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SECTION 1
INTRODUCTION

This Final Report summarizes a study conducted by Astro Aerospace
Corporation (Astro) for NASA Marshall Space Flight Center (MSFC) on High-
Performance Deployable Structures for the support of High-Concentration Ratio
Soltar Array Modules.

Serious consideration 1is being given to the use of high-concentration
ratio solar array modules for LEO applications such as Space Station. These
concentrator solar array designs offer the potential of .reduced cost, reduced
electrical complexity, higher power per unit area, and %ﬁproved survivability.
Arrays of concentrators, such as the miniaturizéd Cassegrainian concentrator
modules (see Ref. 1), present a serious cha]iéhge to the structural design
because their mass per unit area (5.7 kg/m?) is higher than that of flexible
solar array blankets, and the requirement for accurate orientation towards the
Sun (+0.5 degree) requires structures with improved accuracy potentials. In
addition, use on Space Station requireé relatively high structural natural
frequencies (see Ref. 2) to avoid deleterious interactions with control
systems and other large structural components. |

The objective of this study is to identify and evaluate conceptual
designs of structures suitable for deploying and accurately supporting high-
concentration ratio solar array modules.

Section 2 of this report describes the mission selection and design
criteria which were used to select the two structural concepts: the
Extendible Support Structure (ESS, a synchronously-deploying structure) and
the STACBEAM (Stacking Triangular Articulated Compact Beam, a sequentially-
deploying mast). Sections 3 through 5 describe the candidate structures,
parametric analysis and point design study, respectively. A summary is
presented as Section 6.



SECTION 2
MISSION SELECTION/DESIGN CRITERIA

A Space Shuttle launch and the Space Station orbit were selected by MSFC
for the baseline environmental requirements.

2.1 HIGH-CONCENTRATION RATIO SOLAR ARRAY
The baseline requirements for the solar array size are:

o A power of 15-kW BOL (Beginning of Life) per wing
o An aspect ratio of 2.46:1 (present Space Station solar array aspect
ratio, Ref. 2) E
The Cassegrainian and SLATS (Ref. 3) concentrator concepts have been
evaluated as high-concentration ratio solar arfﬁy modules. It was concluded
that the requirements for the SLATS concentrator are not as critical as those
for the Cassegrainian concentrator. A pointing acéuracy of 0.5 degree over
the entire array was established as a design requirement.

The Cassegrainian concentrator is capable. of generating 160 W/mZ BOL
(current technology, Ref. 1); hence, a solar array with dimensions of 6.2 by
15.25 m is required.

2.2 DEPLOYABLE STRUCTURE

The general requirements for the deployable structure are based on the
Space Shuttle launch, the Space Station environment, and the required size and
pointing accuracy of the solar array.

. The primary load during a Space Shuttle launch is due to random vibration
(Ref. 4). The deployable structure in the stowed configuration is compact
with its truss elements sitting on top of each other. Also, there will be
some type of Tlaunch restraint to prevent any unwanted vibration responses.
Hence, the Tlaunch environment will not be the primary design criteria for
deployable structure strengths and stiffnesses. At this point, it is assumed
that the deployable structure in the stowed configuration will be mounted to
the hard points of the STEP pallet. If the Tlaunch of the present Space
Station configuration (Ref. 2), however, 1is considered, the deployable



structure in the stowed configuration will be mounted to the stowed transverse
boom of Space Station inside the Space Shuttle. In that case, the required
dimension of the deployable structure in the stowed configuration, including
the deployer, will be a design driver, due to the available space inside the
Space Shuttle.

For Space Station environments, the deployed structure will be mounted to
Space Station as a -solar array mast. The following load conditions were

considered (see Ref. 2):
[~J
Gravity-gradient torques

Aerodynamic drag and torques (at 200 nmi)
Docking/berthing
Crew motion

O O O o o

RCS reboost firing

The acceleration due to RCS reboost firing will generate the highest
bending moment (452 ft-1b) on the deployed structure (see Ref. 2) and was
chosen as a primary requirement, with a safety factdr of 5, to establish the
required bending strength of the deployed structure. The fundamental
vibrational natural frequency of the solar array mast given in Ref. 2 is about
0.16 Hz. Note that the computed natural frequency in Ref. 2 decreases to
about 0.11 Hz if the solar array mast is attached to a tensioning-type solar
array. The required pointing accuracy for the deployed structure is 0.5
degree (see Ref. 1). The deployable structure baseline requirements are given
in Table 1.



TABLE 1. DEPLOYABLE STRUCTURE BASELINE REQUIREMENTS.

Length, m (ft)
Bending strength, m-N (ft-1b)

Fundamental vibrational natural
frequency, Hz

Pointing accuracy, degrees

Minimum
Requirement

15.25 (50)
614 (452)
0.11

0.5

Design Goal
15.25 (50)

3068 (2260)
0.16

0.5



SECTION 3
CANDIDATE STRUCTURES

The Extendible Support Structure (ESS, a synchronously-deploying
structure) and the STACBEAM (Stacking Triangular Articulated Compact Beam, a
sequentially-deploying mast) truss structures have been considered for
deploying and supporting high-concentration ratio solar array modules.

The primary reason for selecting the above structures is that their
deployments are translational and they do not rotate about their longitudinal
axes during the deployment or retraction. Hence, the solar array can be
attached directly to the structure at each bay, bothlfﬁ stowed and deployed
conditions.

In order to consider the merits of each 'in an unbiased manner, certain
ground rules have been established.

3.1 STIFFNESS

It has been assumed that the solar array panels (solid panels) do not
contribute to the overall stiffness of the support structure. Therefore,
changes 1in solar array panel design have little effect on the structural
behavior. -

3.2 SMALL RELATIVE MASS

The mass of the solar array and its structure is small in comparison to
the total spacecraft mass. Therefore, the cantilever vibration frequency
approximates the lowest frequency mode.

3.3 ATTACHMENT OF SOLAR ARRAY TO THE STRUCTURE

The .soTlar array will be attached to its support structure along its width
at the two nodal points of the array's first vibrational free-free mode.
Therefore, the solar array local natural frequency along its width would be
maximum. i

Hence, the ratio of the structure width w to solar array width b should
be about 0.56.



SECTION 4
PARAMETRIC ANALYSIS AND SELECTION OF STRUCTURE

4.1 EXTENDIBLE SUPPORT STRUCTURE CONCEPT

The Extendible Support Structure (ESS) concept, originally developed by
Astro Aerospace Corporation (Astro) to support the synthetic aperture radar
antenna, was flown on the Seasat spacecraft. The ESS concept for deployment
and support of .a solar array panel is shown in Figures 1 and 2. The structure
is of width w, depth h, and bay length &. It is composed of truss members of
diameter d and wall thickness t. For the Seasat applications, rigid solar
panels were an integral part of the structure in 'Béfh the packaged and
deployed state and the same principle is applied for this case.

4.1.1 Structural Properties

4.1.1.1 DIMENSIONS

The minimum required length L of the structure is given in Table 1. The
bay length & of the structure depends on the number of solar array panels n
(or number of bays) and is

g - L (1)

The width of the structure w is obtained from Section 3.3 as
w = 0.56b (2)

The structure depth h can vary and will be selected on the dimensional
requirements of the stowed structure.
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4.1.1.2 MASS

The mass of the ESS system includes the masses of its truss members and
joints and the solar array payload itself, or

Ms = Mg + Mj + Mj (3)

4,1,1.2.1 Mass of Truss Members

The mass of the truss members is determined by multiplying the linear
density by the structure length, or

Mg = mtl ‘ (4)

The structure consists of longerons, face and side diégona1s, and face and
side battens so that

My = My + Megt Mogt Moy + Mgy
2 2 7
i} W 14 (M [h
il 4"Az+°“fd\[1+(z) s\ (22) * (2) (d\sd)
) |
W w h
B T \/(‘271) * (‘g) (5)

where p is the material bulk density, and A is the truss member cross-
sectional area.

4,1.1.2.2 Mass of Joints
The joint mass is expressed as a function of tube mass by

M



The joint factor k, multiplied by the truss member mass, gives the structure
mass Mgy and is estimated by investigating the Seasat ESS assembly. The joint
mass in the ESS for Seasat was 8 kg, over a length of 10.7 m, so that

mj Seasat = 0.75 kg/m

The truss member diameter was 0.0127 m with a 0.00075-m wall thickness. The
graphite tube mass per length is determined to be 0.40 kg/m. Therefore, for
Seasat, '

Kk = 2.88

This Jjoint factor, obtained for an assembly having comparatively high
wall thickness, should be greater for joints connecting thinner wall tubing.
Efforts directed toward decreasing the Seasat joint weight (see Figure 3) have

succeeded in lowering the factor. Projecting from these results, the
following joint factors are assumed:

Truss Member Wall

Thickness, t (mm) Joint Factor k
1.00 1.6
0.75 1.9
0.50 2.2

10
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4.1.1.2.3 Mass of Solar Array Panels

The mass of the solar array panels My is

Ma

ma Aa

my bL (6)

where my and Ay are the area.density and the area of the solar array panels,
respectively.

my = 5.7 kg/m?2 (see Ref. 1)

4.1.1.3 TRUSS MEMBER SIZE

The truss member sizes are based on both the minimum bending strength and
natural frequency requirements presented in Table 1. At first, the truss
member sizes are calculated to satisfy the bending requirement. Then the
natural frequencies are calculated based on the computed dimensions from the
bending requirements. If the computed natural frequency satisfies the
requirements, then the calculation is complete. Otherwise, the order of
calculation should be reversed and the truss member size should be based on
the natural frequency requirement.

4.1.1.3.1 Bending Strength

The bending moment M is reacted by axial load P in the longeron

M
P = - (7)
h

The axial Toad in the longeron should be less than its buckling load P¢y

—~
—_

2 (EI)
Pep = 2. (8)
L

= N

12




where (EI)Q is the bending stiffness of the longeron

3
T dt
(El)z = Eg (9)
Substitution of Eqs. (8) and (9) into Eq. (7) results in
1
8tm \3
d 3 (10)
T Eth

Note that the length of the back longeron 2& is two times the bay length.

4.1.1.3.2 Natural Frequencies

Bending Natural Frequency

The fundamental bending natural frequency fy of the ESS system with
cantilever boundary condition is given by
1

_ 3.52 EI 2
fo = on E (11)
S

where the structure bending stiffness EI is giveh by

El = 24

2
3 h

EA) | | (12)

(EA)g = the axial stiffness of longerons.

Torsional Natural Frequency

The fundamental torsional natural frequency fy of the system with
cantilever boundary condition is given by

N =

_ 1.57 { Gk
f'v = (JSL ) (13)

13



where Gk is the structure torsional stiffness and is given by (Reference 5)

| 3 03
ok = wnd [, Fsa (FAl ey (EA)
L 23 (Eujsd 23 (E“)fd
-1
3 (EA)q
W (14)
+-—3 —(—TEA (EA)SL
) fb

The mass moment of inertia Jg is the sum of structure and solar array mass
moment of inertia.

Js = Jst + Ja B (15)

Assuming that all of the structure joints are located along the 7longerons,

then the structure mass moment of 1nertia;f1s given by the following

approximation
3. = (208l + K1 m 52,
st PR 2 "t 9 |
w2 h2
+ (M -dempl) (155 | (16)
The mass moment of inertia of the solar array is given by
) .
t 2 2
- ath h
Ja = My ( 12 * 9') (17)

where ty is the solar array panel thickness.

4.1.2 Acceleration Capability

4.1.2.1 DEPLOYED STRUCTURE

For a structure (beam), the limits on the acceleration are generally
governed by the bending strength M of the structure; however, if the pointing
accuracy is a requirement, then the limits on the acceleration are determined
by the maximum response slope of the structure. The latter one usually refers
to the accelerations during the normal operation. The translational and
rotational accelerations for a structure with cantilever boundary condition
are given as follows.

14



4.1.2.1.1. Translational Acceleration

The maximum acceptable translational acceleration az is

where g is the maximum slope {pointing accuracy) of the structure.

4.1.2.1.2 Rotational Acceleration

The maximum acceptable rotational acceleration qa is

and the maximum rotational acceleration g5 during the operation is

8EIle '
o - SEI2 o (21)
MSL

4,1.2.2 PARTIALLY DEPLOYED

The structural capability of the ESS structure during the deployment has
not been determined by analysis. From past experience (Seasat project),®
however, the ESS structure alone can be deployed under 1 g load without any
antigravity compensation when the load is acting along the X axis (see Figure
2). As a conservative assumption, 0.2 g is taken as the limiting acceleration
capability of the ESS structure during deployments. Thus, the 1limiting
acceleration capability of the ESS system during the deployent is given by

_ (0.2 x 9.81) MSt

a
d Mg

15



4.1.3 Dimensions of Stowed Configuration

The ESS system dimensions in the stowed configuration along three axes
are given below (see Figure 2).

Axis Dimensions
X b
Y n (ty +d)

z Vh2 + 92

4.1.4 Deployment/Retraction Mechanism

The ESS deployment mechanism consists of latching clamps which hold the
packaged assembly rigidly together. Upon release of these clamps, the
assembly is free to expand and does so in a contro]]ed;fashion by motorized
extension of the rear scissors longeron (see Figures 4 and 5). There are
three clamps, one for each stack of hinges, which make a direct load path to
the spacecraft. Such an assembly is expectearto have a mass approximately
equal to thevjoint mass. '

The retraction is made possible by retracting the rear scissors longeron.
Note that at the start of retraction, the side battens should be buckled. The
buckling of the side battens is done by the use of a synchronized joint which
controls the motion of side battens with the motion of the rear scissors
longeron.

16
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4.1.5 Results

For the baseline design, an eight-panel solar array is selected. In
addition, the following physical data were used in the analysis:

n 8

L = 15.25m
b = 6.2m

M = 3068 Nm
E

1]

t

= 2.75 x 1011 N/m2 "VHM graphite/epoxy"
= 1520 kg/mS  "VHM graphite/epoxy"
= 1 mm
ta = 15 mm
Rp = Afd = Asd = Afb = Asp B
Substitution of the above data into Eqs. (1), (2), and (6) results in

g = 1.91m
w = 3.472m
Mg = 539 kg

Equation (10) is solved for several structural depths h and results are
presented in Figure 6. Note that h = 3.006 m corresponds to a structure with
equilateral cross-section. Also, the plot of structure mass Mgt versus the
structure depth 1is presented in Figure 7. Note that the deployer mass is
estimated by the joint mass or

Mass of Deployer = MSt (1 --—)

The above results were used to calculate the natural frequencies and ESS
system stowed dimensions. The results are given in Figures 8 and 9. The
resulting natural frequencies are above the required values; thus, the design
drive for the truss members cross section is the bending strength requirement.

For the baseline, a structure with the depth of 1 m is selected which
satisfies not only STEP available space but also it satisfies the present
space station in stowed configuration (see Figures 10, 11, and 12). Its
properties are given in Table 2. )

19-
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ESS system stowed dimensions.

Figure 9.
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TABLE 2. ESS BASELINE DESIGN.

Bay number, n 8

Length, (m) 15.25
Width, (m) 3.472
Depth, (m) 1

Bay length, (m) 1.91

Truss member diameter, (mm) 34.6

Truss member thickness, (mm) 1

Mass (kg) 46.4

Mass moment of inertia (kg-m?) 69 s
Bending stiffness, (N-m2) 1.94 x iO7
Torsional stiffness, (N-m°) 4.36 x 10°

Natural frequency (Hz)

Bending 1.72
Torsion 3.1
Stowed dimension (m)
X 6.2
Y 0.4
Z 2.15
Acceleration capability
Translational, (m/sec?) 0.69
Rotational, (rad/sec?) 0.07
Pointing error due to
maximum acceleration (degree)
Translational 0.046
Rotational 0.054
Acceleration capability
during the deployment,
(m/sec?) : . 0.077
Deployer Mass (kg) 17.4

27



The maximum acceptable translational and rotational acceleration are
given in Table 2. The pointing error due to the above accelerations are also
given in Table 2.

Note that the response bending moments due to the above accelerations are
five times larger than the respose bending moment of the solar array mast of
the present space station configuration. '

The maximum acceleration capability during deployment is much higher than
accelerations resulting from normal operation of the space station
(docking/berthing and RCS reboost firing are not considered).

The above analyses were repeated for variation in the truss member
thickness from 0.7 to 1.1 mm. Since there are no drastic changes in the
result, the 1-mm thickness remained the baseline.

4.2 STACBEAM CONCEPT

The STACBEAM (Stacking Triangular Articulated Concept Beam) concept for
deployment and support of solar array panels is shown in Figures 13 and 14.
Special characteristics of the STACBEAM structure are as follows:

o It deploys sequentially, one-bay-at-a-time by unfolding and 1locking

hinges provided at the midpoint of each longeron and diagonal.

o The batten moves linearly, without rotation, during this deployment.

o A1l hinges are single-degree-of -freedom.

The panels are attached at each bay through standoffs to the two corner
joints of the STACBEAM by hinges. At the time of full deployment, the
midhinge of the panels would be locked to prevent any motion of the panels in
a direction normmal to its plane.

4.2.1 Structural Properties

4.2.1.1 DIMENSIONS

In the existing STACBEAM design, the bay length is equal to its radius
R. The width of the structure w is determined in Section 4.1.1.1 and is 3.472
m. Since the cross-section of the STACBEAM is equilaterally triangular, then
its radius is 2.004 m and consequently, its bay length is 2.004 m. The
depth of the structure h is

h = 1.5R = 3.006 m
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Figure 13. STACBEAM concept. : 85-L114
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85-L113

Deployed STACBEAM,

Figure 14.
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The minimum required length of the structure L is 15.25 m (see Table 1).
Hence the number of bays should be eight which results in a STACBEAM with
16.032-m length.

4.2.1.2 MASS

The mass of the STACBEAM system includes the masses of its truss members
and joints and the solar array payload itself, or

Mg = My + Mj + My ‘ : (22)

4.2.1,2,1 Mass of Truss Members

The mass of the truss members is determined by multiplying the linear
density by the structure length, or

Mg = mgl . (23)
The structure consists of longerons, diagonals, and battens so that

mg = m + mg + mp

3pA£ + 6pAd +3 3 oAb

14.20A ’for Al = Ay = Ad = Ay (24)

where p is the material bulk density and A is the truss member cross-sectional

area .

4,2.1.2.2 Mass of Joints

The joint mass in the STACBEAM is 75 percent of truss member mass (see
Ref. 6). Then the joint factor

M.
k = ﬁl + 1
t

is assigned the value of k = 1.75.
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4,2.1.2.3 Mass of Solar Array Panels

The mass of a solar array panel is given in Section 4.1.1.2

4.2.1.3 TRUSS MEMBER SIZE

The procedure to determine the truss member size is given in Section
4.1.1.3.

4,2.1.3.1 Bending Strength

For the simplicity of design, it is desired that the length of the stowed
STACBEAM and stowed solar array be equal. In order to satisfy the above
condition, the 1longeron diameter d should be equal to the solar array
thickness ta (see Section 4.2.3). Since the longeron diameter is now limited
to the solar array thickness, then the ratio of longeron diameter to its
thickness may not be large enough to use Eq. (9).

Equation (9) is modified to

() = a*) (25)
1

where dj is the inner diameter of the longeron.

Substitution of Egs. (25) and (8) into Eq. (7) results in

5 1
g 64gM @
d, = (d - =3 ) (26)
T°Eh

4.2.1.3.2 Natural Frequencies

Bending Natural Frequency

The fundamental bending natural frequency of the STACBEAM system with the
cantilever boundary condition is given by Eqs. (11) and (12).
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Torsional Natural Frequency

The fundamental torsional natural frequency of the STACBEAM system with
cantilever boundary condition is given by Eq. (13).

The torsional stiffness Gk of STACBEAM is given by

' 2 -1

Gk = §R2 1 + tan™8 + V3 (27)

sin B c0523 (EA)d (EA)Q 4(EA)b

where B = batten-diagonal angle = 30 degrees.
The mass moment of inertia Jg is given by Egs. (15), (17), and

| 2 h2
J = J3pAL+ (k-1) M R+ (M - 3pA L) — (28)

st \ 2 t t L 9

4.2.2 Acceleration Capability

The translational and rotational acceleration capability of STACBEAM are
given by Egs. (18) and (20). The pointing accuracies are also given by
Eqs. (19) and (21).

4.2.3 Dimensions of the Stowed Configuration

The STACBEAM system dimensions in the stowed configuration along three
axes are given below (see Figure 13).

Axes Dimensions

X b

Y 2nt, or 2nd (whichever is larger)
z h+U+% = 2R+

where n is the number of bays or solar array panels, and U is.the space
required between the STACBEAM and the solar array panels due to the deployer.

Note that the above dimensions do not include the deployer. The
dimensions for an existing deployer concept with the STACBEAM system
integrated into it are: '
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Axes Dimensions

b

>%
z 2R + U + dg

where dgq is the diameter of the main support tube of the deployer.

4.2.4 Deployment/Retraction Mechanism

The existing concept for the deployment/retraction mechanism (see Ref. 6)
is presented in Figure 15. The deployer height is at least one bay length.
Prior to deployment, the deployer itself is deployed to its minimum required
height, one bay length plus stack height.

The deployment is initiated by the rotation of three lead screws which
are threaded through the corner fittings of the top batten frame and are
attached to three main supports of the deployer. The top batten frame is
1ifted with the rotation of the lead screws until the top bay is fully
deployed; then, the second batten frame which was held by synchronized latches
is released and engaged into the lead screws. The deployment 1is continued
until full deployment.

The deployment/retraction mechanism retracts the STACBEAM system one bay
at-a-time. The retraction of each bay, initiated by the simultaneous motion
of a series of 1linkages and levers, pushes the longerons, diagonals and the
solar array panel to unlock their mid-hinges. The estimated mass for the
deployment/retraction mechanism is given in Appendix A. ‘

4.2.5 Results

The following data were used in the analysis:

M = 3068 N-m
Ly = 2.004 m
h = 3.006 m
= 2.75 x 10%} n/m? "WHM graphite/epoxy"
o = 1520 kg/m3 “"VHM graphite/epoxy"
d =0.015m ‘
Ag = Ap = Ag

The results are given in Table 3.
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Figure 15. STACBEAM deployer concept. 85-L115
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The resulting natural frequencies are higher than the design goal. Thus
the design drive for truss member cross section is the bending strength
requirement.

The stowed dimensions are larger than the available space of the STEP and
the present Space Station stowed configuration. The maximum space available
of the STEP along its width (z-axis) is 106 inches or 2.69 m. In order to fit
the STACBEAM system with its deployer into the STEP, the following dimensions
are required:

£=R=1.23m
n=13
W=2.13m

Thus, the ratio of the STACBEAM width to that of the solar array is about
0.34.
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TABLE 3.

Bay number, n

Length, (m)

Width, (m)

Depth, (m)

Bay length, (m)

Truss member diameter, (mm)
Truss member thickness, (mm)

Mass (kg)

Mass moment of inertia (kg-mz)
Bending stiffness, (N-m2)
Torsional stiffness, (N-mz)

Natural frequency (Hz)
Bending
Torsion

Stowed dimension (m)

X
Y
Z
Acceleration capability
Translational, (m/sec?)
Rotational, (rad/sec2)
Pointing error due to
maximum acceleration (degree)
Translational
Rotational

Deployer Mass (kg)

STACBEAM BASELINE DESIGN.

16.032
3.472

3.006

2.004

15

1.55

40

105.4

1.085 x 108

1.58 x 107

0.009
0.01

33
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4.3 COMPARISONS

The two structural concepts for the support of the solar array panels are
evaluated by using several bases of comparison: attachment of the solar array
to the structure, package size, simplicity of deployment, and system mass.

4.3.1 Attachment of the Solar Array to the Structure

One of the primary purposes of the deployable structure is to support the
solar array panels accurately when it is fully deployed. For that reason, it
is important how and at what location the solar array is attached to the
structure. '

o The solar array will be mounted directly on the ESS at any two
locations along its width without being constrained by the package
requirement. The solar array will be an integral part of the ESS and
its relative position to the front face of the ESS will not be changed
during deployment.

0 The solar array will be mounted on the STACBEAM through standoffs due
to the deployer constraints. The width of the STACBEAM is constrained
by the package requirement; thus, the two mounting points (corner
fittings of the STACBEAM) cannot be selected arbitrarily. Since the
relative position of the solar array to the front face of the STACBEAM
changes during the deployment, the solar array is mounted at its end
on the standoff by hinges and also has two midhinges. '

4.3.2 Package Size

The two concepts have two distinct package shapes. The ESS system
package is a flat box, and its dimensions have no constraints on the ESS
width. The STACBEAM system package is a triangular prism plus a flat box, and
its dimensions have constraints on the STACBEAM width. The dimensions are
given in Sections 4.1.3 and 4.2.3.

4.3.3 Deployment

Aspects of deployment which are factors in the evaluation are simplicity,
reliability, and natural frequency during deployment. The simplicity and
relative reliability of deployment of each concept can be compared by
considering their special characteristics:

o The ESS deploys by simultaneously opening all bays so that each member
receives its deployment force by transmission through the assembly.
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o The STACBEAM requires synchronized engagement and 1ifting of the three
corners of each triangular batten frame. This can be accomplished
electronically or mechanically.

Since the full stiffness of the ESS 1is not developed until it is
completely deployed, the system frequency is degraded .during deployment. This
situation is not encountered in the other system.

4.3.4 System Mass

The two structures have basically equal masses. The mass of the two
structures with the same depth (h = 3.006 m) is used for comparison:

Mass of ESS = 37 kg
Mass of STACBEAM = 40 kg

The estimations for the deployer mass are also

Mass of the ESS deployer = 13.9 kg
Mass of the STACBEAM deployer = 33 kg

4.3.5 Selection

The ESS structure is selected over the STACBEAM for the reasons given in
Sections 4.3.1 and 4.3.2. In addition, note that the deployment mechanism for
each ESS structure is much simpler than the one for STACBEAM.
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SECTION 5
POINT DESIGN STUDY

5.1 NATURAL FREQUENCY ANALYSIS BY FINITE ELEMENT METHOD

As a part of point design, the ESS system's natural frequencies were
analyzed by the finite element method using the COSMOS 7 Program.

The finite element model contains 23 nodal points and 61 truss elements,
each representing a single truss member as represented in Figure 16. To
account for the mass of the hinges and connections at the joints, the truss
member material density was increased by the joint factor, k = 1.6.

Furthermore, the mass of the solar array panels was accounted for by
including additional Tlumped masses at only those nodes on the solar array
surface. The solar array panels were assuned not to contribute to the
structural stiffness. Appendix B Tlists the input data to the COSMOS 7
Program.

The first ten natural frequencies of the ESS system were determined by
the subspace method and are listed in Table 4.

Appendix C lists coordinate displacements of the structural nodes for the
normal mode shapes corresponding to the first ten natural frequencies. = Also
presented in Figures 17, 18 and 19 are various views of mode shapes
corresponding to the first three natural frequencies. The first natural
frequency is the first bending about the x-axis and agrees very closely with
the one given in Table 2. The second natural frequency is the first torsional
frequency and is about six percent (6%) lower than the one given in Table 2.

5.2 GROUND HANDLING

Ouring the ground handling (1 g) of the deployable structure, it may
become necessary to handle the truss members with special care to prevent any
damage or fracture to them. If the special handling of the truss members
become a problem, it can easily be solved by increasing the ratio of the truss
member thickness to its diameter. ‘
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TABLE 4. NATURAL FREQUENCIES OF VIBRATION OF THE ESS SYSTEM

Mode No. Natural Frequency, Hz

.76
.93
.23
.84
31
14.58
18.97
19.93
21.67
24.11

Ww 00 ;1 N

O 00 N Oy 01 & W N =

=
o
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Deformed shape
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Figure 17a.

ESS system first mode shape (perspective)
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In order to investigate the effect of the above change on the overall
behavior of the ESS system, Equation 10 is modified to

o\ 1
82°M\4
1 Ehc
where ¢ = t/d.

The ratio ¢ was increased from 1/34.6 (see Table 2) to 1/20; the results
are given in Table 5.

As expected, the deployable structure mass was increased by twenty

percent (20%), but the stiffnesses and natural frequencies were also
increased.
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TABLE 5.

Bay number, n

Length, (m)

Width, (m)

Depth, (m)

Bay length, (m)

Truss member diameter, (mm)
Truss member thickness, (mm)

Mass (kg)

Mass moment of inertia (kg-m2)
Bending stiffness, (N-mz)
Torsional stiffness, (Némz)

Natural frequency (Hz)
Bending
Torsion

Stowed dimension (m)

X
Y
JA

Acceleration capability
Translational, (m/secz)
Rotational, (rad/sec?)

Pointing error due to

maximum acceleration (degree)

Translational
Rotational

ESS DESIGN FOR t/d = 1/20

15.25
3.472

1.91
30.2
1.51
56
83.34
2.49 x 107

5.61 x 10°

W =
“« .
[5)]

nNO O
'Y . .
=L N
[S21e))

0.68
0.066

0.036
0.04
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5.3 CRITICAL COMPONENTS

The operation and reliability of the synchronized joint controlling the
motion of the side battens with the motion of the rear scissors longeron is
the primary concern. Its operation is not only required for the retraction,
but it 1is essential to a synchronized deployment. The synchronized Jjoint
presented in Figure 20 has been used in the Seasat project and its operation
and reliability have been demonstrated. Note that the Seasat synchronized
joint was controlling the motion of the side diagonal with the motion of the
rear scissors longeron since there were no retraction requirements, but the
basic principles are the same. Presented in Appendix D are sketches (Class C
drawings) of the overall configuration of the ESS structure.

5.4 ROUGH COST ESTIMATES

Cost estimates for both the engineering development of a mission specific
design and the recurring unit costs have been developed on the basis of the
following assumptions:

o Cost plus fixed fee contract (full requirements not defined)
o Costs in 1985 dollars

o Non-recurring costs include:

Mission specific design (analysis, specification and drawings)
Preliminary Design Review at Astro's facility

Engineering model fabrication

Functional and 1life cycle tests

Critical Design Review at Astro's facility

o Recurring unit costs include:

Manuf acturing of flight hardware (twelve units)

Qualification of testing including vibration, thermal vacuum, E.M.I
Refurbishment of qualification unit as flight spare

Acceptance tests and documentation

Brush-type dc motor

Standard Astro quality plan

Shipping container

F.0.B. Carpinteria, California

On this basis, the non-recurring costs are estimated at $750,000 and the
recurring costs at $650,000 per unit.
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Synchronized joint.

Figure 20.
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SECTION 6
SUMMARY

The Extendible Support Structure (ESS,. a synchronously deploying
structure) is selected to deploy and accurately support the high-concentration
ratio solar array modules, such as the miniaturized Cassegrainian Concentrator
Solar Array. '

The ESS structure provides high stiffness, high strength and Tlow mass
(Tess than a tenth of the solar array modules' mass). The ESS system (ESS
structure plus the solar array modules) can stand the space station
environment under the worst conditions with a safety factor of five, and its
fundamental vibrational natural frequency is about 1.7 Hz. Due to its high
stiffness, the pointing error under worst conditions is 0.054 degree. The ESS
system in the stowed condition can be attached to the stowed transverse boom
of the space station inside the space shuttle.
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APPENDIX A
STACBEAM DEPLOYER MASS

The deployer mass is estimated as the sum of several masses, as follows:

o Primary support. It is assumed that the deployer itself is truss-like
with stiffness equal to that of the beam. The mass of this component

is taken as the mass of an equivalent length of beam, or 5 kg.

o Lead screws. These are assumed to be composite graphite/epoxy and
titanium so that thermmal effects are minimized. The mass of three

0.02-m diameter screws is calculated to be about 4 kg.

o Lead screw drives and supports. Includes upper and lower bearings,

three mid-span supports, and gearing on each of the three lead screws.
Assume 2 kg. -

o Corner posts. These posts provide substantial backing for the lead
screw supports so that the beam is held with full stiffness at any
intermediate deployment position. Graphite/epoxy tubes of 0.08-m
diameter and 0.004-m wall thickness used for this purpose have a mass

of 3 kg each. Total of 9 kg.
o Motor. Two kg.

o Synchronization. Two composite tubes, transferring rotational motion

from the single motor-driven assembly to each of the two slave
assemblies. Associated gearing. Total of 2 kg. '

0 Retraction. Mechanisms required for retraction include three longeron
pushers, three diagonal pushers, three escapements (synchronized
latches) and a stack mover. The longeron and diagonal pushers would
be triggered by beam motion through the deployer. Longeron pusher

. linkages would be close to the corner posts and of relatively Tlow
mass: 1.5 kg total. The diagonal pusher linkages must extend to the
area between the posts, and the two situated away from the payload
would total 2 kg. The third diagonal pusher must be free-standing
(because of the beam-payload connections) and would have a mass of

perhaps 3 kg. Escapements are driven by lead screws; total of 0.5 kg.

The stack mover keeps the top of the stack at the lead screw entrance
level and would consist of three separate racks at the corners, driven

by the lead screws, and having 2 kg mass. Total retraction mass:
kg.

The total deployer/retractor mass is therefore 33 kg.
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MARSHALL HPDS
#CONTROL, 23, 61

M1, 3D, L, E

M2, 1,0, 16,0

M3, 1

#RENUMBER

#PLOT :

#NODES

C.1,2,1,NM

C,» 19,19, 1, NM
1,0.0,0.0,0.0,2
17,0.0,15.25,0.0.,0
2,3.472,0.0,0.0,2 l
18,3.472,15.25.0. 0,0
19,1.736,0.0, -1. 20625, 0 ’
20,1.735,1. 904625, -1.,1

23, 1. 736, 13. 34375, -1., 0
#MASSES .
MM, 3,16, 1, 33. 68, 33. 68, 33. 63
NM, 17,18, 1, 16. 84, 146. 84, 16. 84
#TRUES, L, &1

1.1,1,0

i .

2. 75811, 0, 1. 0556E~-4,2432. ., 0
1,1,3,1,0,0,0, 1 ;
17,1,2,1,0,0,.0,2 '
26,1,4,1,0,0,0,2
34,19,20,1,0,0.0.1

38: 1, 201 1'; 0, Or Or 1 "
39,2,20.,1,0,0.0,1

40, 3, 20, 1:0: 0,0,1 !
41,4,20,1,0,0,0, 1
42,95,20,1,0,0,0, 1
43,6,20,1,0,0,0,!
44,5,21,1,0,0,0, ¢

45, 6,21,1,0,0,0,1
446,7,21,1,0,0,0, 1
47,8,21,1,0,0,0, 1
48.9,21,1,0,0,0,1
49,10,21,1,0,0,0, !
©90,9.22,1,0,0,0, 1
91,10,22,1,0,0,0,1
52,11,22,1,0,0,0,1
53.12,22,1,0,0,0,)
54.13,22,1,0,0,0,
55.14,22,1,0,0,0,3
56,13,23,1,0,0,0, 1 . \
57.14,23,1,0,0:.0,
58:15,23,1,0,0:0,}
59,14, 23,1,0,0,0, )
£0.17,23,1,0,0, 8.1
£1.18,22,1,0,0,0, !
#FREQUENCIES

12,6, 1600.,0,1, 1,0, 0.0
#FINISH
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ORIGINAL PAGE |3

Appendix C OF POOR QuUALITY

MODE SHAPE NO. 1

NODE X-DISPLACEMENT Y-DISPLACEMENT Z*DISPLASEHENT
m m

1 0.000036 +00 0. 0Q0000E+0O0 0. 000000E+0O
2 0. 000000E+00 0. 000000E+00 0. 000000E+00
3 0. 541264E-03 =0. 682360E-03 0. 142115E-02
4 0. 486291E~03 ~0.73513%E-03 0. 510122E-03
S 0. 11002%E-02 -0. 138043E-02 0. 78126BE-02
& - 0.104383E-02 =0. 14332BE-02 0. 394488E-02
7 0. 151732E-02 ~0. 179243E-02 0. 181919E-01
8 0. 145771E-02 -0. 189978E-02 0. 128872E-01
? 0. 193884E-02 -0. 221651E-02 0. 300671E-01
0. 187604E-02 -0. 233105%E-02 0. 234213e-01L
0. 222442E-02 ~0. 239085E-02 0. 438964E-01:
0. 215840E-02 ~-0. 252348E-02 0. 363833E-01
13 0. 250393E-02 -0. 257213E-02 0. 5814146E-01
14 0. 243439E-02 -0. 270483E-02 0. 498613E-01
15 0. 26B690E-02 -0. 259579E-02 0..728174E-01
16 0. 261533E-02 -0. 273402E-02 0. 641096E-01
17 0. 282307E-02 -0. 262008E-02 ‘0. B70908E-01
18 0. 278266E-02 -0. 275787E~02 0. 781184E-01
19 0. 0000C0E+00 0. 0Q0000OE+QO 0. 000000E+00
20 ~0. 417953E~-04 0. 998420E-03 0. 407230E-03
21 -0. 385174E-01 0. 322041E-02 0. 154691E-01
22 0. 301100E-04 0. 437856E-02 0. 400343-01
23 0. 1446118E-03 0. 471648E-02 0. 683191E-01
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MODE S HAPE NO. &

NODE X—-DISPLACERMENT Y~DISPLACEMENT Z*DISEL?CEMENT
m

~-0.
-0

301474E~01
294772E-01

. 169728BE-02
. 285470E-02

m
1 0. 000 %3E+OO 0. 000000E+00 0. O00000E+00
2 0. 0O00O0E+DO 000000E+00 000000E+00
3 ~0. 472504E-02 . 772501E-03 . 103527e-01
4 ~0. 304699E-02 . 949011E~03 . 75970702
5 -0. 99431&E-02 . 104837E-02 . 188507E-01
& ~0. 835238E-02 . 138443E-02 . 16%114E-01
7 -0. 153748BE~01 . 150028E~-02 . 266111E-01
8 -0. 139349E-01 . 208793E-02 . 2773%0E-01
9 —-0. 207157E-01 . 154360E-02 . 3234614E-01
-0. 194838E-01 . 232894E-02 . 362B0%E-01
-0. 257127E-01 . 172784E-02 . 3784639E+-01
-0. 247407E-01 . 2746156E~02 . 44809 1E-01

. 410935E-01
. 507422E-01

-0. 338318BE-01 . 168189E-02 L 427522E-01
-0. 334950E~01 . 302587E-02 155484 5E-01
-0. 34772%E-01 . 165033E-02 . 424795E-01
-0. 36692BE-01 . 303703E-02 . 5746018E-01

0. OOOD00E+OO . 000000E+00 . 000000E+DD

o]

0.
-0.
-0.

1268667E-02
247002E-03
149437E-02
54433302

. 244931E-03
. BO32B1E-03
. 110448E-02
. 119501E-02

€3

. B33274E-04
. 181189E-02
. 430477E-02
. 663736E-02




MODE

NCDE

CONO LN -

SHAPE

X-DISPLACEMENT

ODO000 0000000 ODOOODOOOODO0

N O . 3

. OOOO%%L*‘OO
. 000000E+00
. 713478E-04
. 674043E-03
. 373437E-02
. 421684E-02
. 106270E-01

109240E-01

. 200766E-01
. 201822E-01

315174E-01
314595E-01
441560E-01
440107E-01
S573843E-01
572487E-01
705719E-01L
705205E-01

. 00000Q0E+0C
. 257951E-02
. 209115E~-01
. 453564E-01
. 737344E-01

Y—DISPLACEMENT

0.
0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
-0.
0.
~-0.
0.
-0.
. D00O00E+00
. 363762E-04
. 140947E-03
. 219779E-03
. 250957E-03 - -

[oNoNeRoNo)

m
0000Q00E+00
OQO000E+00
306364E£-02
292071E-02
629080E-02
602280E-02
818425eE-02
784455E-02
101177E-01
974L258E-02
109587E-01
106280E-01
117355601
114681E-01
118775E-01
1164651E-01
119601E-01
117829E-01

C4

z_

DISPLACEMENT

m
. 000000E+00
. ODDOOOE+0D
- 8441225E-02
. 333223E-02
. 14302BE-0}
. 130606E-01
. 182236E-01
. 1734546E-01
. 240924E-01
. 2344662E-01
. 261447E~0Y
. 260295E-01
. 278882E-01
. 283251E-01
. 283387E-01

Oy 292743E-01

. 278580E-01
. 292883E-01
. 00000QE+0O
. 111490E-04
. 176610E-03
. 107262E-03
. 345158E—-03




HAPE

X-DISPLACEMENT

N O . 4

OOOSgQE;OO

Y-DISPLACEMENT

m
0. 000C00E+00

Z..

DISPLACEMENT

m
0. O00000E+00

1 0.

2 0. 000000E+00 0. 000000E+00 0. 000000E+00
3 -0. 118293E-01 0. 441297E-03 ~0. 295790E-01
4 -0. 791935E-02 0. 261908E-02 0. 15531 9E-01
5 -0. 206904E-01 0. 180931E-02 -0. 982089E-01
& -0. 183101E-01 0. 390346E-02 0. 201317E-01
7 ~-0. 225369E-01 0. 112010E-02 -0, 732905E~01
8 —-0. 223974E-01 0. 287947E-02 0. 142023E-01
9 -0. 180323E-01 -0. 124705E-03 —0. 625991E-01
10 ~0. 201076E-01 0. 160755€E-02 =Q. 320458E-03
11 -0. 836442E-02 ~0. 1051 66E-02 ~0. 313694E-01
12 -0. 119222E-01 ~0. 111030E-02 -0. 153916E-01
13 Q. 28558%E-02 —0. 329085E-02 0. 130572E-014
14 -0. 954885E~-03 -0. 268947E-02 -0. 248331E-01
15 0. 112822E-01 ~0. 353977E-02 ‘0. 5829946E-01
15 Q. 847480E~02 -0. 410931E-02 =0.250097E-01
17 0. 148805E-01 ~0. 4156646E-02 0. B85136E-01
18 0. 1374678E~-01 -0. 44501 1E-02 -0. 1113384E-01
19 Q. COO000E+QO 0. 0000Q0E+00 0. 000000E+00
20 0. 272549E~-02 ~0. 126421E-02 -0. 341730E-02
21 " 0. 197018€-02 ~0. 668200E~03 ~0. 285294E-01
22 —0. 568060E-02 0. 441848E-02 -0. 257615E-01
23 —0. 133754E-01 0. 748992E-02 . 0. 136821E-01

C5




MODE SHAPE NO. 5

‘NODE X~DISPLACEMENT Y~DISPLACEMENT Z-DISPLACEMENT
m m m
1 0. 000000E+00 0. 000000E+00 . 0. 00OOODE+D0
) 0. O0OO00E+00 0. 000000E+00 0. 000000E+00
3 -0. 740B95E-02 -0. 193822E-02 -0. 114897E-01
4 -0. 455305E-02 -0. 386B07E-03 0. 180550E-01
s -0. 119491E-01 -0. 314959E-02 -0. 299148E-03
5 -0. 110113E-01 ~0. 175838E-02 0. 495228E-01
7 -0. 133983E-01 -0. 135955E~02 0. 159037E-01
) -0. 147308E~-01 -0. 124683E-03 0. 7454637E-01
9 -0. 100000E-01 0. 101747E-03 0. 317050E-01
10 -0. 131761E-01 0. 128244E-02 0. 729169E-01
11 -0. 324156E-02 0. 253723E-02 0. 343307E-01
12 -0. 7597 16E-02 0. 252784E-02 0. 449592E-01
13 0. 2433484E-02 0. 406377E-02 0. 241522E-01
13 ~0. 548109E-03 0. 451150E-02 0. 119258E-02 |
15 0. 6706646E-02 0. 364329E-02 ~0:.123777E-02
16 0. 576923E-02 0. 431497E-02 ©523283E-01
17 0. 754456E-02 0. 492322E-02 —0. 339619E-01]
18 0. 792084E~02 0. 478836E--02 -0. 909267E-01
19 0. 00000DE+0D 0. 000000E+00 0. O0DO0OE+00
20 0. 215305E-02 0. 246437E-02 0. 5564456E-02
21 0. 226409E-02 0. 218726E-02 0. 425604E-01]
22 -0. 2786079E~02 -0. 663630E-02 0. 350558E-01]
23 -0. 798355E-02 -0

. 122341E-01 -0, 266987E~01]

Cé



MODE SHAPE NO. )

NODE X-DISPLACEMENT Y-DISPLACEMENT 'Z—DISPLACEHENE
: m m m 1
1 0. O0000CE+00 . 000000E+00 0. 000000E+O0
2 0. O00000E+00 . O00000E+Q0 0. O00000E+00D
3 0.172142E-01 . 578430E-03 0. 488601E-01
4 0. 127481E-01 . 166696E-02 ~0. 381061E-01
5 0. 179519E-01 . 160232E-02 0. 513244E-01
b6 0. 203398BE-01 . 898937E-03 ~0. 507512E-01
7 Q. 478422E-03 . 143147E-02 0. 197284E-01 .
8 . 735044E-02 0. 830753E-03 -0. 215115E-01
9 . ~-0. 211341E-01 0. 1414467E-02 ~0. 355442E-01
10 -0. 146677E-01 0. 663018E-03 . 0. 286181E-01
11 -0. 250002E-01 0. 277679E-02 -0. 528006E-01
12 ) ~0. 259456E-01 0. 754459E-03 0. 568674E-01
13 : —0. 839329E-02 O. 255004E-02 -0. 165509E-01
14 -0. 1579465E~01 -0. 219280E-03 0. 279033E-01
15 0. 143037E-01 0. 302492E-02 -0: 301868E-01
1é& 0. 74857CE-02 -0. 310299€E-02 =0:299603E-01
17 0. 260144E-01 0. 21 6044E-02 0: 471128E-01
i8 0. 240778E-01 -0. 329176E-02 ~0. 581795E-01
19 0. O0GO00OE+00 0. 000000E+00 0. 000000E+00
20 -0. 755519E-02 ~0. 893&52E-04 0. 450307E-03
2t -0. 640714E-02 —-0. 122530E-03 0. 414219E-02
22 0. 351384E-02 —0. 549047E-04 0. 104547E-02
23 -0. 420301E-02 -0. 10261BE-02 -0. 564044E-02

c7



MODE SHAPE NO. 7 '
i

NODE X-DISPLACEMENT Y-DISPLACEMENT Z-D1SPLACEMENT
m m m :
1 0. O0OCOCE+00 0. OOOOOOE+00 0. 0ODOVOE+D0
2 0. 000000E+00 0. ODOOOOE+00 0. 00000O0E+00 |
3 -0. B34984E-02 ~0. 230507E-02 —-0. 103454E-01
4 ~-0. 78255%E-02 -0. 769967E-03 0. 437823E-01
5 0. 208419E-02 -0. 485383E-02 0. 443433E-01
& —0. 628%08E-02 -0. 319001E-02 0. 455859E-01
7 T 0.126427E-01 ~-0. 324263E-02 0. 704248E-01
8 0. 577384E-02 -0. 194406E-02 0. 3503146E-01
? 0. 596501E-02 --0. 115129E~-02 0. 135543E-01
10 0. B78313E-02 0. 439514E~-03 -0. 989655E-02
11 ~-0. 780029E-02 -0. 530925E-02 -0, 585667E-QL
12 ~0. 152336E-03 -0. 248452E-02 ~0. 291764E-01
13 -0. 108919E-01 -0. BY6972E~02 —0. 590142E-01
14 ~0. 851486E-02 -0. 671721E-02 ~-0. 163933E-01
15 0. 186423E-02 -0. 109679E-01 0.-111073E-01
15 -0. 320598E-02 -0. 104715E-01 0.-245510E-02
17 0. 129568E-01 -0. 137495E-01 0. '202758E-01
18 0. B33935E-02 -0. 124872E-01 0. 200699E~01
19 0. 0000QOE+00 0. O00000E+00 0. 000NOOE+QO!
20 0. 533028E-02 0. 152446E-02 0. 148432E-01 |
a1 0. 433125E-03 -0. 935852E-02 0. 394274E-01"
22 0. 331049E~-02 —-0. 913387E-02 -0. 311272E~01
23 -0. 281504E-02 0. 544324E-02 0. 143645E-02

c8




MODE SHAPE MNO. 8

i
[

NODE X-DISPLACEMENT Y-DISPLACEMENT Z-DISPLACEMENT
1 OAOOOOgBE+OO 0. 0000 % +00 0. 0000 @ +00
2 0. OCO0000E+00 0. 000000E+00 0. O00000E+00
3 -0. 234380E-01 0. 132593e-02 ~-0. 671343E-01
4 ~0. 184621E-01 0. 452338E-02 0. 395084E-01
5 -0. 134380E-01 0. 130422E-02 -0. 377100E-01
& —0. 192405501 0. 563789E-02 - 0. 302675E-02
7 0. 654518E-02 0. 199603E-02 0. 292793E-01
8 0. 382628E-02 0. 332714E-03 ~-0. 711678E-01
9 0. 314791E-03 0. 291473E-02 0. 2656643E-01
10 0. 713714E-02 ~0. 1587460E-02 ~0. 458577E-01
11 -0. 185437E-01 ° 0. 764740E-02 ~0. 213640E-02
12 -0. 138591E-01 0. 181352E-02 0. 375966E-01
13 -0. 149968E-01 0. 130743E-01 -0. 1020035E-01
14 —-0. 203356E-01 0. 214814E-02 0. 617225E-01
15 0. 924350E-02 0. 156754E-01 0. 577429E-02
16 0. 305799E-02 0. 568944E-03 '=0.-388741E-02 |
17 0. 269298E-01 0. 160312E-01 -0./169923E-02 [
18 0. 261256E-01 - 0. 124071E-02 -0. 6437973E-01
19 0. 00CO0O0E+0O 0. 000000E+00 0. 000000E+00
2 0. 507007E-02 —-0. 780892E-04 -0. 732922E-02
21 -0. 192497E-01 0. 540037E-02 ~0. 201731E-01
22 ~0. 652586E-02 0. 662633E-02 0. 190895E-01
2 0. 414563E-02 -0.271109e-02 -0. 517820E-02

c9



MODE SHAPE MO. ?

|

!

. !
A

!

NODE X—-DISPLACEMENT Y-DISPLACEMENT Z—DISPL%CENENT{

(m? (m) (m ‘
1 0. 000UQOE+CD 0. 0O00000E+00 0.000000E+OO{
2 0. Q00QGOE+QD Q. 0QQQQQE+QQ Q. 0QQQQQE+QQ
3 -0. 112354E-01 -0. 3310192E-02 0.163490E—01A
4 -0. 578946E-02 Q. 432406E-02 —-0. 244350E-01
S -0. 339855E-01 ~0. 443040E-02 0. 107345E-01%
s -0. 274014E~01 0. 776885E-02 -0. 1842772E-01
7 -0Q. 483409€E-01 0. 412559E~-02 0. 254874£-01
8 =0. 45434301 0. 373654E-02 —~0. 134854E-02
Q@ -0. 450766E-01 0. 129816E-01 0. 1534653E-01
i0 -0. 472901E~-01 ~0. 207312E-02 0. 306101E-03
i1 ~-0. 2564977E-01 0. 213880E-01 Q. 34891 2E<01
12 ~0. 259887E~01 -0. 118442E-01 -0. 456994E-01
13 -0. 126324E-01 0. 298304E-01 -0. 15699%E-01
14 ~-0. 848845E-02 -0. 200009E-01 -0. 119132E-01
15 0. 159840E-01 Q. 326494E-01 40[205616E—0”
16 0. 150061E-01 -0..231487E-01 JQ]229964E—01
17 Q. 33946F6E-01 Q. 333014E-01 0. 175450E-02
18 0. 517092E-01 -0. 2955941E-01 0. 260583E-01.
19 Q. 00D000E+0D 0. OCO0O000E+00 0. OO0000E+0Q0
20 . —-0. 185978E-01 0. 153045E-02 0. 600096E-03
21 —0. 537126E~-01 0. 330833E-02 0. 115325E~01%:
a2 -0. 452300E-01 Q. 304446E-02 -0. 399693E-02;
23 0. 257623E~01 0. 823337E-02 . 0. 147763E-03

€10



MODE SHAPE NDO. 10

NODE X-DISPLACEMENT Y-DISPLACEMENT Z—DISP(A EMENT
. m m mg

1 0. 0O0GO00E+00 0. O00000E+00 0. 000000E+00
2 0. OOCO0O0E+00 0. 000000E+00 0. 000000E+00
3 ~0. 144622BE-01 ~0. 332774E-02 -0. 328957E-01
‘4 -0. 144201E-01 0. 543186E-03 0. 469168E-01
S 0. 353514E-02 ~0. 851627E-02 0. 4356372E-01
& -0. 541648E-02 ~0. 18B0959E-02 0. 970471E-02
7 —-0. 3746248E-02 ~0. 970295E-02 0. 332324E-01
8 0. 439690E-02 ~0. 696608E-02 ~-0. 527129E-01
9 -0. 300489E-01" -0. 633425E-02 ~-0. 491569E-01
10 -0.227175E-01 ~0. 114030E-01 0. 224322E-01
11 -0. 855158E-02 ~0. 62192BE-02 -0. 139388E-01
12 ~-0. 183943E-01 ~0. 164699BE-01 0. 239663E-01
13 0. 228116E-01 ~0. 969848E-02 0. 593793E-01
14 0. 1B2919E-01 ~0. 198952E-01 -0. 3926467E-01
15 0. 392054E-02 ~0. 108727E-01 0. 457520E-03
146 0. 16402B6E-01 ~0. 186044E-01 -Q. 159536E-01
17 -0. 169124E-01 ~0. 767974E-02 -0::661780E-01
18 —-0. 104427E~01 ~0. 186917E-01 0. 635397E-01
19 0. 000000E+0D 0. O000QOE+00 0. O00000E+00
20 0. 329564E-02 ~0. 157968E-02 0. 560990E-02
2 -0. 1884692E-01 ~0. 103304E-01 ~0. 467254E-03
2z -0. 501107E-02 ~0. 987528E-02 ~0. 465713E-02
0. 450445E-02

2 0. 631105E~-02 ~0. 132297E-014

ch
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A SPAR COMPANY
ASTRO AEROSPACE CORPORATION

6384 Via Real, Carpinteria, CA 93013-2993
Telephone (805) 684-6641
TWX 910-336-1144 FAX (805) 684-3372
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