NASA/TM-2011-217184

Correctness Proof of a Self-Stabilizing
Distributed Clock Synchronization Protocol for
Arbitrary Digraphs

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

e
October 2011



NASA STI Program . . . in Profile

Since its founding, NASA has been
dedicated to the advancement of aeronautics
and space science. The NASA scientific and
technical information (STI) program plays a
key part in helping NASA maintain this
important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page at
http.://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STI Help Desk
at 443-757-5803

e Phone the NASA STI Help Desk at
443-757-5802

e  Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320



NASA/TM-2011-217184

Correctness Proof of a Self-Stabilizing
Distributed Clock Synchronization Protocol for
Arbitrary Digraphs

Mahyar R. Malekpour
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

October 2011



Acknowledgments

This effort was conducted under the System-Wide Safety and Assurance Technologies (SSAT)
Project of NASA’s Aviation Safety program. The author would like to thank the reviewers for
their in-depth review and helpful comments. The author would like to especially thank George
Hagen for his constructive comments.

The use of trademarks or names of manufacturers in this report is for accurate reporting
and does not constitute an official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802



Abstract

This report presents a deductive proof of a self-stabilizing distributed clock
synchronization protocol. It is focused on the distributed clock synchronization of
an arbitrary, non-partitioned digraph ranging from fully connected to I-
connected networks of nodes while allowing for differences in the network
elements. This protocol does not rely on assumptions about the initial state of the
system, and no central clock or a centrally generated signal, pulse, or message is
used. Nodes are anonymous, i.e., they do not have unique identities. There is no
theoretical limit on the maximum number of participating nodes. The only
constraint on the behavior of the node is that the interactions with other nodes are
restricted to defined links and interfaces. We present a deductive proof of the
correctness of the protocol as it applies to the networks with unidirectional and
bidirectional links. We also confirm the claims of determinism and linear
convergence.
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1. Introduction

Synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system. Synchronization of a distributed system is the process
of achieving and maintaining a bounded skew among independent local clocks. A distributed
system is said to be self-stabilizing if, from an arbitrary state, it is guaranteed to reach a
legitimate state in a finite amount of time and remain in a legitimate state. A legitimate state is a
state where all parts in the system are in synchrony. The self-stabilizing distributed-system clock
synchronization problem is, therefore, to develop an algorithm (i.e., a protocol) to achieve and
maintain synchrony of local clocks in a distributed system after experiencing system-wide
disruptions in the presence of network element imperfections. The convergence and closure
properties address achieving and maintaining network synchrony, respectively. Hereafter in this
report, we use the term synchronization to mean self-stabilizing clock synchronization in
distributed systems.

A thorough understanding of the synchronization of a distributed system has proven to be elusive
for decades. The main challenges associated with distributed synchronization are the complexity
of developing a solution and proving the correctness of these solutions. It is possible to have a
solution that is hard to prove or refute. Such a solution, however, is not likely to be accepted or
used in practical systems. The proposed solutions must restore synchrony and coordinated
operations after experiencing system-wide disruptions in the presence of network element
imperfections and, for ultra-reliable distributed system, in the presence of various faults. A fault
is a defect or flaw in a system component resulting in an incorrect state [Gir 2005] [Tor 2005]
[But 2008]. In addition, a proposed solution must be proven to be correct. If a mathematical
proof is deemed difficult, at a minimum, the proposed solution must be shown to be correct using
available formal methods techniques. Furthermore, addressing network element imperfections is
necessary to make a solution applicable to realizable systems.

In [Mal 2011A] a solution is presented for an arbitrary network (digraph) in the absence of
faults. The system under study is an arbitrary, non-partitioned digraph ranging from fully
connected to l-connected networks of nodes while allowing for differences in the network
elements. Some networks of interest include grid, ring, fully connected, bipartite, and star (hub).
This solution does not require any particular information flow nor imposes changes (e.g.,
embedding a directed spanning tree or rewiring) to the network in order to achieve synchrony.
The assumption of an absence of faults is equivalent to the assumption that all faults are
detectable. This departure from our previous work at the Byzantine extreme of the fault
spectrum [Mal 2006A] is in part because of the niche use and the extra cost associated with the
Byzantine faults. Also, using authentication and error detection techniques, it is possible to
substantially reduce the effects of variety of faults in the system. Furthermore, the classical
definition of a self-stabilizing algorithm assumes generally that there are no faults in the system.

In this report we present a deductive proof for the correctness claims of A Self-Stabilizing
Distributed Clock Synchronization Protocol For Arbitrary Digraphs [Mal 2011A] and claims of
determinism and linear convergence of the protocol with respect to the self-stabilization period.



A bounded model of the protocol was model checked by confirming that a set of candidate
systems self-stabilized from any state [Mal 2011B]. The model checking results of the bounded
models of the protocol have validated the correctness of the protocol as they apply to the
networks with unidirectional and bidirectional links. In addition, the results have confirmed the
claims of determinism and linear convergence.

This report is organized as follows. In Section 2 we provide a system overview. We present the
protocol and its description in Section 3. We present a deductive proof of the correctness of the
protocol in Section 4. We present concluding remarks in Section 5.

2. System Overview

We consider a system of pulse-coupled entities (e.g., oscillators, pacemaker cells) pulsating
periodically at regular time intervals. These entities are said to be coupled through some
physical means (wire or fiber cables, chemical process, or wirelessly through air or vacuum) that
allows them to influence each other. We model the system as a set of nodes that represent the
pulse-coupled entities and a set of communication links that represent their interconnectivity.

The underlying topology considered is an arbitrary, non-partitioned digraph ranging from fully
connected to 1-connected network of K > 1 nodes that exchange messages through a set of
communication links. Nodes are anonymous, i.e., they do not have unique identities. All nodes
are assumed to be good, i.e., actively participate in the synchronization process and correctly
execute the protocol. The communication links are assumed to be between distinct nodes. All
communication links are assumed to be good, i.e., reliably transfer data from their source nodes
to their destination nodes. The nodes communicate with each other by exchanging broadcast
messages. Broadcast of a message by a node is realized by transmitting the message, at the same
time, to all nodes that are directly connected to it. The communication network does not
guarantee any relative order of arrival of a broadcast message at the receiving nodes, that is, a
consistent delivery order of a set of messages does not necessarily reflect the temporal or causal
order of the message transmissions [Kop 1997]. There is neither a central system clock nor an
externally generated global pulse or message at the network level. The communication links and
nodes can behave arbitrarily provided that eventually the system adheres to the protocol
assumptions (Section 3.4).

2.1. Drift Rate (p)

Each node is driven by an independent, free-running local physical oscillator (i.e., the phase is
not controlled in any way) and a logical-time clock (i.e., a counter), denoted LocalTimer, which
locally keeps track of the passage of time and is driven by the local physical oscillator. An
oscillator tick, also called a clock tick or a system tick, is a discrete value and the basic unit of
time in the network [Tor 2005].

An ideal oscillator has zero drift rate with respect to real-time, perfectly marking the passage of
time. Real oscillators are characterized by non-zero drift rates with respect to real-time. The
oscillators of the nodes are assumed to have a known bounded drift rate, p, which is a small



constant with respect to real-time, where p is a unitless non-negative real value and is
constrained to 0 < p << 1. The maximum drift of the fastest LocalTimer over a time interval of ¢
is given by (1+p)t. The maximum drift of the slowest LocalTimer over a time interval of ¢ is
given by (1/(1+p))t. Therefore, the maximum relative drift of the fastest and slowest nodes
with respect to each other over a time interval of 7 is given by the following equation.

o) = ((1+p) - /(1+p))1t &)

Although generally p is bounded by 0 < p << 1, in practice, p is assumed to be very close to
zero. The upper bound on p is extensively discussed in [Mal 2011A] where we determined, at
least for the protocol presented in this report, that p is bounded by 0 < p < 0.3 even for
theoretical purposes. Nevertheless, in the rest of this report, we’ll use the generally accepted
bounds for p, i.e., 0 < p<<1.

2.2. The Logical Clock (LocalTimer)

P —

Time

0 P

Figure 1. The LocalTimer.

The LocalTimer is driven by the local physical oscillator, takes on discrete values, and locally
keeps track of the passage of time. As shown in Figure 1, the LocalTimer is a monotonic linear
function increasing from an initial value to a maximum value. If uninterrupted, the LocalTimer
periodically takes on all integer values from its initial value, 0, to its maximum value, P, linearly
increasing within each period, thus, the LocalTimer is bounded by 0 < LocalTimer < P.

2.3. Communication Delay (D, d, and »)

] { time
1 t,+D t,+D+d

Figure 2. Event-response delay, D, and network imprecision, d.



The communication delay between adjacent nodes is expressed in terms of the minimum event-
response delay, D, and network imprecision, d. These parameters are described with the help of
Figure 2. As depicted in this figure, a message transmitted by a node at real time #, is expected
to arrive at its directly connected adjacent nodes, be processed, and subsequent messages
generated by those nodes within the time interval of [#,+D, #y+D+d]. Communication between
independently clocked nodes is inherently imprecise. The network imprecision, d, is the
maximum time difference among all receivers of a message from a transmitting node with
respect to real time. The imprecision is due to the drift of the oscillators with respect to real
time, jitter, discretization error, temperature effects and differences in the lengths of the physical
communication media. These two parameters are assumed to be bounded such that D > 1 and
d > 0 and both have units of real time clock tick. The communication latency, denoted y, is
expressed in terms of D and d, and is defined as y = (D+d) and so has units of real time clock
ticks. Therefore, the communication delay between any two adjacent nodes is bounded by

[D, 7.
2.4. Topology (7)

A communication link, or simply link, is an edge in the graph representing a direct physical
connection between two nodes. A path is a logical connection between two nodes consisting of
one or more links. A path-length is the number of links connecting any two nodes.

The general topology, 7, considered is a strongly connected directed graph (digraph) consisting
of K nodes, where each node is connected to the graph by at least one link, there is a path from
any node to any other node, and the links are either unidirectional or bidirectional. Furthermore,
we assume there is no direct link from a node to itself, i.e., no self-loop, and there are no multiple
links directly connecting any two nodes in any one direction.

In this report, we use the terms network and graph interchangeably. The following graph
specific terms are used in the subsequent sections.

e Two nodes are said to be adjacent to each other or neighbors if they are connected to
each other via a direct communication link.

e [, an integer value, is the number of links denoting the largest loop in the graph, i.e., the
maximum value of the longest path-lengths from a node back to itself visiting the nodes
along the path only once (except for the first node which is also the last node).

e JV, an integer value, is the number of links signifying the width or diameter of the graph,
i.e., the maximum value of the shortest path connecting any two nodes.

For digraphs of size K> 1, L and W are bounded by2 <L <Kand 1 < W<K-1.



3. The Protocol

In this section we enumerate protocol assumptions, properties, parameters, and describe the
protocol in pseudo-code. The general form of the distributed synchronization problem, S, is
defined by the following septuple [Mal 2011A].

S=(K, T,D,d p P, F)

In other words, the distributed synchronization problem is a function of the number of nodes (K),
network topology (7), event-response delay (D), communication imprecision (d), oscillator drift
rate (p), synchronization period (P), and number of faults (F), respectively. The solution to this
problem is a protocol with convergence and closure properties, at a minimum, as discussed
subsequently in this section. However, in the protocol presented in this report we do not deal
with faults, thus F = 0.

Each node is driven by an independent logical-time clock, LocalTimer. The clocks need to be
periodically synchronized due to their inherent drift with respect to each other. In order to
achieve synchronization, the nodes communicate by exchanging Sync messages. A node is said
to time out when its LocalTimer reaches its maximum value. Upon time out, the node generates
a new Sync message and broadcasts it to others. A node is said to be interrupted when it
accepts an incoming Sync message before its LocalTimer reaches the maximum value, i.e.,
before it times out. Upon interrupt and except for a predefined window (Section 3.1), the node
relays the incoming Sync message by broadcasting it to others.

The periodic time synchronization after achieving the initial synchrony is referred to as the
resynchronization process whereby all nodes reengage in the synchronization process. The
resynchronization process begins when the first node times out and transmits a Sync message and
ends after the last node transmits a Sync message. For p << 1, the fastest node cannot time out
again before the slowest node transmits a Sync message [Mal 2011A].

A Sync message is transmitted either as a result of a resynchronization timeout, or when a node
receives Sync message(s) indicative of other nodes engaging in the resynchronization process.
The messages to be delivered to the destination nodes are deposited on communication links.

The following definitions and terms are used in the description and operation of the protocol.
Figure 3 is used to help with the descriptions. All protocol parameters and the network level
measurements are real values with time-based terms having units of real time clock ticks.
However, locally and at the node level, all parameters are discrete. The discretization is for
practical purposes when implementing the protocol.

Resynchronization
Process

—
Slowest Node (:)/ i P

Fastest Node O

0<A

<
InitGuranteed — A Init

Figure 3. Resynchronization process and various precisions.



e The resynchronization period, denoted P, has units of real time clock ticks and is
defined as the upper bound on the time interval between any two consecutive resets of the
LocalTimer by a node.

e Drift per ¢, denoted d(2), has units of real time clock ticks and is defined as the maximum
amount of drift between any two nodes for the duration of 7, 6(z) > 0. In particular:

e Dirift per D, denoted o(D), for the duration of one D, 6(D) > 0.
e Drift per y, denoted (), for the duration of one ¥, (3 = 0.
e Drift per P, denoted J(P), for the duration of one period P, 6(P) > 0.

e The graph threshold, Ty, is based on a specified graph topology and has units of real
time clock ticks.

e The guaranteed precision or simply precision of the network, denoted 7z, 0 < 7 < P, has
units of real time clock ticks and is defined as the guaranteed achievable precision among
all nodes.

e The convergence time, denoted C, has units of real time clock ticks and is defined as the
bound on the maximum time it takes for the network to converge, i.e., to achieve
synchrony.

e Precision between LocalTimers of any two adjacent nodes N; and N; is denoted by A4;;
and has units of real time clock ticks.

e The initial synchrony is a state of the network and the earliest time when the precision
among all nodes, upon convergence, is within z. The initial synchrony occurs at time
Clnit-

e The initial precision among LocalTimers of all nodes is denoted by A4y,;;, has units of real
time clock ticks and, for all # > Cj,;;, is defined as a measure of the precision of the
network immediately after a resynchronization process.

e The initial guaranteed precision among LocalTimers of all nodes is denoted by
ApitGuaranteed, Das units of real time clock ticks and, for all # > C, is defined as a measure of
the precision of the network immediately after a resynchronization process.

3.1. The Graph Threshold (7s)

When a node receives a Sync message, except during a predefined window, it accepts the Sync
message, resets its LocalTimer and relays the Sync message by broadcasting it to others. The
predefined window where the node ignores all incoming Sync messages, referred to as ignore
window', provides a means for the protocol to stop the endless cycle of resynchronization
triggered by the follow up Sync messages [Mal 2011A]. We bound the ignore window to
[D, Ts). The lower bound is due to the minimum event-response delay, D, and the upper bound,
referred to as the graph threshold, 7y, is a function of a specified graph topology.

' The term refractory period is used in biologically inspired work indicating a brief period of time, following the
stimulation of a nerve, during which the nerve will not respond to a second stimulus.



3.2. Sync Message And Its Validity

In order to achieve synchrony, the nodes communicate by exchanging Sync messages®. When
the system is in synchrony, the protocol overhead is at most one message per resynchronization
period P. Assuming physical-layer error detections are dealt with separately, the reception of a
Sync message is indicative of its validity in the value domain. The protocol performs as intended
when the timing requirements of the messages from every node are satisfied. However, in the
absence of faults, the reception of a Sync message is indicative of its validity in the value and
time domains. A valid Sync message is discarded after it is relayed to the synchronizer (see
Section 3.3) and has been kept for one local clock tick.

3.3. The Monitor, The Synchronizer, And Protocol Functions

A node consists of a synchronizer and a set of monitors. To assess the behavior of other nodes,
a node employs as many monitors as the number of nodes it is directly connected to with one
monitor for each source of incoming messages. A node neither uses nor monitors its own
messages. A monitor keeps track of the activities of its corresponding source node. Specifically,
a monitor reads, evaluates, validates, and stores the last valid message it receives from that node.
Upon conveying the valid message to the local synchronizer, a monitor disposes of the valid
message after it has been kept for one local clock tick. The assessment results of the monitored
nodes are utilized by the synchronizer in the synchronization process.

The function ValidateMessage(), Figure 4, used by the monitors determines whether a received
Sync message is valid. We assume physical-layer error detections are dealt with separately. The
function ConsumeMessage() used by the monitors invalidates the stored Sync message after it
has been kept for one local clock tick. The function ValidSync() used by the synchronizer
examines availability of valid Sync messages.

ValidateMessage():
if (incoming message = Sync) then
{Message is valid,

Store it.}

ConsumeMessage():
if (stored message timer > 1 tick) then
{Message is expired,

Clear it.}

ValidSync():

if (number of stored messages > () then
{ return true,
else
return false.}

Figure 4. The protocol functions.

* Since only one message type is used for the operation of this protocol, a single bit suffices.



3.4. Protocol Assumptions

A s e

K>1.

All nodes correctly execute the protocol.

All links correctly transmit data from their sources to their destinations.

T is a non-partitioned, strongly connected digraph.

0<p<<l.

A message sent by a node will be received and processed by its adjacent nodes within ¥,
where ¥ = (D +d).

The initial values of the variables of a node are within their corresponding data-type
range, although possibly with arbitrary values. (In an implementation, it is expected that
some local mechanism exists to enforce type consistency for all variables.)

3.5. The Self-Stabilizing Distributed Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are with
respect to an initial real time 7y, where 7y = 0 and for all 7 > ¢ the system operates within the
protocol assumptions. The maximum difference in the value of LocalTimer for all pairs of nodes
at time ¢, Aye(?), is determined by the following equation that accounts for the variations in the
values of the LocalTimer across all nodes.

r=l 7+ 1)+ ()]

LocalTimer ,;,(x) = min (N;.LocalTimer(x)), and

LocalTimer,,,.(x) = max (N;.LocalTimer(x)), for all i.

Ane(t)= min ((LocalTimer . (t) - LocalTimer (1)),
(LocalTimer u(t - v) - LocalTimer p,(t - 1))).

The following symbols were defined earlier and are listed here for reference:

P denotes the resynchronization period, has units of real time clock ticks, and is defined
as the upper bound on the time interval between any two consecutive resets of the
LocalTimer by a node and P > 0.

C denotes a bound on the maximum convergence time.

Aned(?), for real time ¢, is the maximum difference of values of the LocalTimers of any two
nodes (i.e., the relative clock skew) for 7 > #.

7, the synchronization precision, is the guaranteed upper bound on Ay(?) for all # > C,
and is generally assumed to be very small compared to P.

To show that a protocol is self-stabilizing, it has to be proven that there exist C and 7z such that
the following self-stabilization properties hold.

==

Convergence: Ay, (C) <7, 0<z<P

Closure: Forallt> C, Ay (?) < @
Congruence: For all nodes V;, for all # > C, (N;.LocalTimer(t) = y) implies Aye(?) < 7.
Liveness: For all ¢ > C, LocalTimer of every node sequentially takes on at least all

integer values in [, P - 7.



3.6. The Self-Stabilizing Distributed Clock Synchronization Protocol For Arbitrary
Digraphs

The protocol, executed by all nodes, is presented in Figure 5 and consists of a synchronizer and a
set of monitors which execute once every local clock tick. The if statement describing the
synchronizer has five parts that are labeled £0 through E4 and referenced subsequently in this
report.

Synchronizer: Monitor:
EO: if (LocalTimer < 0) case (message from the corresponding node)
LocalTimer =0, {Sync:
El: elseif (ValidSync() and (LocalTimer < D)) ValidateMessage()
LocalTimer =, /] interrupted Other:
Do nothing.
E2: elseif (ValidSync() and (LocalTimer > Ts)) V /] case © nothing
LocalTimer =y, /I interrupted ConsumeMessage()

Transmit Sync,

E3: elseif (LocalTimer > P)  // timed out
LocalTimer := 0,
Transmit Sync,

E4: else
LocalTimer = LocalTimer + 1.

Figure 5. The self-stabilizing clock synchronization protocol for arbitrary digraphs’.

The following is a list of protocol parameters when all links are bidirectional.
Ts2 (L+2)(y+ 0(%)
P>3Ts forp=0
P>3(Ts+ 6(Ts)), for L=Kandp>0
P>max (2K + 1)(y+ (), 3(Ts + 6(Ts))), for L=£T) and p > 0

The following is a list of protocol parameters for digraphs, i.e., when at least one link is
unidirectional.

Ts2 (K+2)(y+ 0(y)

P> K(Ts+ o(Ts))

Regardless of the types of links in the network, the following is a list of protocol measures.
Chir=2P + K(]/—F 5(]/))
A < (K - D)7+ 6()
C = Chir + | Apie 171 P
0 < ApisGuaranteea < W(y + 6(%)), for all t > C
T = ApitGuaranteed + 0(P), 0 < < P, forall t > C

A trivial solution is when P = 0. Since P> Ts, Ts > 0, and the LocalTimer is reset after reaching
P (worst-case wraparound), a trivial solution is not possible.

’ Statement E0 makes explicit the assumption 7 in Section 3.4 (Protocol Assumptions) as it applies to the
LocalTimer.



4. A Deductive Proof Of The Correctness Of The Protocol

In this section we present a deductive proof of the correctness of the protocol for the general
case: a realizable system independent of the network topology where p > 0 and d > 0. Defining
Ts in terms of L requires knowledge of the topology of the given network. Therefore, in order to
generalize the expression for 7, make it independent of the topology, and to help simplify the
proof process, we express it in terms of its worst case value, L = K, which implies that
Ts> (K+2)(y+ 6(y). However, for a specific application, optimizing 7s by expressing it in terms
of L results in faster synchrony and better performance.

The deductive proof presented in this section is for the protocol presented in previous section
(Section 3.6) and reported earlier in [Mal 2011A]. We do not provide separate proofs for the
variations of the protocol as were discussed in [Mal 2011A]. We believe however that this proof
can readily be extended to all variations of the protocol.

The proof idea is depicted in Figure 6. The main theorems address the following questions.
Assuming a Sync message does not get ignored and P is sufficiently large, is it possible for a
message to circulate within the network without dying out? In other words, will E2 (Figure 5)*
get executed indefinitely? Is it possible for a node to transmit Sync messages without ever
timing out? In other words, will E3 ever get executed? Also, will E4 ever get executed?

—

Synchrony

Figure 6. Proof approach.
The ranges of the protocol parameters used in the proofs are restated here for reference.

K>2 (K=11sasimple case and does not need a proof.)

L=K
W=K-1
0<p<<l1

1<D<y<Ts<P

0 < LocalTimer < P
Ignore window = [D, Ty)
Ts 2> (K+2)(y+ o(%)
P>K(Ts+ o(Ts))

We’d like to emphasize that P is defined as the upper bound on the time interval between any
two consecutive resets by any node in the network, thus, its value is specified with respect to the
slowest node. In other words, assuming the fastest node and the slowest node start at initial
synchrony, when the fastest node reaches P, the slowest node is at P - 6(P).

* Labels E0 through E4 of Figure 5 refer to different parts of the synchronizer.
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Lemma JoinTimedOut — When a node, N, is interrupted by an adjacent node that was timed
out, N, it synchronizes with that node with a relative initial precision of A; = d + o(D).

Proof — Given N, was interrupted at time ¢ by an incoming Sync message from N;, by the
protocol (part E1, E2), N; sets its LocalTimer while accounting for the message arrival delay,
1.e., Ni.LocalTimer = y. Given N; had timed out (part £3 of the protocol), it must have reset
its LocalTimer to 0 and sent the Sync message between D and y time units earlier.
Accounting for drift, at time ¢,

N;.LocalTimer = 0 + actual communication delay + relative drift to N;.

The communication delay is bounded by [D, »]. Thus, with N; as either the slower node or
the faster node than N,
D - 0(D) < N;.LocalTimer < y+ o(%).

Since the relative precision is an upper bound,
A;j = max (abs (N;.LocalTimer - Ni.LocalTimer)).

So,

A= (y+d(y) - y=9(y, and
Aj=y -(D-6(D))=d+ (D).

Since d(y) = 6(D) + d(d) and 0 < p << 1, then d > d(d), and therefore,
Ajj=max (6(y), d + 6(D))
Ay =d+ (D). [

Lemma JoinInterrupted — When a node, Nj, is interrupted by an adjacent node that was in
turn interrupted, N,, it synchronizes with that node with a relative initial precision of
45 = 7+ ().

Proof — Given N; was interrupted at time ¢ by an incoming Sync message from N;, by the
protocol (parts EI, E2), N; sets its LocalTimer while accounting for the message arrival
delay, i.e., Nj.LocalTimer = y. Given N; was interrupted (parts £/, E2 of the protocol), it
must have set its LocalTimer to y and sent the Sync message between D and y time units
earlier. Accounting for drift, at time ¢,

Nj.LocalTimer = y+ actual communication delay + relative drift to N;.

The communication delay is bounded by [D, 7]. Thus, with N; as either the slower node or
the faster node than N,
y+ D -0(D) < N,.LocalTimer < y+y+ o(y).

Since the relative precision is an upper bound,
Ajj =max (abs (N;.LocalTimer - Ni.LocalTimer)).

So,

A;=Qy+d(y)-y=y+d(y,and
Aj=(y+D-6(D))-y=D-d(D).
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Since y > D,
Ay =max (y+3(), D - 5(D))
A= y+ (). ]

We have defined the ignore window earlier as the predefined time interval (window) where the
node ignores all incoming Sync messages as a means for the protocol to stop the endless cycle of
resynchronization triggered by the subsequent Sync messages. From the protocol (parts E1, E2),
the ignore window for A, is the time interval of D < N..LocalTimer < T.

Lemma IgnoredNode — When a node, N;, ignores a Sync message from an adjacent node, N;,
the two nodes have a relative initial precision of A; < Ts-D+6(D).

Proof — Given, at time ¢, N; ignored an incoming Sync message from N;, by the protocol, then
D < N,.LocalTimer < Ts. Given N; had sent the Sync message between D and y time units
earlier, by the protocol (parts £2, E3), N; was either interrupted or had timed out. We address
these cases separately.

Case 1 — Given N; was interrupted, it must have set its LocalTimer to y and sent the Sync
message between D and ytime units earlier (part £2 of the protocol). Accounting for drift, at
time ¢,

Ni.LocalTimer = y+ actual communication delay + relative drift to N;.

The communication delay is bounded by [D, »]. Thus, with N; as either the slower node or
the faster node than N,

y+ D -0(D) < N;.LocalTimer < y+ y+ 6(y). (D)

Since the relative precision is an upper bound,
Ajj = max (abs (N;.LocalTimer - N;.LocalTimer))
Ay < Ts-(y+ D - 5(D)).

Case 2 — Given N; had timed out, it must have reset its LocalTimer to 0 and sent the Sync

message between D and y time units earlier (part £3 of the protocol). Accounting for drift,
at time 7,
Nj.LocalTimer = 0 + actual communication delay + relative drift to N;.

The communication delay is bounded by [D, »]. Thus, with N; as either the slower node or
the faster node than N,

D - 6(D) < N,.LocalTimer < y+ d(y). 2)
Since the relative precision is an upper bound,

Ajj=max (abs (N;.LocalTimer - N;.LocalTimer))

A;<Ts-(D-9d(D)).

Since the relative precision is an upper bound, from the above cases, A; < Ts -D+d(D). ]
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Lemma JoinTimedOutAfterignored — When all adjacent nodes are within a relative precision
of Aj < Ts - D+0(D) clock ticks of each other, for any two adjacent nodes N; and N; with
Ni.LocalTimer < N;.LocalTimer, if N; times out, N; will join N; with a relative initial precision
OfAlj =d+ 5(D)

Proof — Given at time ¢ the relative precision of A4;; and N; lagging N; by Ay, since 0 < p << 1,
D >> (D), Aj<Ts,and so P - A;> P - Ts.

P > KTs+ Ko(Ts), subtracting Ts from both sides,
P-Ts>(K-1)Ts+ Ko(Ts), and so,
P - 4;>(K-1)Ts+ Ko(Ts).

At time ¢’ =t + (P - 4;), when N; times out, N; LocalTimer is determined as follows. For the
worst case analysis, we assume N is the slower node than N;. Also, even though P - 4; <P,
1.e., o(P - 4;) <(P), we set 6(P - A;) = o6(P) to simplify the algebraic argument.
N:.LocalTimer(t’) = Ni.LocalTimer(t) + (P - Ay) - (P - Ay)
Ni.LocalTimer(t’) = Ni.LocalTimer(t) + (K-1)Ts + Ko(Ts)) - o(P)

Since 0(P) = Ko(Ts),
Ni.LocalTimer(t’) = Ni.LocalTimer(t) + (K-1)Ts

From inequalities (1) and (2) of the proof of Lemma IgnoredNode, and since we consider for
the worst case analysis N; being the slower node than N,

Ni.LocalTimer(t) = D - 6(D), and

Ni.LocalTimer(t’) > D - 6(D) + (K-1)Ts.

Since 0 <p <<1,D >> (D), and for all K > 2,
Ni.LocalTimer(t’) > Ts.

Thus, when N; times out, Ni.LocalTimer > Ts and N; accepts N;’s message. By the Lemma
JoinTimedOut the two adjacent nodes N; and N; synchronize with each other with a relative
initial precision of A; = d + 6(D) clock ticks. m

Lemma JoinInterruptedAfterignoredl — When at time t all adjacent nodes are within a
relative precision of Ay < Ts - D+0(D) clock ticks of each other, for any two adjacent nodes
N; and N; with N;.LocalTimer < N;LocalTimer, if N; gets interrupted by another node at
t’ > t+Ts+06(Ts), N; will join N; with a relative initial precision of A = y + o(y).
Proof — Given the relative precision of A; and N; lagging N; by 4;;, at time ¢, for the worst
case analysis, we assume N, is the slower node than N;. Attime ¢’ =t + Ts+ o(Ts),

Nj.LocalTimer(t’) = Nj.LocalTimer(t) + Ts + 6(Ts)

Ni.LocalTimer(t’) = N;.LocalTimer(t’) - 6(Ts), and so,

Ni.LocalTimer(t’) = Ni.LocalTimer(t) + Ts

From inequalities (1) and (2) of the proof of Lemma IgnoredNode, and since we consider for
the worst case analysis N; being the slower node than N,
Ni.LocalTimer(t) = D - 6(D), and
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Ni.LocalTimer(t’) > D - 6(D) + Ts.

Since 0 <p << 1, D >> ¢(D), therefore,
Ni.LocalTimer(t’) > Ts.

Thus, when N; times out, Ni.LocalTimer > Ts and N; accepts N;’s message. By the Lemma
JoinInterrupted the two adjacent nodes N; and N; synchronize with each other with a relative
initial precision of 4;; = y+ () clock ticks. [ |

Lemma JoinlnterruptedAfterlignored2 — When all adjacent nodes are within a relative
precision of Ay < Ts - D+6(D) clock ticks of each other, for any two adjacent nodes N; and N;
with Nj.LocalTimer < N;.LocalTimer, if N; gets interrupted by another node before either N;
times out or gets interrupted by yet another node, N; will join N; with a relative initial
precision of A = y+ 6().

Proof — Given the relative precision of 4; and N; lagging N; by 4;; and N; gets interrupted by
another node (other than N;), by the protocol (part £3), Ts < Ni.LocalTimer < P, i.e., N; had
exited the ignore window. Since N; lags N;, Ts < N,.LocalTimer < P. By the Lemma
JoinInterrupted the two adjacent nodes N; and N; synchronize with each other with a relative
initial precision of A; = y+ () clock ticks. [

Note in the general form of the above lemma if either of the two nodes times out, the other one
will follow and 4;; = d + 6(D). However, since N;.LocalTimer < N;.LocalTimer, if N; times out
before N;, it implies that N; is a considerably faster node and the amount of drift in the system is
very large; 6(P) > Ts.

It follows from the protocol that an incoming Sync message to a node either gets ignored or gets
accepted and subsequently relayed to other nodes. A Sync message is said to die out when all
receiving nodes ignore it. Assuming the message does not get ignored and P is sufficiently large,
is it possible for a Sync message to circulate within the network without ever dying out? In other
words, will E2 get executed indefinitely? Is it possible for a node to transmit Sync messages
without ever timing out? In other words, will E3 ever get executed? How about E4? The
following lemmas address these questions.

Lemma NolnfiniteLoop — A Sync message always dies out.
Proof — By the protocol (parts E/, E2) a message dies out if it gets ignored by all receiving
nodes (D < N.LocalTimer < Tys), otherwise, it gets relayed to other nodes. For a message to
persist it has to circulate within the network forever, i.e., there needs to be a loop in the
network. By definition, L signifies the size of the largest loop in the network. Let all nodes
in a loop accept a Sync message when they receive it, relay the incoming Sync message, and
no new messages are generated due to a time out. Let, at time ¢, N; be the first node in that
loop that just got interrupted by another node. So, N;.LocalTimer = y and N; will relay the
Sync message to other nodes inside the loop. At time #’, this message will make it back to N;
after traversing the loop. Accounting for drift and assuming N; is the fastest node, at time #’,
Ni.LocalTimer = y+ Ly+ L 6(),
Ni.LocalTimer = (L + 1)y+ L o(y).

14



By the protocol (parts E1, E2), N; will ignore the message if D < N,.LocalTimer < Ts. At
time ¢’ for V;,

D<(L+1)y+Ld(y,since L>1, y >D,and L 6(y) >0, and

(L+Dy+Loy<Ts

(L+Dy+ Loy <(K+2)yy+ (K+2) o).

Since L < K, substituting K for L in the above inequality, we get the following.
(K+ 1D)y+ oK <(K+2)y+ (K+2) o(p)
0<y+26(y.

Since y> 1 and 20(7) = 0, the above inequality holds true. Thus, D < N;.LocalTimer < Ts at
time 7" and N; will ignore the message. Therefore, the message will die out even if it reaches
its original source. As a result, it is impossible for a message to persist within the network
indefinitely. |

Lemma MessageLifeSpan — A Sync message dies out in at most K(y +d(y)) clock ticks.

Proof — By the Lemma NolnfiniteLoop, a Sync message always dies out. It also follows that
if there is a loop in the graph, it takes at most L(y + d(y)) clock ticks for a message to reach
its source and then die out. By the definition of W, it takes at most W(y+ d(%)) clock ticks for
a message to reach all other nodes. Once again, by the Lemma NolnfiniteLoop, this Sync
message always dies out. Since L < K and W < K-1, for the worst case analysis we choose
the largest value for L and W, i.e., K. Thus, it takes at most K(y+d(%)) clock ticks for a Sync
message to die out. ]

Lemma IncLocalTimer — The LocalTimer of at least one node always reaches P.

Proof — By the Lemma NolnfiniteLoop a Sync message always dies out. Also, by the Lemma
NolnfiniteLoop unless new Sync messages are generated, all existing Sync messages in the
network will eventually die out. In the absence of a Sync message circulating within the
network, by the protocol (part E4), the LocalTimer gets incremented until it reaches its
maximum value P. Therefore, the LocalTimer of at least one node always reaches P. [

Lemma NewSync — Within every time interval of P clock ticks, at least one node generates a
new Sync message.

Proof — By the Lemma NolnfiniteLoop a Sync message always dies out. By the Lemma
MessageLifeSpan a Sync message dies out in K(y+d(y)) clock ticks. Since K(y+d(y) < P, by
the Lemma IncLocalTimer at least one node reaches P. By the protocol (part £3), once a
node reaches P, it times out and generates a new Sync message. Therefore, within every P at
least one node always times out and generates a new Sync message. |

Lemma A/INodesTxSync — Within every time interval of P clock ticks, every node Nj
transmits at least one Sync message.
Proof — We prove this lemma by examining all activities along the time line.

By the protocol (part E7), when N;.LocalTimer < D, if N; does not receive a Sync message, its

LocalTimer gets incremented (part £4), reaches D, and the node enters the ignore window.
However, if N; receives a Sync message, it accepts the message without relaying it. In this
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case, the node sets its LocalTimer to y and since y > D this event occurs only once and the
node enters the ignore window.

By the protocol while in the ignore window (parts £/, E2), D < N;.LocalTimer < Ts, the node
rejects all incoming Sync messages and the LocalTimer gets incremented (part £4), reaches
Ts, and the node exits the ignore window.

By the protocol after exiting the ignore window (part E3), Ts < N;.LocalTimer < P, if N;
receives a Sync message from another node, it will accept and relay it, otherwise, its
LocalTimer gets incremented (part £4), reaches its maximum value P, and the node times
out, generates a new Sync message, and transmits it to others.

Therefore, within any P clock ticks, every node N; transmits at least one Sync message. m

Lemma DeltaijLessThanTs — For all t > P+y clock ticks the relative initial precision of any
two adjacent nodes N; and N; is A < Ts - D+6(D).

Proof — By the Lemma A//NodesTxSync, within every time interval of P clock ticks every
node transmits at least one Sync message. Accounting for the message processing and
delivery time, i.e., y, by the Lemmas JoinTimedOut, JoinInterrupted, and IgnoredNode, the
relative initial precision of any two adjacent nodes N; and N; within P+y, is d + 0(D), y+ (),
or less than Ts - D+6(D) clock ticks, respectively. Since the relative precision is an upper
bound, therefore, A;; < Ts - D+6(D). [

Lemma PrecisionLessThanWTs — For all t > P+y clock ticks the initial network precision is
Avel®) < W(Ts - D+5(D)).

Proof — By the Lemma DeltaijLessThanTs, for all t > P+y clock ticks the relative initial
precision of any two adjacent nodes is 4; < Ts - D+6(D). Since the initial precision of the
network is an upper bound, by the definition of W, at t = P+, Ay.(?) is the sum of all 4y, i.e.,
Ane(t) = WA, Thus, Aye(t) < W(Ts - D+6(D)). [

Lemma DeltaijAboutGamma — For all t > 2P+y clock ticks and upon the subsequent
resynchronization process, the relative initial precision of any two adjacent nodes N; and N;
is Ay =y +0(p).
Proof — By the Lemma PrecisionLessThanWTs, for all t > P+y clock ticks the initial network
precision is Aye(?) < W(Ts - D+d(D)). Within another P, i.e., at ¢ = 2P+, the Ay,/(?) increases
by the maximum drift for the duration of P, i.e., 6(P). So,

Avet) < W(T - D¥S(D)) + 3(P).

With W<K -1, we set W=K - 1 for the worst case analysis, and since 6(P) = Ko(Ts),
Anei(t) < (K-1)(Ts - D+6(D)) + Ko(Ts).

Since P > KT+ Ko(Ty),

P - Aveu(t) = (KTs + Ko(Ts)) - (K-1)(Ts -D+0(D)) + Ko(Ts)), and so,
P - Ayeu(t) 2 Ts+ (K-1)(D - 6(D)).
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Since 0 <p <<1,D >> (D) and P - Aye(t) > Ts + (K-1)D.

Thus, at t = 2P+y, P - Ayu(t) > Ts. By the Lemma NolnfiniteLoop a Sync message always
dies out. By the Lemma IncLocalTimer, during every P time interval, at least one node
reaches P and by the Lemma NewSync, a new Sync message always gets generated. At
t > 2P+y and upon the subsequent resynchronization process, by the Lemmas
JoinTimedOutAfterlgnored, JoinlnterruptedAfterignoredl, and JoinlnterruptedAfterignored?
all nodes synchronize with their adjacent nodes with relative initial precision of any two
adjacent nodes as d + o(D), y+ d(y), and y+ d(y) clock ticks, respectively. Since the initial
precision is an upper bound, thus A; = y+ (). [ |

Lemma InitialPrecision — For all t > Cy,y, where C,;; = 2P+K(y+0(y)) clock ticks, and upon
the subsequent  resynchronmization  process, the initial network precision is
Ay = (K-D)(y +3(1).

Proof — By the Lemma DeltaijAboutGamma, for all ¢t > 2P+y and upon the subsequent
resynchronization process, 4;; = ¥+ d(y). By the definition of W, it takes at most W(y +d())
clock ticks for a message to reach all other nodes. Since W < K-1, for the worst case analysis
we set W = K-1. Since the initial precision of the network is an upper bound, Ay..(?) is the
sum of all Ay, 1.e., Aye(t) = WA; = (K-1)(+0()). Therefore, Ane(?) = (K-1)(y + 6(%)), and so,
Apie = (K-1)(y + 6(7)). u

Theorem [nitialConvergence — For all t > Cy,;, the network converges to a state where the
guaranteed network precision is T = Ap;; + 0(P).
Proof — By the Lemma DeltaijAboutGamma, for all ¢+ > 2P+y and upon the subsequent
resynchronization process, 4;; = y +6(y). By the Lemma InitialPrecision, for all ¢ > Cy,; and
upon the completion of the subsequent resynchronization process, A = (K-1)(y + o(%).
However, due to drift, 4;,; will increase over a time interval of P by a maximum amount of
O(P). Therefore, for all # > Cj,;,, the guaranteed precision of the network is

T = A + maximum drift in the network over P

7= Apic + O(P).

Thus, for all > Cy,;;, the network converges with 7 = Ay,;, + 6(P) and remains within 7. =

Corollary InitialConvergenceTime — The initial convergence time is Cjy;.
Proof — By the Theorem /nitialConvergence the network converges within Cpy;. |

Corollary InitGuaranteedPrecision — For all t > Cp,;; and upon the completion of the
subsequent resynchronization process, the initial guaranteed precision of the network is

AlnitGuaranteed = Alnit-
Proof — By the Theorem Initial Convergence the network converges within Cj,;; with an initial

precision of Ap;,. It also follows that upon the completion of the subsequent
resynchronization processes the initial guaranteed precision of the network for all 7 > Cp,; is

AlnitGuaranteed = Alnit- [ |
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Theorem [nitialClosure — For all t > Cy,,, a synchronized network where all nodes have
converged to m = Ap,;y + 0(P), shall remain within the synchronization precision .

Proof — By the Lemma [InitialPrecision, for t > Cp,i;, Apic = (K-1)(y +6(7)). By the Theorem
InitialConvergence for t > Cy,;, the network has converged with guaranteed network precision
7 = Api + 0(P) while accounting for the maximum drift over a time interval of P. By the
Theorem Initial Convergence and upon subsequent resynchronization processes, the network
precision will remain within z. Thus, the network has converged, is synchronized, and
remains synchronized within 7. [ |

Theorem InitialNetworkPrecision — For all t > Cy,,, where Cr,; = 2P+K(y+0(y)) clock ticks,
the network precision is T = Apis + 0(P).

Proof — By the Lemma [nitialConvergence and Theorem [nitialClosure, for all ¢t > Cj,y,
T = Apis + O(P). [

Theorem [InitialCongruence — For all nodes N; and for all t > Cy,,, (Ni.LocalTimer(t) = )
implies Aye(t) <.

Proof — By the protocol (part £3) upon time out a node resets its LocalTimer to zero. By the
Lemma IncLocalTimer the LocalTimer of a node will always get incremented and unless
interrupted a timed out node will reach y. By the protocol (parts £/, E2) when a node gets
interrupted, it resets its LocalTimer to y. Thus, a node will always reach y. By the Theorems
InitialConvergence and InitialClosure, for all t > Cy,;,, the network convergences and remains
synchronized with = = A, + 6(P). Therefore, for all t > Cj,; and 0 < p << 1, when
Ni.LocalTimer(t) = y, the network precision remains within 7, i.e., Ay.(?) < 7, and all nodes
are in synchrony. |

The proof presented thus far is based on very conservative measures and has demonstrated the
correctness of the protocol even when the network parameters are considered at their boundary
(minimum and maximum) values. However, upon the initial convergence and closure, there are
a number of ways to achieve tighter precision. One such method is introduced in [Mal 2006B],
where, in a two step process, another proven correct protocol that is based on the initial
synchrony assumptions is used to achieve the optimum precision of the coarsely
synchronized system. Another method is by adding a few random links or rewiring links with
a certain probability to provide shortcuts between different segments of a graph [Wat 1998][Gad
2000][Bar 2002][Hon 2002, 2004][Li 2004][Gom 2007]. These ideas, as discussed in [Mal
2011A], are primarily used to achieve convergence, but can also be used to achieve tighter
precision. There is yet another method, presented below, that simply requires more time.
Performance of this method depends primarily on the drift rate.

From the expression for 4;,;, = (K-1)(y +0(7)) it is evident that the synchronization time, C, and
precision, 7, are also functions of the graph topology and the drift rate, specifically, the graph’s
width and the amount of drift the network experiences. In other words,

C=/(T.p) =71 (W.o(P)), and

n=1(T. p) = [ (W, 5(P)).
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Note that the general equation for A4;,; encompasses the ideal and semi-ideal scenarios. In
particular, for the ideal scenario, where p = 0 and d =0, and for the semi-ideal scenario, where
p=0andd>0, Ay, = (K-1)y.

Thus far and in the proof process, we assumed 0 < p << 1. The proof, however, holds when this
bound is less restricted, i.e., 0 < p < 1. When p >> 0 such that J(» > y by the Theorem
InitialConvergence, for all ¢t > Cp,;; and upon subsequent resynchronization processes, the
network converges with 7 = A, + 6(P). In other words, due to the high rate of drift, no further
improvement on Aj,;, and the network precision, 7, can be guaranteed. Thus, when p >> 0,
ApitGuaranteed < Amir, and no further improvement on A4y, is achieved; therefore, no improvement
on 7 can be guaranteed. Furthermore, the convergence time C is bounded by Cj,;y, 1.€., C = Cpyir.

However, if p << 1, although the initial (coarse) synchrony, 4, occurs within Cj,;, the initial
guaranteed synchrony, ApiGuaranieea, takes place after a number of periods and upon achieving the
initial synchrony, i.e., 45, We demonstrate this by the following lemmas for the semi-ideal
scenarios where p =0,d>0,and y =D + d.

Lemma pdJoinTimedOut — For p = 0, when a node, N, is interrupted by an adjacent node
that was timed out, N; it synchronizes with that node with a relative initial precision
Of Alj =d.

Proof — By the Lemma JoinTimedOut, A; = d+ 6(D). Since p=0and d> 0, 4;=d. [

Lemma pdJoininterrupted — For p = 0, when a node, N, is interrupted by an adjacent node
that was in turn interrupted, N, it synchronizes with that node with a relative initial precision
of dj =y

Proof — By the Lemma JoinInterrupted, A;j =y+ 6(y). Since p=0and d>0, A4; = y. [

Lemma pdDeltaijAboutGamma — For p = 0, for all t > 2P+y clock ticks, the relative initial
precision of any two adjacent nodes N; and N; is A = y.
Proof — By the Lemma DeltaijAboutGamma, A;; = y+6(y). Sincep=0andd>0,4,=y. =

Lemma pdInitial Precision — For p = 0, for all t > Cy,;,, where Cy,;; = 2P+Ky clock ticks, and
upon the subsequent resynchronization process, the initial network precision is A,y = (K-1)y.
Proof — By the Lemma /nitialPrecision, for all t > Cy,;, Apir = (K-1)(y + 0(p)). Since p =0
and d >0, Aj,;; = (K-1)y. m

Lemma pdinitGuaranteedPrecision — For p = 0 and for all t > C, the initial guaranteed
preCiSiOH is A]nitGuarameed = Wd

Proof — By the Theorems Initial Convergence and InitialClosure, the network has converged,
is synchronized, and remains synchronized for all + > Cj; and upon subsequent
resynchronization processes, the network converges to Awe(?) = Apir + 0(P). Since p = 0,
Anel(?) = Api. By the Lemma pdDeltaijAboutGamma for all ¢ > Cy,;, all adjacent nodes are
within 4; = y of each other. However, since p = 0 and d > 0, for all # > Cj,;; and upon
subsequent resynchronization processes, by the Lemma pdJoinTimedOut at least two
adjacent nodes will synchronize with 4; = d. Thus, at least one node per resynchronization
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process, i.e., per P, will synchronize with its adjacent nodes with 4; = d. Repeating this
process for [ Ay }/—| = W periods, will result in a synchronized network with a precision of
4; = d for any two adjacent nodes N; and N; and an initial guaranteed precision of
ApitGuaranteed = Wd for the entire network. [ |

Corollary pdPrecision — For p = 0, the precision of the network is # = Wd.
Proof — By the Lemma pdInitGuaranteedPrecision, for p = 0, the network converges to
ApitGuaraneed = Wd. Recall that 7 = Apicuaranteea + O(P). Since p=0and d>0,r=Wd. m

Corollary pdConvergenceTime — For p = 0, the convergence time is C = Cp,;; + /. Apis /7/7P.
Proof — By the Lemma pdInitGuaranteedPrecision, for p = 0, the network converges to
A[nitGuaranteed = Wd Withil’l C = Clnit + rAInit /7—| P L

Note that when d = 0, i.e., for the ideal scenario, ¥y = D, ApiGuaraneed = 0, and 7 = 0. We now
state the general lemmas and theorems that encompass all scenarios, i.e., for 0 <p << 1and d>0
and for all > C.

Theorem Convergence — For all t > C, the network converges to a state where the
guaranteed network precision is w, i.e., Aye(t) < .

Proof — By definition, for all + > C, 7 = Apicuarameea + O(P). By the Theorem
InitialConvergence, for all t > Cp, @ = Apis + 6(P). For 0 < p << 1, it also follows that upon
the completion of subsequent resynchronization processes, i.e., for all > C where C > Cy,;,
the initial guaranteed precision of the network is 4;,; and upon subsequent resynchronization
processes, no further improvement on 4y, can be guaranteed. Therefore, no improvement on
AnitGuaraneed €an — be achieved. Also, by the Corollary InitGuaranteedPrecision,

AnitGuaranteed = Amiz and so no improvement on z can be guaranteed. Also, since the
maximum drift for a time interval of P is bounded by d(P), the network has converged with
precision 7 and remains within 7. |

Theorem Closure — For all t 2 C, a synchronized network where all nodes have converged to
Ane(t) < 7, shall remain within the synchronization precision .

Proof — By the Theorem Convergence, for all t > C, the network converges with the precision
7T = AnitGuaranteea + O(P). 1t also follows that for 0 < p <<'1 and for all # > C, upon subsequent
resynchronization processes the network precision remains within z. Therefore, the network
has converged, is synchronized, and remains synchronized within 7. [

Theorem Congruence — For all nodes N; and for all t > C, (N.LocalTimer(t) = y) implies
ANet(t) =7

Proof — By the protocol (part £3) upon time out a node resets its LocalTimer to zero. By the
Lemma IncLocalTimer the LocalTimer of a node will always get incremented and, unless
interrupted, a timed out node will reach y. By the protocol (parts £/, E2) when a node gets
interrupted, it resets its LocalTimer to y. Thus, a node will always reach y. By the Theorems
Convergence and Closure, for all t > C, the network convergences and remains synchronized
with 7 = ApiGuaranieea + 0(P). Thus, for all # > C and 0 < p << 1, when N, LocalTimer(t) = y,
the network precision remains within 7, i.e., Ay.(?) < 7, and all nodes are in synchrony. ]
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Lemma [InitGuaranteedPrecision — For all t > C, the initial guaranteed precision of the
network is Wd < ApitGuaranteed < (K'])(7+5(7/)), where AitGuaranteed = wd, fOV p = 0, and
A]nitGuamnteed < (K - 1)(}/+5(]/)), fOl"p > ().

Proof — By the Lemma [nitialPrecision, for 0 <p <<1 and for all > Cj,; and upon
the subsequent  resynchronization process, the initial network  precision is
Apie = (K-1)(y +6(%)). By the Theorem InitialConvergence, for 0 <p <<1 and t > Cy,;, and
upon the completion of the subsequent resynchronization processes, the initial guaranteed
precision of the network is A4j,,, in other words, AniGuarancea = Ami. By the Lemma
pdinitGuaranteedPrecision, for p = 0 and for all # > C, the initial guaranteed precision is
ApitGuaranteed = Wd. Thus, for 0 < p << '1 and for all # > C, the initial guaranteed precision is
bounded by wd < AitGuaranteed < (K - 1)(7/ +5(7/)) : "

Theorem GuaranteedPrecision — For for all t > C, the guaranteed precision of the network is
bounded by Wd < 1t < ApiGuaranteea + O(P).

Proof — By the Lemma [nitGuaranteedPrecision, for all t > C and 0 < p << 1, the initial
network precision is bounded by Wd < AniuGuaranteed < (K - 1)(y+d(y)) with the lower bound
for p = 0 and the upper bound for p > 0. By definition, for all # > C, 7 = AniGuaranteed + O(P).
Therefore, for 0 < p << 1 and for all 7 > C, the guaranteed precision of the network is
bounded by Wd < 7 < Anicuarantcea + O(P). ]

Note that when d = 0, i.e., for the ideal scenario, ¥ = D, ApiGuaranteea = 0, and == 0.

Lemma ConvergenceTime — The convergence time is C = Cpy; + |_A1n,-,/ 7/—| P.

Proof — By the Theorem InitialConvergence, for 0 < p << 1, the network converges within
Chir. By the Corollary pdConvergenceTime, for p = 0, the convergence time is C = Cp,;y +
rAI,,i,/ 7/—| P. Since the convergence time is an upper bound, for 0 < p << 1, the convergence
time is C = C[nit + |VA[,,,‘[/]/—| P. |

Theorem Liveness — For all t > C, LocalTimer of every node sequentially takes on at least all
integer values in [y, P - n].

Proof — By the Theorems Convergence and Closure, for all ¢t > C, a synchronized network
where all nodes have converged to 7, remains within 7. Since the network is synchronized,
all nodes either time out or get interrupted by a timed out adjacent node within 7. For the
worst case analysis, when the fastest node reaches P, times out and transmits a new Sync
message, the slowest node is at P - 7. If the slowest node is adjacent to the fastest node, it
gets interrupted within the next y. If the slowest node is farthest away from the fastest node,
it times out within 7. If the slowest node gets interrupted before reaching P, by the protocol
(part E1, E2), it sets its LocalTimer while accounting for the message arrival delay, i.e.,
LocalTimer = y. For the worst case analysis of the liveness property, the slowest node is
adjacent to the fastest node. Since the network is in synchrony, the slowest node will not get
interrupted again until a fastest node times out within the next P. Therefore, the slowest node
sequentially takes on all integer values in [y, P - #]. The fastest node, however, sequentially
takes on all integer values in [0, P]. Furthermore, upon convergence this process repeats
during every P time interval and after every resynchronization process. Thus, for all # > C,
all nodes sequentially take on at least all integer values in [y, P - «]. [
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5. Conclusions

In this report, we presented a deductive proof of the correctness of a self-stabilizing distributed
clock synchronization protocol that is focused on the distributed synchronization of an arbitrary,
fault-free, and non-partitioned digraph ranging from fully connected to 1-connected networks of
nodes while allowing for differences in the network elements. We presented a deductive proof
of the correctness of the protocol as it applies to the networks with unidirectional and
bidirectional links. We also confirmed the claims of determinism and linear convergence. This
protocol does not rely on assumptions about the initial state of the system and no central clock or
centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not
have unique identities. There is no theoretical limit on the maximum number of participating
nodes. The only constraint on the behavior of the node is that the interactions with other nodes
are restricted to defined links and interfaces.

We have shown and proven how to synchronize an arbitrary digraph in the absence of faults.
This effort brought up the following questions. Can an arbitrary digraph be synchronized in the
presence of faults? What types of faults can an arbitrary digraph tolerate? Looking at the
problem from a different perspective, if the faults are symmetric, what types of graphs can
synchronize in their presence? What if the faults are asymmetric (Byzantine), what types of
graphs can synchronize in their presence?
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Appendix A. Symbols

The symbols used in the protocol are described in detail in [Malekpour 2010] and are listed here

for reference.

Symbols Descriptions

K sum of all nodes

T network topology

D event-response delay

d network imprecision

P bounded drift rate with respect to real time

P self-stabilization/synchronization period

F sum of all faulty nodes

N; the i™ node

M, the i™ monitor of a node

y communication latency

L the largest loop in the graph

w the width or diameter of the graph

Ts graph threshold

T the guaranteed self-stabilization/synchronization precision

C convergence time

Chiis time of initial synchrony

LocalTimer  node’s local logical clock

Ajj precision between LocalTimers of any two adjacent nodes N; and N,
Apie initial precision among LocalTimers of all nodes immediately after a

A[nitGuaranteed

o(t)
Sync

ANet(t)

resynchronization process

initial guaranteed precision among LocalTimers of all nodes immediately after a
resynchronization process

drift per ¢

self-stabilization/synchronization message

precision among LocalTimers of all nodes at time ¢
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