tal circumference of the parent curve. That fraction of the total nodes in the circumferential direction will
be used to sample that curve. In the default global s-distribution approach, the nodes are spaced evenly
along the parent curve.

The local s-distribution option moves the nodes that model each child-arc to be evenly spaced along
the child-arc. This has the effect of forcing a node to be generated at most junctions between child-arcs. If
a child-arc is too short to qualify for a node in the global approach, it won’t get one in the local approach
either. If the detail from that short child-arc is important, the user will need to resort to one of the other
approaches in this section to capture that detail.

The s-distribution approach is controlled by the parameters “c1_s” and “c2_s.” Thus, you can use
different approaches for each end of a section object. Valid values for the parameter are “global” (the de-
fault), “local,” and “copy.”

The “copy” option indicates that the curve is to use the same s-distribution as used for the other end of
the section. This can produce less twisted elements if the local distribution on the other end of the section
has significantly moved nodes. The use of the copy option only has practical effect if the other end is set
to “local.” (If both ends are set to “copy,” the global approach will be used on both ends).

Like all circumferential parameters, the settings of these two parameters are used to change the de-
faults for all subsequent objects. Be sure to reset their values when they are no longer needed.

54

Be careful using these parameters when adjacent objects are expected to stitch together. Nodes that
have different spacing are unlikely to be merged accurately. The “copy” option is particularly likely to
create these kinds of problems, as it may copy its s-distribution from a completely different curve than the
adjacent object.

Approach 3: Sub-Curves

A rather involved approach that gives much more control is to create a user-defined curve, then use
Loft’s debug output to break the curve back into “sub-curves” that are used to generate partial objects.
This is a lot more work, but allows the user to specify exactly how many nodes are to be used to represent
each child-arc of the original parent.

If you look at the debug output that is generated when using the “roundbox” compound curve created
in the previous tutorial, you’ll see this summary of the calculations that Loft made in order to use the
curve. For each child-arc, the output lists its circumference, the local “s” start and end points of the arc,
and the global “s” start and stop points:

finish_ccurve: Summary of Compound Curve roundbox

 child circ local_sstart local_sstop global_sstart global_sstop

 0 1.000000 0.000000 0.250000 0.000000 0.194305

 1 3.141560 0.000000 0.500000 0.194305 0.804724

 2 1.005000 0.750000 1.000000 0.804724 1.000000

 End of Summary for Compound curve roundbox

The global “s” start and stop points indicate what portions of the parent curve are contributed by each
child. We can use those values to extract just those contributions into new compound curves:

curve compound rb-arc1
child roundbox
sstart 0.0
sstop 0.194305
curve compound rb-arc2
child roundbox
sstart 0.194305
sstop 0.804724
curve compound rb-arc3
child roundbox
sstart 0.804724
sstop 1.0

(Remember that the “roundbox” curve definition needs to be copied into this new input file – user-
defined curves are not added to Loft’s internal library permanently).

Now, each of these new sub-curves can be used to create partial objects with much more control over
node density on each arc. Here’s an example creating an extruded “roundbox” object with varying mesh
densities.

55

object section arc1
curve1 rb-arc1
curve2 rb-arc1
length 5
nodes_circ 11
nodes_axial 5
object section arc2
curve1 rb-arc2
curve2 rb-arc2
nodes_circ 31
object section arc3
curve1 rb-arc3
curve2 rb-arc3
nodes_circ 21

This figure shows the three new curves separately. The bottom section does have twice the mesh den-
sity of the other two sections, and nodes are created exactly at the junction points of the arcs. But, the au-
tomatic positioning in Loft is putting each new section object immediately behind the previous one. To fix
that, add a “relz –5” parameter to both “arc2” and “arc3”. Notice that no positioning is needed in
the x or y directions, since the new curves are already positioned correctly in x and y. Once that is done,
the result is:

This sub-curve technique gives the user a lot of additional control on mesh density and locating im-
portant nodes, but it is a lot more effort than the other approaches. The main drawback in this approach is
the difficulty in obtaining compatibility with meshes generated without sub-curves. Generally, objects
generated from sub-curves can only be effectively attached to other sub-curve based objects without a lot
of additional work.

Finally, note that if the goal of this sub-curve project was only to double the mesh-density on the bot-
tom plate of the curve, the same result could have been accomplished with just two sub-curves. The first
would be the top plate and round section (from s = 0.0 to 0.804724) and the second would be the bottom
plate. The sub-curve approach can be used to grab any portion of another curve.

56

Project 6: Introduction to Regions

The Loft command “region” contains a powerful set of tools to allow the user to query or modify por-
tions of the current stack. This tutorial illustrates a small portion of these capabilities.

Start with an ogive-shaped nose cone with a short barrel. The colors on the picture indicate the two
property sets used in the model. Also note the beams running the length of the model that represent the
separation joint for the shroud.

object dome Nose
curve1 cir
c1_xscale 1.0
c1_yscale 1.0
length -550.000
nodes_circ 41
nodes_axial 35
components_circ 1
components_axial 1
taper ogive
param1 55.
param2 983.230
param3 198.0
zdist 0.73
transz 618.0
object dframe Sep Joints
count 3
align axial

object section Barrel
length 200.0
c1_xscale 198.0
c1_yscale 198.0
c2_xscale 196.0
c2_yscale 198.0

57

nodes_axial 12
components_axial 1
object frame Bottom Ring
count 1
position 1.0
object frame Top Ring
count 1
position 0.0
object frame Sep Joints
count 3
align axial
rotate so that x is aft
move
roty 90

Next, use the region mode to specify a volume and change the element property settings within that
volume. Here, the goal is to make the elements on the very tip of the nose into a different component for
later sizing purposes:

Nose Cap
region
iadd xcyl 0.0 0.0 0.0 200. 30. 30.
pprem Nose Sep
setpp Nose Cap

There are two parts of defining this region. The inclusive add command iadd adds all elements that
have any nodes within the specified cylindrical area. In this case, the beam elements that represent the
separation joint should not be updated. So, the remove by physical property name command pprem is
used to delete those elements from the region specification (but not from the stack!) Finally, the remain-
ing elements are changed to a new physical property name using the setpp command.

The first two commands are “passive” commands. They have not changed the stored stack data in any
way. The last command, setpp, changed the stored stack data. This is an example of an “active” region
command. Any number of passive commands may be performed to set up and query a region. But for the
sake of clarity, only one active command is allowed per region definition.

58

The next step is to stencil out a door on one side of the barrel. This is very similar to the previous ex-
ample. However, we’ll go one step further and specify a doorframe of panel elements around the door
itself. This requires two region commands to perform the two active commands.

Cut out a door with frame border
region
iadd box 732. 0. 198. 85. 72. 120
setpp Large Door Frame
region
eadd box 732. 0. 198. 85. 72. 120
setpp Large Door

Note that the two add operations use exactly the same coordinates and dimensions. The difference is
that the second operation uses the exclusive add command “eadd” rather than the inclusive add command
“iadd.” The “eadd” command requires that all nodes for an element fall in the specified volume while the
“iadd” command requires only one node to be in the volume. This difference makes building these border
frames easy. Note that it is possible for the volume to exactly intersect a line of nodes and produce identi-
cal results along an edge for the two commands.

The region mode can also be used to produce partial models. The following code creates an output file
that does not contain the door or door frame:

region
ppadd Large Door Frame
ppadd Large Door
inverse
format vrml
filenew project6a.wrl
rwrite

59

The additional input lines add the door and frame to the region, then invert the region membership. Fi-

nally, an output file containing just the elements in the region is written. These elements will have the
same indices and properties as they do in the full model. Thus, this approach can be used to generate
models for tasks such as mapping aerodynamic loads to the exterior elements of a model. The resulting
load data can then be applied to the full model (with interior elements) with no element renumbering re-
quired.

For a more complex model with many more objects, the object level mark command can be used to
arbitrarily apply labels to each component such as “OML” or “LH2.” Objects can have any number of
marks. Then the region-mode commands mkadd and mkrem can be used to add/remove groups of com-
ponents by these labels.

60

Project 7: Variables and Math

Loft supports two types of variables: “user-defined” and “system.” This capability greatly ex-
pands the parametric power of the program by allowing critical dimensions or values to be set once and
then used repeatedly. If a requirement changes, only that single value has to be updated. The basic math
support in the Loft input file reader adds even more flexibility.

Input Line Math

Loft supports simple math operations on an input line. These operations are addition, subtraction,
multiplication, and division. The corresponding operation symbols are the normal “+”, “-“, “*” and “/”. A
space must be used on either side of the operation symbol. Any number of operations can be performed
on a line. All math calculations are performed left to right, with no preference given to multiplication or
division. Parentheses are not supported. Multiple variables can be used to perform a complex computation
where order must be controlled.

Since computation of math operations is performed left to right, the expression “50 + 10 * 3”
evaluates sequentially as:

50 + 10 * 3 = 60 * 3 = 180

User-defined variables

A variable can be defined in a Loft input file by using the “define” command. Any desired name
(with no spaces) can be used for the variable name. In order to reference a user variable the dollar charac-
ter, “$”, is placed before the variable name. These variables can be used in any Loft input command or
parameter as needed.

Here are some examples:

define var1 50.0
define var2 10.0
define var3 $var1 + $var2 * 3.0
define var1 40.0

The user variable “var3” is computed using the previously defined “var1” and “var2” variables. It
has the value of 180.0 (see discussion of input line math above). The last example redefines “var1”. Any
later references to that variable will use the new value.

System Variables

System variables are the collection of Loft’s current default values for object parameters. These
values are continuously updated as the user specifies parameters. Thus, there is no “define” command, per
se, to set these values. Rather, they are set through the normal use of Loft.

61

System variables are referred to by a specific name (see a chart of all available variables in the
reference section of this manual). To reference a system variable an “at” symbol, “@” is placed before the
variable name.

Examples:

object wing demo
span 10.0
chord @wing.span / 2.0

Example: A Compound Wing

Loft supports only trapezoidal wing planforms. More complex shapes can be built up from multi-
ple trapezoids and the math and variables capability of Loft can be used to make this assembly easier. For
this example, we’ll construct a swept wing with a large root strake.

In this example, math is used first to calculate the strake’s taper ratio directly from the root and
tip chords rather than requiring the file creator to do the calculation. Then, the chordwise mesh density of
the outboard section is computed using the system variables that contain the outboard section’s root chord
and the strake’s taper ratio.

object wing strake
 chord 900.
 span 80.
Use math to calculate tip/root = 0.48
 taper 432. / 900.
 sweep 80.0
 rootnaca 2212
 tipnaca 2208
 sparpos reset
 sparpos 10.
 sparpos 36.

62

 sparpos 80.
 ribpos reset
 ribpos 33.
 ribpos 66.
 notip 1
 meshchord 0.02
 meshspan 0.06
 meshthick 0.02

object wing mainwing
 chord 432.
 span 251.
to match strake, divide its mesh value by its taper ratio = 0.0416
 meshchord @wing.mesh_chord / @wing.taper
 taper 0.37037
 sweep 45.0
 naca 2208
 relx 80.
 relz 453.70255

An Important Caveat

The math and variable support described in this project is implemented as a preprocessor that immedi-
ately replaces all the variables with their corresponding values and performs all the requested calculations
before handing the now conventional input line to the main Loft user interface. Objects are only actually
created when a new command is read and Loft determines that the user is therefore done with specifying
parameters for that object. Finally, the positioning system variables (transx, etc) are only updated after an
object has been created and merged into the current stack.

The combination of these three factors can lead to some confusion. Consider the following code exam-

ple, which will result in different values assigned to the two user variables “var1” and “var2”.

object section fuselage
length 10
define var1 @transz
define var2 @transz

Loft will read these lines in order. It will start a new section object and define its length to be 10. Then it

will read the first define command and the preprocessor will replace the “@transz” system variable with
the value of 0. Then, the main Loft code will determine that a new command has been specified and thus
the user is done with the previous object. The section object will be created and the transz system variable
will be assigned a new value of 10. Next, Loft will actually create the “var1” variable and assign it the val-
ue of 0 that the preprocessor had already placed on the input line. Finally, the last define command will be
read. The preprocessor will replace the variable “@transz” with the value 10 and then the main code will
assign that value to var2. Thus, for very subtle reasons, the values of var1 and var2 will be different.

63

A work around for this issue is to put another command between the last object parameter and the first
define command. That command will trigger the generation of the object and the updating of the transz
system variable before the definition command is read and handed to the preprocessor. For instance, just
adding the command “move”, with no parameter lines before the var1 definition would result in both vari-
ables have the same, expected, value of 10.

64

Chapter 3: Regions

The region tool set is a feature of Loft that allows the user to query or modify a section of the current
stack. Regions are inherently temporary constructs, but their effects may include permanent changes to
the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query statis-
tics on the mesh and produce reports.

There are two parts of the region process. The first is to specify what nodes and elements make up the
region. The second is to perform the desired task(s) on those nodes and elements.

Defining a Region

There are multiple ways to identify nodes and elements to add to a region. A control volume such as a
box or sphere can be specified. A material or physical property can be used. A name previously used in a
Loft “mark” command can be accessed to add those elements to a region. Multiple combinations of these
options can be strung together.

For instance, one could define a region as all elements marked as “OML” that do not have “main
wing” as their physical property. While exact syntax will be discussed later in this chapter, the logic of
this operation would be “add all elements marked oml” followed by “remove elements with physical
property main wing”.

Acting on a Region

There are two classes of actions that can be performed on a region. Passive actions are actions such as
queries that do not change the mesh data. Active actions modify the mesh data in the region by changing
properties, deleting nodes or elements, etc. Only one active operation can be performed in any partic-
ular use of the region command, as the node and element lists that Loft uses to define that region will
become stale. A new region operation can be started to perform additional active operations.

Like the stack-level move command operations, the region commands are acted upon sequentially.
Thus, one could add some elements, do a (passive) query, add some more elements, do another query,
remove some elements, query, and then perform an (active) cut operation to complete the current region
operation.

Region Commands

Region mode is entered by issuing the Loft command “region”. Any number of region-mode opera-
tions can be specified in sequence until another Loft command is encountered. After the first active opera-
tion, any further operations will be ignored and a warning to that effect issued. A new region command
must be started for each additional active operation that the user wishes to perform. All region commands
reset the list of selected nodes and elements to be empty.

Definition Commands

These commands add or remove elements and nodes from the current selection list. They are all
passive.

65

The volumetric selection commands identify nodes that fall in the specified volume. Loft then adds all
elements that use those nodes to its selection list as well. This element addition can be “inclusive” resulting
in the addition of any element that has at least one of its nodes in the specified volume, or it can be “exclu-
sive” where all element nodes must be in the volume for that element to get added to the selection list.

The property selection commands identify elements that have the specified material property, physical
property, or Loft “mark”. In turn each node that those elements use is also added to the selection list.

Volumetric Selection Commands

iadd – Inclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-
ments that use any of these nodes will be added as well. Volumes are specified by use of simple three-
dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an axis and are
infinite in length. Warning: Any beams whose alignment nodes fall in the specified volume, even if the
beam end points themselves do not, will also be added. The type “all” will add all nodes (and thus all el-
ements) in the current stack. No dimensions are required for the “all” type.

Usage: iadd <type> <center of volume> <dimensions of volume>
Example: iadd sphere 10. 20. 25. 5.
Type = all, sphere, xcyl, ycyl, zcyl, box
Center = x, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
 = xlength, ylength, zlength for box.

irem – Inclusive node removal. Removes from the selection list all nodes that fall within a specified

volume of space. Any elements that use any of these nodes will be removed as well. This operation does
not delete anything from the mesh, it just removes the specified items from the region selection list.
Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and boxes.
Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes
fall in the specified volume, even if the beam end points themselves do not, will also be removed. The
type “all” will remove all nodes (and thus all elements) in the current stack. No dimensions are required
for the “all” type.

Usage: irem <type> <center of volume> <dimensions of volume>
Example: irem sphere 10. 20. 25. 5.
Type = all, sphere, xcyl, ycyl, zcyl, box
Center = x, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
 = xlength, ylength, zlength for box.

eadd – Exclusive node addition. Adds all nodes that fall within a specified volume of space. Any ele-

ments with all of their nodes in the selection list will be added as well. Volumes are specified by use of
simple three dimensional shapes including spheres, cylinders, and boxes. Cylinders are aligned with an
axis and are infinite in length. The type “all” will add all nodes (and thus all elements) in the current
stack. No dimensions are required for the “all” type.

Usage: eadd <type> <center of volume> <dimensions of volume>
Example: eadd sphere 10. 20. 25. 5.

66

Type = all, sphere, xcyl, ycyl, zcyl, box
Center = x, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
 = xlength, ylength, zlength for box.

erem – Exclusive node removal. Removes from the selection list all nodes that fall within a specified

volume of space. Any elements with all of their nodes in the volume will be removed as well. This opera-
tion does not delete anything from the mesh, it just removes the specified items from the region selection
list. Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and
boxes. Cylinders are aligned with an axis and are infinite in length. The type “all” will remove all nodes
(and thus all elements) in the current stack. No dimensions are required for the “all” type.

Usage: erem <type> <center of volume> <dimensions of volume>
Example: erem sphere 10. 20. 25. 5.
Type = all, sphere, xcyl, ycyl, zcyl, box
Center = x, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
 = xlength, ylength, zlength for box

Property Selection Commands

mpadd – Add elements to the selected list based on their material property name. The material proper-

ty name is used to indicate where on the component the elements reside and vary based on the compo-
nents_axial and components_circ object variables. All nodes used by the elements are also add-
ed to the selected list.

Usage: mpadd <material property name>
Example: mpadd lox tank

mprem – Remove elements from the selected list based on their material property name. The material

property name is used to indicate where on the component the elements reside and vary based on the
components_axial and components_circ object variables. All nodes used by the elements are
also removed from the selected list. If some of those nodes are used by other elements that are still select-
ed, an update operation may be desired.

Usage: mprem <material property name>
Example: mprem lox tank
ppadd – Add elements to the selected list based on their physical property name. The physical proper-

ty name is in most cases the object name given by the user. All nodes used by the elements are also added
to the selected list.

Usage: ppadd <physical property name>
Example: ppadd lox tank

pprem – Remove elements from the selected list based on their physical property name. The physical

property name is in most cases the object name given by the user. All nodes used by the elements are also
removed from the selected list. If some of those nodes are used by other elements that are still selected, an
update operation may be desired.

67

Usage: pprem <physical property name>
Example: pprem lox tank

mkadd – Add elements to the selected list based on their marks. Marks are set using the mark param-

eter during object creation. An object can have any number of marks. By default it will have one that con-
tains its object name. In preparation for the use of this command the user can assign marks such as
“OML”, “fuselage”, “tankage”, “bulkheads”, “wings”, etc. and then add and remove multiple objects
based on the chosen marks. All nodes used by the elements are also added to the selected list.

Usage: mkadd <mark name>
Example: mkadd OML

mkrem – Remove elements from the selected list based on their marks. Marks are set using the mark

parameter during object creation. An object can have any number of marks. By default it will have none.
In preparation for the use of this command the user can assign marks such as “OML,” “fuselage,” “tank-
age,” “bulkheads,” “wings,” etc. and then add and remove multiple objects based on the chosen marks.
All nodes used by the elements are also removed from the selected list. If some of those nodes are used by
other elements that are still selected, an update operation may be desired.

Usage: mkrem <mark name>
Example: mkrem OML

Passive Operations

Passive operations can be used to list information about all of the current nodes or elements that are in
the selected list. By default the output is printed to the screen and the user has the option of piping the
output to a file using the command line. Alternatively, the user can specify an output filename for the que-
ry results to be sent to. The user can also specify that the data is to be formatted as FEA file data lines
(e.g. the node list could be in NASTRAN GRID cards) or (by default) in a more human readable format.
Some query results will not have an appropriate FEA format to be printed in and will only be reported in
the Loft native style.

inverse – Change all items in the selection list to not-selected and all not-selected items to selected.

Usage: Inverse
Example: inverse

update – Re-add all nodes used by elements in the selection list to the node selection list. Depending

on the order of addition and removal operations and the choice of exclusive or inclusive, the two lists may
not be completely synced. If syncing is desired, this will force an update.

Usage: update
Example: update

fileout – specify an output file to send query and rwrite outputs to. By default this output is printed to

the screen. Since the user may wish to save multiple results to the same file, all output is appended to the
end of a (possibly) pre-existing file.

68

Usage: fileout <filename>
Example: fileout region1.wrl

filenew – specify an output file to send query and rwrite outputs to. By default this output is printed

to the screen. This variant creates a new file (overwriting any existing file of the same name) rather than
appending to a possibly pre-existing file as fileout does.

Usage: filenew <filename>
Example: filenew region1.wrl

format – specify the format for the query outputs. The “Loft” default is a human readable chart format.

Other options are “nastran,” “abaqus,” and “vrml.” Some queries may produce output not suitable for the
requested format in which case that output will be presented in the Loft format. This value will be reset to
the default when a new region is created.

Usage: format <filename>
Example: format vrml

query – request various reports on the items in the selected list. Specifying “nodes” will list the select-

ed node numbers and each node’s coordinates. “Elements” will list the element numbers, their nodes,
their properties, and (as supported by the chosen format) any marks on the elements. “Properties” will list
all material and physical properties used by the selected elements.

Usage: query <type>
Example: query elements

mark – Add a mark to all selected elements. Note the difference in syntax versus the object level mark

command where one specifies “element” or “node” as well as a name.

Usage: mark <name>
Example: mark OML

comment – write a commented line of text to current output in the current format.

Usage: comment <text of comment>
Example: comment These elements are all marked OML

rwrite – write the selected items as if they were a complete mesh. Uses the values set by the format

and fileout or filenew commands.

Usage: rwrite
Example: rwrite

Active Operations

Active operations attempt to change the selected region’s mesh in some way. This can be a property
change, the addition of a mark, deletion, rotation, flipping, of elements, etc. Again, once one active opera-
tion has been performed on the specified region, the selection list is marked as being “stale” (since nodes

69

and elements it points to may no longer exist or may no longer meet the region selection criteria) and no
further operations are permitted on the region.

cut – remove selected elements and nodes. This operation has two modes. The “element” mode will
remove only the elements in the current region. No nodes will be deleted. The “node” mode will remove
both the marked elements and the marked nodes. Additionally, non-selected elements may be deleted de-
pending on the number of their nodes that remain after node deletion. Panels that end up with 3 nodes are
converted to triangles. Panels with 2 or fewer nodes are deleted. Bars or beams that lose any nodes (in-
cluding their alignment node) will also be deleted. The node version of this operation is similar, but not
identical, to the (non-region) subtract command.

Usage: cut <type>
Example: cut element
Type = element or node

setmp – change elements to use the specified material property. If the property name does not exist, it

will be created.

Usage: setmp <name>
Example: setpp nose cap

setpp – change elements to use the specified physical property. If the property name does not exist it

will be created.

Usage: setpp <name>
Example: setpp nose cap

flip – reorder element nodes to reverse normal vector direction

Usage: flip
Example: flip

rotate – reorder element nodes to rotate element orientation

Usage: rotate
Example: rotate

70

Chapter 4: Programmer’s Guide and Reference
Introduction

This portion of the Loft user’s manual can be used to gain a deeper insight into how Loft functions.
But, it is really intended for someone who wants to add new object types or functions to the program. The
chapter starts with a conceptual description of how the program works, followed by an overview of the
code structure. Finally, there are sections that describe how to add objects, commands, new output types,
and new curve types to the program.

As some program operations are described, the C file and/or subroutine that performs the function may
be listed in the form “subroutine.c/function-name”.

Geometries and Meshes

A Loft input file contains a user’s definition of a vehicle’s geometry. The user’s specified object types,
dimensions, and meshing parameters are called the “abstract geometry.” Loft’s main function is to read
this abstract geometry and turn it into a concrete mesh made of nodes, elements, and a wide collection of
elemental properties.

Loft does not internally store the abstract geometry of a vehicle. It has a “master” abstract geometry
that consists of one object of each supported type. This master geometry is populated at program start
with the default values described in the reference chapter. (interface.c/initial_defaults).
As the program reads the user’s geometry parameters, this master geometry is updated with the user’s
specified values (interface.c/generate_object). When an object definition is completed, a
mesh is generated for the object and the master geometry is updated by copying appropriate changes to
the other object types and by resetting other parameters to their initial values.

Loft works with two mesh data structures at a time. Both start with no data. The “stack” is a mesh con-
taining all the previously generated objects’ nodes, elements, and elemental properties. The “mesh” is the
structure containing the current object. Both data structures are stored in the exact same way. An object
generation subroutine is passed an empty “mesh” which it allocates memory for, populates with nodes
and elements, and returns. When the “mesh” is completed, it is immediately merged with the “stack” then
erased by freeing its allocated memory. (The store command works very much like the “cut” command
on a word processor. A pointer to the current stack is stored, and then a new empty working stack is cre-
ated. Similarly, a recall command is like a “paste” command. The same routine that combines the
main stack and a new mesh (util.c/merge_sections) combines the current working stack with the
specified stored stack. In this case, the stored stack is not erased.)

Code Overview

Data structure/Constant definitions
 loft.h
 loft-const.h
Mesh storage and manipulation
 util.c
 modify.c
Mesh generation

71

 loft.c
 wing.c
Curve definitions
 curves.c
Region operations
 region.c
Output routines
 abaqus.c
 ideas.c
 nastran.c
 vrml.c
 custom.c
User input/Program control
 interface.c

 variables.c

Adding a New Object Type to Loft

The first step in adding a new object type to Loft is design. Determine the parameters that the user
must set to define the abstract geometry of the new object and select default values for those parameters.
Then, work out the logic of using those parameters to generate nodes, elements, and properties.

Now that there is a plan, it’s time to start coding. In broad terms, there are two parts to writing the
code: writing the meshing routine itself and adding support for the new object to the user interface. Both
are somewhat involved.

Both parts of the coding will rely heavily on the object definition in “loft.h”. Edit this file and
move down to the abstract geometry object definitions section. Add a new structure here that defines the
abstract geometry’s parameters for your new object. Be sure to include structure members to define the
object name, position, alignment, and a marklist. Finally, add your geometry structure to the “mas-
ter_geom” structure near the end of the file.

The New Meshing Routine

You can add your meshing routine to “loft.c” or start a new source file. Your choice should be
made based on the length and complexity of the meshing code. For instance, the various wing related
meshing routines were created in a separate “wing.c” file. If you create a new file, remember to update
the makefile so that it will be compiled and linked. Take a look at the various existing meshing routines
for a feel of how they are written. The basic outline of each of these codes is as follows:

1. Based on geometry input parameters, make a conservative estimate of the number of nodes,
elements, material, and physical properties needed by the new mesh. It is okay to allocate a little
more space than is actually used if an exact calculation is difficult.

2. Call malloc_mesh to allocate memory for that data.
3. Create appropriate loops to generate the mesh data. As it is generated, store each piece of data by

using the data storage routines from “util.c”, e.g., storenode, storequad,
storetri, storegroup, addgroupmember, createproperty, etc.

72

4. Update the mesh node (mesh-> nnodes) and panel (mesh->npanels) counts with the actual
numbers of objects created

5. Warp, rotate, and move the mesh
6. Call group_all_nodes and group_all_panels

If you look at the wing generation code, you’ll note that it intentionally creates many duplicate nodes.

It is okay to do this as long as space is allocated for them in the call to malloc_mesh. Just add a call to
merge_points to the end of your routine to consolidate these duplicates.

Integrating Your New Object Into the User Interface

The first step is to edit “loft-const.h” and create a new constant for your object type in the section that
starts with “#define OBJ_NONE 0.” Use the next available integer after the ones that are currently in use.
For illustration purposes, let’s say the mesher is used to create a wheel object and that the last object type
used was number 12. Add “#define OBJ_WHEEL 13” at the end of the block.

Next, there is a lot of work to be done in “interface.c.” Here we’re going to create a new routine to
parse the parameters for your new object, and then add support for the new object to the “parse_input,”
“parse_new_object,” “generate_object,” and “initial_defaults,” routines.

The parameter parsing routine created should be similar to “interface.c/parse_section_param”. This
routine will receive each line of text that is a parameter for the object. It should parse the parameter name
and values from that line, and assign them to appropriate data blocks in the abstract geometry structure.
Finally, it should issue a warning if it was unable to do anything with the parameter it was given.

Remember to add a prototype for the new parsing routine to the top of the interface file.

The next step is to add the object to the “parse_input” routine. There are only two parts to this.
First, add a malloc call at the top of the routine to make space to store your abstract geometry data. Be
sure to add your new structure to the section that checks that the malloc succeeded. Then, scroll down to
the line “case CMD_NONE” and add a line to the end of the parsing routines. It should be something
like:

if(current_object == OBJ_WHEEL)
 parse_wheel_param(line,master.wheel);

Now, move down to the “generate_object” routine. Add a pointer variable for the abstract ge-
ometry and extract that pointer from the master geometry. Then, add a block that calls the mesher routine
if the object is of your new type, i.e.:

if(type == OBJ_WHEEL){
 printf(“ Calling make_wheel\n”);
 make_wheel(*wheel_geom,mesh);
}

73

After the new mesh is generated, we need to update the defaults of any abstract geometry types that
need it. In most cases, you’ll want to leave the current object’s parameters as the defaults for the next ob-
ject of the same type, but in some cases you’ll want to set them back to the defined default every time.
You can update the defaults for any other geometry types as well. Add lines to your version of the block
above in “generate_object” to update the desired defaults.

Scroll down to the “initial_defaults” routine. As with the previous routine, the first step is to
add and extract a pointer variable for your abstract geometry. The other task here is to add a block that
populates every data item in your geometry structure with its default value. Your defaults should be cho-
sen such that if the user specifies no parameters, the mesher will still generate a valid mesh.

Finally, scroll down to the “parse_new_object” routine. Again, add and extract a pointer variable
to your abstract geometry. Next, add a block that tests for a object type name of your new type, sets the
object name, and sets the current_object variable to your new type if it’s found. For example:

if(strncmp(type,"wheel",5)==0){
 sprintf(wheel_geom->name,"%s",objectname);
 *current_object=OBJ_WHEEL;
 return;
 }

Now, compile, test, and debug your new object.

Adding a New Command to Loft

Adding a new command is a very similar process to adding a new object. As before, there are two
steps: creating the routine to perform the new operation and integrating the command into the interface.
It’s difficult to be more specific since new commands could do anything and be logically integrated in
many different places. You will probably want to add a new command number to “loft-const.h”
and a “case” statement to the main loop in “interface.c/parse_input.”

Adding a New Output Type

Loft currently supports four types of mesh outputs. With accurate documentation of the new desired
output format, it should be straightforward to use one of the existing output types as a basis for the new
type. Then, edit the “interface.c/output_stack” routine to add a new block for your output block

A special case is the “custom” output type. This was created to make it easier for the user to modify
the output to be exactly as he desires. No editing of the interface code is required, just modify “custom.c”
to produce the desired output and recompile. Typically, this approach has been used to make a short-term
modification to one of the existing output types. For example, one could copy the NASTRAN output rou-
tines into custom.c, then make small changes that might a) specify a non-structural mass for some ele-
ments, b) change the order that elements are written, or c) reduce the number of properties that the ele-
ments use. By making these types of changes to the custom output type, no hard to remove changes are
made to the core output routines.

74

Adding a New Curve Type

The curve primitive routines are all located in the “curves.c” file. Scroll down to look at the semicircle
routine. The variable “s” is an input variable that ranges between 0.0 and 1.0. It represents the percentages
along the curve from its start (0.0) to end (1.0) for which coordinates are desired. The variables “x” and
“y” are output values used to return the coordinates. If you’re creating a curve family like the filleted
curve, then “x” is also used as an input variable giving the family shape parameter.

The first step is to write a generation routine for your new curve type similar to the others in the file.
Remember when modifying the variables “x” and “y” that their pointers are being passed rather than the
variables themselves. Thus, your routine needs to set “*x” to the computed x coordinate.

Next, to add the new curve to the interface, return to the top of the “curves.c” file. Add a prototype for
your generation routine. Now, scroll down a little and add a block for your new curve type and generation
routine to the “curves.c/curvefunctionptr” routine. Note that there are different sections for non-family
curves, family curves, and user-defined curves.

Be careful when selecting your curve’s mnemonic to avoid collisions with other curves. For instance,
if you want to use the mnemonic “ssquiggle”, you need to add your check to curvefunctionptr before the
check for the semi-square curve, since that check compares the first two characters of the curve name to
“ss.” It might be clearer if you chose “semisq” for your mnemonic instead. (You can see in the current
routine that the check for the semi-circle “sc” mnemonic occurs after the check for the semi-cosine-
wiggle “sccw”.)

Now, save, compile, and test your curve. It should be usable from any object that uses curve primitives
—there is no need to modify any of the meshing routines or user interface routines.

75

Chapter 5: Command & Object Reference
Alphabetical Command List

Curve – Define a user curve

Usage: curve <type> <mnemonic>
Example: curve compound 3lt

type = “interpolated,” “compound,” “lofted”
mnemonic = user name for the curve

Define – define a variable

This command allows the user to define a named variable to be used later in the input deck. The dollar

symbol, “$” is used to invoke a variable and tell Loft to replace the text with the previously specified value.

Usage: define <name> <value>
Example: define mydimension 5.6
Variable usage example: length $mydimension

End – End Program (optional)

Usage: End
Example: end

Ideas – Indicate I-Deas version for output

This command only affects which datasets are used in any I-DEAS universal files that are written after
the command is used. It does not affect Loft’s internal data. Thus, it is possible to write different output
files with different I-DEAS versions for the same data.

Usage: Ideas <version>
Example: ideas 8
Default: 9

Version = 8 or 9

List – Output various lists to the screen
 This command is intended for debug purposes.

Usage: List <type>
Example: list stacks
Default: (none)
type = “ccurves,” “icurves,” “lcurves,”, “stacks,” “variables,” “groups,” “mprops” (material
properties), “pprops” (physical properties), “ribs,” “spars,” “mesh” (gives various data counts), or
“all”

76

MergeTol – Tolerance distance for considering nodes to be identical. These nodes are merged by
removing higher numbered duplicates and replacing references to them with references to the lower
numbered, remaining, node. This merging is done at various points in wing generation as well as when
adding new objects to the current stack.

Usage: MergeTol <distance>
Example: mergetol 0.01
Default: 0.001

Move – Rotate, translate, scale, warp, split and/or flip the full stack
Note that, unlike the rotation and translation parameters for an individual object, results of this command
do depend on the order of the parameters – each operation is executed following each parameter.

Rotation and translation values are set with the rotx, roty, rotz, transx, transy, and
transz parameters just like those allowed for single objects. (Note that these are absolute translations
and rotations, not relative to any previous settings.) In addition, the scalex, scaley, and scalez
parameters can be used to adjust the size of the current stack.

There are also six “warp” parameters that distort part of the stack. The six parameters are warppx,
warpnx, warppy, warpny, warppz, and warpnz. The two letters after the “warp” prefix indi-
cate the region of action of the warping. Thus, warppx will scale the parts of the stack that are in the posi-
tive x region, and leave the nodes where x<=0 alone. These 6 parameters all take 3 values that are the
amount to scale that region in the x, y, and z directions. So, a move parameter that said “warpnz 1.0 2.0
1.0” would double the y coordinates of all nodes that started with z<0. Use of the rotation and translation
parameters before and after a warp operation allows fine-tuning of the area to be affected. The “warp”
options are intended to be used to make shapes such as the fuselage for a lifting body. Care should be tak-
en with the scale factors and the object mesh options to keep element aspect ratios reasonable.

Gradient warps are also possible with the six gwarp parameters. These are gwarppx, gwarpnx,
gwarppy, gwarpny, gwarppz, gwarpnz. They work identically to the constant warp parame-
ters above, but the distortion increases linearly from zero distortion at the axis to the specified values at a
unit distance from the axis and higher further away from the axis. So, a parameter like “gwarppy 2.0 1.0
1.0” would double the x coordinates of any node at y = 1 and quadruple the x coordinate of any node
starting at y = 2.

The flip parameter reverses the node ordering for panel elements, thus changing the direction of
their normal vectors. It takes no arguments.

77

The split parameter breaks each quadrilateral element into two triangular elements with node order-
ing going from 1-2-3-4 to 1-2-4 and 3-4-2.

Usage: Move
Example: Move
 Scalex 0.5
 Scaley 0.2
 Transx 30.5
 Roty 33.3
 Warpnz 1.0 2.0 1.0
 Gwarppy 2.0 1.0 1.0
 Flip
 split

Mark – Add a label to a group of nodes or elements. Items can have as many different labels as desired.
Marks have limited uses. They can use used to sort elements in the region command and will be output as
groups when an I-DEAS output file is created. Support for Nastran SET grouping can be enabled by
removing a comment in “nastran.c”. The mark parameter takes two arguments: the group type (node or
element) and the group name. A marked group can contain either nodes or elements, but not both.

Usage: mark <type> <name>
Example: mark element OML
Default: none

Nastran – Controls NASTRAN format output options

Usage: Nastran <parameter> <value>
Example: nastran grid 8

List of Nastran command parameters:
Grid = number of columns used in grid cards. Values are 8 or 16. Default is 8.

New – Deletes current stack from memory

By default each new object’s mesh is added to the previous meshes - creating a stack. This command

starts a new stack (presumably after issuing a Write command to save the previous one.) All defaults are
reset to their initial values.

Usage: New
Example: new

Object – Create a meshed object

Usage: Object <type> <name>
Example: object dome LOX Tank Aft Dome

 Type = type of object to create, e.g. dome, section, wing, tank, etc.
Name = descriptive name of the object, 40 characters or less, used to mark elements

78

Read – reads a supported format mesh into Loft as a new object

This command allows the import of a variety of externally generated meshes into Loft. This is an ex-
tremely simplified process focusing on capturing nodes and connectivity. All property information is lost.
All elements are converted to simple 4-node rectangles, 3-node triangles, or 2-node bars. Unusual element
types are very likely to fail.

Usage: Read <file type> <file name>
Example: read nastran myinput.bdf
File type = type of file to read: vrml, abaqus, or nastran (I-DEAS’ unv not currently supported.)
File name = Name of file to be read

Recall – Copies a clipboard stack into the active stack

 This command copies a previously stored stack (see store command) from the temporary stack
clipboard back into active memory. The copy on the clipboard is not deleted and can be recalled any
number of times. Multiple recalls of the same complex object can take some time to accomplish, as the
various merging operations for items with the same name can be slow. A recall operation does not change
any default geometric values.

Usage: Recall <name>
Example: recall External Tank

Region – Enter region mode.

The region tool set is a powerful feature of Loft that allows the user to query or modify a section of the
current stack. Regions are inherently temporary constructs, but their effects may include permanent chang-
es to the mesh by deleting parts, changing property assignments, etc. Regions can also be used to query
statistics on the mesh and produce reports. The region mode has a long list of sub commands that are de-
scribed in the region chapter of this manual. These abilities partially overlap the list and subtract com-
mands.

Usage: Region
Example: region

Reset – Reset defaults to initial values, without deleting the current stack.

Usage: Reset
Example: reset

Store – Move the current stack to a temporary clipboard and start over, reset-ing all default values.

The current stack is assigned the supplied name and stored in memory. The active stack that commands
operate on is cleared and values are set back to the initial defaults. Any number of stacks can be simultane-
ously copied to the clipboard.

Usage: Store <name>

79

Example: store External Tank

Subtract – Delete all nodes that fall within a specified volume of space. Any elements that use these
nodes will be deleted as well. Quads (4-node elements) that lose one node will be converted to triangles.
Volumes are specified by use of simple three dimensional shapes including spheres, cylinders, and boxes.
Cylinders are aligned with an axis and are infinite in length. Warning: Any beams whose alignment nodes
fall in the specified volume, even if the beam end points themselves do not, will also be deleted. A
similar, but not identical, effect can be produced by the region mode “cut” operation.

Usage: Subtract <type> <center of volume> <dimensions of volume>
Example: subtract sphere 10. 20. 25. 5.
Type = sphere, xcyl, ycyl, zcyl, box
Center = x, y, z coordinate of center of volume
Dimensions = radius for sphere and cylinders,
 = xlength, ylength, zlength for box.

Units – Specify unit set. (default = inch)

Loft is unit-less. This command just changes which units are indicated in the I-DEAS universal file for
any files written after the command.

Usage: Units <length unit>
Example: units meter

Length unit = foot or feet, inch, or meter

Vrml – Control vrml color output

Selects if the vrml output mesh contains color information and if so, which color pallet to use. Options
listed below in parenthesis are synonyms of each other. The forward option produces a more red/blue pic-
ture. The backward option produces more yellow/pink.

Usage: vrml <option>
option = (off, no), (forward, on), (reverse, backward), rainbow, primary
Example: vrml reverse
Default: primary

Write – Write current mesh to an output file

Usage: Write <file type> <file name>
Example: write vrml rocket.wrl

File type = type of file to save: custom, vrml, unv, abaqus, or nastran
File name = Name of file to be saved to

80

Object Types and Parameters

Common Parameters

All object types except the individual beam object use these parameters. They control positioning, ro-
tation, distortion, alignment, and group marking.

rotx – angle to rotate object about its origin’s x axis in degrees (absolute)
 default = 0, or last value specified

roty – angle to rotate object about its origin’s y axis in degrees (absolute)
 default = 0, or last value specified

rotz – angle to rotate object about its origin’s z axis in degrees (absolute)
 default = 0, or last value specified

transx – distance to translate object’s origin from the global origin in the x direction
 default = 0, or endpoint of previous section (domes do not update this default)

transy– distance to translate object’s origin from the global origin in the y direction
 default = 0, or endpoint of previous section (domes do not update this default)

transz– distance to translate object’s origin from the global origin in the z direction
 default = 0, or endpoint of previous section (domes do not update this default)

relrotx – angle to rotate object from its default position about the x axis in degrees.
 default = 0

relroty – angle to rotate object from its default position about the y axis in degrees.
 default = 0

relrotz – angle to rotate object from its default position about the z axis in degrees.
 default = 0

relx – distance to translate object’s origin from its default position in the x direction.
 default = 0

rely – distance to translate object’s origin from its default position in the y direction.
 default = 0

relz – distance to translate object’s origin from its default position in the z direction.
 default = 0

flip – change the element normal direction to point inward rather than outward. This parameter takes no
argument. It must be specified for each object where flipping is desired (it does not change the default
orientation).

81

Warppx, warppy, warppz, warpnx, warpny, warpnz – distort the part of the object in the region
specified by the last two letters (p means positive, n means negative, and x, y and z, are the coordinate
axes) by the specified three values. Only one warp or gwarp parameter may be specified per object.
 Default: (no warp)

Gwarppx, gwarppy, gwarppz, gwarpnx, gwarpny, gwarpnz - distort the part of the object in
the region specified by the last two letters (p means positive, n means negative, and x, y and z, are the
coordinate axes) by the specified three values. Scaling of the original coordinates varies linearly with the
node’s original distance from the specified axis. Only one warp or gwarp parameter may be specified
per object.
 Default: (no warp)

Mark – Add a label to a group of nodes or elements. Items can have as many different labels as desired.
Marks have limited uses. They can use used to sort elements in the region command and will be output as
groups when an I-DEAS output file is created. Support for Nastran SET grouping can be enabled by
removing a comment in “nastran.c”. The Mark parameter takes two arguments: the group type (node or
element) and the group name. A marked group can contain either nodes or elements, but not both.
 Example: mark element OML
 Default: none

82

Section

A section is a 3-D object made by interpolating between two 2-D curves. Curved transitions may be
generated using the taper parameter. The origin of the object is the center point of curve 1 (which for
semi-curves is on the axis of symmetry).

Parameter List
Note that most axial direction defaults do not change to match earlier inputted values (the transx pa-

rameter is an exception).

curve1 – mnemonic for first curve (see curve library)
 default = sc, or last curve used

curve2 – mnemonic for second curve (see curve library)
 default = sc, or last curve used

c1_xscale – factor to scale x dimensions of curve 1 by
 default = 1, or last x scale

c1_yscale – factor to scale y dimensions of curve 1 by
 default = 1 or last y scale

c2_xscale – factor to scale x dimensions of curve 2 by
 default = 1, or last x scale

c2_yscale – factor to scale y dimensions of curve 2 by
 default = 1, or last y scale

c1_xoffset – distance to horizontally translate curve 1
 default = 0, or last x offset

83

c1_yoffset – distance to vertically translate curve 1
 default = 0, or last y offset

c2_xoffset – distance to horizontally translate curve 1
 default = 0, or last x offset

c2_yoffset – distance to vertically translate curve 1
 default = 0, or last y offset

c1_s – scheme to use to distribute nodes circumferentially along curve 1. Values may be “global,”
“local” or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled
curve. A “local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve
(interpolated or compound). This has the effect of positioning nodes at each joint between child arcs. A
“copy” distribution uses the node spacing of the other end of the section in order to produce less twisted
elements. If both ends of the section are set to “copy”, a “global” distribution will be used.
 default = “global,” or previous c2_s

c2_s – scheme to use to distribute nodes circumferentially along curve 2. See discussion of c1_s above.
 default = “global”, or previous c2_s

length – length of section
 default = 1

nodes_circ – number of FE nodes to use in the circumferential direction
 default = 10, or last value specified

nodes_axial – number of FE nodes to use in the axial direction
 default = 10 (may change this to make the default low aspect ratio producing)

components_circ – number of different material props to use in circ direction. Use of this parameter
overrides the “circ_cpos” list of component edge positions and creates evenly distributed component
edges (e.g. specifying 3 components will produce edges at 33 and 67 percent of circumference)
 default = 1, or last value specified

components_axial – number of different material properties to use in axial direction. Use of this
parameter overrides the “axial_cpos” list of component edge positions and creates evenly distributed
component edges (e.g. specifying 3 components will produce edges at 33 and 67 percent of length)
 default = 1

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to re-
move the current list of positions, or between 0 and 100 to set the percentage where elements created after
that location will be in a new component. Multiple positions can be set. Use of this parameter overrides the
“components_axial” setting and vise-versa.

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset”
to remove the current list of positions, or between 0 and 100 to set the percentage where elements created
after that location will be in a new component. Multiple positions can be set. Use of this parameter over-
rides the “components_circ” setting and vise-versa.

84

taper – This setting controls how quickly curve1 transitions to curve2. The effect of this taper option will
have significant effect only if the scales and/or offsets of the two end curves are significantly different. Pic-
tures of these taper types are shown in the library section at the end of the reference manual. Those pictures
show a section that transitions between two semi-circles of different size and offset.
For the linear option, value has no effect. For the cosine option, value is the number of half waves. For the
power option, value is the exponent of the interpolation curve (1.0 gives linear).
 Usage: taper <type> <value>
 Type = linear, power, cosine
 Defaults: type = linear
 value = 1.0

85

Dome

A dome is a 3-D object made by extruding a single 2-D curve to a single nose point. The origin of the
object is the center point of curve 1 (which for semi-curves is on the axis of symmetry). Adding a dome
object does not change the default position of the next object (unless a translation/rotation parameter is
specified).

Parameter List
curve1 – mnemonic for first curve (see curve library)
 default = sc, or last curve used

c1_xscale – factor to scale x dimensions of curve 1 by
 default = 1, or last x scale

c1_yscale - factor to scale y dimensions of curve 1 by
 default = 1 or last y scale

c1_xoffset – distance to horizontally translate curve 1
 default = 0, or last x offset

c1_yoffset – distance to vertically translate curve 1
 default = 0, or last y offset

c1_s – scheme to use to distribute nodes circumferentially along curve 1. Values may be “global,”
“local” or “copy.” A “global” distribution spaces nodes evenly along the circumference of the un-scaled
curve. A “local” distribution spaces nodes evenly along each arc of a user-defined piecewise curve
(interpolated or compound). This has the effect of positioning nodes at each joint between child arcs. A
“copy” distribution uses the node spacing of the other end of the section in order to produce less twisted
elements. If both ends of the section are set to “copy”, a “global” distribution will be used.
 default = “global”, or previous scheme

86

length – length of section
 default = 1

nodes_circ – number of FE nodes to use in the circumferential direction
 default = 10, or last value specified

nodes_axial – number of FE nodes to use in the axial direction
 default = 10 (may change this to make the default low aspect ratio producing)

components_circ – number of different material props to use in circ direction. Use of this parameter
overrides the “circ_cpos” list of component edge positions and creates evenly distributed component
edges (e.g. specifying 3 components will produce edges at 33 and 67 percent of circumference)
 default = 1, or last value specified

components_axial - number of different material properties to use in axial direction. Use of this
parameter overrides the “axial_cpos” list of component edge positions and creates evenly distributed
component edges (e.g. specifying 3 components will produce edges at 33 and 67 percent of length)
 default = 1

axial_cpos – position of one axial component edge in percent. Values can be the word “reset” to re-
move the current list of positions, or between 0 and 100 to set the percentage where elements created after
that location will be in a new component. Multiple positions can be set. Use of this parameter overrides the
“components_axial” setting and vise-versa.

circ_cpos – position of one circumferential component edge in percent. Values can be the word “reset”
to remove the current list of positions, or between 0 and 100 to set the percentage where elements created
after that location will be in a new component. Multiple positions can be set. Use of this parameter over-
rides the “components_circ” setting and vise-versa.

taper – mnemonic for taper schedule (see taper library)
 default = elli

droop – mnemonic for droop schedule (see droop library)
 default = line

zdist – Controls distribution of nodes axially. The value must be greater than zero and less than or
equal to one. The lower the value specified the more the nodes are biased toward the dome nose. A value
of one (the default) results in nodes being distributed linearly in the z direction. A value of 0.5 results in
nodes spaced in such a way as to produce equal radial spacing when viewed from nose on.
The actual equation used is: zi= length * (i/nodes_axial)zdist
 default = 1.0

zdroop – distance to droop nose point from centerline
 default = 0

param1, param2, param3 – Additional parameters whose meanings vary depending on the value
of the taper option chosen. Since the meaning may change from an exponent expected to be between
zero and one to a radius that may be hundreds of inches, exercise care in the use of these values. These

87

values are reset to -1.0 after use. This indicates to Loft that the default value should be used. Thus, any
desired parameters need to be set for each dome created. (see taper library).

88

Wing

A wing object is a 3-D object composed of panels that represent a lifting surface’s skin, ribs and spars.
This object creates one trapezoidal lifting surface (a right wing, a tail, a winglet) per call. It allows the
user to specify spar and rib positions and which spars to extrude to form the wingbox carrythrough. Other
optional settings allow wing twist, different airfoil shapes at the root and tip, and beam/bar stiffening of
the ribs and spars. Partial generation of the wing in the chordwise direction (to support things like control
surfaces) is also supported.

Beam stiffening is only partially implemented at this time. The beams are connected properly, but their
alignment is not properly set. (They are all aligned with node 1.)

The object local origin is the leading edge root node.

The wing object supports two types of parameters: specific and generic. Generic parameters change
one or more specific parameters. For instance, the generic naca parameter will change the values of both
the specific parameters rootnaca and tipnaca. The main parameter list contains just the specific parame-
ters. A separate list of generic parameters is given at the end of this object section. The effect of the two
parameter types is read-order specific. Specifying “naca 2015” followed by “rootnaca 2212” will result in
the root using a 2212 airfoil and the tip using a 2015. If the “rootnaca” parameter was specified before the
“naca” parameter then both the root and tip would use a 2015 airfoil.

Historic note: Loft has had a large collection of different wing object types. To reduce confusion these
have all been collected into one wing type using the same parameters and generation code. For the short
term, the additional wing object types are still available to be used but are not documented, and will
eventually be eliminated. This has the advantage of only having to maintain one wing generation routine.
(Most of the generic parameters are from the older, less powerful, wing object types.)

Parameter List (Specific)
Chord – Root Chord length
 Default: 1

89

Span – Single wing span
 Default: 1

Taper – Ratio of tip chord length to root chord length
 Default: 1

Sweep – Leading edge sweep angle in degrees
 Default: 0

Twist – Tip twist angle in degrees. Wing quarter chord is the rotation axis, positive twist produces a
higher section angle of attack (tip up).
 Default: 0

RootNaca – Airfoil NACA designation (contains camber and thickness data) for wing root. Currently
only 4 and 5 digit airfoils are supported, but more series may be added in the future.
 Default: 2410

TipNaca – Airfoil designation for wing tip.
 Default: 2410

wingbox – Carrythrough length. May be zero. At least 2 spars must be specified if a carrythrough is
desired. This value is always reset to zero after object generation, so any desired non-zero values must be
set for each new object.
 Default: 0

SparPos – Percentage of chord to place a spar. These can be specified in any order; the program
automatically sorts them as they are read. If either of the words “reset” or “clear” is specified rather than a
percentage, the current list of spars is deleted and the “BoxFront” and “BoxRear” parameters are reset to
their default values. This reset option is needed because the lists of spars and ribs are kept as the default
from one wing to the next.

RibPos – Percentage of span to place a rib. Automatic ribs are created at 0 and 100 percent span and do
not need to be specified by the user. These can be specified in any order; the program automatically sorts
them as they are read. If either of the words “reset” or “clear” is specified rather than a percentage, the
current list of ribs is deleted (with the 0 and 100 percent automatic ribs being immediately re-added). See
the notip parameter if suppression of the tip rib is desired.

BoxFront – Spar number to extrude to make wingbox carrythrough front (used only if the wingbox
parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the
“sparpos” parameters occur. This value is reset to the default if the list of spar positions is cleared.
 Default: 1

BoxRear – Spar number to extrude to make wingbox carrythrough back (used only if wingbox
parameter is > 0). Numbering is based on proximity to the wing leading edge, not on the order that the
“sparpos” parameters occur. This value is reset to the default if the list of spar positions is cleared.
 Default: (last spar)

90

Meshchord – Finite element mesh density per unit length in the chordwise direction (higher values
produce a denser mesh). Note that tapering of chord length and thickness across the span of the wing will
not cause a change in mesh counts; there will be the same number of nodes along the tip rib as on the root
rib. Example: a setting of 5 on a wing with a 5 unit long chord setting will result in approximately 25
nodes in the chordwise direction on both the top and bottom skin (the exact node count will depend on
spar positions and integer math truncations). This is a real number not an integer and can be less than one
if desired. This parameter changes the chordwise mesh distribution for the skins and ribs.
 Default: 3.0

Meshspan – Finite element mesh density per unit length in the spanwise direction. (See discussion
above.) This parameter changes the spanwise mesh distribution on the skins and spars.
 Default: 3.0

Meshthick – Finite element mesh density per unit length in the thickness direction. (See discussion
above.) This parameter changes the vertical mesh density of the ribs and spars. It has no effect on the
wing skins.
 Default: 3.0

SparStiff – Flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the
spars. Values are “off”, “on”, “beam”, “bar”, and “rod”. (“on”, “bar” and “rod” are all equivalent).
 Default: off

RibStiff – Flag to turn on generation of stiffening bars/rods or beams at the top and bottom of the ribs.
Values are “off”, “on”, “beam”, “bar”, and “rod”. (“on”, “bar” and “rod” are all equivalent).
 Default: off

Halfwing – Flag to turn on generation of just the top or bottom half of the wing. Used primarily for
vertical tails on the symmetry lines of a half vehicle. Values are “off”, “on”, “bottom”, and “top”. (“top”
and “on” are the same).
 Default: off

Wingside – Flag to control which side of the vehicle to build the wing for. Values are “starboard”,
“port”, “right”, and “left” (starboard = right, port = left).
 Default: starboard

Notip – flag to control generation of outboard (100% span) rib. This is useful when you are building up
a compound wing of multiple trapezoidal sections and do not want a double rib at the junction. Values of
“1,” “on” or “true” will disable the wingtip rib generation. Values of “0,” “off” or “false” will re-enable it.
This flag is always reset to off after each wing generation.
 Default: off (wingtip rib is generated)

NoWBRib – flag to control generation of the rib at the end of the wingbox carrythrough. Generally this
rib would fall on the centerline of the vehicle. Values of “1”, “on”, or “true” will disable the wingbox rib
generation. Values of “0,” “off” or “false” will re-enable it. This flag is always reset to off after each wing
generation.
 Default: off (wingbox rib is generated)

91

Start – Percentage of chord length to start generating the object at. Any spars that are specified at lower
positions than this value are ignored. The start and stop parameters are used to generate partial wing
objects (e.g. control surfaces).
 Default: 0

Stop – Percentage of chord length to stop generating the object at. Any spars that are specified at higher
positions than this value are ignored. The start and stop parameters are used to generate partial wing
objects (e.g. control surfaces).
 Default: 100

Gen_up_skin – Flag to control the creation of the wing upper skin. Values are “on” and “off”. This flag
is always reset to “on” after an object has been created.
 Default: on

Gen_low_skin – Flag to control the creation of the wing lower skin. Values are “on” and “off.” This
flag is always reset to “on” after an object has been created.
 Default: on

Gen_spars – Flag to control the creation of the wing spars. Values are “on” and “off”. Even when off,
the other wing elements will be positioned to align with the spars that are specified in the object
geometry. Thus, each part of the wing could be generated separately and merged to create the same mesh
as if they were created together. This flag is always reset to “on” after an object has been created.
 Default: on

Gen_ribs – Flag to control the creation of the wing ribs. Values are “on” and “off”. Even when off, the
other wing elements will be positioned to align with the ribs that are specified in the object geometry.
Thus, each part of the wing could be generated separately and merged to create the same mesh as if they
were created together. This flag is always reset to “on” after an object has been created.
 Default: on

Expanded view of Wing parts created by sequential use of each of the Gen_XXX flags

Parameter list (Generic)
Mesh – Finite element mesh density per unit length (higher values produce a denser mesh). This is a
global setting for the entire object. When used, the three specific parameters meshthick, meshspan,
and meshchord are reset to this value.

92

Naca – Airfoil NACA designation (contains camber and thickness data). When used, the specific
parameters rootnaca and tipnaca are reset to this value.

Nribs – Number of wing ribs, including root and tip. Must be greater than or equal to 2. When used, the
current ribpos parameter settings are erased and the specified number of new evenly spaced ribs are
placed in the ribpos list.

Nspars – Number of wing spars. When used, the current sparpos parameter settings are erased and the
specified number of new evenly spaced spars are placed in the sparpos list.

Nodeschordwise – Approximate number of finite element nodes to use along each chord line (the top
surface and the bottom surface will each have this many nodes.) This will reset the meshchord value to
(specified value)/(current chord). The actual number of nodes may vary due to integer math and
positioning of nodes exactly at spar positions.

ElemPerSpanBay – Approximate number of finite elements to use between each rib. This parameter
will reset the meshspan parameter to (specified value) * (current number of ribs) / (current span).

93

Frame/DFrame

A frame is an object made of beam elements distributed between two curves. Frame objects are based
on the last section object – taking their shape and dimensions from that section. To attach stiffeners to a
dome object, use the “Dframe” object described below. The align parameter can be used to select axial
or circumferential alignment. If a single line of beams is desired, the count variable can be set to one,
and the position parameter can be used to specify the position along the curve. A frame object does
not change the default position of the next object. All beams are by default aligned with a node set at x =
0, y = 0, z = <beam start point z>. This may not be what is desired in all cases, so the x3, y3, and z3 pa-
rameters can be used to override this setting.

A Dframe is also a frame type object, but is based on/attached to the previous dome object. It has the
same parameters as the frame object.

The bright lines in the figure above are thrust structure stiffening beams created using both frames and
dframes. Loft will detect and remove duplicate beam/bar elements created at the junction points of two
adjacent sections.

Parameter List
Align – Direction of beam elements. Should be axial or circ
 Default: circ

Count – Number of frames to make (integer)
 Default: components setting of parent section/dome +1 in direction specified. The frames will be
positioned at the same component edge locations that are used in the parent object, wether set by count
(components_axial) or by explicit location (axial_cpos). Overriding the count will lose this location
paring and result in even spacing of the specified number of frames.
Position – Location of a single frame, in percentage of the direction specified, must be between zero
and one. Ignored if count does not equal 1.
 Default: 0

Type – Kind of 1-D object to generate. Should be beam, rod or bar (rod and bar are the same).
 Default: beam

94

x3,y3,z3 – Location of beam alignment node
 Default: x3 = 0, y3 = 0, z3 = beam start coordinate

95

Beam

A beam is a one-dimensional object where the user specifies the absolute position of the end points.
This object type can generate either a beam (has axial and bending stiffness) or a rod/bar (has only axial
stiffness). The parameters specified for this object do not change the defaults for the other object types
(but are remembered for other beam objects). None of the general object parameters (move, rotate, scale,
warp, flip) are supported at the object level.

Parameter List
Type – Kind of 1-D object to generate. Should be beam, rod or bar (rod and bar are the same).
 Default: beam

x1,y1,z1 – End point coordinates
 Default: 0,0,0, or previous settings

x2,y2,z2 – End point coordinates
 Default: 1,1,1, or previous settings

x3,y3,z3 – Beam alignment node coordinates
 Default: 0,1,0 or previous settings

96

Tank

A tank is a meta-object composed of three objects: an elliptical dome of negative length, a tank barrel
section, and an elliptical dome with positive length (the same as the negative length). The three objects
will be named based on the supplied name for the tank meta-object, but will have “ FD”, “ B”, or “ AD”
(for “forward dome”, “barrel”, and “aft dome”) added. The tank object shares the section object parame-
ters and defaults, with one additional parameter: dome length.

The tank local origin point is the centerpoint of curve 1 (the center of the front of the barrel section).
Use of a tank object does update the global default creation point to the center of curve 2.

Additional Parameter List
 See section list above for a base list of parameters
Domelength – Length of the elliptical domes
 Default: 0.707 * Average of corresponding section end’s scale_x,scale_y

97

StiffTank

A “StiffTank” is a ring frame stiffened tank meta-object. It is constructed the same as the tank meta-
object with the addition of circumferential ring frames being added along the edge of each barrel compo-
nent (as controlled by the components_axial parameter). The string “ R” is added to the object name for
the frame object. See the tank and section objects for its parameters. No stiffening is added to the domes.

98

Box

A box is a trapezoidal flat faced object with the front and back surfaces parallel. Stiffeners may
optionally be placed along face component edges and/or through the volume of the box using the
“stiff_skin_X” and “stiff_vol_X” parameters detailed below. There are no parameters to specify
cross sectional shape—a square is always used. Note that like the wing object this object will not
generally automatically stitch properly to an adjacent section or dome object as the node
distribution will be different.

Parameter List

c1_xscale – factor to scale horizonal dimension of front end by
 default = 1

c1_yscale – factor to scale vertical dimension of front end by
 default = 1

c1_xoffset – horizontal distance to move front end
 default = 0

c1_yoffset – vertical distance to move front end
 default = 0

c2_xscale – factor to scale horizonal dimension of aft end by
 default = 1

c2_yscale – factor to scale vertical dimension of aft end by
 default = 1

99

c2_xoffset – horizontal distance to move aft end
 default = 0

c2_yoffset – vertical distance to move aft end
 default = 0

length – axial length of box
 default = 1

nodes_vert – number of nodes in the vertical direction
 default = 10

nodes_horz – number of nodes in the horizontal direction
 default = 10

nodes_axial – number of nodes in the axial direction
 default = 10

components_vert – number of components in the vertical direction
 default = 3

components_horz – number of components in the horizontal direction
 default = 3

components_axial – number of components in the vertical direction
 default = 3

stiff_skin_vert – controls the creation of stiffeners in the vertical direction on the front,back, left,
and right skin panels. Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,” “off” or
“false” will disable them.
 Default = off

stiff_skin_horz – controls the creation of stiffeners in the horizontal direction on the front,back,
top, and bottom skin panels. . Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,”
“off” or “false” will disable them.
 Default = off

stiff_skin_axial – controls the creation of stiffeners in the axial direction on the top, bottom, left
and right skin panels. . Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,” “off” or
“false” will disable them.
 Default = off

stiff_skin_all – toggles all three stiff_skin_X settings to the specified value. Values of “1”, “on”,
or “true” will enable the stiffeners Values of “0,” “off” or “false” will disable them.
 Default = off

stiff_vol_vert – controls the creation of stiffeners in the vertical direction in the box internal
volume. Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,” “off” or “false” will
disable them.

100

 Default = off

stiff_vol_horz – controls the creation of stiffeners in the horizontal direction in the box internal
volume. Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,” “off” or “false” will
disable them.
 Default = off

stiff_vol_axial – controls the creation of stiffeners in the axial direction in the box internal
volume. Values of “1”, “on”, or “true” will enable the stiffeners Values of “0,” “off” or “false” will
disable them.
 Default = off

stiff_vol_all – toggles all three stiff_vol_X settings to the specified value. Values of “1”, “on”, or
“true” will enable the stiffeners Values of “0,” “off” or “false” will disable them.
 Default = off

101

User Curve Types and Parameters
The internal library curves are all defined such that they have a nominal radius of 1. For instance, a

square is two units long on an edge. This allows the use of object level curve scaling parameters to reflect
the actual dimensions desired for the mesh. This approach is recommended, but not required, for user-
defined curves. For proper alignment of normal vectors, curves should be defined sequentially in a
clockwise fashion.

Mnemonics for user-defined curves can be chosen such that they override internally defined curves
(i.e. a user-defined “sc” curve would replace the internal one). Defining a second user-defined curve with
the same name generally will not override the previous shape. When data from a curve is needed, Loft
scans through the curve libraries in the following order and stops when it gets a match: 1) Interpolated
curves, in the order they were defined, 2) Compound curves, in the order they were defined, 3) Lofted
curves, in the order they were defined and 4) Internal curves. If no match is found, Loft will use a semi-
circle.

Interpolated Curves

Interpolated curves are defined by specifying x and y coordinates of points along the curve. Point order
is important. Various interpolation options may be available in the future, but currently only linear inter-
polation is supported. “y” is the vertical coordinate and “x” is the horizontal.

Parameter List
start – initial point coordinates
 Example: start 0.0 1.0

line – coordinates of new point to be connected to the previous point by a line.
 Example: line 1.0 1.0

Compound Curves

Compound curves are curves built up by combining previously defined curves. Any curve type (built
in, interpolated, lofted or previous compound) can be used. Only circles and semi-circles have modules
that will automatically compute their intersection points with each other. If an intersection is not between
two circle/sc objects then the user will need to specify the portions of each curve that is to be used. See
the tutorial section of the manual for a more complete explanation of this process.

Parameter List
child – name of child curve. This starts a new child curve definition. All parameters that follow will
refer to this new child until a new child starts or the entire compound curve definition is finished by
another command.

x – x coordinate to use for center of child curve (default 0.0)

y – y coordinate to use for center of child curve (default 0.0)

radius – scale factor for curves (default 1.0).

102

sstart, sstop – percentage along a curve’s circumference to start/stop (defaults 0.0, 1.0). For
circle/sc curves these values are overwritten when the curve intersection code is called: eg. curve 3’s
sstop value is reset when curve 4 is specified. Thus, “sstart” will have an effect only on the first specified
circle/sc curve and “sstop” will have an effect only on the last circle/sc specified curve. For curve types
where intersection calculation code has not been written (i.e. anything other than circle or sc) , these
values will not be overwritten and in fact are the only way to use these types of curves in a compound
curve.

Lofted Curves

Loft inherently creates a “lofted” curve whenever it creates a dome or a section and is creating nodes at a
station between the two ends of the object. The “lofted” user-defined curve type allows the user to extract
one of these intermediate shapes for later use. Applications include creation of mid-section bulkheads.
Any curve types can be used as the end curves.

Parameter List
curve1 – name of first source curve. Default = sc

curve2 – name of second source curve. Default = sc

station – fractional position between the two curves used to create the new user curve.

0.0 = end1, 1.0 = end2
Default = 0.5

Example:
curve lofted midbarrel
curve1 sc
curve2 ss
station 0.3

103

Libraries

Curve Library

This is a list of the currently coded curves and their mnemonics. All curves have a nominal radius of
one.

Curve families allow the user to tack a single parameter onto the name of the curve to affect the final
shape generated. No space is left between the mnemonic and the parameter, e.g. “fillet0.44” or “sccw3.2.”
The parameter is optional.

Most curves are available in both a full 360-degree version and a semi 180-degree version. When us-
ing a full curve, Loft will use the nodes_circ parameter to generate the curve, but the first and last nodes
(at 0 and 360 degrees) will be merged and the mesh will have one fewer node in that direction than was
specified by the user. Keep this in mind and increase the value of the parameter if necessary.

Simple Curves
Circle – “cir” – unit radius full circle.

Semicircle – “sc” – unit radius half circle.

Square – “squ” – full square of width and height 2.

Semi-square – “ss” – half square of dimension 2 (encloses radius 1 circle exactly)

Breadbox – “bb” – Circular on top, square on the bottom. (Note: for compatibility with the other library
curves, the breadbox curve has s=0.25 and 0.75 at the junctions of the circle and the square. These are not
25% and 75% along its circumference.)

Semi-breadbox – “sbb” – Half section with top half circular and bottom half square. (Note: for
compatibility with the other library curves, the semi-breadbox curve has s = 0.50 at the junction of the
circle and the square. This is not 50% along its circumference.)

Line – “line” – Vertical line from +1 to –1, for webs and longitudinal bulkheads

Horizontal line – “hline” – Horizontal line from +1 to –1

Curve Families
Semi-circle-cosine-wiggle – “sccw” – Funny looking wiggly shape
 Parameter meaning – number of full cosine waves to generate
 Default – 2.5

Filleted box – “fillet” – Square with rounded corners (Note: the distribution of s along the filleted box is
not exactly by circumference.)
 Parameter meaning – radius of fillet, between 0 and 1
 Default 0.25

104

Semi-Filleted box – “sfillet” – half section square with rounded corners. (Note: the distribution of s along
the semi-filleted box is not uniform in circumferential distance.)
 Parameter meaning – radius of fillet, between 0 and 1
 Default 0.25

105

Library Curves illustrated with Dome Objects

Circle Semi-Circle

Square Semi-Square

Breadbox Semi-breadbox

Fillet Semi-Fillet

106

Cosine Wiggle Line or HLine

Dome Taper Library

This is a list of the currently coded dome taper schedules and the meaning of the paramN options.

Bulkhead – “bulk” – planar (zero length) bulkhead

Linear – “line” – linear taper (cone shaped)

Parabolic – “para” – Power law nose shape
 param1 = exponent of taper schedule. Default = 0.5 = true parabola

Elliptical – “elli” – Elliptical taper for tank domes

Ogive – “ogive” – Tangent ogive nose with spherical nose cap
 param1 = nose cap radius. Default = 1.0
 param2 = radius of main section curve. Default = 0.0
 param3 = radius of nose base. Default = 1.0

Haack – “haack” – LD-Haack nose shape with optional spherical blunt cap
 param1 = length of nose without blunt cap. Default = dome length
 param1 = nose cap radius. Default = 1.0
 param2 = nose cap length. Default = 0.0

Dome Taper Library Examples

Elliptical Linear Parabolic

107

Bulkhead Ogive Blunt LD-Haack

Section Taper Library

This is a list of the currently coded section taper schedules and the meaning of the value options. The
pictures show a section object that interpolates between one semi-circle and a larger, offset semi-circle.
Circumferential and axial frames are added.

Linear – “line” - linear taper

Power – “power” – power curve taper
value = exponent of taper schedule. Default = 1.0 = linear

Cosine – “cosine” – cosine schedule, offers tangency posibilities
value = number of cosine half waves. Default = 1.0

Section Taper Library Examples

Linear Cosine 1.0 Cosine 0.5

Power 0.5 Power 1.5

108

Droop Library

This is a list of the currently coded dome droop schedules.

Linear – “line” – Nose centerline descends linearly

Parabolic – “para” – Nose centerline descent smoothly increases

Droop Library Examples

Linear Parabolic

109

System Variable List

 This is a chart listing system variables available for use in a Loft input file. They
correspond to the object parameters set by the user in the input file and will return the current
values of those variable.

Global Variables

Variable Invoked by

Transx – x coordinate for next object @transx

Transy – y coordinate for next object @transy

Rotx – x rotation for next object @rotx

Roty – y rotation for next object @roty

Rotz – z rotation for next object @rotz

components_circ – components in
circumferential direction

@components_circ

nodes_circ – components in circumferential
direction

@nodes_circ

Section Variables

Variable Invoked by

Length – length of section object @section.length

Taper – taper value of section object @section.taper

components_axial – components in axial
direction

@section.components_axial

nodes_axial – components in circumferential
direction

@section.nodes_axial

110

Dome Variables

Variable Invoked by

Length – length of dome object @dome.length

Zdist – axial node distribution @dome.zdist

Droop – droop value of dome object @dome.droop

Param1 – parameter 1 @dome.param1

Param2 – parameter 2 @dome.param2

Param3 – parameter 3 @dome.param3

components_axial – components in axial
direction

@dome.components_axial

nodes_axial – components in circumferential
direction

@dome.nodes_axial

Wing Variables

Variable Invoked by

Chord @wing.chord

Span @wing.span

Taper @wing.taper

Sweep @wing.sweep

Twist @wing.twist

Wingbox – wingbox length @wing.wingbox

Mesh_chord @wing.mesh_chord

Mesh_span @wing.mesh.span

Mesh_thick @wing.mesh_thick

111

Example Loft Input Deck #1

The first full example Loft input deck builds a simple conceptual level finite element model of a TSTO
vehicle. A lot of the design details of the vehicle, such as stiffeners, are very notional and the wing
carrythrough passes through the aft tank. It contains approximately 100 lines of basic Loft commands and
parameters. It does not make use of user-defined curves, the region mode or perform any store/recall
operations.

Testing full vehicle based vaguely on
ISAT Reference vehicle Mach 3.4 TSTO Vehicle
Booster
Our nose
object dome BST Nose
curve1 sc
c1_xscale 15.589
c1_yscale 15.589
length -36
taper para
nodes_circ 21
nodes_axial 20
droop line
zdroop 8
components_axial 2

112

Short fuselage extension to get nose
not to impinge on forward tank
object section BST Nose Barrel
length 3.885
nodes_axial 3
components_axial 1

Forward LOX Tank
object dome BST LOX FW Dome
length -11.02
taper elli
nodes_axial 8
components_axial 1

113

object section BST LOX Barrel
length 23.205
nodes_axial 12
components_axial 1

object frame BST LOX Frame
align axial

object dome BST LOX AFT Dome
length 11.02
taper elli
nodes_axial 6
components_axial 1

114

Intertank adaptor
object section BST ITA
length 26.04
nodes_axial 12
components_axial 1

LH2 Tank
object dome BST FW Dome
length -11.02
taper elli
nodes_axial 12
components_axial 1

object section BST LH2 Barrel
length 87.35
nodes_axial 44
components_axial 3

115

object frame BST LH2 frame

object dome BST LH2 AFT Dome
length 11.02
taper elli
nodes_axial 6
components_axial 1

Tank shroud
object section BST Tank Shroud
length 11.02
nodes_axial 6
components_axial 1

116

Wing
object wing Main Wing
chord 80
span 60
taper 0.25
sweep 40
wingbox 6
transx 6
relz -70
rely -12
nribs 4
nspars 3
meshchord .4
meshspan .4
meshthick .4
naca 2412

Tip fin
object wing Winglet
chord 20
span 20
wingbox 0
transx 66
relz 50.35
rotz 50

117

meshchord 1.6
meshspan 1.6
meshthick 1.6

Thrust structure shroud
object section BST TS Shroud
length 16.5
nodes_axial 6
components_axial 1

Put a chopped off cone inside the shroud
to represent the thrust structure
note the relz parameter's use
object section BST Thrust Structure
length 3
c2_xscale 12
c2_yscale 12
relz -10.5
nodes_axial 4
components_axial 1

118

Vertical tail on line of symmetry
object wing Tail
naca 0612
nribs 3
nspars 2
halfwing bottom
chord 30
span 30
transy 15.589
rotz 90
relz -20
mesh .4

bulkhead to close off thrust structure
object dome BST Thrust Bulkhead
taper bulk
components_axial 1
save
write vrml full-color.wrl
end

119

120

Example Loft Input Deck #2

The second full example Loft input deck builds a significantly more complex finite element model of a
similar TSTO vehicle suitable for advanced conceptual analysis. Most of the neglected design details in
the first example deck have been addressed in this model with carefully positioned stiffeners and wings.
The deck contains approximately 800 lines of Loft commands and parameters.

Significant use is made of user-defined curves to define the fuselage shape at various stations. The region
mode is used to change the property assignments needed to create the payload bay door and to create
partial models for loads mapping. The store/recall capability is used extensively to position major
components and to create presentation figures that focus on particular components. Substantial use is also
made of user variables and command line math.

Loft input deck to generate
LaRC TSTO-2009-2A Orbiter
aft LOX packaging

Units are in inches

The first command defines the number of nodes used circumferentially on the fuselage. It is necessary to
use a variable to store this value because the use of the “store” command resets all default values
including the “nodes_circ” setting. Variables are not reset by the store command. The scale factor used
for the fuselage is defined here for the same reason. The third variable defines the position of the forward-
most bulkhead on the forward tank as measured from the constant cross section portion of the fuselage.
This dimension is needed in order to produce the user-defined lofted curves that define the bulkhead.

define circnodes 41
define fusescale 102.
define bulletbulk 100. # dist fwd of fslg to place bulkhead

121

The first major section of the input deck defines all of the user-defined curves needed to construct the
vehicle.The first such curve is the half-slice-of-bread cross sectional shape of the fuselage. The final
shape is made of two circular portions: one at the top and one at the bottom outside corner, and two linear
portions: the flat bottom and a five degree sloped sidewall. The internal circle shapes can be used for the
circular portions, but the linear portions must be defined as interpolated curves. Then a compound curve
named “body” is defined that combines the four children into one curve.

define child curves of unit half cross section
(cross sectional shape fits in -1 to 1 square space)
point defintion:
A = top (centerline) of curve
B = intersection of circ top & 5deg side
C = intersection of 5deg side and 1/17 fillet
D = intersection of 1/17 fillet and flat bottom
E = bottom (centerline) of curve
line B-C
curve interpolated mylineBC
 start 0.996195 0.0871557
 line 0.999776 -0.9360497
line D-E
curve interpolated mylineDE
 start 0.9411765 -1.0
 line 0.0 -1.0
combine into full cross section
curve compound body
 child sc
 sstop 0.47222222222
 child mylineBC
 child sc
 sstart 0.47222222222
 sstop 1.0
 radius 0.0588235
 x 0.941176
 y -0.94117647

122

 child mylineDE

The next user-defined curves to create are those that define the mid-payload-bay support bulkheads.
These have circular cross sections at the top/inboard and match the just-defined fuselage cross section at
the bottom/outboard. The values of the “sstart” parameters were arrived at through trial and error. Note
that the actual bulkhead is not created here, just the curves that are used later when the payload bay is
created.

Payload Bay Support bulkhead curves
plb1 = semi-circle bay shape
plb2 = sidewall & floor shape
curve compound plb1
 child sc
 sstart 0.54
 radius 72. / 102.
 x 0.0
 y 24.0 / 102.
curve compound plb2
 child body
 sstart 0.4

The orbiter nose starts with a small circular cap that transitions to the body cross section defined earlier.
The forward tank has a bullet shaped dome that projects a significant distance into the nose, making a
support bulkhead necessary in this region. Two curves are defined to support the tank dome at 50 percent
of its length: “forebullet” is the outer curve of the bulkhead which captures the fuselage nose shape at the
desired position, “dome50” is the tank dome shape at the same station. Two additional lofted curves are
defined to allow the construction of full bulkheads in the nose designed to bracket the forward landing
gear location: “fore25” and “fore50”.

123

Pieces of forebody bulkhead
curve lofted forebullet
 curve1 sc
 curve2 body
 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale $fusescale
 c2_yscale $fusescale
 c2_yoffset 0.0
 taper cosine .5
 station 450.54 - $bulletbulk / 450.54
curve lofted fore25
 curve1 sc
 curve2 forebullet
 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale 1
 c2_yscale 1
 c2_yoffset 0.0
 station 0.25
curve lofted fore50
 curve1 sc
 curve2 forebullet
 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 c2_xscale 1
 c2_yscale 1
 c2_yoffset 0.0
 station 0.5
curve lofted dome50
 curve1 sc

124

 c1_xscale 96.
 c1_yscale 96.
 taper elli
 station 0.50
list ccurves
list lcurves

Following the completion of the curve definition section, the “list” debugging command is used to
confirm the creation of all of the desired curves. In the text output from Loft, these commands produce:

The input deck then starts defining the vehicle, starting at the nose. Note the use of the previously defined
“circnodes” variable. Also notice that all external components are given the “OML” mark.

Build vehicle

====================== Nose =======================
define caplength -9.
object dome nosecap
 curve1 sc
 c1_xscale 18.0
 c1_yscale 18.0
 c1_yoffset -42.0
 length $caplength
 nodes_circ $circnodes
 nodes_axial 5
 taper para
 components_axial 1
 components_circ 1
 transz $caplength
 mark element OML

11

125

The nose length dimension supplied by the CAD designer was 441.54 inches from the tip of the nose to
the start of the constant cross section portion of the fuselage. The length of the section is computed
parametricly from the length of the components on either end. Thus, the nose or the supported-length of
the forward tank barrel could change, and this component would be updated to maintain the desired total
length. The “nodes_axial” variable is chosen to be a multiple of four (32) plus one so that nodes are
positioned at 25 and 50 percent of the component. The nose-gear bulkheads will be placed at these
positions and will stitch to the fuselage correctly.

object section forebody
 curve2 forebullet
 c2_xscale 1.0
 c2_yscale 1.0
 c2_yoffset 0.0
 length 441.54 - $caplength - $bulletbulk
 nodes_axial 33
 components_axial 1
 mark element OML

object section forebody2
 curve2 body
 c2_xscale $fusescale
 c2_yscale $fusescale

126

 c2_yoffset 0.0
 length $bulletbulk
 taper cosine .5
 nodes_axial 10
 components_axial 1
 mark element OML

The “move” command below has no parameters after it. Thus, it does not actually move anything. But, it
does force Loft to generate the “forebody2” object and update the “@transz” system variable to reflect the
new object. The “noseend” variable is used later when the full vehicle is assembled from major
components. The “offset” variable is used to position the two nose-gear bulkheads that immediately
follow. Beams are also created along the bulkhead/nose intersection. The “zdroop” parameters on the two
bulkheads are used to move the center node of the bulkhead down from the vehicle centerline to the
object center.

move
define noseend @transz
define offset 441.54 - $caplength - $bulletbulk / 4

object dome Nose Gear Front Bulk
 curve1 fore25
 c1_xscale 1.0
 c1_yscale 1.0
 zdroop 30.0
 transz $offset + $caplength
 length -0.0001
 nodes_axial 8
 zdist 0.6
 components_axial 1
object dframe nose fwd ring frame
 count 1
object dome Nose Gear Rear Bulkhead
 curve1 fore50
 zdroop 20.0
 transz 2 * $offset + $caplength

127

 length -0.0001
 nodes_axial 8
 zdist 0.7
 components_axial 1
object dframe nose aft ring frame
 count 1

Finally, the completed nose is written to a VRML output file and moved to the Loft internal clipboard
with the “store” command. Remember that the “store” command resets all object defaults and starts a new
stack with no nodes or elements.

write vrml orb-nose.wrl
store nose

The global variable section below defines the length and position of all of the main fuselage components
including tanks. These are collected in one place to make model updating easier. All of the later objects
reference these dimensions. The “fuse_center_bay” variable definition line is wrapped onto two lines in
this document and should actually be on one long line. As with the nose’s “forebody” object length, this
variable is used to maintain the desired overall length of 1013 inches when tank and skirt dimensions are
updated.

================= Global Variables =====================
Tank barrel lengths
define fwd_tank 325.
define aft_tank 43.
Skirts over domes
define fwd_tank_skirt 62 # used only at aft of front tank
define aft_tank_skirt 76 # used at front & aft of aft tank
define aft_skirt 103.
define longeron_pos 0.18
define fuse_center_bay 1013. - $fwd_tank - $aft_tank -
$aft_skirt - $fwd_tank_skirt - $aft_tank_skirt
define half_lh2_nose 200. / 2.
define mid_bulk $fwd_tank + $half_lh2_nose / 2

128

The constant cross-section portion of the fuselage is defined in seven sections. These cuts were made to
force the creation of nodes at axial stations that will later have bulkheads. Each fuselage portion also has a
longeron created at 18 percent around the curve. The longeron runs the length of the rest of the vehicle,
including along the edge of the payload bay door and onto the thrust structure.

======================== Fuselage =======================
Along fwd tank barrel
object section fuselage1
 curve1 body
 curve2 body
 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale $fusescale
 c2_yscale $fusescale
 length $mid_bulk - $half_lh2_nose
 nodes_axial 10
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 mark element OML
object frame longeron1
 count 1
 align axial
 position 0.18

object section fuselage1.5
 curve1 body
 curve2 body
 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale $fusescale
 c2_yscale $fusescale
 length $mid_bulk
 nodes_axial 21

129

 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 mark element OML
object frame longeron1
 count 1
 align axial
 position 0.18

Along fwd tank aft dome
object section fuselage2
 length $fwd_tank_skirt
 nodes_axial 8
 nodes_circ $circnodes
 components_axial 1
 mark element OML
object frame longeron2
 count 1
 align axial
 position 0.18

define plb_start @transz

In this case, no dummy “move” command is necessary to force “@transz” to have the desired value; the
longeron object definition caused the generation of the “fuselage2” object and the updating of the
“@transz” system variable. Note that the selection of “nodes_axial” as a multiple of three plus one allows

130

the later exact positioning and stitching of the payload support bulkheads at 1/3 and 2/3 of the payload bay
length.

Payload Bay fuselage
object section fuselage_center_bay
 length $fuse_center_bay
 nodes_axial 40
 nodes_circ $circnodes
 components_axial 1
 mark element OML
object frame longeron3
 count 1
 align axial
 position 0.18
object frame forward pl ring
 count 1
 align circ
 position 0.0
object frame aft pl ring
 count 1
 align circ
 position 1.0

Fuselage along Aft tank fwd skirt
object section fuselage4
 length $aft_tank_skirt
 nodes_axial 9
 nodes_circ $circnodes
 components_axial 1
 mark element OML
object frame longeron4
 count 1
 align axial

131

 position 0.18

Fuselage along Aft tank barrel
object section fuselage5
 length $aft_tank + 64
 nodes_axial 11
 nodes_circ $circnodes
 components_axial 1
 mark element OML
object frame longeron5
 count 1
 align axial
 position $longeron_pos

Fuselage along Aft tank aft skirt
object section fuselage6
 length $aft_skirt
 nodes_axial 11
 nodes_circ $circnodes
 components_axial 1
 mark element OML
object frame longeron6
 count 1
 align axial

132

 position 0.18
define fuseend @transz + $noseend

The next step is to add some detail to the payload bay. First, some dimensions are computed based on the
previously defined variables. Then the region command is used to modify the physical property assignment
of elements along the upper section of fuselage object “fuselage3”. These updated elements represent the
payload bay doors.

=================== Payload bay =======================
define plb_length $fuse_center_bay
define plb_half $plb_length / 2
define plb_third $plb_length / 3
define plb_center $plb_start + $plb_half
region
 iadd box 0. 102. $plb_center 130. 130. $plb_length
 pprem fuselage2
 pprem fuselage4
 setpp payload doors

Then full bulkheads are added at the front and rear of the payload bay and partial, support, bulkheads are
added at the 1/3 and 2/3 positions in the bay.

133

object dome payload bay fwd bulkhead
 curve1 body
 c1_xscale $fusescale
 c1_yscale $fusescale
 taper bulk
 transz $fwd_tank + $fwd_tank_skirt
 transy 0.0
 transx 0.0
 nodes_circ $circnodes
 components_axial 1
object dome payload bay aft bulkhead
 curve1 body
 taper bulk
 relz $plb_length
 transy 0.0
 transx 0.0
 components_axial 1

object section payload bay fwd support
 curve1 plb1
 curve2 plb2
 length 0.0
 transz $fwd_tank + $fwd_tank_skirt + $plb_third
 components_axial 1
 components_circ 1
 nodes_axial 9
 nodes_circ $circnodes * 0.6 + 1
object frame fwd plb support frame
 count 1
 align axial
 position 0.0
object frame fwd plb support frame
 count 2
 align circ

134

object section payload bay aft support
 curve1 plb1
 curve2 plb2
 length 0.0
 relz $plb_third
 components_axial 1
 components_circ 1
 nodes_axial 9
 nodes_circ $circnodes * 0.6 + 1
object frame aft plb support frame
 count 1
 align axial
 position 0.0
object frame aft plb support frame
 count 2
 align circ

Finally, the completed fuselage component is moved so that it is immediately aft of the nose using the pre-
viously created “noseend” variable. A VRML output file of the component is created. Then the full stack is
moved onto Loft’s internal clipboard and a new stack is started.

move
 transz $noseend
write vrml orb-fuselage.wrl
store fuselage

The next major component created in the input deck is the wing. The wing has two trapezoidal sections: a
narrow, inboard, strake and a wider outboard main section. The strake has one spar, positioned at the 10
percent chord location. The strake is generated first. When the strake skin is created, it is created as if there
were additional spars at the 36 and 82 percent chord locations. This forces a line of nodes to be created
along the phantom spars and allows correct stitching with the main wing which does have spars at all three
positions. Since Loft does not support trigonometric operations in its input files, the first line defining the
variable “tan75” uses an externally calculated value based on the 75.179 degree leading edge sweep angle
of the strake. Note the extensive use of the “gen_XX” flags and the use of the “mark” command to mark
only the wing skin as “OML”.

135

======================== Wing ==========================
define tan75 3.77924
define spar1 10.
define spar2 36.
define spar3 82.
First generate the spar we want to keep
object wing strake spar
 chord 498.196
 span 31.
 taper 377.777 / @wing.chord
 sweep 75.179
 rootnaca 2407
 tipnaca 2408
 sparpos $spar1
 ribpos reset
 notip 1
 meshchord 0.06
 meshspan 0.125
 meshthick 0.1
 transz 712.65
 relx 103
 rely -95
 gen_up_skin off
 gen_low_skin off
 gen_ribs off
 mark element wing

Generate the rest of the strake
Position spars so that the skin aligns with the main wing
but do not actually generate the elements
object wing strake
 sparpos reset
 sparpos $spar1
 sparpos $spar2

136

 sparpos $spar3
 notip 1
 gen_spars off
 mark element OML
 mark element wing

define strakespan @wing.span

No dummy command is required to capture the system variable update here because the default dimension
variables are updated immediately on specification.

The main wing is also specified as two objects. The reason for this is to apply the “OML” mark to only the
wing skin. Note the extensive use of system variables based on the strake dimensions. This allows the user
to change a dimension in only one location and have the wing still stitch together properly.

object wing mainwing ribs spars
 chord @wing.chord * @wing.taper
 span 233.
 meshchord @wing.mesh_chord / @wing.taper
 taper 113.235 / @wing.chord
 sweep 45.854
 rootnaca 2408
 tipnaca 2313
 ribpos reset
 ribpos 20.
 ribpos 40.
 ribpos 60.
 ribpos 80.
 relx $strakespan
 relz $tan75 * $strakespan
 wingbox 103 + $strakespan
 gen_up_skin off
 gen_low_skin off
 nowbrib 1
 mark element wing

137

A careful examination of the crank area between the strake and the main wing will show that the strake is
properly stitched to the main wing along the rib at the crank location. The strake skin is also attached to its
leading edge (10 percent) spar, but is not attached to any of the carry-through spars. Depending on element
flexibility some manual stitching could be required to connect the strake root rib to the carry-through spars.

object wing mainwing skin
 wingbox 0.0
 notip 1
 gen_ribs off
 gen_spars off
 mark element OML
 mark element wing

write vrml orb-wing.wrl
store mainwing
list stacks

The “list stacks” debug command lists all of the stacks that have been stored on the internal clipboard.
Next, the tail will be created as a new stack. As with the main wing components, it is created as two ob-
jects so that the skin can be marked as “OML.”

===================== Tail ========================
object wing tail stiffeners
 chord 260.337
 span 281.5

138

 taper 77.955 / @wing.chord
 sweep 47.
 rootnaca 0613
 tipnaca 0618
 sparpos reset
 sparpos 19
 sparpos 60
 halfwing bottom
 ribpos reset
 ribpos 50
 wingbox 0.
 meshchord 0.08
 meshspan 0.08
 meshthick 0.02
 transz $fuseend - @wing.chord
 rely 102.
 transx 0
 rotz 90
 gen_up_skin off
 gen_low_skin off
 mark element tail

object wing tail skin
 halfwing bottom
 gen_ribs off
 gen_spars off
 gen_up_skin on
 gen_low_skin on
 mark element OML
 mark element tail

139

write vrml orb-tail.wrl
store tail
list stacks

After the tail object is written out as a VRML file and moved onto the internal clipboard, again the list of
stored stacks is requested. Then, the input deck specifies the forward tank. Two of the user-defined lofted
curves created at the beginning of the file are used here to create the support bulkhead on the bullet shaped
nose of the tank. Note also that the tank walls are all given the mark “LH2”. This mark will be used later to
extract just these elements from the full model.

======================== Fwd Tank ======================
object dome fwd tank fwd dome
 curve1 dome50
 c1_xscale 1.
 c1_yscale 1.
 length -1 * $half_lh2_nose
 transx 0.0
 transy 0.0
 zdist 0.7
 transz $noseend - 100.
 nodes_axial 12
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 taper para
 mark element LH2

140

object section fwd tank fwd bulk
 curve2 forebullet
 length 0.0
 components_axial 1
 nodes_axial 4
 mark element bulk
object frame fwd fwd ring frame
 count 2

object section fwd tank dome2
 curve1 dome50
 curve2 sc
 length $half_lh2_nose
 c1_xscale 1.
 c1_yscale 1.
 c2_xscale 96.
 c2_yscale 96.
 nodes_axial 10
 components_axial 1
 taper cosine 0.5
 mark element LH2

object section fwd tank barrel pt 1
 length $mid_bulk - $half_lh2_nose
 nodes_axial 10
 components_axial 1

141

 mark element LH2

object section fwd tank mid bulk
 curve1 body
 curve2 sc
 c1_xscale $fusescale
 c1_yscale $fusescale
 length 0.0
 components_axial 1
 nodes_axial 4
 mark element bulk
object frame fwd mid ring frame
 count 2

object section fwd tank barrel pt 2
 length $mid_bulk
 nodes_axial 21
 components_axial 1
 mark element LH2

142

object section fwd tank aft bulk
 curve1 body
 curve2 sc
 c1_xscale $fusescale
 c1_yscale $fusescale
 length 0.0
 components_axial 1
 nodes_axial 4
 mark element bulk
object frame fwd aft ring frame
 count 2

object dome fwd tank aft dome
 length 50
 nodes_axial 9
 components_axial 1
 mark element LH2

write vrml orb-lh2.wrl
store fwd_tank

The aft tank is built in a similar process to the forward tank. It is shorter, but still has mid-dome bulkheads
like on the front of the forward tank. The lofted curve to connect to the dome is defined here rather than at
the top of the input file; it could be moved to the top of the file if desired.

143

====================== Aft Tank =========================
define aft_dome 96
define aft_support $aft_dome / 3.
curve lofted aftdome
 curve1 sc
 station 1 / 3
 taper elli
 c1_xscale 96.
 c1_yscale 96.
object dome aft tank fwd dome
 curve1 aftdome
 length $aft_support - $aft_dome
 c1_xscale 1.
 c1_yscale 1.
 nodes_axial 10
 nodes_circ $circnodes
 components_axial 1
 components_circ 1
 taper para
 mark element LOX
object section aft tank fwd bulk
 curve1 body
 curve2 aftdome
 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 1.
 c2_yscale 1.
 length 0.0
 components_axial 1
 nodes_axial 4
 mark element bulk
object frame fwd aft ring frame
 count 2

object section aft tank fwd curve

144

 curve2 sc
 c2_xscale 96.
 c2_yscale 96.
 length $aft_support
 taper cosine 0.5
 mark element LOX
 components_axial 1
 nodes_axial 5

object section aft tank barrel
 curve1 sc
 length $aft_tank
 nodes_axial 6
 components_axial 1
 mark element LOX

object section aft tank aft curve
 curve2 aftdome
 c2_xscale 1.
 c2_yscale 1.
 length $aft_support
 taper power 1.0
 mark element LOX
 components_axial 1
 nodes_axial 5
object section aft tank aft bulk

145

 curve1 body
 curve2 aftdome
 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 1.
 c2_yscale 1.
 length 0.0
 components_axial 1
 nodes_axial 4
 mark element bulk
object frame aft aft ring frame
 count 2

object dome aft tank aft dome
 curve1 aftdome
 length $aft_dome - $aft_support
 c1_xscale 1.
 c1_yscale 1.
 nodes_axial 10
 components_axial 1
 taper para
 mark element LOX

The position of the aft tank is computed from five previously saved lengths. The definition should all be on
one line in the actual input file, not wrapped as it is in this manual.

146

define aft_tank_start $noseend + $fwd_tank + $fwd_tank_skirt
+ $fuse_center_bay + $aft_tank_skirt
move
 transz $aft_tank_start
define aft_tank_end $aft_tank_start + @transz
write vrml orb-lox.wrl
store aft_tank

The next object created is a notional thrust structure. It makes extensive use of stiffeners created with
“frame” and “dframe” objects. The first piece created accomplishes the transition from the half-loaf-of-
bread “body” shape to a semi-circle.

================= Thrust structure =====================
object section thrust cone
 curve1 body
 curve2 sc
 c1_xscale $fusescale
 c1_yscale $fusescale
 c2_xscale 80.
 c2_yscale 80.
 length $aft_skirt + 10.
 components_axial 1
 components_circ 1
 nodes_circ $circnodes
 nodes_axial 8

Five axial stiffeners are created. The first three (at 0, 50, and 100 percent of the circumference) are created
as one object. Then two individual axial stiffeners are added, one at the $longeron_pos position (18 per-
cent) and one at 75 percent.

object frame thrust stiffeners
 count 3
 align axial

147

object frame thrust stiffeners
 count 1
 position $longeron_pos
 align axial

object frame thrust stiffeners
 count 1
 position 0.75
 align axial

Five circumferential stiffeners are added:

object frame thrust cone rings
 count 5
 align circ

148

A circular flat plate is added with similar stiffeners:

object dome thrust plane
 taper bulk
 length 0.0
 components_axial 1
 nodes_axial 8
object dframe thrust rings
 align circ
 count 1
 position 0.2
object dframe thrust rings
 align circ
 count 1
 position 0.7
object dframe thrust diags
 align axial
 count 3
object dframe thrust diags
 align axial
 position $longeron_pos
 count 1
object dframe thrust diags
 align axial
 position 0.75
 count 1

149

move
 transz $aft_tank_end
write vrml orb-thrust.wrl
store thrust

After positioning the thrust structure at the calculated location, it is saved to the clipboard.

All of the components of the vehicle have been created and stored. Next, they can be recalled in various
combinations for use. The first combination is the full vehicle with all the components in the correct posi-
tion. Each recall command performs a node equivalence operation that stitches the model together where
nodes are coincident. This equivalence operation tends to be slow. Once they are recalled, the whole vehi-
cle is rotated such that the x coordinate direction becomes the axial axis. Then, VRML and NASTRAN
files of full model are written.

Note that prior to actual analysis with the model, the wing and tail need to be manually stitched to the fuse-
lage. A short discussion of this stitching will be provided after the end of the input file discussion.

===================== Assembly =======================
recall nose
recall fuselage
recall mainwing
recall tail
recall fwd_tank
recall aft_tank
recall thrust
rotate so that x is aft
move
roty 90
=================== Write models ====================
vrml rainbow
write vrml tsto-2009-2B.wrl
write nastran tsto-2009-2b.bdf

150

Next, the region mode is used to write out various partial versions of the model. These partial models re-
tain the node, element, and property numbering of the full model. They are used for mapping of external
aerodynamic loads (to the “OML” sub-model) and internal tank loads (to the “LH2” and “LOX” sub-
models). Note the selection of elements based on the labels assigned with the “mark” command during
model creation.

============ Models for mapping & analysis =============
region
 mkadd OML
 filenew tsto2009-2b-OML.wrl
 format vrml
 rwrite
 filenew tsto2009-2b-OML.bdf
 format nastran
 rwrite

151

region
 mkadd LH2
 filenew tsto2009-2b-LH2.wrl
 format vrml
 rwrite
 filenew tsto2009-2b-LH2.bdf
 format nastran
 rwrite

region
 mkadd LOX
 filenew tsto2009-2b-LOX.wrl
 format vrml
 rwrite
 filenew tsto2009-2b-LOX.bdf
 format nastran
 rwrite

152

region
 mkadd wing
 filenew tsto2009-2b-wing.wrl
 format vrml
 rwrite
 filenew tsto2009-2b-wing.bdf
 format nastran
 rwrite

region
 mkadd tail
 filenew tsto2009-2b-tail.wrl
 format vrml
 rwrite
 filenew tsto2009-2b-tail.bdf
 format nastran
 rwrite

Finally, an expanded and a mirrored version of the model are created for use in slides and presentations.

============== Expanded model for figures ===============
new
recall nose
move
 transz -100

153

recall fuselage
move
 transz 0
 transx -200
recall mainwing
move
 transx 200
 transy -100
recall tail
move
 transy 100
 transx 200
recall fwd_tank
recall aft_tank
move
 transx -200
 transz -200
recall thrust
move
roty 90
write vrml tsto2-2009-2b-exp.wrl
write nastran tsto2-2009-2b-exp.bdf

================== Mirrored model =======================
new
recall nose
recall fuselage
recall mainwing
recall thrust
recall tail
store OML
recall OML
move
 scalex -1
 flip

154

recall OML
write vrml tsto2-2009-2b-mirrored.wrl
end

As previously discussed, one step that is required prior to using the model in a finite element analysis is to
stitch the wing and the tail to the fuselage. One way to do this is to load the three component models into a
commercial modeling package such as PATRAN or FEMAP and identify the nodes that we wish to con-
nect.

In this case, the nodes on the wing carry through spars at the wing root and at the centerline need to be
connected by rigid elements to the nearest nodes on the fuselage structure, where there are prepositioned
stiffeners. Similarly, the spar nodes at the tail root are connected to the aft tank bulkhead ring frames.

To test that adequate stitching has been added, start by applying symmetric boundary conditions on the
centerline nodes of the vehicle. Since X is now the axial direction, Y is lateral and Z is vertical, these con-
straints set Ty=0, Rx=0, and Rz=0. Then select an arbitrary node (such as the nose tip) to hold completely
fixed. There is also a line of beam alignment nodes running down the center of the model that are not at-
tached to any element. They can be manually constrained or NASTRAN can fix them with the AUTOSPC
option.

Finally, apply unit force loads to the wing and tail tips and run a static analysis. If the model runs without
error and the deflected shapes look reasonable, then the stitching has been successful.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Loft: An Automated Mesh Generator for Stiffened Shell Aerospace
Vehicles

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Eldred, Lloyd B.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-20034

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified Unlimited
Subject Category 39
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates
meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is
assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely
powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in
two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the
finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch
Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a
two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials
and a complete command reference.

15. SUBJECT TERMS

Aerospace vehicles; Conceptual design; Finite element methods; Loft; Stiffened shell; User manuals

18. NUMBER
 OF
 PAGES

159

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

599489.02.07.07.09.12.01

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2011-217300

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

11 - 201101-

