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ABSTRACT

Kipp, Carl R. MSME., Purdue University, August 1985.
Prediction of Sound Fields in Acoustical Cavities Using
the Boundary Element Method. Major Professor: R. J.
Bernha:d, School of Mechanical Engineering

A method is developed to predict sound fields 1in
acoustical cavities. The method is based on the indirect
boundary element method. An isoparametric quadratic boun-
dary element is incorporated. Using this method, either
pressure, velocity and/or impedance boundary conditions

may be applied to a cavity. The capability to include

acoustic point sources within the cavity is impiemented.

The method is applied to the prediction of sound
fields in spherical and rectangular cavities. All three
boundary condition types are verified. Cases having a
roint source within the cavity domain are also studied.
Numerically-determined cavity pressure distributions and
responses are preserited. The numerical results correlate

well with available analytical results.
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CHAPTER 1

INTRODUCT ION

Sound fields in cavities affect many aspects of

everyday life. It is well known that distribution of -

sound in an interior work environment can markedly influ-
ence the performance of those working within that environ-
ment. Most modern modes of transportation place the trav-
eler in some form of cavity. The perceived comfort level
of the traveler may again be influenced by the acoustical
characteristics of the transporting cavity. Consequently,
noise control engineers in the architectural and transpor-
tation industries become involved in optimizing acoustical
cavities so as to minimize the possible negative effects

on persons residing within those structures.
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Computer aided design (CAD) procedures are very bene-
ficial to individuals participating in noise control
activities. Using CAD procedures, the acoustic charac-
teristics of a cavity can be determined analytically, usu-
ally with 1less time and expense than required for
experimentally-based technigques. Noise source identifica-
tion can be accomplished with computerized modeling tech-
niques. In addition, CAD procedures can readily be applied
in optimizing the acoustical characteristics of a cavity

after the noise sources have been identified.

The objective for the research presented here is the
Aevelopment of a numerical tool based on boundary element
theory to predict the sound field within an acoustical
cavity. The theory incorporates an indirect boundary ele-
ment method utilizing isoparametric gquadratic boundary
elements. In addition to the usual boundary conditions of
acoustic pressure and velocity, impedance boundary condi-
tions are also formulated and implemented. Furthermore,
capability to model acoustical point sources within the
cavity domain is included. With all of the aforementioned
features, the computer program developed during this
research will provide a very useful tool for noise control

activities.

The content of this thesis is organized in the fol-

lowing manner. Chapter 2 contains an extensive literature
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review on numerical predictions of sound fields. The
theoretical background of the indirect boundary element
method for acoustics is presented in chapter 3. Numerical
implementation of the indirect boundary element theory is
presented in chapter 4. Chapter 5 presents case studies
completed through the use of the computer program result-
ing from this research. Concluding remarks are given 1in

chapter 6.
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CHAPTER 2

LITERATURE REVIEW

Many researchers have been investigating techniques
for numerical prediction of acoustic fields. Consequently,
a significant body of technical and academic 1literature
has been published. In contrast to numerical techniques
developed for specific problems, such as Green's function
methods and series solutions, the emphasis in this work
will be generalized techniques. Such techniques are versa-
tile "and powerful and will someday play an important role
in computer-aided noise control design. This chapter
presents a review of the literature applicable to tbe
numerical prediction of sound fields in acoustical cavi-
ties using generalized techniques. Two methods are used
primarily, the finite element method and the boundary ele-
ment method. The existing applications of each will be

discussed.
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2.1 Einite Element Methods in Cavity Acoustics

. The finite element method is the most widely-known
numer ical tool available for engineering analysis of com-
plex stzuctures; A recent survey of finite element tech-
nology [l] contains a list of 155 textbooks and monographs
relating to finite element technology. This list does not
inclnde the numerous journal articles relating to the
topic. It is obvious from the survey that the finite ele-
ment methced (FEM) is now firmly rooted in various fields

of engineering analysis.

In acoustics, the finite element method is an esta-
blished analytical tool. Most commercially-available fin-
ite element codes (e.g., NASTRAN, ANSYS, SAP 1IV) are
designed to be flexible, thereby providing the ability to
solve various classes of problems. With an understanding
of the specific code being utilized and the necessary
acoustical fundamentals, a finite element code may be used

to solve acoustical problems as shown by Bernhard [2].

The majority of finite element acoustical studies can
be classified into two primary categories based on the
application. These two categories are (1) duct acoustics

and (2) cavity acoustics for automotive applications.

R

S e



5, PRI, UR G NN L B S S

2.1.1 Dyct Acoustics

A common analytical method used to analyze acousti-
cal duct systems is four-pole network theory. In four-
pole network theory, a transmission matrix can be used to
define the relationships between the input and output
variables of acoustic pressure and particle velocity for
an acoustic device (e.g., a pipe, an expansion chamber, a
Helmholtz resonator). The sound attenuation or transmis-
sion loss of a device may be determined using the
transmission matrix. The transmission characteristics of
an acoustical system comprised of a series of well-defined
devices can be found by combinrning the respective transmis-

sion matrices.

Young and Crocker {3] employed the finite element
method to determine the four-pole parameters of transmis-
sion matrices for expansion chambers. Since the initial
studies were for simple expansion chambers, two-
dimeﬁsional, four-node rectangular elements were used.
Each element had twelve degrees-of-freedom : a pressure
and fwo pressure gradients, one in each coordinate direc-
tion, at each of the nodes. Utilizing fourth-order Hermi-
tian shape functions, the transmission loss of a rigid-
wall expansion chamber was numerically evaluated and found
to correlate well with theoretical results. The chamber

was driven at the inlet with a harmonic velocity and



terminated at the outlet first with a rigid-wall boundary
condition and then with a pressure release boundary condi-

tion.

As an extension of this work, Young and Crocker stu-
died complicated muffler systems having multiple chambers
[4]. Furthermore, the effects of non-rigid walls were
included. Numerically, a multiple chamber system is
assimilated by the cascade connection of the transmission
matrices for the individual components. For a more com-
plex system, the finite element method was well-suited for
determining the four-pole parameters of the individual
components to be used in calculating the transmission loss

for the total system.

Astley and Eversman examined acoustical propagation
abcve the cut-off frequencies in ducts in terms of the
eigenvalue problem [5]. The research included the effects
of steady mean flow or sheared flow within the duct. Capa-
bility was incorporated to study lined ducts by consider-
ing wall admittance. Two types of elements were con-
sidered. The primary element was a three-node element
with quadratic shape functions. The variables in the for-
mulation were the perturbed velocities in the x and y
directions and the perturbed pressure. With the primary
element, extraneous eigenvalues were found to result at

relatively high frequencies. It was felt that the
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extraneous eigenvalues were due to slope discontinuities
in the quadratic shape functions. To overcome this diffi-
culty, two-node elements incorporacing shape functions
having slope continuity were considered. The extraneous
eigenvalues were eliminated although the solution accuracy
was reduced at the higher eigenvalues. The finite element
method proved to be applicable to the solution of an

eigenvalue problem for ducts.

In addition to wusing acoustical finite elements,
Craggs studied tne use of absorptive finite elements for
acoustical applications [6]. The 1implicit advantage of
absorptive elements is that extended reaction of linings
can be included. Most techniques supply the lining admit-
tance as a boundary condition thereby only allowing for
local reaction of the lining. Using the absorptive ele-
ments, the absorption coefficients for various resistivi-
ties of a constant thickness material were determined and
found to compare quite well with analytical results. The
acoustic and absorption finite elements were also coupled
to study a lined expansion chamber. The transmission loss
of the chamber as a function of 1lining resistivity was
determined. Results for the lined expansion chamber would
be very difficult to determine analytically. Thus, the

advantage of the absorption finite element is evident.



AR L

The finite element method may also be used to examine
the sound field within a duct as was shown by Cederfeldt
[7]. Towards that objective, Cederfeldt studied a right-
angle bend, a 1lined rectangular duct and an expansion
chamber. The models were two-dimensional and comprised of
four-node quadrilateral acoustic elements. Contour maps
of the sound fields within the structures were presented.
A variation of the right-angle bend created by adding a
lining on the exterior corner provided quite a different
sound field as compared to the bend without the lining.
Even with the somewhat simplistic elements, dramatic

representations of the sound fields were obtained.

A more sophisticated element was used by Ling, Hamil-
ton and Allen to determine the sound field in axisymmetric
ducts [8]. The element was a two-dimensional, iso-
parametric, axisymmetric element with cubic polynomials as
the shape functions. With this element, the sound field in
a bottle-like duct was determined numerically and compared
with one-dimensional theoretical results and experimental
measurements. Two types of lined ducts were also studied:
(1) a duct with segmented 1lining (i.e., hard wall and
impedance boundary conditions on different segments) and
(2) a duct with an exponential distribution of absorbent
material along its length. Both of the above lining condi-
tions produce a pressure distribution within the duct

which is difficult to obtain analytically but, as shown by

s
et &)
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thase rescarchers, can be obtained with the finite element

method.

Whereas Ling, Hamilton and Allen used an iso-
parametric element, Doyle and Faulkner applied a sub-
parametric element for acoustic pressure analysis [9]. The
geomet¢y variation within the e¢iement was linear while the
pressure variation was made to be cubic under the philoso-
phy that the subparametric element would be more computa-
tionally efficient than an isoparametric element. At each
grid point, the four independent variables of pressure and
the pressure gradient in each of the three orthogonal
coordinate directions were used. An additional feature
highlighted in this research is the ability to assign dif-
ferent fluid densities and speeds of sound at any grid
point. With the method as described above, the eigenvalue
problem for a uniform hard-walled duct was solved to find
both the natural frequencies and the mode shapes of the
duct.- A second type of problem was analyzed where a har-
monic velocity was assigned to one wall of the duct. The
pressures in the duct were determined feor a hard-walled
case and cases with acoustic impedances on one or more

walls.

2.1.2 Cavity Acoustics for Automotive Applications

Cavity acoustics problems for automotive applica-

tions are generally more complex than those for duct
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acoustics problems. The geometry of the structures are not
simple rectangular or cylindrical shapes. In addition, the
intoiior of the cavity may contain obstacles affecting the
sound field. Forcing functions can not normally be defined
with ease when forced response problems are considered.
For these reasons, the research presented below has been
separated from the duct acoustics research presented in

the previous section.

Craggs studied the sound field in a passenger car
cavity when the cavity is coupled to the engine compart-
merit through a flexible boundary [10]. The boundary
motion was formulated in terms of tne normal modes of the
enclosure. The governing equations for a single enclosure
with a flexible boundary and the structural coupling
between two enclosures were developed. An example of a
passenger car compartment coupled through a flexible boun-
dary with the engine enclosure was then studied using the
numerical formulation. The model could be used to study
the sound field induced within the cavity due to an exci-
tation within the’ engine compartment. From the results,
some generalizations were made regarding the situations in
which the passenger cavity either was or was not greatly

inf luenced by the excitation in the engine compartment.

Sung studied finite element applications to the

acoustics of a passenger car compartment and an engine
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combustion chamber [l11]). The NASTRAN finite element code
was used for both cases. Three-dimensional models of the
passenger compartment were constructed for two cases: (1)
a compartment with a bench seat and (2) a compartment
with bucket seats. The resonant frequencies of the cavi-
ties were determined and the corresponding mode shapes
presented with an acoustic isobar representation. Inclu-
sion of the seat in the model provided a more realistic
situation than a model without the seat. For the combus-
tion chamber model, a piston head with an asymmetric bowl
was included in the chamber model. Again, the resonant
cavity frequencies and mode shapes were determined from
the finite element model. These rescnant frequencies were
compared with oxperimentally determined resonant frequen-
cies and found to have good agreement. The final observa-
tion was that the acoustic finite element models were suc-
cessful in predicting cavity boom frequencies in passengsr
compartments and knock-induced frequencies in a combustion

chamber.

In conjunction with their work 1in duct acoustics,
Doyle. and Faulkner extended the research by studying the
sound field in an automobile interior [9]. The first ana-
lyses performed were similar to those done by Sung [1ll] in
that the resonant frequencies and mode shapes were quanti-
fied. However, more interesting results were obtained for

a forced response problem. Experimentally determined
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pressures at a sun roof opening were supplied to the fin-
ite element model as the forcing function. The acoustic
field produced by the forced model was comparesd with a
discrste number of points at which experimental data had
been collected. Although the numerical presssures were
slightiy less than the experimental pressures, there was

good correspondence between the two sets of data.

The above-cited xeferences exemplify the types of

acoustic cavity problems which may be studied with finits
element techniques. Morecver, they indicate the popular-
ity of finite element acoustics. The following section
presents acoustical applications of the Bouvndary Element

Method. Although not yet as popular as finite element

techniques, boundary element techniques share many of the.

attractive features of the finite element method and are

probably better adapted to certain problems.

2.2 PBoundary Element Acoustics

There are two basic classifications of Boundary Ele-
ment Methods: (1) Direct 3oundary Element Methods (DBEM)
and (2) Indirect Boundary Element Methods (IBEM). The dis-
tinction between the two methods must be made at this
point for clarification of the following discussion. For
the current project, an IBEM formulation is utilized as

will be shown in Chapter 3.

.

R _BERY
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The difference between the two classificatiins is
evident in the integral equations. For the DBEM, “"the unk-
nown functions appearing in the integral equations are the
actual physical variaoles of the problem®™ [12]. The physi-
cal variables for an acoustics formulation are the acouva-
tic pressure and the particle velocity. A general form of

+the DBEM intecral equation is

p(e) = f[p*(;,Z)V(;) - p(;)v*(;.?)]ds
B
+ fo (X, £)¥(x)dD (2.1)
D

where p(z) is the pressure at any point, p(;) is the pres-
sure at a boundary point, v(;) is the normal velocity at a
bsundary point, p‘(;,z) and v‘(;,z) are the respective
fundamental pressure and velocity functione from a boun-

dary point to any point and 7(2) represents applied source

strengths over the domain of the problem.

The formulation for an IBEM is significantly d4if-

ferent from that for a DBEM. For the IBEM,

*"The integral equations are expressed entirely in
texms of a unit singular solution of the original
differential equations distributed over the boun-
duries of the region of interest. The density func-
tions themselves have no specific physical signifi-
cance tut once they have been obtained from a numeri-
cal solution of the integral equations the values of
the solution parameters anywhere within the body can
be calculated from them by simple integration
processes."[12]

Or, in other words, the hocandary is replaced by a distri-

bution of s8sources which reproduce the specified boundary
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solution and allow computation of the physical variables
anywhere in the problem domain or boundary. Separate
egquations are required for portions of the boundary
depending upon the specified boundary conditions on the
particular portion of the boundary. The general form of
the IBEM integral equation for a pressure poundary condi-

tion is
- . [ X — — -—
p(¢) = £0(x)p (x,£)dB + £p (x,€)¥(x)dD (2.2a)

whereas the general equation for a velocity boundary con-

dition is

- —_ —_ P — - —
v(€) = *co(x) + IO(X)V (x,€)dB + fv*(x,f)f(x)dD(Z.Zb)
B D

where 0(;) represents the fictitious source density func-
tions at the boundary points and c represents an integra-
tion constant due to integral singularities which will be

further explained in chapter 3.

Although the details of the two formulations are not

critical at this point, an understanding of the existence

of differing formulations is important. Some of the fol- .

lowing reviewed works use a DBEM while others use an IBEM.

This point will be emphasized within each review.

e
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2.2.1 Investigations of Fxterior Acoustical Problema

Most of the boundary element research heretofore
published has dealt with the acoustic field of a domain
exterior to a vibrating or scattering structure. Pri-
marily, this is a consequence of the capability of boun-
dary element methods to model domains extending to infin-
ity, a task not easily accomplished with finite element
models. However, the integral formulations of interior
regions are nearly equivalent to those for exterior
regions. Hence, much of the development for exterior
regions may be extrapolated to developments for interior

regions.

Chen and Schweikert [13] were the earliest contem-
porary researchers to apply boundary element technigues to
acoustic radiation problems. A numerical implementation of
Huygen's principle, which is eeaent%ally a primal IBEM
formulation, was utilized whereby a dist}&pution of simple
sources was 1imagined over the bounding su;face. The sur-
face itself was considered to be an array of triangular
elements over which a uniform velocity with a conataht
phase angle was prescribed on each element. Each element
was analogous to a rigid piston vibrating with a constant
harmonic behavior. After defining a model by its geometry
and boundary conditions, the boundary integral equations

were numerically evaluated to calculate the simple source

e AR ’
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distribution over the model boundary. The field pressurss
were quantified from the source distribution on the boun-
darf. Two examples were given. The first example consisted
of a piston in a rigid sphere for which the exterior field
pressure radiation pattern was calculated. Likewise, simi-
lar exterior pressure patterns were determined for a stif-
fened cylindsr immersed in water. The fluid-structure

interface effects were included for the second example.

A DBEM was incorporated intc a study of acoustic
radiation from surfaces of revolution by Chertock [14].
The variables in the 1integral equations for a DBEM
represent the acoustic pressure and particle velocity. So
by specifying one type of boundary condition, the remain-
ing unknown boundary condition may be determined with the
Helmholtz integral equations. Furthermore, the field pres-
sures can be calculated based on the boundary parameters.
Chertock used this procedure to numerically evaluate the
surface pressures and field pressures from the velocity
boundary conditions‘for rigid-body vibration of a sphere,
quadrapole vibration of a prolate spheroid (i.e., a
cigar-shaped surface) and quadrapole vibration of an
axisymmetric surface which was unsymmetric about all axes
except the major axis. Surfaces of revolution were stu-
died because theoretical results may be obtained for com-

parison with numerical results. Good correlation was found
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between the numerical and theoretical solutions for the

cases in gquestion.

Copley [15] also applied a DBEM to the study of
acoustic radiation from axisymmetric radiators. However,
Copley [15] used an approach which differed from that of
Chertock [14]. Copley utilized the Interior Helmholtz
integral equation whereas Chertock utilized the Surface
Helmholtz integral equation. In the interior Helmholtz
integral approach, the field points of integration lie
within the bourdary of the vibrating body and, in fact,
are located along the axis of symmetry for axismmetric
radiators. The corresponding field points 1lie on the
boundary in the surface Helmholtz integral approach.
Hence, the ajzpropriate titles of each approach refer to
the location of the field integration points. Using the
Interior Helmholtz integral equation, the acoustic radia-
tion from a spheroid and a finite cylinder with a capped
end were studied. The farfield directivity pattern of the
finite cylinder was compared to results obtained by Willi-
ams, et.al. using a method based on expansion in spheri-
cal h;rmonica [16]. ‘ Generally, the results correlated
well with the exception of some discrepancy which was
thecught to be due to differences in which the velocity

distributions were prescribed.
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Taking a more general point of view, Copley (17] also
studied failures which occur with integral formulations
for acoustic radiation problems. At certain fregquencies,
the integral formulations are unable to represent the
steady-state harmonic radiation from a finite, smooth,
closed surface on which normal velocity is prescribed.
These failures occur at the interior Dirichlet eigenfre-
quencies for both the IBEM and the Surface Helmholtz
integral equation which is a DBEM. Copley [17] presented
proofs that the failures were due to nonexistence of
sources for the IBEM and as nonuniqueness of sources and
doublets for the Surface Helmholtz integral equation. The

failures are inherent in the formulations and do not

represent physical attributes of the problem. However, .

the Interior Helmholtz integral formulation used by Copley

[15] does not suffer from these failures.

Proofs similar to those of Copley [l17] were presented
by Burton and Miller [18]. Moreover, suggestions to over-
come the failures were made. One alternative consisted of
overdetermining the system of egquations by using both the
Surface Helmholtz integral equations and its differen-
tiated form. The second but more economical alternative
was to combine the two types of equations into a single
set of equations which would not overdetermine the system.
No computational examples were provided for these

approaches.

ﬁ§ it sk
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A combined Helmholtz intagral equation formulation
was developed by Schenck [19] to overcome the deficiencies
of the above mentioned formulations. The technique ini-
tially applyed the Surface Helmholtz integral equations
and then overdetermined the system of equations with the
Interior Helmholtz integral equations. The overdetermined
set of equations was solved by a least squares orthonor-
malizing procedure to evaluate the surface pressures. From
the surface pressures, the field pressures were calculated
with the Helmholtz integral equation. Essentially, the
described procedure is a DBEM as all the equations are of
the direct formulation type. A number of numerical exam-
ples were presented for the combined Helmholtz integral
equation formulation of which only three will be dis-
cussed. The first example is a uniformly vibrating sphere.
The problem 1illustrates the advantage of the combined
equation formulation. At a characteristic wave number, the
Surface Helmholtz integral equations fail to yield the
correct surface pressure. However, the combined Helmholtz
integral formulation was capable of correctly solving for
the surface pressure on the sphere by specifying only one
point within the sphere. A second example of a right cir-
cular cylinder with rigid ends on which velocity boundary
conditions were prescribed was studied. The resulting far-
field pressure pattern was found to be consistent with

that obtained by Chertock {14] but inconsistent with that
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obtained by Williams, et.al. [16]). As a variation on this
model, the velocity distribution was revised to reflect
the velocities that would occur at the boundary if a
source were at the center of the cylinder and the cylinder
was not physically present. The acoustic pressure radia-
tion pattern was equivalent to a pattern for a simple
source as was expected. A rectangular parallelepiped was
the third model considered. Again, the velocity distribu-
tion due to a simple source was assigned on the boundary.
The resulting radiation pattern was the expected simple
source radiation pattern. For both of the latter cases,
the Surface Helmholtz integral equation without the inte-

rior points failed at the characteristic wave numbers.

The concept of overdetermination of the system equa-
tions was also addressed by Paiszczyk and Klosner [20].
Th; overdetermining equations were developed with the
Exterior Helmholtz integral equations unlike Schenck's
research which used the Interior Helmholtz integral equa-
tions for the overdetermination [19]. An iterative pro-
cedure is required in the method proposed by Piaszczyk and
Klosner ([20]). At the surface, an approximate acoustic
fluid impedance was assumed. The Exterior Helmholtz
integral equations were used to solve for approximate
pressures at selected field points. The approximate field

pressures were then applied in conjunction with the Exte-

rior and Surface Helmholtz integrals to solve for the
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surface pressures. A least squares proced&te was required
to calculate the surface pressures. The surface pressures
were then substituted into the overdetermined set of equa-
tions to solve for the field pressures which were con-
sidered to be the next iterative value of the field pres-
sures. The entire iterative process continued until a con-
vergence was established. For this exterior overdetermina-
tion scheme, the selection of the overdetermining points
is not «critical due to its iterative nature. Thus, the
scheme may be applied without loss of generality to struc-
tures of arbitrary shape. A number of computat.onal exam-
ples were presented displaying the versatility and accu-

racy of the exterior overdetermination method.

The research of Schenck [19] was used in combination
with finite element analysis to study acoustic radiation
from sonar transducers by Smith, Hunt and Barach [21].
Although the combined Helmholtz integral equation formula-
tion ;aa applied, only the Surface Helmholtz integral
equations were utilized in the sonar transducer study. A
specific acoustic impedance matrix was derived with the
integral equations. Definition of consistent mass and
stiffness matrices for the complex structures came from
the finite element analysis. The total structural-
acoustical system of equations combined the mass and
stiffness matrices with the acoustic loading included as

surface loading forces. Finally, the pressure radiation
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patterns were determined using the results of the
structural-acoustical analysis and the Helmholtz integral
equ#tions to evaluate the pressures at points in the field
surrounding the transducer. Numerical results for a
piezoelectric sphere and a piezoelectric free-flooded
cylinder were compared with experimental results and found
to agree within 5 per cent. Some of the error was attri-
buted to the piezoelectric nature of the material in the

transducers.

Engblom and Nelson [22] expanded upon the work of
Smith, Hunt and Barach [21] by the addition of two
features. The first additional feature involved allowing
quadratic variation of the acoustic variables and linear
variation of the geometrical variables over the surface of
an element. Prior to this work.- a constant variation of
the acoustic variables had been assumed. In doing sc,
discontinuities of acoustic variables may arise at the
boundary of neighboring elements. A quadratic variation
ensures that the acoustic variables become continuous at
the element boundarres. The second feature added was a
coordinate transformation used to integrate around the
singularity which exists in the Helmholtz integral formu-
lations. 8Since the elements were triangular. the coord:--
nate transformation involved a change from area coordi-
nates to polar coordinates. In doing so, the singularity

was removed thus allowing the integration to be completed
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without the singularity complications. The common examples
of acoustic radiation from a sphore and a right circular

cylinder were numerically evaluated with good results.

Unlike the approach originally developed by Schenck
[19] to overcome the difficulty of nonuniqueness, Meyer,
Bell, Zinn and Stallybrass [23] implemented an approach
suggested by Burton and Miller {18]. That is, the system
of equations consisted of the Surface Helmholtz integzal
equation and its differentiated form, both of which were
direct formulations. The system of equations was not an
overdetermined set DLut a combination ot the two types of
integral equations. A difficulty arose in that the d4dif-
ferentiated form of the Surface Helmholtz integral equa-
tion contained a strong singularity which c¢ould not be
directly numerically integrated. Nevertheless, the authors
proved through r:ijorous mathematics and computational con-
siderations that the integration was possible. For an
example of a piston set in a rigid sphere, the error for
the numerical farfield pressures remained less than 10 per

cent as compared with exact analytical solutions.

One further refinement of the DBEM for acoustic radi-
ation problems was achieved by Seybert, Soenarko, Rizzo
and Shippy [24]. The authors provided further sophistica-
tion in the discretization process through the use of an

isoparametric element. With the isoparametric element,
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both the geometry and the acoustic variables were int.erpo-
lated with gquadratic shape functions. Although not immedi-
ately apparent, the isoparametric element is somewhat more
refined then the element used by Engblom and Nelson [22]
which used a linear geometrical variaticn. Consequently,
efficiency and accuracy were increased as less elements
were required to model curved or other irregular surfaces.
To illustrate the isoparametric element capability, the
examples of a pulsating sphere and an oscillating sphere
were considered and found to compare well with theoretical
results except at the characteristic wavenumbers. The
nonuniqueness of the formulation was not accounted for by

these authors.

The preceding reviews in this section represent the
advances which have occurred in bour.dary element technol-
ogy for exterior domain acoustics, particularly for radia-
tion problems. Many of the same authors have also studied
scattering problems. Thus far, the theoretical implica-
tions have been discussed. The remaining portion of this
section will review applications of the aforemertioned

theory to somewhat more complicated problems.

A DBEM has been used by Seznec [25] tou study the dif-
fraction of sound around barriers. The barricrs were any
general type or shape used for noise ubatement (e.g., a

barrier around a roadway to hinder traffic noise). The
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capability to include reflectivity and absorptivity
effects of both the ground and the barrier was achieved
through the application of impedance‘ boundary conditions
on the surfaces. Prior to the work of Seznec, researchers
had been unable to adequately account for the reflectivity
and absorptivity effects. The diffraction of sound around
barriers of various shapes were determined. For one bar-
rier, that of a infinitely thin reflecting barrier, the
numerical solution was favorably compared with solutions
already existent in the literature. Overall, the DBEM was
found to be effective as a design tool in studying the

diffraction of sound around barriers.

Sadek and his coworkers developed a procedure to
predict the acoustic emission from a machine using the
design drawings for the machine ([26]. A finite element
model of the machine structure was used to predict the
structural modes of vibration and the modal response to
typical operating loads for the machine. The modal
response yielded the surface velocities which were used as
boundary conditions for a DBEM formulation to predict the
acoustic emission. Two applications of the procedure were
presented. The first example was for a forging machine
structure under impulse 1loading characteristic of the
machining operation. Reflections of sound from the ground
could be and were included in determining the acoustic

emission. Compar ison of the numerical results with

*)



27

experimental results showed that each exhibited the same
general trends and magnitudes although there were varia-
tions at specific points. <. second application involved
studying the acoustic emission from one component of a
hydrauiic hammer [27]. The component considered to be the
most offending noise source was studied. The acoustic
emission analysis procedure was applied to the initial
design and possible redesign configurations. As a reault
of these analyses, one redesi¢gn configuraticn guantita-
tively produced 1lsss acoustic emission than the initial
design and the other redesigns. The process followed in
this work emphasizes the manner in which a boundary ele-

ment method may be used in the design process.

A method to predict acoustic intensity on the surface
of a vibrating body utilizing a DBEM formulation has bLeen
developed by Benner and Koopmann [28,29]). Much 1like the
previously presented reaearch, a finite element code war
used to define the dynamics of the structure. Since deter-

mination of acoustic intensity requires both the pressure

and velocity, both of these quantities were calculated )

with the boundary element computer rode. In addition,
acoustic pressure and velocity, and hence acoustic inten-
sity, were calculated at any tfield point. The boundary
element acoustic intensity method was applied to the study
of crack propagation along the boundary of a flat plate

[30]. To simulate crack propagation, successive collinear
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degrees-of-freedom were released within thé finite element
model. The acoustic surface intensity was calculated for
various modes of vibration as each additional degree-of-
freedom was released. A definite change in the intensity
distribution occurred as the crack propagated. This appli-
cation highlighted the possible use of a boundary element
program as a tool in analyzing cracked or flawed struc-
tures for non-destructive testing. A second application
was to study the radiation characteristics of a slender
box-type structure representative of a box girder in a
rapid transit transportaticn system [31]. The intent was
to isclate high radiation efficiency modes so that damping
treatments could concentrate on teducing those modes.
Relatively high radiation efficiency modes were identified
using the boundary element formulation but analysis of the
structure with damping was not presented. This application
highlights one manner in which boundary element formula-

tions-may be used for design modifications.

2.2.2 Investigations of Interior Acoustical Problems

The preceding section and the vast majority ;f
literature 7relating to boundary element technology for
acoustical applications consider exterior domain problems.
The following discussion reviews liﬁerature applied to

acoustical problems in the interior domain.
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Tai and Shaw {32] have used a DBEM formulation to
determine eigenvalues and eigenmodes of the Helmholtz
eqnﬁtion for arbitrary domains. The technique is applica-
ble to both two- and three-dimensional domains. However,
the numerical example presented was for a two-dimensional
domain. Within an element, the acoustic variable was con-
sidered to be constant. The numerical example presented
consisted of a right triangle along whose hypotenuse the
eigenmodes were determined after the'eigenvalues had been
found. The first two modes were found for three cases hav-
ing varying magnitudes of the acute angles. This problem
was S0 chosen to emphasize that the integral formulation
is capable of providing results when a separation of vari-
ables approach 1is not. The separation of variables tech-
nigue can be used when the boundaries are along constant
coordinate lines thereby allowing the equations to
separate into individual coordinate directions. For the

case of a right isoceles triangle, which has a known

analytical solution. the numerical solution with the DBEM

formulation and analytical solutiocn showed excellent

agreement.

Tanaka, Fujikawa, Abe and Utsuno developed a method
incorporating a DBEM formulation to calculate the transfer
matrices used in analyzing muffler systems [33]. This
method was found to yield good accuracy and better effi-

ciency than the finite element approach applied by Young

A i ' .
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and Crocker [3.4]). Boundary element theory was applied in

regions where it is difficult to apply plane-wave theory.
Plane-wave theory was applied in regions where that theory
was still applicable. The transfer matrix for the entire
system was obtained by multiplying the matrices from each
component and used to calculate the insert.on loss.
Impedance boundary conditions were included for some
cases. The method combining boundary element and plane-
wave theory gave good results and also decreased both
modeling and computational time as compared to other

numer ical techniques.

Sestieri, Del Vescovo and Lucibello have <considered
the problem of structural-acoustical coupling in cavities
by application of a DBEM [34]. The effects of the acoustic
loading were included as forces on the structure in an
inhomogeneous Helmholtz formulation (i.e., a forced
acoustical problem). An overdetermination procedure simi-
lar to that used by Schenck [19] was used whereby the
resulting pressures were a least squares solution of the
problem. Constant acoustic variable variation was implied
on an element surface. Impedance boundary conditions were
also included. A series of studies involving a cylindrical
cavity excited by a harmonic driver at one end produced
very good agreement with experimentally obtained results.

Other studies investigating the quantity and placement of

e}
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the interior overdetermining points were also presented

but will not be discussed here.

2.3 Conclysijons

This chapter has presented a number of references
related to prediction of sound fields in cavities and
boundary element applications in acoustics. It reviews the
status of techniquas being applied to the problems within
the ce:cern of the current research. In addition to the
technicasl 1literature, there are good academic references
available relevant to boundary element techknigues for both

general and specific topics [12,35,36].

A few developments from the literature review should

be emphasized due to their significance to the current.

research. IBEM's require less information than DBEM's.
Equations 2.1 and 2.2 illustrate that less information is
required in the integral equations. More importantly, only
one quantity, the surface source distribution, is ini-
tially computed at the boundary whereas, for DBEM's, both
pressure and its gradient, depending on the boundary con-
dition, are resultants. Hence, the IBEM may be prefered
for noise scurce identification since interpretation of
the results would be more straightforward. Impedance
boundary conditions have been applied in past research and
will be applied in the current research. The information

relating to the failures of the boundary element
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formulations may provide guidance in case difficulties of
this nature are encountered. The literature review has
shown that isoparametric representation, which 1is to be
utilized in the current research, has been previously
utilized successfully. One very important concept
discovered during this review is that of domain transfor-
mation to integrate around the singularity inherent in the
Helmholtz integral formulations. A similar approach will
be used and is detailed in chapter 4. Finally, the litera-
ture review shows a definite lack of boundary element
applications to acoustical cavity problems. Of the 21
boundary element references citad, only 3 were concerned

with cavities.
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CHAPTER 3

THEORY

The problems to be considered are those dealing with
acoustical behavior within cavities. A description of the
problem is shown in Figure 3.1. A point within the domain
D is located by the vector Xx. Likewise, a point on the
boundary B is defined by the ve:tor Z. The vector normal
to the boundary is signified by N and is considered to be
directed outward from the cavity. An applied distributed

gsource of strenyth ¥ within the domain is located by the

vector xs.
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For a problem of this type, the governing equation is

the.tamiliar non-homogeneous Helmholtz equation.

?e + k2o - r(x,) (3.1)

where ;s is the'vector locating the applied source. Equa-
tion 3.1 1is the linearized, lossless Helmholtz equation
formulated in terms of velocity potential, ®. The vari-
ables of acoustic pressure and particle velocity can be
related to the velocity potential through the relation-
ships [37]

p = ~jwpd (3.2)
vV = V. (3.3)

A Huygen's principle formulation which may be used to
solve the homogeneous form of equation 3.1 has been
developed by Chen and Schweikert [13]. In this formula-
tion, a distribution of simple sources is considered to
exist at the boundary of the cavity in question. The boun-
dary source magnitudes are determined in such a way that
the boundary conditions for the problem are satisified.
Chen and Schweikert's method is essentially a simple
indirect boundary element method. ™o develop a more com-
plete indirect boundary element method, a variable distri-
bution of sources may be assumed as will be shown in
Chapter 4. The velocity potential at any point due to the

assumed source distribution is

£
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-jkr
e
O(x) = £0<C) —— dB (3.4)

where r is the distance between the points x and Z and
o(¢{) 1is the source strength. Although equation 3.4 is
written for a point in the domain, it applies equally as
well for a point on the boundary. Similarly, the gradient

of the velocity potential is

-jkr
V®(x) = 4mco(x) + f o(()v[e m J dB (3.5)

B
where ¢ results from a singularity integration which will

be defined further in this chapter and B~ is the boundary

excluding a small region at the singularity.

At this stage, a definition of two quantities will be
made to ease notational difficulties. Combination of equa-
tions 3.2 and 3.4 allows an integral representation of the

pressure at a point to be expressed as

-jkr
e
p(x) = -ij£O(C) —— dB. (3.6)

x
A guantity known as the fundamental pressure ezolution, p ,

is defined by

£ — — -jkr
e
p (&,x) = -jwp™ . (3.7)
Hence, equation 3.6 may be more concisely written as
[ S —
p(x) = Joa({)n (¢,x) dB. (3.8)
B
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Likewise, the fundamental velocity solution, v', may
be defined by considering. the partial derivative within
the integral portion of equation 3.5, that is

-jkr
[ 3

r

(3.9)

Since, for a well-posed boundary value problem, the com-
ponent of velocity of interest is the normal velocity, the

following relationship from Kaplan [38) is used.

éfl - V() - ) (3.10)
dn

Using equations 3.9 and 3.10, the fundamental velocity

solution may be defined as

X e - A. -
v ({,x) = n Vr

[

- 15]e'jk‘ . (3.11)
r

N

14
Equation 3.5 may now be written more concisely as

X - —

v(x) = 4mco(x) + J o(L)v (¢,x) dB (3.12)
5"
where v is the normal velocity component of the velocity

potential gradient in equation 3.3.

The quantity c¢ in equation 3.12 results from integra-
tion around a singularity point. From examination of the
fundamental solutions, it is evident that as the distance
between the two points of concern approaches zero the fun-
damental solutions become infinite. However, the fundamen-
tal pressure solution is a % singularity while the funda-
1

mental velocity solution 1is a -ﬁ%— singularity. The I
r
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singularity is weak and may be integrated but the ;%
singularity is strong and must %ke treated as a Cauchy
principal value ([40). The basic premise is to exclude a
small region surrounding the singularity from the integra-
tion and account for the exclusion with the added °‘free
term' (i.e., the quantity c) [41,42]). Evaluation of the

'free term' for an interior domain can be done with the

following rules.

- c ~ 0 for an exterior point

- ¢ = -1 for an interior point
1 .

- ¢ = -3 for a point on a smooth boundary
fn .

- C = -an for a point on a corner

A smooth boundary is any boundary with a unigque tangent
plane. For a corner point, 7 is the value of the s»lid
angle included in the domain at the corner expressed ir

steradians.

The previous discussion is for the homogeneous prob-
lem but the inhomogeneouve pgroblem can be folved by aug-
menting equations 3.8 and 3.12 with a domain integral
[39). The domain integral represents the contribution of
an applied distributed source of strength ¥. After inclur

ing the domain integral, the equations become
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P .

p(x) = fa(C)p (¢,x) dB + fv(; )p
B D °

(xq,x) dD (3.13)
and

v(x) = 4nco(x) + J o(¢)v (¢,x) 4B +
B

gr(;e)v'(§;,§) dD (2.14)

where ;s indicates the location of the applied source.

If the applied sources are considered to be monopole
sources, evaluation of the domain integral is signifi-
cantly simplified. For a point source, the domain integral
is easy to evaluate as the point source may be represented
by a Dirac delta function multiplied by the source
strength. Thus, the integral exists only at the point of

application of the source. The domain integral becomes

ngsouzrce

p— X - - - —_ K - e
Jv(z)p (x_,,x) dD = L [¥ 8(x_., - x)p (x,.x) dD =
D 8 8 i=1 D 1 81 8
nsource  , _  _
ifl 41.'fip (xg;rX) (3.15)

for a pressure boundary condition and

asource

- * - -— - -— - -—
J¥(x )v (x_,x) dD = z Jr 6(x.. - x)v (x_,x) dD =
D s 8 i=1 D i si 8
nsource . — -
ifl 4n?iv (xai,x) (3.16)

for a velocity boundary condition where nsource 1is the
total number of applied sources. Distributed internal

sources are not difficult to evaluate but are rare.
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Vibrating sources which do not behave as point sources can

be treated as additional boundaries.

Impedance boundary conditions may also be applied
with this IBEM. Specific acoustic impedance is defined as

the ratio between pressure and particle velocity [43] or

- B
2 v’ (3.17)
Manipulation of equation 3.17 yields an equation which is

applicable to the integral equations.

p-2zvse=_0 (3.18)
In terms of the integral equations, impedance boundary

conditions may he formulated as

Xx - - x - -
-4m7zco(x) + IO(ﬁ [p (¢,x) - 2v ({,x)| dB +
L/

3
nscurce - . — - « — -
ifl 4ﬂ?i(x8)[p (xsi,x) - zv (xsi,x)] =0 . (3.19)

Equation 3.19 can be solved for the unknown fictitious

source distribution O.

All the integral equations have now been developed
for this indirect boundary element formulation. Depending
on the type of boundary condition applied, equations 3.13,
3.14 and/or 3.19 are used to solve for the assumed source
density distribution, o, on the boundary of the body in
question. Once the source ders.ty distribution has been
evaluated, the same three equations may be applied to

solve for both the unknown boundary conditions and the
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acoustic variables at desired points within the domain.
The numerical implementation of the precceding theory is
presented in the next chapter. For the purpose of th=
current research, only the acoustic presesures at the boun-
dary and field points wiil be evaluated as those gquanti-
ties adequately describe the sound field within the cav-

ity.
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CHAPTER 4

NUMERICAL IMPLEMENTATION

The preceding chapter describes the theory of the indirect
boundary element formulation of the cavity acoustics prob-
lem. To implement the theory into a usable computer pro-
cedure, a number of numerical analysis techniques were
appiied. This chapter presents the details of the numeri-
cal analysis techniques which were used for the implemen-

tation.

4.1 Element Definition

The boundary element incorporated into this research
is an isoparametrié element with quadratic shape func-
tions. The term isoparametric means the same interpolation
function 1is employed for both the geometric approximation

and the acoustic variable approximation. For an 1iso-

parametric element, the number of nodes is equal in both
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- the local and the global coordinate systems. Consequently,
a node in the local coordinate system corre’ates directly
to a node in the global system. The local element is shown
B in figure 4.1. an example of a global element is shown in

figure 4.2.

Figure 4. - Local Isoparametric Element
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Figure 4.2 - Global Isoparametric Element

The important feature of the element is the shape func-
tions. The shape functions are used to interpolate the
variation of the variables within an element. For the iso-
parametric element, one set of functiuns describe the
variation of both the element geometry and the solution
variaples. The element in figure 4.1 has a 3x3 nodal dis-
tribution in a two-dimensional space (i.e., the £ and the

n directions). Consequently, a guadratic variation can

occur. The interpolation procedure for a general variable,
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?, is
9
= L N.O. (4.1)
i=1 1

where i is an index which varies with the node number, Ni
is the shape function for the ith node and 01 is the value

oi the variable at the ith node. The Lagrangian shape
functiong for the cuadratic, isoparametric element on the

parent shape are [44]

N, = g62 - 6t - (4.2a)

N, = 262 + 6y - ) (4.2b)

Ny = %(EZ + E)(nz + 7M) (4.2¢)
1

Ny = 3(62 - E)(172 + M) (4.24)

Ng = (1 - £5y(n% - ) (4.2e)

NG - %(fz + £)(1 - ﬂz) (4.2f)

N, = %(1 -yt e (4.2g)
1 2

Us = E(fz - €&)(1 - n) (4.2h)

Ng = (1 - £5)(1 - n°). (4.21)

The Lagrangian shape function, Ni' is a continuous func-
tion having a value of unity at node i and a value of zero
at node j3*i. In the numerical implementation, unknown
variable distributions will be replaced by an approxima-
tion with the form of equation 4.1. By this approximation,

a finite number of parameters may then be solved.

.-
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4.2 Equation Discretization

Having defined the element, the next stage of numeri-

cal implementation is to discretize the integral equa-
tions. The discretization concept in boundary element
methods is similar to that in finite element methods. The
concept is that by subdividing the domain of the problem
into smaller subdomains, or elements, the integrals for
the complete domain may be approximated on a piecewise
basis. Furthermore, by enforcing certain boundary condi-
tions between the subdomains, an approximate solution over

the entire problem domain may be determined.

The matrix equations are assembled by satisfying
boundary conditions at an appropriate number of discrete
points. The specific points used in this development are
the nodes of the modei. If the given boundary condition
is a pressure boundary condition, the pressure at that
point in terms of the boundary source distribution, o, is,
by equation 3.13,

K x

p, = fop (r) dB + L 4m¥. p .. (4.3)
15 Mafiaibd 5t

where Py is the pressure at the lth

boundary condition
x

poeint and Px) is the fundamental pressure solution from

the kth applied source to the lth boundary condition

point. The unknown boundary source distribution, ¢, on

each element is approximated by

I < * m
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9
o - L O.N. (4.4)
j=1 * 1

utilizing equation 4.1. Furthermore, the boundary integral
term will be evaluated on a piecewise basis (i.e., on an

elemental basis). Hence, equation 4.3 can be rewritten as

N | M . K .
p, - L L o.N.p (r;) dB_ + L 4m¥. p (4.5)
1 n=1 Bn jmy ¥ 1 1 n k=1 k¥kl

where N is the number of boundary elements, M is the

number of nodes per element, K is the number of applied

h

sources, r; is the variable distance from the lt boundary

condition point to the nth

surface of the nth element. Since the boundary source

element and Bn represents the

values, O are constants, the integral in equation 4.5

il

may be rewritten as

N | M R
L ( L O.N.)p (x,) @dB_ =
nel B_ i=1 11 1 n
n
M N .
Lo L fNjp(ry) dB - Loa;, (4.6)

i i
i=] n=1 Bn

The numerical evaluation of the ail term will be discussed

in sections 4.3 and 4.4. Finally, equation 4.3 can be more

simplistically rewritten in approximate form as

K x

P z g,a;1 ¢ kfl4n?kpkl (4.7)

A similar approach can be used for the velocity and

impedance boundary conditions. With these two types of
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bouniary conditions, an additional verm due to the singu-
larity integration is present. To show the consequence of
the 'free terms', the equation discretization for the
velocity boundary condition will be presented. In equation
3.4, the velocity in terms of the boundary scurce distri-
butici is given as

* K

v, = 47cG + fov (z,) dB + [ 4nv. v.,.
1 B 1 k=1 k"kl

Evaluating the integral on a piecewise basis yields

x

(4.8)

N M g
v, 2 4amc..0. + L [ E o.N.v (r,) dB
1 il171i n=1 Bn jmr 11 1 n

K x
+ L 4m¥.v (4.9)
NaPhht 4451

where the variables maintain the same meanings as in equa-
tion 4.5. The 'free term', c¢;,, is zero when i*l. When
. . 1 . 1]
i=1, cil is -5 for a point on a smooth boundary and an
for a point on a corner where f1 is the solid interior

angle at the corner. The constant source distributions can

be factored out of the integral.

: N M .
amc;q0; + L J (L oNi)v (r)) dB =
n=1 Bn i=1

M : N s *
L 0,(47c.,, + L N.v (r,) dB_ =
i=] 1 il 1B 1 1 n
n
L oi(4ﬂcil + ail) (4.10)
The final approximation equation for a velocity boundary

condition is

4,
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K b
vy * L Oi(4ﬂcil +a;;) + kfl4ﬂ?kvkl (4.11)

Likewise, for impedance boundary conditions, the integral
equation is
x ®
£ Oi(p (ry) = 23v (x;)) dB - 4mz;c,,0,

n
K

x b ]

on a piecewise basis or

K x x
L o,(-4mzyc,y + a;;) + k§14ﬂvk(pkl - Z)Vyy) * 0(4.13)

for the approximation equation.

For all boundary conditions, a general matrix equa-

tion can be wriiten as

RS TE D D

where either equation 4.7, 4.10 or 4.13 are used as each
row of the matrix. The evaluation of the matrix terms for

each boundary condition type are:

1. For Pressure Boundary Conditions

x
aj| - g N;p (r;) 4B, (4.15a)
a' | =0 (4.15b)
K *
d, = L 4m¥.p (4.15¢)
k" oy kPkl |
@ = p; (4.15d)
;};"‘f%—_‘;} -
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2. For Velocity Boundary Conditions
x
a 'é’ N;v (r;) dB, (4.16a)
n
a'il - 4”cil (4-16b)
K %
dy = L 4"'kvkl (4.16¢)
k=1
a, = v, (4.164d)
3. For Impedance Boundary Conditions
x
a, -g ( P (x)) - z;v (r;) ) dB (4.17a)
n
K x *
dk - kfl4ﬂ?k ( Px1l = Z1Vg1 ) (4.17¢)
al = 0 (4.17d)
In the D matrix terme, the fundamental solutions are ZIrom

h node. The theory can be

the kth applied source to the lt
implemented into a computer format using equations 4.14

through 4.17.

4.3 Primary Numerical Integration Procedure

To numerically evaluate the integrals in equations
4_15a, 4.1l6a ard 4.17a, a numerical integration procedure
must be utilized. A numerical integration procedure using
a Gauss-Legendre quadrature was selected. The numerical

evaluation of the integral equations is performed on a

(=
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piecewise basies by mapping the integral in the global ele-
ment coordinate system into the local element coordinate
system. The domain of the local element is defined between
the £ and 7 coordinates of -1 and 1. The limits are con-
sistent with those of a Gauss-Legendre quadrature as the

quadrature formula is [45]

1 NG
J gte) at = I g(&;)wy (4.18)
-1 =

i=1
for a one-dimensional integration of a general function,

g(é). The values €i and w, are the integration point and
weighting factor, respectively, and NG is the total number
of integration points used in the integration. A boundary
integration is essentially an area integration (when con-
sidering three-dimensional problems) which may be

represented by

11

J ge&m as = f [ g(&,m) atan . (4.19)
3 “1m1

n
For a two-dimensional integration, the quadrature formula

is [46]
; NG€ NG,
g(é¢,m) daB_ = L L g(é¢_,m )w w (4.20)
B n m=1 n=1 n m n m

n
Equation 4.20 was used to numerically evaluate the boun-

dary integrals everywhere except where a singularity
exists in the fundamental solutions as will be dicussed in

section 4.4.
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The location of the integration points and the values

of the weighting factors must be determined to finalize

the local element integration procedure. A 4x4 Gaussian

quadrature having coordinates

€, = m; = -0.861136311594053 (4.21a)
€, = m, = -0.339981043584856 (4.21b)
€3 = My = 0.339981043584856 (4.21c)
€4 = M4 = 0.861136311594053 (4.214)

was selected. The mesh is shown in figure 4.3. The weight-

ing factors corresponding to the integration points are

w, - 0.347854845137454 (4.22a)
w, = 0.652145154862546 (4.22b)
Wy = 0.652145154862546 (4.22c)
L 0.347854845137454. (4.224)

The abovementioned integration gquadrature is exact
for a seventh-order or lower polynomial, g(é). The func-
tions being integrated in the boundary integrals are the
fundamental solutions, p* and v times the shape functions
N which are gquadratic polynomials. The fundamental
pressure sclution is

® e'jkr
p (CIX) = -jwp

I (4.23)

The series expansion of the fundamental solution is

a‘”‘ o p—
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« | 1 535 k4r3 kﬁts kar7
P (&yx) = =3wp ( (p =5y *7qr ~ 61t *TEID)Y .-
3.2 5 4 7.6
k- EERLED KT, (4.24)

Hence, from equation 4.24, some
integration can be illustrated.
rately integrated only if the

series approximation dominate.

of the limitations of this
The function will be accu-
fixrst few terms of the

The % term poses a problem

.
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near a singularity point and will be addressed in the next

section.

The preceding discussion applies equally as well for
the fundamental velocity solution but will not be

presented here.

The final point to be made for the integration pro-
cedures involves transformation from the global domain.
Since the integration is for the global element, a
transformation between the domains is necessary as follows

[47].

Je(x,y.2z) dA = fg(&,m)13(&,m)} akan (4.25)
In egquation 4.25, the function G(x,y.,z) is a general func-
tion written in terms of the global element coordinates,
x, ¥y and 2. The function g(§,7) represents the transforma-
tion of G(x,y,z) into the local coordinates, £ and 7. The
quantity (J(é,7)! is the determinant of the Jacobian
matrix J(¢,m). For the application at hand, a three-
dimensional global element is mapped into a two-
dimensional local element. The determinant of the Jacobian

for this transformation is [48]

1
13CE,m)t = (ay +ay + a3 )’ (4.26)
where
3y 3z _ 3y 3z
al ( 3¢ an an 3¢ ) (4.27a)
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3z 3 3
——— _x - J _a_z
a, = (3¢ an ~ 3¢ an ) (4.27b)
a
X %Y _ %y & (4.27¢)

The partial derivatives in equation 4.27 are determined

with interpolations such as

ax 9 801
- L x. 37 (4.28)
a¢ j=1 1 9¢

as an example.

The procedure described above can be applied to any
element which does not contain a singularity point. When
the value of r in the fundamental solution approaches
zerc, special considerations are necessary for the
integration. These considerations are explained in the

following section.

4.4 gingularity Numerical Integration Procedure

A singularity occurs in the fundamental solutions
whenever the particular boundary condition under con-
sideration is located on a node of an element over which
the boundary integral is being evaluated. The variable r
in the fundamental solutions is the dis‘ance between the
boundary condition point and the integration point. The
primary Gaussian quadrature is unable to adequately evalu-
ate the integrals whenever this singularity occurs. Hence,
a new guadrature had to be developed to handle the singu-

larity situaticn.
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In some cases, the singularity can be removed from
the integration domain. As detailed in the previous sec-
tion, the integration domain is a quadrilateral region in
a rectangular coordinate system. However, if the region
were considered in polar coordinates, the differential
area is

dA = rdrd?@® . (4.29)
The radius appearing in equation 4.29 may be used to can-

cel the

N

factor in the fundamental solution. Consider,

for example, the fundamental pressure solution.

e-jkr
-jwp | =T dB, = -jwp [ e
B 3
n n

..-‘k
IXE §rae (4.30)

A similar result occurs for the fundamental velocity solu-

tion.

A. -1 -3
I oA vr( = - 3k ye IKT grae (4.31)
B

In equation 4.31, it is apparent that a % singularity
still exists even after transforming to a polar coordinate
system. However, the dot product of the vector normal to
the surface and the gradient of the radius is zero for a
flat place elcment and tends to zero as the radius of cur-
vature approaches infinity for curvilinear elemente. For
exampie, in figvre 4.4, the fundamental solution 1is
evaluated near the upper right corner. The Q'Vr will tend

to zero. Thus, the integral in equation 4.31 is integrable
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FPigure 4.4 - Vectors For A Flat Element

There are three singularity integration cases

arise. Those cases are:

1. Boundary condition at a corner node

2. Boundary condition at a midside node

57

as a Cauchy principle value. (Hence, the 'free term' men-

which
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3. Boundary condition at the center node
One polar domain transformation can be developed to accom-
modate all three cases. The transformation for a quadrant
will apply for a corner node singularity. In addition, the
remaining two cases can be considered as multiple qua-
drants and utilize the transformation for the corner node
singularity. The transformation can be applied to both
quadrants neighboring a midside node singularity and all
four quadrants neighboring the center node singularity.
Figure 4.5 shows the three cases. The shaded areas

represent the guadrants transformed to a polar domain.
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In general, a Gauss-Legendre quadrature similar to
that explained in the previous section can be used for the
polar domain. The difference lies in the integration vari-

ables, in this case r and 9.

The integration points in the polar coordinate system
can be transformed from the rectangular coordinate system.
The values of the £ and 7 coordinates range from -1 to 1.
In the circular sector, the radial coordinate ranges from
0 to 1 and the angular coordinate from O to %. Mapping
functions can be established which allow the polar coordi-
nates to be obtained from the rectangular coordinates.

These mapping functions are

1
r = E(f + 1) (4.32a)

for the radial coordinate and

n

6 = z2(m + 1) (4.32b)
for the angular coordinate. With equations 4.32, the polar
integration points become a function of the rectangular

integration points.

Determination of the polar weighting factors requires
more work than for the determination of the polar integra-

tion points. Weighting factors are evaluated by the equa-

tion
bn (& -~ §.)
= [n : dé (4.33)
T At - 6y '
j*i
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i Bl sl

T

for a Gauss-Legendre quadrature. Tc illustrate the deter-

mination of the polar weighting factors, consider a two

Ry -

3 ; point quadrature with points 61 and Ez in ths rectangular

g g

system and points r, and r, in the polar system. The equa-

S tion for the first weighting factor in the 1rectangular
;! system is

le-ez

w, = Q€. (4.34)
€ 141 - &

For the first weighting factor in the polar system, the

eguation is

l -1
w =1
'y of1” %2
Using eguation 4.32 with equation 4.35, the weighting fac-

dr. (4.35)

tor may be expressed as

1 1l
1l E(E + 1) - 5(52 + 1)

1.
w,oo= J i T (36¢) (4.36)
or
1.1 (8 + 1) - (&, + 1)
wo=2f a¢ (4.37) "
or
1 & - ¢
1 "2
wrl 2{1 R d¢. (4.38)
Eauation 4.38 may now be written as
1
w = oW (4.39)
ry 2§,

by substituting in equation 4.34. The resulting

o I\



BREAT FU 1 1 LA

62

relationship is independent of the number of integration
points but dependent solely on the multiplicative factor
in the mapping functions (i.e., equations 4.32). Conse-

quently, the weighting factors for the polar domain are

1
wr - wa (4.40a)

for the radial weighting factor and

n

Wo an (4.40b)
for the angular weighting factor. The weighting factors
and the integration points in the rectangular domain may

be found in any reference containing Gaussian quadratures

{49].

In the circular domain, a 4x16 mesh of integration
points was selected; 4 radial coordinates and 16 angular
coordinates. The integration points and weighting factors
for the four point scheme are shown in equations 4.19 and
4.20. For the 1l¢ point scheme, the integration points and

weighting functions are

my = -0.989400934991649 (4.41la)
n, = -0.944575023073232 (4.41h)
my = -0.865631202387831 (4.41c)
Ny = -0.755404408355003 (4.414)
Mg = -0.617876244402643 (4.41le)
Mg = -0.458016777657227 (4.41f)
n, = -0.281603550779258 (4.41g)
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Mg = -0.095012509837637

Mg = 0.095012509837637

"10
M1
M2
M3
M14
M5

M6

0.281603550779258
0.458016777657227
0.617876244402643
0.755404408355003
0.865631202387831

0.€44575023073232

o

.989400934991649

o

.027152459411754

o

.062253523938647

o

.095158511682492

o

.124628971255533

o

.149595988816576
0.169156519395002

o

.182603415044923

o

.18945G610455068
0.189450610455068
0.182603415044923
0.169156519395002
0.149595988816576
0.124628971255533
0.095158511682492

0.062253523938647

0.027152459411754.

(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.

(4.

(4.
(4.
(4.
(4.
(4.
(4.

(4

(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
(4.
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41h)
41i)
413)
41k)
411)
41m)
41n)
410)

41p)

42a)
42b)
42c)
42d)
42e)

42f)

.42qg)

42h)
421i)
423)
42k)
421)
42m)
42n)
420)

42p)
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The mesh for the circular quadrant is illustrated in fig-

ure 4.6.

Examination of figure 4.6 reveals a gap between the
circular domain and the original rectangular domain. As
shown, the boundary integration for the circular domain
would exclude that portion of the boundary cutside the
circular domain yet still within the original rectangular
domain. This omission was corrected with a second domain
transformation from the circular domain to a rectangular
domain. The values of the §' and "' coordinates range
from -1 to 0 since a quadrant of the element is being con-
sidered. Note that primes are used to differentiate the
rectangular coordinates in the second transformed domain
from the original rectangular coordinates. The mapping

functions for the integration points are

£' = - 1 for 8 < % (4.43a)
£ = rcotd - 1  for 8 > g (4.43Db)
and
7' = rtan® - 1 for 0 < g (4.43c)
n' =1 -1 for 8 > % (4.434)

For the weighting factors, the mapping functions are

w = W (4.44)

and

for 6 < (4.45a)

&1

7' ~ cosé

)

e et e e

&»
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w
8

n
Wnr = ainsd for 8 ) 4 (4.45b)

These mapping functions were determined in the same manner
as the mapping functions for the first domain transforma-
tion (i.e., rectangular to polar). PFigure 4.7 shows the

. mesh for the transfcrmed circular domain.
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Figure 4.7 - Transformed Circular Domain Mesh
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The final term required for the numerical integration
is the determinant of the Jacobian. For a normal integra-
tion procedure, the determinant of the Jacobian 1is com-
puted using equations 4.26 and 4.27. The determinant of
the Jacobian can also be viewed as a ratio of the global

area to that of the local area.

(B A
v

dxd
-'E;E% (4.46)

In polar coordinates, equation 4.46 is rewritten as

r dr_de
vy = 29 9
RV r.dr.de (4.47)
1771571
where the subscripts indicate the global and local domain
variables. For the singularity integration, the 1ntegral

is of the form

ff(rg.Gg)dr ae, = JP(z,,0,)131 dr, d6, (4.48)

g
where :J:r is the determinant of the Jacobian required for
the singularity integration procedure. From egquation 4.48,

the required determinant of the Jacobian will be

a
g L 3rg%%
|J| - (4.49)
r dr .46
171
and can be calculated from the normal determinant of the

Jacobian by

o1,
r '
g
If the mapping between the global and local domains is

iJi, -

r Ji . (4.50)

simply a scaling of the same angular dimension sector, the
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mapning equations can be written as
rg - ar, (4.51a)
for the radial component and
9g = 91 (4.51b)

for the angular coordinate since it is assumed that the
element is only varying in size and not in shape. Thus,

the differentials are expressed as

drg - adr1 (4.52a)

and

deg - dOl . (4.52b)

For this cz2se, the normal determinant of the Jacobian is

r .dr _deo ar adr )de
131 It Nl L L al (4.53)
‘- - - .

zldrldel rldtldel

and the required determinant of the Jacobian is

e
- der g _ (adrl)da1
r drldel drld9l

= a . (4.54)

Therefore, the required aetermina.¢ of the Jacobian may be

calculated from the normal determinant by

i, = NS (4.55)
The relationship in equation 4.55 is an approximation 1f
the shape of the global element is distorted from that of
the local element. Nevertheless, this relationship is

utilized for the singularity integration. Hence, the gua-

dratuxe formula becomes



¥
4

i o RN L o E ]

SN o R S .
- P R U,

70

Je(x,yyaxdy = fr(x 00N g1ar a8, . (4.56)

The numerical integration procedures detailed above

cam be utilized to evaluate the discretized integral equa-
tions to establish the system matrices for a boundarv ele-
ment model. Although this numerical integration procedure
is successful, it is not the only possible procedure tc
apply. An alternative integration procedure has been sug-
gested by Zimmerle and Bernhard [50] but was not attacumted

in this research.

4.5 Solution Procedure

Equation 4.14 is used to solve for the assumed source
densities once the numerical procedures described above
have been used to evaluate and assemble the system
matrices. To 8olve for the source densities, a full
matrix, complex equation solver ia required. The matrix
equation is neither banded nor symmetric so a robust equa-
tion solver is required. The subroutine used, the IMSL
subroutine LEQTIC, is a linear equation solver for equa-
tions having comrplex quantities. It wuses a full matrix
storage mode. This storage mode 1is required since th-
matrices for boundary element methods, unlike finite eilz-
ment methods, are fully populated matrices. The IMSL sub-
routines are readily accessible as a commercial code which

was the primary reason for the appiication in this

e Lo
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research. It is possible that a more efficient equation
solving routine 1is available or may be generated for use

in solving the boundary integral equations.

The goal for this research was to predict the sound
fields in acoustical cavities. To accomplish this, the
source densities, after quantization, were used to solve
for the acoustic pressures at field points interior to the
cavity domain. Equations 4.14 and 4.15 were again util-
ized. The unknown variables, the pressures at the field
points, can now be solved utilizing the source density
distribution found earlier. The only major difference in
the formulation is tt.': .he distance r in the fundamental
pressure solution is the distance from the source density
tc the field point at which the pressure is desired. Using
this procedure, the pressures at the interior field points

may be evaluated.

The procedures required for numerical implementation
of the boundary integral equations have been discussed. To
illustrate the techniques, a number of examples were con-
sidered. The numerical results of these examples are

presented in the following chapter.
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CHAPTER 5

CASE STUDIES

A number of case studies were undertaken to illus-
trate the thecry and numerical implementation discussed in
chapters 3 and 4. Two models were considered in these stu-
dies: a spherical cavity model and a rectangular cavity
modei. This chapter presents the numerical and, where

avalilable, the analytical results of the case studies.

5.1 Spherical Cavity Model

A spherical cavity was chosen as the first case study
for a number of reasons. A sphere with a velocity distri-
bution which is uniform with respect to angle can be
treated as a one-dimensional problem as will be demon-
strated in the derivation of the analytical solution.
Consequently, the anaiytical solution for the spherical
cavity can be easily determined. Another advantage for the

sphere 1is the absence of corners and edges. Corners and
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create difficulties with boundary element methods as

e shown for the rectangular cavity.

’he analytical solution for the spherical cavity is
:«d from the wave equation for spherically symmetric

ire fields [51].

(5.1)

ing the time dependence from equation 5.1 yields the

Lon
3’y 2a 2
+ = 39 + k“p =0 (5.2)
arz r dr

represents the time-independent wave equation 1in a
ically symmetric geometry without applied sources.

:quation 18 a special case of the spherical Bessel's

ion
2 829 3p 2,.2 2
r + Zra + kK"(r™ - n")p =0 (5.3)
arz r

ed by rz and with n=0. Thus, the solution to equation
i1l involve spherical Bessel functions and will be of

rm

p(r) = Aj,(kr) + By (kr) (5.4)
the constants A and B are determined by the boundary
~ions. Alternatively, a second general soclution to
cherical Bessel's equation of equal validity is

-jkr _ ejkr

2 b
- +
r r

p(r) = a (5.5)

o\
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where a and b are determined by the boundary conditions.

For_the first verification of the numerical code, the

specific solution of

p(r) = 10030(kr) (5.6)
was selected.The spherical model has a radius of % meters.
Also, an arbitrary wave number of 8 was selected. This
corresponds to a frequency of 437 Hz in air with a speed
of sound of 343 meters/second. Figure 5.1 shows the
analytical solution of the pressure distribution within
the the cavity. The sphere center corresponds to a radial
position of zero while the sphere boundary corresponds to

a radial position of %.
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Appropriate boundary conditions of various types were

derived to verify the solution in the cavity interior. The

solution of equation 5.6 at the boundary is p(%) - ~-]18.92

with the selected wave number. For the first example,
this pressure was applied at the outer boundary of the
sphere. The humefical results are shown with the analyti-
cal results in figure 5.2. The numerical solution is
represented by the s8o0lid 1line marked with Y's at the
discrete solution points. The dashed line represents the

analyticel solution.

A sphere with uniform velocity boundary conditions
was the second numerical example. The velocity boundary

conditions were determined by

= - =, R
v = (1 xrlpc © (5.7)
which relates the velocity of a spherical wave to the
pressure [51]. For the numerical example, the velocity
boundary condition was v = -0.0456 + j0.0114. Figure 5.3

shows the numerical and analytical resuits.
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The analytical and the numerical results in both fig-
ures 5.2 and 5.3 are in excellent agreement. In fact, the
correlation is so good for figure 5.2 that the two results
are nearly coincident. One note must be made regarding the
phase plot. When examining the phase, it must be under-
stood that a phase of 180° is equivalent to a phase of
-180°. Hence, the apparent jumps in phase in the region
from r =~ 0.4 to r = 0.5 do not actually represent phase
differences as it may appear at first glance. For the
velocity boundary condition model represented in figure
5.3, a slight amount of difference can be detected between
the analytical and numerical solutions. This slight error
is due to the interpolation of the radial distances
between the boundary condition points and the integration
points. As previously noted, the shape functions are qua-
dratic functions. However, the radial distance is deter-

mined by

r= Joy - xp?e vy myp?eoz, - 2p? (5.8

which is not a purely quadratic function due to the 'radi—
cal involved in its determination. Consequently, some
interpolation error can be expected and, in fact, is evi-
dent. The interpolation error is more prevalent when the
1

velocity bounaary conditions are used because of the >
r

term in the fundamental velocity solution as opposed to

.. M
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the % term in the fundamental pressure solution. Regard-
less, for cases where derived boundary conditions are
specified, the prediction of the solution in the domain is

very good.

The next case study was that of a» pulsating spherical
cavity. The analytical solution for this problem can be
represented by equation 5.5 where the boundary conditions

for tnis problem are

d
35 = 0 (5.9a)

at the center of the sphere and

%? = -3wev(r,) (5.9b)
at the surface of the sphere. Boundary condition 5.9a
respresents the condition that the pressure is finite at
the sphere center. Equation 5.9b is derived from Euler's
equation. Using equation 5.5 with the boundary conditions
of equations 5.9, the analytical solution for the pressure

is

2
pckrOV(to)

. sin(kr)
p(r) = J(sin(kro) - kr_cos(kz )) r (5.10)

For the model in question, the radius at the sphere sur-

) 1
face is ro -3

Resonant fregquencies can be determined for the spher-
ical cavity using equation 5.10. Resonance occurs whenever

the impedance g becomes infinite. From equation 5.10,

)
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resonance for the spherical cavity occurs whenever

ain(kro) - kxocoa(krc) -« 0 . (5.11)

The transcendental equation for the natural fregquencies is

tan(kro) - kto (5.12)
for the spherical cavity. Thus, the first three natural

frequencies occur at kro -0, kro = 4.493 and kro = 7.725.

The analytical solution of equation 5.10 at r = r, is
shown in figure 5.4 as a function of the frequency. The
natural frequencies are evident in figure 5.4 as peaks 1in
the pressure magnitude. In addition, figure 5.4 shows zero
pressures and 180° phase shifts occur ing at
kr, = 7 and kr, =~ 27. The zero pressures are expected
since p = 0 whenever sin(kro) = 0 in equation 5.10. The
velocity at the boundary of the sphere was chosen to be 1

to generate the analytical solution in figure 5.4.

To numerically evaluate the response of the spherical
cavity, a sweep of frequencies from 0 to 873 Hz was used
tv yenerate results comparable to those in figure 5.4. The
fréquency range corresponds to kro values from O to 8. A
uniform velocity boundary condition c¢f 1 was applied to
the spherical cavity model. Both the analytical and numer-
ical results are shown in figure 5.5. The s0lid 1line
marked with Y's represents the numerical results and the

dashed line is the analy*ical solution.

a\y
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.5 shows excellent

correlation between

d numerical results throughout the frequency
except in the very low frequency regime. The
from kr = 0.25 to

sults kr = G tend to

whereas the analytical results ten¢ to

aity within that same region. A definitive
3 phenomencn has not been clearly identi-
» work published by other researchers may be
formulate possible explanations. Researchezs
2y [17] and Burton and Miller [l18] have

:nce that the coincidence of frequencies
2igenfrequencies cause boundary element for-
11l for acoustic radiation problems. For the
iary element methods, the difficulty stems

cence of surface source distribytions at

equencies as shown by Copley [17]. As was

napter 2, overdetermination procedures ‘vere
nenck {19] and Paiszczyk and Klosner [20] in
y element methods to overcome the interior

difficulties. Although it is possible, but
that an overdetermination procadure may
low frequency divcrepancies shown in figure
ch of this type was not used in the current
primary reason is that the phenomenon occurs

frequency regime which 18 not of interest in

. AT ik bR
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To further investigate the spherical cavity response,
pressure distributions within the cavity were numerically
determined at three frequencies. The three frequencies are
kzo = 2, 5.4 and 7.1 corrseponding to 1372, 3704 and 4871
Hz, respectively if I, * % meters and c¢ = 343 m/s. The
spherical cavity pressure distributions for each of these
frequencies are shown in figures 5.6, 5.7 and 5.8. All
three distributions exhibit the expected spherical
Bessel's function-type behavior. The particular fregquen-
cies were selected to show the behaviors occuring before
and after the zero pressure frequencies, i.e.,
kr = m and 27. The analytical solutions shown in these
figures are from equation 5.10. As in figures 5.2 and 5.3,

excellent correlation is shown in figures 5.6 through 5.8.
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Although the results presented thus far have only
been for pressure and velocity boundary conditions,
impedance boundary conditions have also been implemented.
Models having only impedance boundary conditions must con-
tain an applied source within the cavity. Otherwise, the a
vector in equation 4.14 is a zero vector (see equation
4.17d) and the resulting source distribution is trivial.
In other words, there is no excitation of any sort in the
problem. To verify the impedance boundary condition imple-
mentation, a spherical cavity with purely impedance boun-
dary conditions and an applied source of strength 1
located at the sphere center was utilized. The impedance
boundary conditions were established such that they would
simulate the impedance experienced by a point source radi-
ating into an infinite free space. The impedance relation-

ship can be derived from equation 5.6 as

B pc

z =0 —2 . (5.13)
(1 - 52
i

With a wave number of k = 0.583 (200 Hz) and r = 5 at - the
boundary, the resulting impedance is z = 32.5 + jlil1.5.
Figure 5.9 is the pressure distribution obtained numeri-

cally for the described model.
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For comparative purposes, similar distributions for
models with pressure and velocity boundary conditions were
obtained. The pressure solution and, consequently, the
boundary conditions may be determined in a number of ways.
In this case, the pressure boundary conditions were deter-

mined from equation 3.13 and 3.15.

1 . —

-— - K = - -
p(x) = fo(l)p (¢,x) + L am¥ . p (X %) (5.14)
B i=1

The pressure at any point is due entirely to <the applied
source if the boundary simulates an infinite domain prob-
lem. Hence, the source density distribution is zero at

the m~del boundary (i.e., 9({) = 0). Eguation 5.14 becomes

e-jkr

p(xr) = -jwp4m¥,— (5.15)

after the fundamental pressure solution is insertea. With

Aan applied source strength of 1, the equation to determine

the pressure boundary condition is

-jkr
p(r) = -jwpdr=

- . (5.16)
For th2 model with k = 0.583 and r = % ~at the boundary,
the pressure boundary condition is p = -139.07 - 3j463.51.
The numerical results obtained are shown in figure 5.10.
Equivalent velocity boundary conditions found using equa-
tion 5.6 are v = -4.167 + 30.033. Figure 5.11 shows the

pressure distribution numerically obtained using velocity

boundary conditions.
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To evaluate the validity of the impedance boundary

condition capability of the program, figure 5.9 may be

compared with figures 5.10 and 5.11. Both pressure and

velocity boundary conditions have previously been shown to
produce excellent resulte in the spherical cavity model.
Figures 5.9, 5.16 and 5.11 are identical pressure distri-
butions. Regardless of the type of boundary condition
being applied, the numerical results for this model are

unchanged.

The final study using the spherical cavity was tc
numer ically generate a forced response prediction for the
case of a point source in a rigid-walled cavity. Velocity
boundary conditions of zero were applied to the sphere. A
source having a strength of 1 was placed at the cente: of
the cavity to excite the model. The swept frequency band
ranged from 0 to 873 Hz (or kr from 0 to 8) as was the
case for the previous response in figure 5.5. The response
for the rigid-walled spherical cavity is shown in figure
5.12. In addition, a pressure distribution within the cav-
ity for a frequency of 3087 Hz (kr = 4.5), near the first

resonant frequency, is shown in figure 5.13.
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The rigid-walled spherical cavity response compares
well with the response in figure 5.5 in terms of the
resonant frequency identification. Both responses identify
peaks occuring at approximately 3080 Hz and 5300 Hz (kr's
of 4.493 and 7.725). Fof the rigid-walled cavity, the
pressure magnitudes are much higher due to the effect of
the applied source. The phase relationships differ between
the two responses for the same reason. The cavity pressure
distribution on figure 5.13 exhibits the expected Bessel's
function-type behavior. However, the effect of the applied
source can be seen near the radial position of zero. Since
the pressure at the applied source is infinite, the near-
field effect close to a radius of zero is expected. Other-
wise, the pressure distribution 1is dominated by the
response of the cavity near the resonant frequency. This
behavior could be expected to be much different if the
cavity was being excited at a frequency away from a
resonant frequency. Note that the low frequency regime in
figure 5.12 is characteristic of the low frequency regime
in figure 5.5. Once again, the low frequency results are
affected by the formulation énd do not approach infinity

as they should.

In general, the indirect boundary element method has
done an excellent job for the variety of spherical cavity
problems tested. The models for boundary excitataion,

internal point source excitations and with impedance

r
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boundaxy conditions all perform very well with the one

exception at low frequency.

5.2 Spherical Model For Radiation

Although the research being presented deals primarily
with cavity acoustics, it is possible to deal with acoust-
ical radiation problems applying the same formulation; To
do so, the models need only have negated 'free terms'
(i.e., the quantity ¢ in equations 4.16b and 4.17b). In
other words, instead of having the 'free terms' be nega-
tive (as is done for cavity problems), the ‘'free terms'

must be positive.

The acoustical radiation model for the sphere was
studied only to determine whether the formulation would
fail at the interior eigenfrequencies for the exterior
radiation problems. As mentioned in the previous section,
this type of formulation failure has been demonstrated by

other researchers.

Radiation from a pulsating sphere can be modeled by
applying uniform velocity boundary conditions to the
sphere and applying the 'free term' negation. The analyt-
ical solution for the pressure on the surface of a pulsat-

ing sphere is [52]

kro

p(ro) - pcVo (kro +3) . (5.16)

2
((kro) + 1)

]
-~

s
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Equation 5.16 was utilized to generate the analytical
boundary pressure response in figure 5.14 for a velocity

boundary condition of 1.

The sphere model was used to numerically determine a
boundary pressure response plot for a pulsating sphere. A
uniform velocity boundary condition of 1 was applied to
the sphere. The 'free terms' were negative of those used
for the spherical cavity studies. Figure 5.15 contains the
analytical solution represented by the dashed line and the
numer ical solution represented by the solid 1line marked

with Y's at discrete frequency points.
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Figure 5.15 very clearly shows that the formulation
failures for the radiation problem are present in the for-
mulation being applied in this research. At the interior
eigenfrequencies of kr equal to 7 and 27, the boundary
pressures diverge from the analytical solution. Koopmann
and Benner ([29] present results for a pulsating sphere
which portray the same behavior as shown in figure 5.15.
Thus, the conclusion to be drawn is that an overdetermina-
tion procedure should be applied if this formulation were
to be used for radiation problems. Also, these results
lend support to the hypothesis that the difficulties
obtained 1in the low frequency regime for the cavity prob-
lems may be due to a formulation failure. Near a frequency
of zero, rigid-body modes exist which this formulation is

evidently incapable of determining for cavity problems.

5.3 Rectangular Cavity Model

All the results presented heretofore in this chapter
have been for a spherical model. For boundary element
methods, corners and edges are known to create difficul-
ties for boundary element techniques due to the boundary
discontinuities. These difficulties are described in the
literature in some detail. Banerjee and Butterfield [1l2]
have devoted an entire chapter in their text to the sub-
ject. Although the problem is well-documented, thexe does

not exist one ultimate solution for all cases.
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To investigate the consequences of corners and edges,
a rectangular cavity with dimensions of 4x5x3 was_studied.
Three different methods of modeling the corners and edges
were attempted. The first method was to model the corners
and edges as intersectioﬂs of adjacent sides. Essen-
tially, the first method 1is the intuitive aproach one
would assume having no knowledge of the inherent difficul-
ties. The normal vectors for the nodes on the corners and
edges were given components perpendicular to - each inter-
secting wall. The second method involved leaving gaps
between the intersecting walls. In essence, the nodes at
the corners and edges were not physically attached to
adjacent walls of the box. Hence, compatibility of adja-
cent node points is not enforced. (Element formulations of
this type are referred to as ‘'noncompatible' elements.)
The final method involved rounding off the corners and

edges to avoid the boundary discontinuities.

To evaluate the three methods of modeling the corners
and edges, one wall of the cavity was driven while the
remaining five walls were rig}d. A simplistic analytical
approach for this situation is to consider the problem on
a one-dimensional basis as a driven/closed cavity. The

pressure solution for this problem is

p = ae k(L - x) | g -Ik(L - x) (5.17)

where L is the length of  the cavity in the direction
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‘normal to the driven end, x is the length variable ranging

from 0 to L and the constants A andig are determined by
the boundary conditions. The boundary conditions are that
the velocity at the closed end is zero (V(L) = 0) and the
velocity at the driven end is equal to the driving velo-
city (V(0) = Vo). With these boundary conditions and equa-

tion 5.17, the approximate analytical pressure solution is

cosk(L - x)
P = 3PSV, gin(kL)  °

To quantify egquation 5.18, a driving velocity of 1 and a

(5.18)

dimension of L = 5 (corresponding to the y dimension of
the cavity) were used. The pressure distribution along
the y coordinate for wave numbers of k equal to 1, 2 and 3
(or frequencies of 343, 686 and 1092 Hz with a speed of

sound of 343 m/s) are shown in figures 5.16, 5.17 and

5.18, respectively.
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Boundary element models incorporating the three
corner and edge methods were used to numerically e;aluate
a driven/closed cavity. However, the driving velocity was
not uniform as assumed in the analytical solution. An
attempt to produce such a situation is impossible in the
first and third models because the normal velocity at the
corner nodes must be compatible on both walls. Imposing
such a boundary condition would cause the adjacent walls
to be non-rigid in the first and third models. Conse-
guently, a velocity profile having a magnitude of 1 at the
center but varying linearly to zero at the edges was
applied to the driving wall (i.e., the wall at y equal to
zero). Pressure distributions were calculated for wave
numbers of k equal to 1, 2 and 3 just as for the analyti-
cal solution. The numerical results are shown in figures
5.19, 5.20 and 5.21 for the first model (the true box),
figures 5.22, 5.23 and 5.24 for the second model (the
gapped box) and figures 5.25, 5.26 and 5.27 for the third

model (the rounded box).
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Two points must be made regarding the numerical
models. Firstly, the excitation at the driving wall is not
uniform as in the analytical solution. Secondly, the
numerical models are three-dimensional. Thus, one can not
expect purely one-dimensional results, especially when the
excitation at the driving wall is not purely one-
dimensional. These points need be highlighted to provide
explanations for the differences between the analytical

and numer ical solutions.

With the previous points in mind, some qualitative
judgements can be made on the three numerical models. The
analytical solutions in figures 5.16 through 5.18 can be
used as guidelines to evaluate the three models. For all
three frequencies, the analytical solutions are
cosinusoidal in nature. The numerical results for the
first model appear to exhibit some form of sinusoidal
behavior for the second and third wave numbers but not as
clearly defined as would be expected either in magnitude
or phase. The second model shows more clearly cosinusoidal
behavior in the pressure distribution. Phase shifts of
180° are evident at positions of zero pressure magnitude.
There is some variability in the peak magnitudes within an
individual pressure distribution. However, it is quite
possible that the variability is due to cross-coupling
with modes in the other two orthogonal directions since

the absolute maximums occur near the center of the cavity

e A A S 1 YR B o AR I L




(e.g., figure 5.24). Finally, the third model, the
rounded corner model, shows cosinusoidal behavior at the
first wave number but not at the second or third wave
numbera. The pressure magnitudes are not regular peaks nor
are any clearly defined phase shifts evident. As a result
of this numerical study, the second method of modeling the
corners and edges, that of providing gaps, appears to be
the best of the three methods and is also the one often
recommended in the 1literature (e.g., [12]). It should
also be noted that another solution which should be inves-
tigated for acoustical problems is the use of 'noncompati-
ble' elements. In 'noncompatible' elements, the node
points 1lie in the interior of the element rather than on
the edges. Many of the problems encountered here will not

be a consideration with 'noncompatible' elements.

After determining that the gapped edge model provided
the besat results of the‘three models studied, the gapped
edge model was utilized to study the internal source exci-
tation problem of the rectangular cavity. The boundary
conditions for the response study were rigid-wall boundary
conditions. Excitation of the model was supplied by a
source placed in the center of the rectangular cavity. The
strength of the source was 1. For a rigid-walled rec-
tangular cavity, the pressure distribution in terms of

modal response will be of the form [53)]
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- 1lmx mry nnmz
p=LLLA cos(;—)cos( ycos (s —) (5.19)
i1mn lmn. Lx L Lz \
where Lx’ Ly and Lz

cavity in the x, y and z directions, respectively and len

are the dimensions of the rectangular

is the modal amplitude. The modal amplitude will depend on
the closeness of the driving frequency to a natural fre-
quency and also on the coupling of the exciter to the
mode. Since an applied source is placed at the center of
the cavity for excitation purposes, the odd modes will not
be excited. (0dd modes means that the variables 1, m or n
in equation 5.19 are odd numbers.) The applied source
creates pressure antinodes in the center of the cavity.

Hence, only even modes should be excited.

The numerically determined response plots for the
rigid-walled .ectangular cavity are shown in figures 5.28,
5.29 and 5.30. The pressures shown in the response plots
are associated with a point located in the center of a
wall of the cavity. For example, the x direction response
is for a point located in the center of a wall having a
constant x coordinate (i.e., a wall parallel to the yz
plane). The response plots indicate resonant frequencies
by the significant peaks in the magnitudes and shifts in
the phase. Incidentally, the difficulties in the low fre-
guency regime are apparent again in these response plots

below a wave number of about 0.25.
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Pressure distributions within the rectangular cavity
.L’: were generated from the numerical results to identify the
pressure response shapes occuring at rssonant frequencies.

° Near the resonant frequencies the response should be dom-
inated by the respective mode shape. Between resonance, it

wovld be expected that the response would be lower and

would be a superposition of all the near-freguency
resonant mode shapes. Since the cavity and pressure dis-
tributions are three-dimensional, the pressure distribu-
tions were determined for planes perpendicular to one of
§ the orthogonal directions and passing through the center é
of the rectangular cavity. Thus, for each response at ?
which a distribution is determined, three plots are gen-
erated; ons in each of the three orthogonal planes. Furth-
ermore, the magnitude at the center of all the magnitude
plots is infinite and the phase at the center of the phase '
plots is -90° because of the applied source. As a result, |
the response of the center point is truncated to the level

of the maximum pressure magnitude. ‘

From the cavity response, the first resonant fre-

quency occurs at a wave number of 1.34 (460 Hz). The pres-

sure distribution within the rectangular cavity was gen-
erated at that wave number. The pressure distribution of i

the variations in the = direction is shown in figure 5.31.

et o

Likewise, figure 5.32 is the y variations and figure 5.33

is the x variations. Figure 5.31 indicates a possible
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cosinusoidal variation in magnitude along the y coordinate
which is confirmed by the clearly defined 180° phase shift
aloﬁg the y coordinate. Relatively constant pressures are
displayed in figure 5.32. The cosinusoidal variation in
the y coordinate is evident again in figure 5.33. It is
readily apparent that the (0,2,0) mode 1is the resonant
mode shape at 460 Hz. Analytically, the (0,2,0) mode éhape

occurs at k = %E or 432 Hz. The conclusion 18 that the

boundary element model successfully located the first

resonant frequency with about a 6% upward shift in the

frequency.
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The second resonance condition occurs at a wave
number of about 1.65 (566 Hz). The pressure distributions
within the rectangular cavity are given in figures 5.34
through 5.36. A cosinusoidal variation along the x direc-
tion is indicated by the magnitudes and by the 180° phase
shifts in figures 5.34 and 5.36. Hence, the (2,0,0) mode

shape appears to be the dominant mode at 566 Hz. The

2n
(2,0,0) mode occurs analytically at k = 3 °r 539 Hz. For
the second resonant condition, the boundary element model

located the resonance with a 5% upward shift in the fre-

guency.
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The third resonant pressure distribution is at a wave
number of 2.06 (707 Hz). In the response of figures 5.28
through 5.30, two closely-spaced peaks appear between the
wave numbers of 2 and 2.25. The first peak is the one at
707 Hz. Figures 5.37 through 5.39 are the pressure distri-
butions of the third resonant condition. In figure 5.37,
it seems as though a cosinusoidal variation exists AIOng
both the x and y directions. However, it is not entirely
clear from the phase relationship that this is indeed the
case. By examining figure 5.38, it becomes more obvious
that just such a variation is present in the x direction.
Similarly, the vy direction variation is better viewed in
figure 5.39. The resulting conclusion is that the (2,2,0)
mode 13 the dominate mode at this frequency. Theoreti-

cally, the (2,2,0) mode occurs at a wave number of

\J(%z)z + (%1)2 = 2.01 (689 Hz). For the third resonance
in the rectangular cavity response, the boundary element
model located the resonant frequency with only a 3% upward

shift.
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Figure 5.37 - Rectangular Cavity Pressure Distribution At
k=2.06 (XY Plane)
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Figure 5.39 - Rectangular Cavity Pressure Distribution At
k=2.06 (ZY Plane)
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Although the pressure distribution will not be
presented for the resonant peak at the wave number of 2.21
(758 Hz), some comments can be made regarding it. The next
expected mode shape should be the (0,0,2) mode which,
theoretically, is excited at a wava number of 2.09 (717
Hz). The numerically determined pressure distribution at
758 Hz was characteristic of the (0,0,2) mode but also
retained the nature of the (2,2,0) mode which occured at a
slightly lower frequency. Because the two resonances are
80 closely related in terms of frequency, both the (2,2,0)
mode and the (0,0,2) mode are apparent in the distribution
at 758 Hz. A situation such as thies is likely to happen
whenever the modal density is high in a particular fre-

quency range cfZ interest.

A series of pressure distributions were gen:rated for
a non-resonant frequency of the rigid-walled rectangular
cavity. The distributions in figures 5.40 through 5.42 are
for a wave number of 1 (343 Hz) which is a frequency lower
than the first resonant frequency of 460 Hz. The pressure
distribatrons plainly show that at this non-resonant fre-
quency, the applied source is the sole determinant of the
pressure field characteristics. This type of distribution
should be expected as all the resonant response will be

low at this frequency.
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5.4 Summary

The first section of this chapter p;esented numerical
results and, analytical results where ipplicable, of sound
fields in a spherical cavity. Excellent correlation was
obtained except in the low frequency regime. A hypothesis
for the low frequency difficulties was presented ané par-
tially supported through literature references. Using the
spherical cavity model, all three boundary condition types
(pressure, velocity and impedance) and the applied source
capabilities were verified. In addition, the sphere model
was used to briefly examine the acoustical radiation pred-

iction capabilities of the program for a pulsating sphere.

The remainder of the chapter presented results
obtained for a 4x5x3 rectangular cavity. Three different
techniques for modeling corners and edges were presented.
The best of the three modeling techniques was to model the
corners and edges by leaving slight gaps. A model of the
cavity having gaps at the corners and edges was utilized
to develop a cavity response and pressure distributions
both on and off the resonant frequencies. The resonant

frequencies were located and identified with good accuracy

using the boundary element model.
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CHAPTER 6

CONCLUSIONS

The objective for this research was tao develop a
numerical tool based on indirect boundary element theory
to predict the sound field within an acoustical cavity. In
additior, two additional features were desired. The first
additional feature was that the three boundary condition
types; pressure, velocity and impedance, be formulated and
implemented in the developmen:t. Secondly, the implementa-

tion of acoustic point scurces was desired.

2 code to implement these objectives was developed

and verified. In genreral, the conclusions which can be

drawn from this experience are;

l. The indirect boundary element method is capable of all
analyses for which direct boundary element methods have
been demonstrated in the literature. In addition, IBEM

techniques regquire only one boundary integral in most
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cases. This will be more efficient than DBEM's in many

instances.

2. Forced response in three-dimensional cavities 1is a
straightforward application of boundary element
methods. Corners and edges cause difficulties as they
do with radiation problems. Further conclusions in this

regard are included in the next paragraph.

3. Implementation of internal source capabilities is rea-
scnably straightforward and potentially quite powerful
in future applications such as active noise control.
Boundary element methods are decidedly better then fin-
ite element methods for representing internal point

sources since BEM's can accommodate singularities.

4. The application of impedance boundary conditions was
successfully demonstrated. It should be pointed out
that the formulation used in this development 1is not

limited to locally reacting impedance.

One suggestion can be made regarding the problem with
corners a;d edges evidenced in the rectangular box model.
The application of & 'noncompatible' element may resolve
these difficulties. A .'noncompatible' element is one in
which the nodes of the element are not located along the

edges of the element as for the isoparametric element used

in this research but located internal to the element. By
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locating the nodes, or the locations of the boundary con-
ditions, within the element. the boundary conditions will
never bLe situated at a boundary discontinuity. Thus, the
‘'free terms' in the velocity and impedance boundary condi-
tion equations will always maintain a value of t% and,
more importantly, the difficulties with the boundary

discontinuities can be avoided.

The boundary element procedure developed for this
research can be applied to noise source identification.
Although this concept was not specifically pursued in the
case studies, the identification of acoustical generators
and optimizat .on of the cavity acoustical characteristics
can be guided with the application ¢f this boundary ele-

ment procedure.

In summary, it appears from this work that the
indirect boundary element method should be the numerical
method of choice for a large precentage of investigators
interested 1in forced response problems in both interior
and exterior domains. This is especially true when only a
limited number of frequencies and response locations are

desired.
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