Predicting the Performance of Edge Seal Materials for PV

National Renewable Energy Laboratory – Photovoltaic Module Reliability Workshop

NREL-PVMRW

Michael Kempe
Dhananjay Panchagade
Arrelaine Dameron
Matthew Reese

March 1, 2012

NREL/PR-5200-54582
Edge Seals - Introduction

• Many PV technologies are sensitive to moisture. Even with impermeable front- and back-sheets, moisture can penetrate from the sides. Edge seals are incorporated around the perimeter to prevent this ingress.

• Here we use a Ca-based method to evaluate the moisture ingress time for edge seal materials.

• Then we use this data to model the performance when deployed outdoors.
Outline

• Ca film method for moisture ingress determination.

• Finite element modeling of moisture ingress.

• Investigation of failure modes.
 – Edge Pinch
 – UV Light
 – Heat and Humidity
Test Sample Designed to Mimic Module Edge

Module Edge

Test Sample

Ca + 2 H₂O → Ca(OH)₂ + H₂
Oxidation of Ca Indicates Moisture Ingress

\[Ca + 2 \text{H}_2\text{O} \rightarrow Ca(\text{OH})_2 + \text{H}_2 \]

Mirror-Like \rightarrow Transparent
Moisture Ingress Varies Greatly in Encapsulants

PDMS

Exposed to 85°C and 85% RH

- 0 h
- 1.5 h
- 3 h
- 4.5 h

Ionomer #1

- 0 h
- 67 h
- 240 h
- 652 h
Polyisobutylene Edge Seals Slow Ingress

PIB #1

Exposed to 85°C and 85% RH

0 h 163 h 652 h 1230 h

50 mm

PIB #2

0 h 1490 h 2780 h 4664 h

50 mm

Delaminations

Reactions
Moisture Ingress Rate Governed by Diffusion

\[\frac{\partial C}{\partial t} = \nabla(D \nabla C) \]

EVA Exposed to 85C/85% RH

\[X = K \sqrt{t} \]
Moisture Ingress Rate Governed by Diffusion

\[
\frac{\partial C}{\partial t} = \nabla(D \nabla C)
\]

\[
C_{m,n}^{P+1} = \frac{D \Delta t}{(\Delta X)^2} \left(C_{m+1,n}^P + C_{m-1,n}^P + C_{m,n+1}^P + C_{m,n-1}^P \right) + \left[1 - 4 \frac{D \Delta t}{(\Delta X)^2} \right] C_{m,n}^P - \text{(Calcium)}
\]
Permeation Measured at Low RH

![Graph showing permeation rates at different RH levels for PIB #1 and PIB #2 at 85°C and 45°C](image)

- **K (cm/h^{1/2})**
- **% RH**

- PIB #1, 85°C
- PIB #2, 85°C
- PIB #1, 45°C
- PIB #2, 45°C
Low RH Measurements Reduce Extrapolation Errors

Bangkok Thailand RH and Temperature for outside of a Glass/Glass Rack Mounted Module
Edge Seal Modeling

- The use of fillers, pigments, and desiccants makes the determination of modeling parameters much more difficult.

\[S_m = S_o e^{-\frac{E_a_s}{kT}} \frac{RH\%}{100\%} \]

Mobile phase water absorption is split between the polymer matrix and the mineral components. Assume linearity with relative humidity.

\[D_{eff} = D_o e^{-\frac{E_a_D}{kT}} \]

Mobile phase water diffusivity is an effective diffusivity. This accounts for a rapid equilibration between adsorbed and dissolved water.

\[R_{H_2O} \]

A non-reversible reaction with water that immobilizes the water.
Getting the Modeling Parameters

\(R_{H_2O} \)

Measured by weighing samples before humidity exposure, after humidity exposure, and after drying.

\(S_o, Ea_S \)

Measured by exposing to controlled humidity then drying in a TGA to determine moisture loss.

Curvature of K vs %RH is determined by the ratio of S to \(R_{H_2O} \)

\(D_o, Ea_D \)

Estimate from other parameters and fit to Ca data. Specifically the difference between 45 and 85°C curves.
Ingress Estimated Using Finite Element Analysis

Denver Colorado

\[X = K \sqrt{t} \]

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.
Square Root Relation Works to Longer Times

\[X = K \sqrt{t} \]

Denver Colorado

Used TMY3 Data and Temperature estimates similar to King et al, and Kurtz et al.
Preliminary Results for Different Climates

<table>
<thead>
<tr>
<th>$D_o (cm^2/s)$=</th>
<th>0.33</th>
<th>K</th>
<th>20 yr required width</th>
<th>20 yr equivalent at 85°C/85% RH</th>
<th>20 yr equivalent at 45°C/85% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_a (kJ/mol)$=</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S_o (g/cm^3)$=</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$E_{a_s} (kJ/mol)$=</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Ca absorption (g/cm³)=</td>
<td>0.047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENVER/CENTENNIAL [GOLDEN - NREL]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00087</td>
<td>0.45</td>
<td>623</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00089</td>
<td>0.45</td>
<td>630</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00098</td>
<td>0.46</td>
<td>661</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00103</td>
<td>0.47</td>
<td>676</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>RIYADH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00102</td>
<td>0.48</td>
<td>712</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00104</td>
<td>0.48</td>
<td>721</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00117</td>
<td>0.50</td>
<td>765</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00124</td>
<td>0.50</td>
<td>787</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>MUNICH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00096</td>
<td>0.50</td>
<td>761</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00097</td>
<td>0.50</td>
<td>767</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00103</td>
<td>0.51</td>
<td>795</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00107</td>
<td>0.51</td>
<td>808</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>PHOENIX SKY HARBOR INTLAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00128</td>
<td>0.58</td>
<td>1035</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00131</td>
<td>0.58</td>
<td>1048</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00145</td>
<td>0.60</td>
<td>1113</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00153</td>
<td>0.61</td>
<td>1145</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>MIAMI INTLAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00199</td>
<td>0.87</td>
<td>2332</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00202</td>
<td>0.87</td>
<td>2361</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00218</td>
<td>0.90</td>
<td>2490</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00225</td>
<td>0.91</td>
<td>2555</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>BANGKOK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Rack, Glass/Polymer</td>
<td>0.00228</td>
<td>0.98</td>
<td>2980</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>Open Rack, glass/glass</td>
<td>0.00232</td>
<td>0.99</td>
<td>3015</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Close Roof, Glass/Glass</td>
<td>0.00249</td>
<td>1.02</td>
<td>3182</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Insulated Back, Glass/Polymer</td>
<td>0.00258</td>
<td>1.03</td>
<td>3261</td>
<td>7.5</td>
<td></td>
</tr>
</tbody>
</table>

A sensitivity analysis gave about ±15% on K and Width, and ±30% on 20 yr equivalent time.
Edge Seal Failure Modes and Stresses

- Heat.
- Humidity (85°C/85% RH).
- Adhesion to edge delete region.
- UV Light.
- Edge Pinch
Laser Edge Delete Did Not Increase Ingress

Distance (cm)

Time (h)

Edge Deleted Sides

Non-Deleted Sides

1

0.1

10

100

1000

10000

10000
Edge-Seals May Have Edge Pinch

Schematic side views of module edge

Idea Edge Profile
(no bend in glass at the module perimeter)

Edge Pinch
(lamination pressure cause the glass to bend around the perimeter)
Edge Seal Test Specimen

Schematic side view of test sample

- Glass (3.18 mm)
- Ca film (100 nm)
- Edge Seal
- Glass (3.18 mm)

Photographic top view

- 0.5 mm thick polymer
- 0.2 mm thick polymer
- 0.30 mm of edge pinch

Dimensions:
- 50 mm
- 100 mm
Only small signs of minor delamination on ends exposed to tensile stress. Edge pinch is 0.31 ± 0.01 mm for all exposures.
UV Light Can Delaminate Edge Seals With Pinch

No Exposure
0.32±0.01 mm pinch

165 h
60°C/60% RH/ 2.5 UV Suns
0.02±0.01 mm pinch

621 h
60°C/60% RH/2.5 UV Suns
0.02±0.01 mm pinch
UV Light Can Delaminate Edge Seals With Pinch

No Exposure
0.32±0.01 mm pinch

165 h
60°C/60% RH/ 2.5 UV Suns
0.02±0.01 mm pinch

621 h
60°C/60% RH/ 2.5 UV Suns
0.02±0.01 mm pinch

Light exposure on non-Ca film backside. Very significant delamination on ends exposed to tensile stress.
UV Light Alone is Much Less Damaging

Unexposed

1962 h 60°C/60%RH/2.5 UV suns

PIB #1

PIB #2
• Under IEC TC82 WG2 a group has formed to work on developing standard test methods for testing PV packaging materials.
 – Encapsulants
 – Back Sheets and Front Sheets
 – Adhesives
 – Edge Seals/Pottants

• If you would like to help with the edge seal standards development, please contact me.
What edge seal parameters are important?

1. **Adhesion is the most important parameter.**
 a) Must be maintained after environmental exposure.
 b) Residual stress in glass will affect adhesion.
 c) Material may expand as it absorbs water.
 d) Good surface preparation is necessary.

2. **Breakthrough time is the next most important.**
 a) The 12 mm edge delete perimeter should be wide enough to keep moisture out.

3. **Module mounting configuration is not important.**
 a) Hotter installations tend to dry out the module partially counteracting the effects of increased diffusivity.

4. **The steady state transmission is less important.**
 a) The amount of permeate is very low.
 b) Ideally one will not reach steady state.
Conclusions

• An edge seal width of 1 cm can be capable of keeping moisture out for 20 years in almost any climate.

• Delamination is the main concern for edge seal performance.

• Edge Seals should be assembled without edge pinch to ensure good adhesion.
Acknowledgements

Sarah Kurtz
John Wohlgemuth
David Miller
Joshua Martin

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.