WA Lr- 1 T, T

NASA-CR-177986
NASA Contractor Report 177986 19860006742

FINDS: A Fault Inferring Nonlinear Detection System --
Programmer's Manual

Version 3.0

Roy E. Lancraft

BBN Laboratories Inc.
10 Moulton Street
Cambridge, Massachusets 02238

Contract NAS1-16579 FIRRADY A

December 1985

T .
i VR TO
ST
LANCLEY ioinmem crmrens

LIRARY, iAcA
HANPTON, VIRGIIA

Shace AdminSralon IEETHRERAAT AR

NF01012
Langley Research Center
Hampton, Virginia 23665

TABLE (JF CONTENTS

CONTENTS
INTRODUCTION e e
SOFTWARE OVERVIEW AND [NSTALLATION DETAILS . e
Software Overview o e

N -

MODULE DESCRIPTIONS e e e e e e e e

Some Notational Lonvpnf1ons . . e e e e e

Briet Summary Of Contents By Sourre F11 11
Detailed Descriptions Of FINDS Routines ., . . ., 18
Documentation For File: FMAIN.FOR 18
Documentation For File: FSFDI.FOR 28
Documentation For File: FGAC.FOR 8%
Documentation For File: FWIND.FOR 85
Documentation For File: FSENS.FOR B8
Documentation For File: FIOLFOR ., #6
Documentation For File: FUTSUB.FOR 92
Documentation For File: FYWMSUB.FOR 106
Documentation For File: PLOTD.FOR 119

1

4

Y

[nstallation Notes + ¢« v v « . . 5
A

8

.

« . v + e . .
[FYIRFVIRFGRVERSYIESSIE ST SN ISV IR SRS I SVRN \N I
v e 2 e .

N R N

R PEEPREPRPEREEEPLEPREPREPROWURN WBRGW G WIWR W U W W s Do B -

N Documentation For File: PRINTD.FOR 120

1 Documentation For File: DOC.RAT 121
INTERNAL DATA STRUCTURES e e e e e e . .23

] Data Structure Conventions 123
2 Detailed Descriptions Uf FINDS tnmmon Blorks .. 134
2.1 Description Of CMPSTF+ . . . 134
2.2 Description Of DCIDET . . .+« + « + + « « « . 138
2.3 Description OFf DETINF ., « 135
2.4 Description Of DETSIG 136
2.5 Description OFf DETXBI 136
2.0 Description Of DETYBI « . . . 137
2.7 Description Of EKBFO e e e e s e e e e e e 138
2.8 Description Uf FCOM1 e K £
2.9 Description Of FCOM2 e e e e e s e e e s . 139
.2.10 Description Of FILNAM ., . ., 139
.2.11 Description Of FILTIC « . .+ .« . . 14D
2.12 Description Of FILTRT ,, . . . 140
.2.13 Description Of FLTCTL e e e e e e 141
.2.14 Description Of FTITLL + + v+ « «+ + + . 142
2.15 Description Of GBLEND + . + . . 143
2.16 Description Of HEALCM + « + « + +« + . . 143

1

Nb-/6 2/

.. . .
W RS N RS A R R R NI P RS e e

¢ e

.
P RS I R R R o 12 RS IR I TG RS RS R
) bl '

-

.

'S U S SO N N N N N T

APPENDIX A

APPENDIX B8

= OW O NN LWN O WD

Description
Description
Description
Description
Description
Description
Description
Description
Description
Description
Description
Description
Description
Description
Description

REFERENCES .

Of
of
of
of
of
of
Of
Ot
of
Of
of
0f
or
of
ot

HFCOM
INITVL
[NOU
MAIN1
MAINZ
MULTOT
SENSCM
SIMCOM
SMPRM
STITL
SYSU1
SYSX1
SYSXBO
SYSYW1

YOBSRV

e e e e e e e 144

. L] . . » . L] » L] L] . L . 145

. . « + s e . . 145
T 1
. * Ld . L L] L] - 147

B 1 ¥
O ¥

. v e e e . 148
O L £
. . 149
. . . 149
. . 150
T L)1
e £
T 74
. 154

SUMMARY OF SPECIFIC HARDWARE AND SOFTWARE REQUIREMENTS

GENERATING THE FINDS PROGRAMMERS MANUAL

i1

FIG.
FIG.
FIa.
FIa.
Fla.

FIG.

1.

i~
.

10.

1L,

13.

LIST ofr FIGURES

Definition of Flow Diagram Symbolscvvveenennns. 10

Functional Flow Diagram for Program FINDS £0

Flow Diagram for Program FINDSiiitiirineervnnnnes 21
Flow Diagram tor Subroutine NAV trrsieaen eees 29
Fiow Diagram for Subroutine EKFN1cecvveunnn 39
Flow Diagram for Subroutine BIASFcccvivevvnnns 42
Flow Diagram for Subroutine BLEND cesrens .. 45
Flow Diagram for Subroutine DETECT R X
Flow Diagram for Subroutine RECONF ceersenenes 66
Flow Diagram for Subroutine HEALRcccunv.. Y
Example of Pointer Array Indexing Ceeresaaaas . 133
Examplie of Collapsed Array Indexingcivvvennven. 133
Mechanics of Automatic ménual Generation 8-3

LIST of TABLES

TABLE 1. No-Fail Filter Absolute State Indexing

Conventions ceesreersrsessanens cesserenans .. 126
TABLE 2. No-Fail Filter Absolute Measurement

Indexing Conventionscevevennnan eeessasrans 127
TABLE 3. No-Fail Filter Absolute Input Indexing

Conventions ...vvinersnnrnvenonns N v vees 128
TABLE 4. No-Fail Filter Process Noise [ndexing Conventions .. 129
TABLE 5. Absolute Sensor [ndexing Conventionseeeuus e 130
TABLE +o. Replicated Sensor Indexing Conventionseo.. 131
TABLE 7. Replicated Measurement [ndexing Conventions 132

v

LIST of ABBREVIATIONS

AsC Ajrcraft

ATOPS Advanced Transport Operating Systems
Azm MLS azimuth

B-frame body frame

BFF Bias-Free Filter

DME Distance Measuring Equipment

E-frame earth fixed rotating frame (Earth-frame)

EKF Extended Kalman Filter

El MLS elevation

FDI Failure Detection and Isolation

FOIR Failure Detection [solation and Reconfiguration

FINDS Fault [nrerring Nonlinear Detection System tcomputer program)

FTN Fault Tolerant Navigator
FTs Fault fTolerant System
G&C huidance and Control

G-frame geographic frame located at the runway

[-frame earth centered nonrotating frame ([nertiai—frame)

IAS Indicated Airspeed
I[C’s [nitial Conditions
My I[nertial Measurement Unit

L-frame vehicie carried (N.E.D) frame (Local Level frame)

LRT Likelihood Ratio Test
ML Maximum Likelihood
MLS Microwave Landing System

MTBF Mean Time Between Failures
NFF No-Fail Filter
F,Q,R body rate gyros
RA Radar Altimeter

Rng MLS ranqe

RSDIMJ Dual Fail-Operational Redundant Strapdown [nertial Measurement
Unit

TSRV Transport Systems Research Vehicle

vi

FINDS Programmer’s Manual
INTRODUCTION

1 INTRODUCTION

This report provides detailed software documentation of the digital
computer orogram FINDS (Fault I[nferring Nonlinear Detection System)
version 3.0, FINDS dis a highly modular and extensible computer
program designed to monitor and detect sensor failures, while at the
same time providing reliable state estimates. In this version of the
proaram the FINDS methodology 1is used to detect, dsolate and
compensate tor failures in simulated avionics sensors wused by the
Advanced Transport Operating Systems (ATOPS) Transport Systems
Research Vehicle (TSRV) 1in a Microwave Landing System (MLS)
enviornment,. [t 1is 1ntended that this report serve as a programmers
quide to aid in the maintenance, modification, and revision of the
sof tware,

Throughout this manual we have assumed that the reader has read and is
famitiar with the contents of the following reports:

1. FINDS: A Fault Inferring Nonlinear Detection System - User's
Guide, NASA CR-172199, September 1983.

2. A Fault Tolerant System for an Integrated Avionics Sensor
Contiguration, NASA (CR-3834, 1984.

3. An Aircratft Sensor Fault Tolerant System, NASA C(R-165876,
April 1982.

The primary goal of this manual is to provide in depth documentation
of the current version of the FINDS software. To accomplish this
qoal, detailed descriptions are provided for the program's modules
(functions, and subroutines) and their internal data structures
{common blocks) developed by BBN. In addition, the contents and
purpose of each disk file will be examined aiona with the steps
required to rebuild the librarv and executable files used by FINDS.
Detailed information about the program's external data structures
{(input and output tiles), as well as information about the program’s
overall structure and intended usage (from a users point of view) can
be found in [11, and theretore will not be covered in this report. [t
should be clearly noted that NOT ALL functions and internal data
structures used by FINDS will be described in this report -- dinstead
only those which pertain to the simuiation independent portion of the
pragram will be considered. This approach was taken because the
simulation environment in which FINDS operates was originaily

1

FINDS Programmer’'s Manual
INTRODUCTION

developed and supplied by NASA-LRC, and therefore it was felt the
emphasis of this document should only be on the newly developed
sof tware.

A secondary goal of this work is to provide a convienent mechanism tor
documentation information contained herein to be maintained and
improved upon. Some of the problems associated with writing a
programmers or users quide for a developmental computer program, such
as FINDS, 1s that it a) is never guite comprehensive enough, and b) is
obsolete soon after it is printed. This is true 1in part because
developmental programs are never quite stable (i.e. they are
constantly being modified as new provisions are added, or as “bugs”
are tound), and in part because incrementai (i.e., as modules are
written) documentation is seen by many to be both time consuming and
fragmented - therefore it is not always done. This clearly confounds
the development process itself, since only a few people know the
"inner workings" of the program. In an effort to help alleviate some
of these inherent problems, we have written this programmer’s manual
in such a way that it can be re-created semi-automatically ftrom
specially commented source code and text files. The goal was to make
it easy to incorporate changes which occurred since the last time a
manual was created. To accomplish this, special command files and
programs were created to generate files which could be processed by
the Digital Standard Runoff text formatting program. In addition, all
the figqures and tables used in the manual were qenerated on an Apple
Lisa personal computer (using LisaDraw software) - so they too can be
easily modified and re-generated to account tor changes to the code.

The organization of this report is as follows: Chapter 2 consists of
a comprehensive overview of the FINDS software, along with
installation instructions. Chapter 3 provides detailed descriptions
of the FINDS program modules, as well as an overview of some
notational conventions wused in the report. The -internal data
structures and a summary of the indexing schemes employed can be found
in Chapter 4, Appendix A gives a 1list of specific hardware and
software requirements (including a 1ist of all supplied software).
Appendix B8 contains the "rules" for formatting source files and a
description of how this manual can be automatically re-generated. As
a further aid, a cross-reference list of all file names, common block
names, module names, and other key words documented in this report can
be found at the end of the report.

FINDS Programmer's Manual
INTRODUCTION
The following suggested reading of the manual 1s éncouraged:
General information and instailation:
1.2.Appendix A
Complete reading:

1,2,3.1,4.1, remainder of Chapter 3, and 4, Appendix A, and Appendix
B.

FINDS Programmer’s Manual
SOFTWARE OVERVIEW AND INSTALLATION DETAILS

2 SOFTWARE OVERVIEW AND INSTALLATION DETAILS

This chapter describes how the software is organized from the vantage
point ot the VAX 11/780 operating system. A user's perspective on the
functional organization and other aspects of the FINDS software and
its’ wutility programs are provided in [1]1. The chapter is organized
in the following fashion: Section Z.1 gives an overview of the
delivered software by reviewing the contents and intended purpose of
each file supplied. (Note: For quick reference, Appendix A also
provides a brief summary of these files,) Section 2.2 describes the
steps nessesary to install (or rebuild) each of the programs.
Automatic re-generation of the programmers guide is covered separately
in Appendix 8.

2.1 Software Overview

This section describes the contents and intended scope of each of the
disk files which comprise FINDS and its associated utility programs.
A complete list of all the delivered software, as well as the specific
hardware requirements, are described 1in Appendix A. Detailed
descriptions of the individual modules contained in each file can be

found in the next chapter.

[t is convenient to assume that the operational software is stored in
a main directory which will be calied the FINDS directory. The
organization of this directory is straightforward. (here are four
executable programs in the directory - each requiring FOR, OLB, CUOM,
and/or OFT tiles for their creation. The four executable files are
detailed below:

A program to extract specially formatted and embedded
documentation from Fortran (or Ratfor) source

files (see Appendix B for a description of its use).
FINDS version 3.0 simulation program documented in
this manual and in (11].

Program to plot the time history output, generated by
FINDS, on a Tektronix 4010/4014 or compatible terminal
(see [1]1).

Program to print the time history output, generated by
FINDS, in tabular form on either the users terminal or
a disk file (see [11).

DOC .EXE

FINDS.EXE

PLOTD.EXE

PRINTD.EXE

FINDS Programmer ‘s Manual

SOFTWARE OVERVIEW AND INSTALLATION DETAILS

The FINDS directory contains a single library file:

FINDSLIB.OLB- Utility library built using the FINDS sources (FORTRAN
files).

Several command and linker option files can be found 1in the FINDS
directory. Command files (extension = COM) are used to automate the
building and maintainence of FINDS. As will be seen in the next
section, a by-product of wusing command files is that it simplifies
transporting the software to other VAKX or wusers sub-directories,
Linker options files are used at Tink time to specify how to build an
exacutable image. The command and linker opotions files are summarized

below:

_FINDSC.COM - Properly compiles all the FORTRAN source riles which
are used by FINDS,

FINDSL.COM - Properly links together the object and library files
to produce FINDS,EXE.

FINDSLIB.COM - Compiles the source files and builds the library file
FINDSLIB.OLB

GETDOC.COM - Automatically gets the latest documentation
from all FINDS routines (see Appendix B for
more information).

FINDSPG.COM - Automatically builds a new FINDS programmers
guide (see Appendix B).

PLOTD.OPT - Linker options file for PLOTD

PRINTD.OPT - Linker options file for PRINTD

FOREIGN.COM - Establishes useful logical and symbolic names

2.2 Instailation Notes

The following steps are required to dinitially dinstall the FINDS
software:

1. Copy all files from magnetic tape onto a suitable VAX disk
directory using the VAX/VMS Backup utiiity. Let’s assume
this directory 1s named "tinds" tor the subsequent

discussions.

FINDS Programmer’s Manual
SOFTWARE OVERVIEW AND INSTALLATION DETAILS

2. Edit the file "foreign.com” and correct the directory names
referenced so that they point to directory [findsl.

3. Type
$ @foreign.com
to install the logical names and symbols. These will be will
be wused subsequently, (This step can be made part of the
user's login.com file if these symbols are used frequentiy.)

4. Compile all FORTRAN sources:
$ @findsc
$ compile plotd
$ compile printd

5. Create the FINDS 1ibrary file findslib.olb:
$ @findsiib

6. Create the executable files:
$ @finds
$ link plotd/opt
$ link printd/opt

7. fGenerate all the required input data files required for
running FINDS wusing the text editor. (See (1] for detailed
directions on how to create these files,)

8. Run FINDS by typing:
$ finds

9. Run the graphical analysis tool PLOTD by typing:
$ plotd

10. Run the tabular examination tool PRINTD by typing:
$ printd

Once the software has been installed, incremental changes can be made
as follows:

1. Modify a Fortran source file. Be sure to update the embedded
documentation.

FINDS Programmer's Manual
SOF TWARE OVERVIEW AND INSTALLATION DETAILS

Comprie 1t, (e.g. $ compile filename)

[

3. Update the library file (this step 1is required for files
futsub.for, fvmsub.for, and fiosub.for.)

$ update filename

4. Re-build FINDS
$ @finds

For instructions on how to generate and maintain the programmers guide

see Appendix B.

FINDS Programmer’'s Manual
MODULE DESCRIPTIONS

3 MODULE DESCRIPTIONS

The following subsections contain detailed descriptions of FINDS
routines, organized according to source files (refer to Chapter 2 tor
a list of supplied tiles). The first subsection reviews some of the
notational shorthand used in the descriptions. fhe second subsection
contains a brief description of the contents of each file, containing
a statement of the name of the source file, a description of the
nature of its contents, and then a list and short synopsis of each
subroutine it contains. The remaining subsections contain more
detailed descriptions of each subroutine - many of which have
companion flowcharts. Each such description contains a statement of
the subroutine function, a sample call, and a description of the
required arguments in the form:

name type in,out, or inout units description

These are followed by a 1Jist of all other routines called, all
routines which reference 1it, and all common blocks used by the
routine, Full descriptions of most of the common blocks can be found
in Chapter 4,

3.1 Some Notational Conventions

In order to condense the textual descriptions and flowcharts we‘ve
adopted various shorthand notations. This section itemizes these
conventions,

In specifying the arqument descriptions we've assumed the following:

Variable type can be:

. integer - inteqger*4

. real - real*4

. double - real*8

. logical - logical*4

. Char - character*({x)
. Char*n - character*n

. byte - logical*l

Units can be:
. a standard engineering unit or
. unitiess - no units (i.e. a cardinal or pointer

8

FINDS Programmer’'s Manual
MODULE DESCRIPTIONS

index)

various units (usualiy used for
vectors, matrices, and scratch areas)
. temp - temporary, i.e. units vary

. string ASCII characters

. mixed

Arrays (matrices and vectors) are usually specified by upper case
names. Both upper and TJower case are often used to aid in
interpreting the mnemonic used. The foilowing shorthand notation 1is
used when discussing arrays or equations involving arrays:

A(i,j) - the i,j'th element of the matrix A

Vii) - the i‘th element of the linear array V
Alile - the i‘th column of the array A

Alilr -~ the i’'th row of the array A

Alizjlc - the submatrix comprised of the i’th through

j'th columns of the array A

Afizjlr - the submatrix comprised of the i’'th through
j‘th rows of the array A
A*B - matrix multiplication of A and B

a*b - scalar multiplication of a and b (Note: Tower
case usually implies a scalar variable)

The flowcharts contained in this manual are not meant to be complete
descriptions of the routines. Instead, they are intended to enhance
the reader’s understanding of the software’s structure and to
highlight the software techniques employed. As such, they should be
used in conjunction with the written documentation and commented
source code 1itself. For example, one particular flowchart may show,
by detailed enumeration, how the internal data structures are used,
whereas 1in an other case a top-level functional flowchart will be
presented to highlight an important theme.

Most of the symbolic notation used in the rlowcharts are described in
Figure 1. Notation inside subroutine boxes may contain the following:

. the box can contain the subroutine name,
. the subroutine name and its arquments, or
the subroutine name and a key argument.

As a general rule, always refer to the written documentation for the
correct calling sequence to use. Array indexing conventions are
described in Chapter 4,

i
ENTER (EXIT)

The beginning of a process (subroutine) The End of a process (subroutine)
An I/0 box Decision boxes
performs the indicated exits are labeled and one route is
input and/or output operations taken depending on the result of

the computation indicated in the
box

An onpage connector An offpage connector

N ;
An Instruction box Subroutine box
performs operations performs operations via the
called for in the box subroutine named in the box

Figure 1. Definition of Flow Diagram Symbols

10

FINDS Programmer’'s Manual
MODULE DESCRIPTIONS

3.2 Brief Summary Of Contents By Source File

name:
cont:

subr:

name:
cont:

subr:

FMAIN.FOR

This file contains the main simulation program which

orchestrates the execution of FINDS.

FINDS: (program unit) Top level simulation program

INITAL: initializes several basic simulation quantities

SET: initializes constants (such as conversion
factors) used in FINDS

FSFOI.FOR

fhis tile contains all the "core" routines necessary to

implement the FINDS fault tolerant naviagator and FDIR

software. As such, these routines roughly represent

the simulation independent portion of the program.

NAV - fault tolerant navigator - orchestrates the operation
of FINDS FTN and FDIR functions

INITG - general initialization for FINDS

[NITF - perform initialization specific to the no-fail filter

STARTF~ start-up procedure for the no-fail filter, i.e.
choose initial conditions

SUMIN - forms the input vector to the no-fail filter

SUMOUT- forms the measurement vector for the no-fail filter

GYROCR~- compute compensation for the rate gyros due to
the earth’s rotation

GQTOI - compute inertial quantities from ground based
estimates

CKUNST- check the no-fail filter estimates for divergence

KALMN - executive routine to impliement an extended Kalman
filter using a bias filter decomposition

EKFN1 ~ bias-free portion of the extended Kaiman filter
BIASF - bias portion of the extended Kalman filter
BLEND - blend the bias and bias-free states and covariances

together to form the total no-tfail filter estimates
BLGAIN- compute the blender gain
SETISN- update a count of the current number of sensors
used by the no-fail filter
CHKRAD- check for switch over to radar altimeter, and

11

FINDS Programmer’s Manual
Summary of contents by source file

UPDA -
UPDAB -

UPDB -
uPDQ -
UPDH -
UPDPH -
DETECT-
LKF -
LRT -
DECIDE-
RECONF-
CLPSIO-

NOISR -
RESCMP-
FILCOL-

CLPSBE-
ADSTBP-
RCOV -
MINSET-

HEALR -
AVECMP-

LRTHLR-

CONVRF -

AVBIAS-

reconfigure the no-fail tilter at switch over time
update the discrete state transition matrix

update the discrete state transition matrix to include
the coupling due to the biases

update the discrete input matrix

update the discrete process noise covariance matrix
update the non-l1inear measurement function

update the partial of hix(k)l w.r.t. x(k)
implements a bank of detectors and likelihood ratio
computers

first order linear Kalman filter - used to estimate a
hypothesized failure’s level

computes a log-likelihood ratio

performs failure decision functions

reconfigures the FTS after failures and/or healings
collapse (expand) the no-fail filter to reflect
failure (healing) of a sensor

reset elements in the no-tail filter process and
measurement covariance matrices to reflect the

loss (addition) of a sensor

compute the expanded residuals sequence from the
(collapsed) innovations sequence produced by the
no-fail filter

estimate colored M.S noise states (used to compensate
the innovations sequence to account for its colored
statistics)

collapse (expand) the bias estimator to reflect the
removal (addition) of a bias

adjust (manage) pointer vectors used in the bias
estimator

reset the no-fail filter state estimation error
covariance after FDI of a failure

check to be sure filter Wwill remain stable after

a candidate sensor is removed

monitor tailed sensors and test for healing

compute the sum of the difference between two like
sensors over the healing window

compute a LRT for the healing of a sensor at the
end of the healer windows

returns the conversion factor required to convert
from program to user (printout) units for a particular
no-fail filter state or sensor

computes the average measurement bias as seen by
the no-fail fiiter

12

FINDS Programmer ‘s Manual
Summary of contents by source tile

name: FGAC.FOR
cont: This file contains routines used to simulate the aircratt
and the gquidance and control Jogic used in the aircraft.
These routines were originally part of program FILCOMP,
subr: ACEQIN- integrate the aircraft equations of motion ahead
one simuition step
AUTLD - auto-land control laws
AUTTHR- compute throttle commands
BANKTR- RNAV guidance and control outputs i.e. commands
to guide the aircraft before AUTLD takes over
CNTRLS~ generate the control signals using either true
(i.e. simulated) or estimated quantities
ESTPNP- compute estimates of waypoint quantities and store
them in EWP
RUDDER- dynamics for the rudder servo and yaw rate damper
SERVDO - elevator and aileron servo dynamics
STABCN- stabilizer trim control logic
THRUSD- engine thrust dynamics (accurate above 10 degrees
throttle setting) '
WAYPNT- compute all data for waypoint segment planning

name: FWIND.FOR
cont: Contains routines used to simulate the wind and gust
environments to which the aircraft will be subjected.
subr: BREEZE- computes shear winds, calls WINDGT to generate qusts
and sums the wind components to form the total winds
GROUNE- computes the effects of ground proximity - called
ground etffects - as incremental terms added to pitch,
1ift, and drag
WINDGT- generates qust components which are added to u,v,w
and P,Q,R terms in the aircraft simulation

13

FINDS Programmer‘s Manual
summary of contents bv source file

name:
cont:

subr:

name:
cont:

subr:

FSENS.FOR

fhis file contains ail the routines used to simulate the

normal operation and the "frailed" behavior of sensors and

sensor sub-svstems in FINDS. A1l sensors contained 1in

this file can be simulated with up to triple redundancy -

except for the RSDIMJU. The reader can find detailed

descriptions on how each sensor is simulated and how to

modify the parameters of these modules in section 3.3 of [1].

RADALS- radar altimeter sensor module

AIRSPS- indicated airspeed sensor module

BMRGS - t11ght quality body mounted rate gyro sensors (P,0,R)

BMLAS - fliaht quality body mounted linear accelerometer
sensors (Ax,Ay,Az)

ATITGS- platform INS attitude outputs (phi.theta,psii

GETMLS- microwave landing system sensor i{azimuth.2levation,
range)

RSIMUS- redundant strapdown [MJ sensor (RSDIMJ). This routine
is an executive routine for the RSDIMJ.

[RATG1- initialization tor the RSDIMU rate qyro module

[LNAC1- initialization for the RSDIMJ linear accelerometer
moduie

[LNAV1- initialization for the RSDIMJ navigator module

LINAC1- RSDIMU linear accelerometer module

LLNAVI- RSDIMJ navigation module

RATEGL1- RSDIMU rate qyro moduie

FIO.FOR

This tile contains routines used to save simulation data

in special formats on disk files, along with routines to

help pertorm this function.

SAVIT -~ saves FINDS time history data in the (binary) PLT
file in a sequential, run-time user selectable fashion

PRNTIC- print the run‘s initial conditions - in special
table form - on any ASCII disk file

FSCHED- determine, for a particular sensor. the time. tvpe,
and level of failure if simuiated

CHKFL - check if a sensor is scheduled to fail in the run,
and return the time and tvpe ot the scheduled failure

FLEVEL- determine the failure level of a scheduled failure

QUTDAT- print out a one line messaqe followed by a formatted

14

name:
cont:

subr:

FINDS Programmer ‘s Manual
Summary of contents by source file

printout of a scaled vector (scaied by a supplied
conversion factor)

TLOUT - print an "event"” in a special coded form (described in

section 4.2 of [11) in the time line (.TLN) file

FUTSUB.FOR
This tile contains a collection of “utility" routines
which are generally specific to the FINDS program

ABSLIM-
ACCVEL-
ROTATV-
ROTMAT-
RUNGK 3-
RUNWAY-

SETUM -
VECM -
VECS -

VECSUM-
MATV3 -
MATTV3-

MATMUL-
MOVUM -
DGATIO-
SUMMER-
ASUMER-
MAXMIN-

absolute limit - i.e. two-sided T1imit about zero
compute G-frame velocity and acceleration terms
rotate inertial pos. and vel. vector to the E-frame
computes various frame transformation matrices
performs Runge-Kutta integration

computes A/C position and velocity vectors
relative to G-frame

sets a scalar into all elements of a vector
multipiies two vectors - element by element
multiplies two vectors - element by element and
increments the ftirst

adds to vectors

multiplys a 3 by 3 matrix times a vector
multiplys the transpose of a [3 x 31 matrix
times a vector

multipiies a matrix times a vector

equates two arrays

prints out a double precision matrix

computes the conditional average sum of an array
computes the conditional average sum of an array
locates the maximum and minimum elements

in an array

MAXMINS-same as MAXMIN - except single precision version

MAMN2 -

VECHG1~
MATCG2-
IMTCG2-
PNTINV-
LIMVAL-
LIMvLZ-
NOISEG-

same as MAXMIN - except elements are conditioned
on a non-zero element in a second array

collapse or expand a vector

collapse or expand a matrix

adds or deletes rows (columns) of matrices
pointer vector inverse

vector Timiter for symmetric limits about zero
Timiter for anti-symetric two-sided limits
generates samples from a normal distribution

15

FINDS Programmer ‘s Manual
Summary of contents by source file

name:
cont:

subr:

Wwith zero mean and unity variance

BARN1 - genertes samples from either a gaussian or a
uniform distribution

GAUSS - gaussian random number generator

UNIFRM- uniform random number generator

NAMFIL- forms a file name with a fixed name and various
extensions

FVMSUB.FOR

This file contains routines which perform operations on

vectors

and matrices. Unless explicitly stated, all

routines operate on double presision guantities.

BUBBLE-
DOT -

DoT2 -
DOT3 -

VADD -
VADD1 -

VSCALE-

SEQNCE-
INSRTN~

VECNULS-

VECNUL-
SWAP -
VMAT1 -
VMATZ -
GMINV -
MMUL -
MMULZ -

MAT1 -

perform bubble sort on an array of integers
compute dot (or inner) product between two column
vectors

computes dot product of two row vectors

computes dot product between a row and a column
vector

increments a given vector by a second vector
increments a given row vector by a second row
vector

sets one vector equal to another times a scale
factor

initializes an integer array as [1,2,...N]
maintains a pointer vector (integer) with

unigue entries

initializes a column vector to zero (single
precision)

initializes a column vector to zero (Double
precision)

Swaps a row. column, or diagonal between two matrices
multiplies a vector by a matrix Y=AX

computes the vector matrix product sum Y=Z+AX
computes the inverse or generalized Penrose
inverse of a matrix

computes the matrix product Z=XY (with sparseness
test on X)

computes the matrix product 7Z=XY (with

sparseness test on Y)

computes the matrix product Z=XY

16

MATIA -
MATZ -

MAT3 -
MAT3A -
MAT4 -
MATS -

MATE -

MADD1 -
MADDI -
EQUATE-
MATNUL-
MSCALE-
TRANS1-

FINDS Programmer’'s Manual

Summary of contents by source file

matyris proauct
matrix product

COMpULES The
computes the
symmetric)

computes the
computes the

matrix product
matrix product
computes the matrix product
computes the matrix product
sparseness test on Y)
computes the matrix product
sparseness test on Y, and Z
adds two matrices

adds a scaled matrix plus a

=8 (L can equal vi
Z=XY' (for Z

A\
‘'YX

<T<< =

Z=X
=X
Z=X
L=XY" (with

Z=XY’ (wWith
symmetric)

scaled identity matrix

equates one matrix to another
initializes a matrix to zero

scales a matrix by a scalar
computes the transpose of a

17

constant
matrix

FINDS Programmer‘'s Manual
Summary of contents by source file

3.3 Detailed Descriptions Of FINDS Routines

3.3.1 Documentation For File: FMAIN.FOR -

name:

func:

ref:

comm:

FINDS - (Main Program)

Detection System"

This program unit is responsible for coordinating the run-time

operation of the program. T[he overall purpose and use of the

program - from a users point of view - is documented in detail

in [11. To show the overall scope and flow of the program a

functionail flow diaagram 1s shown in Figure 2. Three stages of

the program are evident in this fiqure:
an initialization stage - designed to initialize all
variables and routines and to establish all disk file
interactions

* a basic simulation loop - whose purpose is to continually
compute the current control signal over the next simulation
interval, integrate the A/C equations of motion, simulate
the A/C and sensor subsystems, and exercise the FINDS FDI
and estimation algorithms until a stopping criteria has
been satisfied.

* a termination stage - once the simulation loop has
satisfied its stopping criterion, the program is graceftully
terminated.

Figure 3 provides a much more detailed and annotated flow

diagram which clearly shows how program FINDS operates.

ACCVEL., ACEQIN, AIRSPS, ALTYP, ATITGS, AUTLD, AUTLDI, AUTTHR,

BANKTR, BMLAS, BMRGS, BREEZE, CNTRLS, CTEXT, GETMLS, GROUNE,

INITAL, ISPEC, MATMUL, NAMFIL, NAV, OPN2, PAGEFD, PRNTIC,

RADALS, ROTATV, ROTMAT, RSIMUS, RUDDER. RUNGK3, RUNWAY, SAVIT,

SERVO, SET, STABCN, THRUSD, TLOUT, WTHDR1
Also from the VMS Tibraries:

ASIN, CLOSE, DATAN2, DCOS, DSIN, LIBS$FLT UNDER

LIB$INIT_TINER LIB$STAT_TINER_ OPEN, SECNDS

ALPCOM, ANGLES, ANGS, ARSTAT, ATMO, AZELRN, COEFGE, CONTRL,

CPU, CRTE, DROP, EARTH, EGUIDE. EKF1l, FCOML1, FCOM2, FILNAM,

FLTCTL, FTITLL1, GEARLD. GSLOPE, GUIDE. HICOM, ICLALO, IEST,

IMLS, INQU, I[UVW, LAND, LAOUT, LOGIC4, MCONCO, MLSALL, MLXYZ,

18

FINDS Programmer’'s Manual
Documentation For File: FMAIN.FOR

NAVINF, NWPLT1, PHILLY, PLOTS. PORT, PORN, PSIR, (RAND,
RGUIDE, RIOUT, RSTATE, RUNGEK, SETCOM, SIGTAU, SIMCOM,
SNSIDT, SNSRDT, SPCFOR, START, SYNC, TRANS, TURN, TURNOF,
UPDAT, VARLAT, VARLON, VORTAC, WIND, WINDCO, WP, XOYOZO

19

START

Initialization

QL

G 6 C Logic

Time = Time
+ Dtine

.

integrate A/C
equations
'

sensor nodel
simulation
'S

FINDS (FDIR €
estination algorithms)

or
abort?

Final run summary
€ disk file closure

STOP

Flgure 2. Functional Flow Dlagram for Program FINDS

20

START

SET accept run specific
T connents from the
: Ty
ite a heade
pr:ﬂpﬂ:;:r d:gmm :nn the amt filro /
0
out.put files *

open all input it to be and odd nunber
files for reading

open the Stl! and TLN yes
file for mung /
read fron nanelists no PRNTIC(KDSKS6.1)
ACSTAT_UINDAT , PROGCN
PRNTPL,GSLOC

PRNTIC(KDSK11,1)

open the PLT
file as a binary
output file

1

initialize glideslope
paraneters

open the QUT
file for writing

Figure 3. Flow Diagram for Program FINDS

21

etz |
A/C paraneters
initialize f
uim g 9}
computation :

for stabilizer ;

initialize FINDS :

Conpute initial
attitude

v

STABCNL

'

Determine initial
pos G velocity
in inertial ¢ earth
fraones

v

Establish initial
A/C state 6
its derivative

v

Initialize the
gensor modules

Conpute CCC
S using signals using
gms. tates fault tolerant
lf navigator quantities
....... 5 getermine RWW
BN*;(TR (é i GG6C commands
RUNGIK3 g, §
(AUTLD) ' § auto-level
‘ L% control
../'l/‘ g laus
AUTLD * :
$ i stabilizer
ST e — trin control
ABCl+ N i logic
RUNGIK3 % g
(AUTTHR)

fault tolerant i
navigator i N?v
Close
input Files
Rotate accelerations
to L-frame and
conpute A/C pos
in C-framne
initialize asto | v
land control B] ”
initialize bank §
turn and course % 34 BANKTR

waypoint logic

Flgure 3. Flow Diagram for Program FINDS (continued)

dynanics
rudder servo & i
ya :;.t:ddc:pex §¢ R
elevator 6 ‘

Print CAT-II
decision stats

J

i record variables
SAVIT ...t TOCOT variable

Print variables
in the out file

Figure 3. Flow Diagram for Program FINDS (continued)

23

vinds. gusts,
and total BREEZE
integrata A/G RUNGK3
3 PR S o idTime = idTime < 1
1ncrenent tine ' Tine = idTineDtine
Establish various
true quantities
by equating to
the A/C state
rotate velocities % ,,,,, A ROTATV
and accelerations i {
to local .
level frame ; i ACCVEL
pogj_um §. A RLNWAY
Establish true
ruway quantities
Compute true
body specific force

Flgure 3. Flow Diagram for Program FINDS (continued)

24

Tine > Tstop?

e Sl S et S R SRt et st

Tate mm % o M@
body nounted *
linear SN BMLAS
acceleronsters *
platforn :
ol B ATITGS

: “FINDS®

¢ fault tolerant
l }**‘ navigator ¢

FDI logic

continue at

top of
Simulation loop

Altitude<.2ft?

Figure 3. Flow Diagram for Program FINDS (continued)

25

SAVIT 4'"{ close PLT file

Flgure 3. Flow Diagram for Program FINDS (concluded)

26

name:
func:

call:
args:
refs:
refby
comm:

name:
func:

call:
args:
refs:

refby:

comm:

FINDS Programmer’'s Manual
Documentation For File: FMAIN.FOR

INITAL

To initialize several program variables - mostly related

to the guidance and control algorithms. Originally, (in
program FILCOMP) INITAL was intended to initialize case
independent quantities - however, since FINDS doesn’t alliow
muitiple cases in the same physical run, no such distinction
is made in FINDS.

Call INITAL

None

None

FINDS

COEFGE, CONTRL, LOGIC4, SYNC, WIND

SET

To initialize various constants {such as conversion factors)
and program flags used by FINDS. Originaily, (in program
FILCOMP) SET was intended to intialize case dependent
quantities - however, since FINDS doesn’'t allow multiple
cases in the same physical run, no such distinction is made
in FINDS.

Call SET

None

None

FINDS

ALPCOM, ANGLES, ATMO, CONTRL, EARTH, FCOM1, FCOM2, GEARLD,
HICOM, IEST, MCONCO, NAVINF, NWPLT1, PHILLY, PLOTS, SETCOM,
SYNC, VARLAT, VARLON, WIND, WINDCO

27

FINDS Programmer‘s Manual
Documentation For File: FMAIN.FOR

3.3.2

name:
func:

call:
args:

refs:

refby:
comm:

Documentation For File: FSFDI.FOR -

NAV (fault tolerant navigator)

This subroutine is an executive program which impiements a

fault tolerant navigator using the FINDS approach. It is

responsible for initialization. synchronization, and
execution of all the modules comprising the FTN and FDIR
logic. Figure 4 shows a detailed flow diagram indicating
its operation.

Call NAV (Iabort)

[abort - integer out flag indicating whether to
continue or abort the run. [f Iabort=0 continue the
run; otherwise abort.

CHKRAD, CKUNST, DECIDE. DETECT, FILCOL, GTOI, HEALR, INITG,

KALMN, LIB$INIT_TIMER, LIBSSTAT_TIMER, PRNTIC. RECONF, RESCMP

SUMIN, SUMOUT, TLOUT, WAYPNT

FINDS

CMPSTF, CNTROL, CPU, DCIDEI, DETINF, EARTH, EKBFO, EKF1,

FCOM1, FILTRT, FLTCTL, GBLEND, IMLS, INOU, MAIN1, MAINZ2,

PHILLY, PLOTS, SIMCOM, SYSUl1, SYSXBO, SYSYBO, SYSXW1, SYSX1,

28

?g; ': force Siml. muy
) initialization
performed
during program
- initialization
stage only
..., Initialize FTS except
I i for NFF IC's
1 -4 axit Toutine prior
"% to NS turn on
speei SYnchronize HLS turn-on
~ % and enter this loop only once
true
filter?
! initialize
false INITG(2) @ \F 16%s :
: :initialization
5 record filter a9°"f°"‘°"
g ?z turn-on in :1“1": o
i TLN file EHLS
print out 3
- filter IC's %

NN

exn routine if ?
i YN StArts inside :
! LS coverage %

3 executs FTS
: without FDIR function

Figure 4. Flow Diagram for Subroutine NAV

execut.e full FTS

29

ﬁg full FT$ logic

CHKRAD | |« check for rader
* » \@ galt.tmur turn-on

CONF(1 Iabort) | e : reoonfiqnnadon. to account
RE (Llabort) | |+ i for healed sensors

Tabort = 07 >0 1 > - % problen?...exit routine

SUMIN “--{ form inputs to NFF

KALMN(2) -4 propagate NFF estinates

RESCMP 41 conpute expanded residuals

DETECT @i x IL):* of fa%ilure detactors

ons
DECIDE s nake failure decisions
HEALR - qun sensor healer logic

v

RECONF(-1labort) | o--i Teconfigure FTS to

Tabort = 07\, o1 >
F

problens?...exit routine

Figure 4. Flow Diagram for Subroutine NAV (continued)

30

FTS without !}
FDIR logic ?&

CHKRAD

SUMIN

v

KALMN(2)

)

RESCMP

JARES’ full FTS logic (continued)
SUMOUT P % ft":m neasurenents
.4

KALMN(1) [update MFF
* g’ conpute estimated
.3 inertial tities
GTOI &l ; and T "‘.“:‘
* control signals

printoyt the filter

gains every
IgainP “ticks"®
!‘ l
i check state
CKUNST(Iabort) | |- estimates for

printout the filter
gains every
IgainP “ticks”

CHKUNST

{ filter divergence

Figure 4. Flow Diagram for Subroutine NAV (concluded)

31

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

name: INITG
func: Performs initialization for the FTS software. In particular,
the no-fail filter, failure detection isolation and
reconfiguration modules are intialized here. In addition.
program flags and data structures are intialized which
determine the structure of the FTS. These flags are
modifed via namelist FILTIN, which is read in this routine.
call: Call INITG (Ipart)
args: Ipart - integer in flag to indicate which part of the
intialization is to be performed. If Ipart=1 all
initialization except for determining the initial
conditions of the NFF is performed. Otherwise the
NFF IC’s are chosen
refs: ALTYP, BUBBLE. CONVRF, EQUATE, GTOI, IMSCLE, INITF, MTH$DLOG
SEQUNCE, STARTF, SUMIN, SUMOUT, UPDA, UPDB
refby: NAV
comm: AGMP, ARMP, ARSTAT, ASMP, CMPSTF, CNEST, CNTROL, COLFIL,
DCIDEI, DETINF, DETSIG, DETXBI, DETYBI, EARTH, EKBFO, EKF1,
FCOML, FILTIC, FILTRT, FLTCTL, FTITL1, GBLEND, GRMP, HEALCM,
HFCOM, IMLS, INITVL, INOU, LAMP, LOGCI4, MAIN1, MAIN2, MCONCO,
MLSALL. MLSMP, MULTDT. NWPLT1, PLOTS, PSIR, RALMP, RGMP,
RIOUT,
SENSCM, SETCOM, SIGTAU, SIMCOM, SYNC, SYSUl1, SYSX1, SYSXBO,
SYSYBO, SYSYW1l, VARLON, WIND, XOYOZO, YOBSRV,
name: INITF
func: To initialize the EKF’'s measurement and process noise
covariance

matrices, RF1 and QF1 respectively, and the measurement
normalization scaling vector Yscale. The quantities are set
as follows:

a) process noises:
* if using the “standard" sensor set (i.e, irsdf!=0)

QF1(i) = sig(i)™2 for I=1,..8
* or if using the RSDIMJ (i.e. irsdf=0);
OF1(i) = sig(17)**2 for i=1,...3
QF1(i) = siqg(18)**2 for i=4,...6
QF1(i) = sig(i)*™*2 for i=7,8

b) measurement noises:
RF1(i) = sig(i+B8)**2/n for i=1,...8

32

call:
args:
refs:

refby:

comm:

name:
func:

call:
args:
refs:
refby:
comms

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

where n=Ireplif (i+nul) i.e., the number of replications of
a particular sensor type currently in use by the EKF.
c) scaling vector:
* if IYSC=0 then Yscale(i)=1.0 for i=1,...8
(i.e. scaling is disabled)
* otherwise
Yscale(i) = 1.0/SQRTLRF1i(i)1 for i=1,...8
Call INITF
None
None
INITG
DETXBI., FILTRT, FLTCTL. SIGTAU, SYSU1l, SYSYWl, YOBSRV

STARTF

To initialize the no-fail filter’s state estimates and

initial error covariance. This is accomplished as follows:

choose the initial estimation error from a random

distribution, s.t.

1) XICerr(i) = SDXic(i)*s for i=1,NX
where s is a sample from a normal distribution with
mean=0 and variance=1, and SDXic is a vector of expected
standard deviations

2} set XF1(i) = Xt-XICerr(i) for i=1,NX
where Xt represents the "true" or simulated value of
XF1(13)

3) initialize the bias-free fiiter covariance, PFl, and
the total no-fail filter (bias & bias-free) filter
covariance, PXFl, to be diagonal matrices with diagonal
elements;

PF1(i,i) = PXF1(i,i) = SDPic(i)**2
where SDPic is a vector of standard deviations for the
initial filter covariance

Note: SDXic and SDPic are in user units, therefore this

routine also performs conversion to program units

Cail STARTF

None

NOISEG

INITG

ANGLES, AZELRN, CMPSTF, EKF1, FILTIC, MAIN1, MCONCO, PSIR,

ORAND, SYSX1, UPDAT, VARLON, WIND

33

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

SUMIN

To provide a proper set of inputs to the no-fail filter.

The input vector presented to the no-fail filter is formed

by SUMIN as follows:

1) each group of like replicated input sensors is broken
down into 3 classes: available & used by the filter:
available, but in standby; and failed. SUMIN further
restricts only a single replication to be active, with
all others pliaced either in standby or detected as failed.

2) rate gyro measurements are compensated for earth and
platform rates

3) the input vector, UFl, is formed such that trapezoidal
integration will be performed by the no-fail filter
(i.e. U(k) = 0.5*[u(k)+u(k-1)1)

4) the gravity vector is computed and added to the end of
UF1 such that UF1 is composed of:

UFl = [Ax,Ay,Az,P.Q,R,Gx,Gy,Gz]’
where (Gx,Gy,6z) is the gravity vector expressed in the
G-frame

5) if any input biases are being estimated, their current
estimates are subtracted from the NFF input measurements,
UF1

Call SUMIN

None

GYROCR, SUMMER, VMPRT

INITG, NAV, RECONF

EKBFO, FILTRT, FLTCTL, GRVTYC, LAOUT, MAIN1, MCONCO, RGOUT,

RIOUT, SYNC, SYSUl, SYSXBO

SUMOUT

SUMOUT forms a set of average measurements, YFl; to be used

by the no-fail filter. It functions as follows:

1) each group of like replicated sensors is classified into
two sets: available and to be used by the filter; and
unavailable, failed, or selected out

2) each element of YFl is averaged as:

YF1(*) = (1/nr)y*Im(1)+m(2)+..m(nr)]
where nr is the number of available, replicated
measurement sensors, and m is an arbitrary measurement

3) psi measurements are compensated for any runway yaw by:

34

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

YF1(7) = YF1(7) - PSIRU
where PSIRU is the runway yaw to north expressed in
radians
4) if IYSCL.NE.O then each measurement is normalized bv the
expected variance of that signal, s.t.
YF1(i) = YF1(i)*Yscale(i)
where Xscale is set in subroutine INITF
Call SUMOUT
None
SUMMER
INITG. NAV
AGOUT, ASOUT, DETXBI, FILTRT, FLTCTL, MLOUT, PSIR, RAOUT,
RIOUT, SYSYWl, YOBSRV

GYROCR

GYROCR computes the correction terms required to compensate

the rate gyros for earth and platform rates. GYROCR functions

as follows:

1) to ensure that gyro measurements are compensated only
once per simulation "tick", a local copy of the last
time (TimesbL) is saved. If Times (= TimesL then

WCOMP(1) = 0.0 for i=1,...3
2) otherwise:
WCOMP = Trb’ Trl Wi
where Trb’ is the transformation from the runway to the
body frame of reference and Trl is the transformation
from the local level to runway frame. W] is the frame
rates expressed in the local level frame

Note: most of the variables used in this subroutine are

computated in GTOI.

Call GYROCR (wcomp)

wcomp - double out vector of compensation terms to be

subtracted from the rate gyro measurements (see
description above.)

MATTV3

SUMIN

ARSTAT, EARTH, PSIR, SIMCOM, TRBER

35

FINDS Programmer’'s Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
args:
refs:

refby:

comm:

name:
func:

call:
args:

GTOI

GQTOI forms estimates for inertial position, velocity, and
acceleration, and runway acceleration. It also computes
the A/C’s current longitude and latitude along with their
rates of change. In addition, Tic, the last column of Tic,
coriolis and centripetal correction terms for compensating
the platform gravity force, and several control variables
required by the G&C logic are also all computed.

Call GTOI

None '

ASUMER, MATV3, MTH$DATANZ2, MTH$DCOS, MTH$DSIN, MTH$DSQRT
INITG, NAV

ARSTAT, EARTH, EGUIDE, EKF1, FILTRT, GRVTYC, IMLS, MAIN1,
MCONCO, PSIR, RGOUT, SYSUl, TRBER,

CKUNST
CKUNST checks the no-fail filter estimates for divergence
and sets an abort flaq (lIabort) if a divergence criteria is
exceeded. The primary benefit of this routine is to reduce
computation time (and associated costs) by ending a divergent
run early. The following divergence criteria is used. where
divergence is declared if:
1) the altitude estimate is below the runway i.e. XF1(3)<0.0
2) the absolute sum of the position errors are greater than
a position error bound, POSBND, i.e.
sum{ |posit(i)-XF1(i)|}>POSBND for i=1,..3
3) the absolute sum of the velocity errors exceeds a velocity
bound, VELBND, 1i.e.
sum{ | VELOC()-XF1(3+i)]|I>VELBND for i=1,...3
4) or the absolute sum of the attitude errors are greater
than an angular bound., ANGBND, 1i.e.
sumf fa(i)-XF1(6+i)]3>ANGBND for i=1,...3
where a = [Phi, theta, Psi-Psirul
If the divergence criteria is met, the stopping time for the
run, Tstop, is set to the current simulation time, an abort
flag is set, and messages are sent to the connected terminal
and the time line file.
Call CKUNST (Iabort)
[abort - integer inout run abort flag, where:
Iabort=-1

36

refs:

refby:

comm:

name:
func:

call:
args:

refs:

refby:

comm:

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

indicates run should be aborted, and otherwise run should
proceed.

ALTYP, TLOUT

NAV

ANGLES, EKF1, FILTIC, PSIR, SETCOM, SIMCOM, UPDAT

KALMN
KALMN serves as the executive routine to implement an extended
Kalman filter, where the plant equations are:
X(k+1) = A x(k) + BEX(K)Juf{k) + ECX(k)In(k)
and the measurement equation is:
ytk) = hEX(K)1 + uik)
The filter is realized as a lower order bias-free filter
followed by a bias filter and a blender to form the bias
corrected state estimates. The reader is referred to [3] and
(4] for a more detailed description of the approach. KALMN is
meant to be called in two passes: once to perform all the
filter propagations, and then again to update the estimates
and covariance with the measurements. The following user
supplied routines are required to define the non-linear terms:
UPDA defines A
UPDAB defines ABF1
UPDB defines BIX(k)]
UPDO defines OLX{k)1]
UPDH defines hlx(k)1]
UPDPH defines HP1
Call KALMN (Iup)
Iup - integer in update/propaqgate flag, where [up=1
enables updating, and Iup=2 enables propagation
BIASF, BLEND. EKFN1
NAV, RECONF
SYSX80

37

FINDS Programmer’s Manual
Documentation For File: FSFDI,.FOR

name:
func:

call:
args:
refs:

refby:
comm:

EKFN1

EKFN1 represents the bias-free filter portion of the no-fail
filter. It is implemented as an extended Kalman filter.
Covariance propagation of the stabilized normal equations

is performed. The state estimates. XF1 are NOT computed in
this subroutine, rather they are formed in subroutine BLEND.
To accomodate reconfiguration due to the failure or a healing
of a sensor., the state and covariance at time k/k is stored
temporarily in RBFO. Figure 5 details this moduie. The
reader is also referred to.-[3] and [4] for a detailed
description of the no-fail filter’'s impliementation.

Call EKF1 (Iup)

Iup - dinteger in update/propagate flag

EQUATE, GMINV, MADD1, MADDI, MAT1A, MAT2, MAT3, MATS5, MMUL,
MMUL2, MSCALE, UPDAB, UPDB, UPDPH, UPDO

KALMN

EKF1, FILTRT, FLTCTL, MAIN2, SYSUl1l, SYSX1, SYSXBO,

SYSYBO, SYSYW1., TSTORE

38

1 propagate the
* % bias-free filter

EY

 conpute the partial of h with
UPDPH e ; respect to the state(XFl) HPl1

1 scale the neasurement

o A% noise covariance

l

don't scale the }
measurenent noise i
covariance 3

i compute the
R = RF1 R'—DIM{I:OIIREPLF(i*ml)} . effective neasurenent
i=1,...NY i noise seen by
J‘ T i the bias-free filter
GAINK=PF1°HP1'*(HP1*PF1"HP1 +R)"=-1 |:i--! bias-free filter
i gain matrix
assune no ,é assune information
covariance i forn of bias filter
propagtion
forn of
bias filter :

store a partial

- ciplme conrputation in
RBFO=HP1*PF1°HP1 <R | | RBFO=[HP1"PF1=HP1°+R]""-1 REFO 1o be used

] : by the bias filter

PF1=[I-GAINK*HP1]=PF1*{I-GAINK*HP1]" |
+GATNK"R"GAINK *

@ update the estimation

Figure 5. Flow Diagram for Subroutine EKFN1

39

tenporarily store XFi(k|k)
RBFO=[XF1 | PF1] [$ and PF1(k|K) - used if a

‘ reconfiguration is performed
.............. update the descrete input
uPDB * weighting matrix, BFl
] ;
UPDQ P S— § update the descrete process

§ noise covariance natrix, EF1

{ update the descrete state transition

UPDAB oyt MR - including the coupling effects
* : of input bias estination, ABF1
s
PF1=ABF1°PF1*ABF1’ :

conpute the propagated bias-free
+ EF1*QF1~EF1’ i estimation error covariance

E-3

2

Figure 5. Flow Diagram for Subroutine EKFN1 (concluded)

40

name:
func:

call:
args:
refs:

refby:
comm:

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

BIASF

BIASF implements the bias filter portion of the no-fail
filter. The operation of this routine is shown in Figure 6.
The reader is referred to {31 and [4] for detailed
descriptions of the no-fail filter implementation. A
software switch exists in this routine which can be set at
compile time or at run time via the Fortran debugger. The
switch is IGNC: if IGNC=1 use an anti-svmetric equation for
PBFO, otherwise use a (more complicated) symetric equation.
Call BIASF (Iup)

Iup - integer in update/propagate flag

ALTYP, BLGAIN, DGATIO., EQUATE, GMINV, MADD1. MADDI, MATL,
MAT1A, MAT3, MAT3A, MAT4, MMUL, VMPRT

KALMN

CMPSTF, EKBFO, EKF1, FILTRT, FLTCTL., GBLEND, INOU. MAINI1.
MAIN2, SYSU1l, SYSX1. SYSXBO. SYSYBO. SYSYWl, TSTORE. YOBSRV

41

perforn bias filter ¥
neasurenent update i

Note: BFlub is not a
variable- rather it

B = [-BFlub|0]
D = [0]I]
CBFO=HP1~[ABF1*VBO+B]+D

(¢§, vavwrasnra §.

3
¥
$

represents the natrix zf
|

conputations for }
covariance propagation”
forn of bias filter :

compute bias filter i
gain matrix i L
Note: RBFO=HP1*PF1*HP1+R i
uas saved in subroutine !
£exra 3

use anit-symmetric |
mt-i b

ons

- .
«f

v

BLGAIN(VB0)

GAINBO=PBF0=CBF 0 = [CBFO=PBFOCBFO '+

RBFO]**-1

o yes

use symmetric equations

l

i update the no-fail
i filter blendar gain, VBO

£ Wuﬁu\s appropriate for
% Information form of bias filter

PBF0=[I-GAINBO*CBF0]*PBFO

TMP1 = [I-GAINBO®CBFO]
PBFO=THP1*PBFO*THP1"
+ CAIMBO*RBFOCAINED*

Figure 6. Flow Diagram for Subroutine BIASF

42

E no propagation step required - since
" there are no bias filter dynanics

} compute the effective bias filter

¢ measurement matrix CBFO, where the

: partial tern CBFO=[ABF1°VBO+B] was

i saved previously in subroutine BLEMD

; update bias filter
i estimation error
; covariance matrix

J/;% computations for information forn of the bias filter

{ update the bias filter INFORMATION natrix,
mmo - wmmo @\ (} mo; “r. PBFO:[WI'PFI'WI‘R]“'I
& 2 uas stored previously by subroutine EXFI1

¢ invert PBFO to obtain the error covariance
¢ Note: Unsstepxsopuonalmdshouldbe
; done only if the error covariance is required

mP2 = PBFQ™=-1 Byreseersessansenes

¥

no
mP2 = full ;
rank? i
;

i compute the

: bias filter

GCAINBO=PBFO* [HP1=VB0+D] " “R"*~1 GAINBO=0 ! gain matrix
H

Figure 6. Flow Diagram for suroutine BIASF (concluded)

43

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

name:
func:

calil:
args:
refs:

refby
comm:

[

BLEND
BLEND computes the bias and bias-free state estimates and

"blends" them together to form the total state and bias
estimates. [t also forms the total state and bias estimation
error covariance and Kalman gain matrix. Figure 7 details the
operation of BLEND.

Call BLEND (Iup)

[up - integer in update/propagate flaag

EQUATE, MADD1, MAT1, MAT4, MMUL, TRANS2, UPDH, VECNUL, VMAT1,
VMAT2

KALMN

CMPSTF, DETINF, EKBFO, EKF1, FILTRT, FLTCTL, GBLEND, MAINZ,

SYSU1l, SYSX1, SYSXBO, SYSYBO, SYSYWl, TSTORE

i

% perforn state tine propagation

B

o

i at least one bias estinated
no "5 4

 compute total

(bias + bias-free)
no-fail filter gain
natrix

GAINKX=[GAINK+VBO=CAINBO | GATNBO

]
use “vhitened” residuals
& ¢ obtained from FILCOL subroutine
no

forn the filter residuals

RESBO=YF1-HXKP1 RESBO=0 Note: m1=h M‘D'XBFO
was saved in subroutine
i wesane

residual sun using the expanded
and filtered residuals, RESSOC

forn RESBO as the average

1

XF1=XF1+GAINKX*“RESBO

e ! update the no-fail

; fllter state estimates

i update the no-fail

. .;;'i':

A filter bias estinates

......... %mbimu.b‘iﬂgm

&j any input bilases?

no biases § e
save a partial
computation in CBFO
to be used in
CBFO=ABF1*UB0 CBFO=ABF1*VB0+B subroutine BIASF
%_
H
conpute the total, ﬁ
filter (state ¢ bias)% PXF1 = PF1 PXF1 = | PF1+CBFO“PF1*CBFO"’ CBFO“PBFO
estination error : PBFO“CBFO° PBFO
covariance natrix at : I
tine k/k :
. the pr
XF1 = AF1*XF1+BF1“UF1 S — : mugs » l;'ewtod
' i function (i.e. h-hat)

Figure 7. Flow Diagram for Subroutine BLEND (concluded)

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

name: BLGAIN

func: BLGAIN computes the biender gain. VB. in a recursive fashion.
VB is computed recursively as:

VB(i+1) = CI-GAINKk*HP11*ABF1*VB(i)
+ [-BFlub + GAINK(HP1*BF1lub-D)]
where the second term is computed as the augmented matrix:
[(GAINP*HP1-I)*BFlub , -Gaink*D]

BFlub refers to a matrix built out of the columns of BF1.
where each column, corresponding to biases which are

estimated.
is included (augmented together) to form B8Flub.

call: Call BLGAIN (VB)

args: VB - double inout updated blender gain matrix

refs: MADD1, MADDI, MAT1, MMULZ2, MSCALE

refby: BIASF

comm: EKF1, MAIN1, MAIN2, SYSU1, SYSX1, SYSXBO, SYSYWLl. TSTORE.
YOBSRV

name: SETISN

func: SETISN maintains the value of a vector called ICNTSN. The
ordering of elements in ICNTSN are constant and correspond
to the absolute replicated sensor ordering found in Table 6.
The value of each element is the location in UF1 for the
first six elements, and the location in the expanded inno-
vations. RF1l, for the rest of ICNTSN.
ICNTSN provides a "mapping" between an absolute indexing
scheme and a particular (collapsed - due to failures) indexing
scheme used by the NFF

call: Call SETISN

args: None

refs: [MSCLE

refby: RECONF

comm: DETINF., DETXBI, FILTRT, SYSUl

47

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
args:
refs:
refby
comm:

name:
func:

call:
args:

matrix
refs:
refby:
comm:

CHKRAD

CHKRAD checks radar altimeter turn-on criteria. If the

following criteria are satisified the radar altimeter

measurements are added to the no-fail filter measurements,

and the MLS elevation measurements are removed (selected out).
RADAR = false (i.e. radar switchover has not occured)
and {XF1(3)] < Hradar (A/C is below a fixed altitude)
and Irepls(6)!=0 (vertical accelerometers available)

Radar altimeter measurements are added by "healing" them, and

performing the reconfiquration required. In addition, if the

filter covariance is too small for x and x-dot, it is boosted

to force the radar altimeter measurements to be used by the

no-fail filter.

Call CHKRAD

None

RECONF, TLOUT, VECNUL

None

CMPSTF, DCIDEI, DETXBI, EKBFO. EKF1, FILTRT., FLTCTL, HEALCM,

HFCOM, INOU, LOGIC4, PLOTS, SENSCM, SIMCOM, SYSXBO, SYSYW1

UPDA

UPDA updates the discrete state transition matrix (AF1),
Currently AF1 is a constant so UPDA is called only once. AF1
is defined in equation (2.2.13) on page 29 of (2]

(where A=AF1).

Call UPDA (nr,nc.x,A)

nr - integer in currently not used

nc - integer in currently not used

X - double in currently not used

A - double out updated discrete state transition
MTHS$DEXP

INITG

MAIN1, SIGTAU, SYNC

48

name:
func:

cail:
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refby:

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

UPDAB

UPDAB updates the discrete state transition matrix (ABF1l) to

include the coupling due to the estimation of input

measurement biases. It also computes and saves a matrix of

partials needed for the bank of detectors BDFI.

Computationally UPDAB computes:

1) ABF1l = AF1 + partial of BF1*(UF1) w.r.t. XF1

2) BOFI = partial of BF1**BFIu, wWw.r.t. phi, theta, psi where
XBFIu is a vector of failure estimates for input sensors.

The reader is referred to pages A-1 in [3] for a description

of the partial derivative terms required for this module.

Call UPDAB (ns,nu,u,AB)

ns - integer in currently not used

nu - integer in currently not used

u - double in input measurement vectors (UF1)

AB - double out updated discrete state transition
matrix
which includes the coupling due to input measurement
biases.

None

EKFN1

DETXBI. EULER. MAIN1, SYNC, TRBER

uPDB

UPDB updates the discrete input weighting matrix. BF1l, and
also evaluates and saves:

1) sines and cosines of the estimated euler angles

2) the transformation from the B to the R frame

3) the transformation trom the R to the E frame

BF1 is defined in equation (2.2.13) on page 29 of [21]
where (B=BF1)

Call UPDB (nx,nu,x,B)

nx - integer in currentlv not used

nu - integer in currently not used

X = double 1in vector of current state estimates
(e.g. XF1)

8 - double out updated discrete input weighting
matrix

MTH$DCOS, MTH$DSIN, MTHSDTAN
EKFN1. INITG

49

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

comm:

name:
func:

call:
args:

refs:
refby:
comm:

EULER, FLTCTL, MAIN1, SYNC, TRBER

UPDQ
UPDQ updates the discrete process noise covariance matrix,

OF1. UPDQ assumes that UPDB has been called recently,

therefore Trb and Ter are current. OQF1 is defined in

equation (2.2.14) on page 30 of [2] (where Q=QF1). In

addition, provisions have been made in UPDQ to allow for

the following modifications to OF1:

1) modeling errors, not accounted for bv the plant and
measurement equations. can be accounted for partially
by increasing the process noise variance. Therefore, a
vector of terms, called DIAGQ is added to the diagonal of
QF1. Currently DIAGO is set to zero and can only be
changed at compile time or via the debugger at run time.

2) to represent errors due to scale factor and misalignment
of the rate gyros, the following terms are added to the
measurement noise variance for rate gyros:

/ \ / \ / \
101 1) | STMP1 | | STMP1|
Vrg = V + spm* |1 0 1] |STMP2} + scaleF* |STMP2|
{111 0jf | STMP3| | STMP3|
\ / \ / \ /

where each of these terms are defined in comments in the

actual code.
Call UPDQ (nx,ndistb,V,0)

nx - integer in total number of states

ndistb- integer in currently not used

v - double in vector of measurement noise variance
used by the filter

0o - double out updated discrete process noise
covariance

LIMVAL. MTH$DEXP

EKFN1

ARSTAT, MAIN1, MCONCO, RGMP, SIGTAU, SYNC, TRBER

50

name:
func:

call:
args:

refs:
retby:
comms

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

UPDH

UPDH updates the non-linear observations function H. H is
defined in equations (2.2.15)-(2.2.24) on pages 30 and 31 in
(2] (where hix(k)] = H).

Call UPDH (ny,nx,X,H)

ny - integer in currently not used

nx - integer in currently not used

X - double 1in vector of current state estimates
H - double out updated vector of observations
MTH$DASIN, MTH$DSORT

BLEND, RCOF

FILTRT. MAIN1, MLSALL, XOYOZO, YOBSRV

UPDPH

UPDPH updates the partial of H w.r.t. XFl. called HP1.

HP1 is defined on pages A-3 - A-5 in [3].

€all UPDPH (nx,X)

nx - integer in total number of states

X - double in vector of current state estimates
MSCALE., MTH$DSORT

CLPSIO, EKFN1

CMPSTF. MAIN1., MLSALL, SYSUl. SYSXBO, SYSYW1l. XQYQZO, YOBSRV

DETECT

DETECT implements a bank of detectors and likelihood ratio
computers. Each detector estimates the level of a bias

jump failure - hypothesized to start at the beginning of

an estimation window - by observing the expanded and filtered
residuals sequence generated bv RESCMP and FILCOL. The
hypothesized failure is assumed to affect no-fail fiiter
input measurements or output measurements only. Therefore,

a single failure cannot directly enter into BOTH an input

and an output measurement.

The bank of 1ikelihood ratio computers operate over a decision
residual window and are designed to compute the log likelihood

51

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

call:
args:
refs:

refby:
comm:

of a singleton sensor failure, or a dual simultaneous failure
in MLS sensors.

Subroutine DETECT functions as an executive of this bank of
detector/LR computers. It is responsible for computing all
common terms required to intialize the parallel bank at the
time of estimation and decision window resets, managing the
estimation and decision window mechanisims, and implementing
the parallel computations in a sequential fashion. The reader
is referred to [1]1-[3] for detailed descriptions of the method
of operation., and particularly to figure 1 on page 12 in [2]
which gives a functional description. Since

subroutine DETECT is a keyvy subroutine in the FINDS program,
Figure 8, a detailed flow diagram, is supplied to describe

its operation.

Call DETECT

None

EQUATE. GMINV, LIBS$INIT TIMER. LIB$STAT _TIMER, LKF., LRT,
MADD1, MAT1, MAT6, MATNUL, MVUL, MMUL2, MSCALE. VECNUL, VMPRT
NAV

CMPSTF, CNEST, COLFIL, CPU, DCIDEI, DETINF, DETXBI. DETYBI,
EKBFO, FILTRT, FLTCTL, HEALCM, INITVL, MAIN1. MAIN2, MULTDT,
SENSCM, SYSU1, SYSX1, SYSXBO, SYSYWl, TSTORE. YOBSRV

52

initialize
quantities
comnon to all
detector/LR's

v

CNICG = 1.7

e iinitialization (Note: Ifrst is
Tset to 1 in a data statement)

i scale factor for increasing
¢ innovations covariance

; presented to detectors
{ are wa simulating colored

e "L noises for the MLS sensor?

FILaz=(1-GNaz)*PHlaz | . :
t no FILel=(1-GMel)*PHTel [% ™ % %wg'e INITG and
; - - NS are se
FILrn=(1 c:m)"Pl{Im B =y
initialize i AZcor1=CNICC[(1-PHIaz"*2)
quantities +2.0°CNaz*PHTaz"=2]/(1-FILaz""2)
used in AZcor2=CNICC*(1-PHIaz**2)/(1-FILaz"*2)
conpensating
for the colored &
nature of the ELCOr1=CNICG=[(1-PHIel"*2)
fiLS neasurenents ; +2.0%CNel*PHIe1**2]/(1-FILel**2)
ELcor2=CNICG®(1-PHIe1**2)/(1-FILel**2)
v
RNCOT1=CNICG* [(1-PHIIn®"=2)
+2.0°CNIn*PHIrN**2]/(1-FILrn"*2)
RNCor2=CNICC® (1-PHIrn=*2)/(1-FILrn**2)
- 4 |
1 { expand the observations partials matrix

CM2 = expanded ;... i
r : to account for replicated sensors

P2 = COM2'*PXF1*CON2

Figure 8. Flow Diagram faor Subroutine DETECT

53

Stnpl = Stmp2 = Stnp3 = 1.0
forn :
innovations ‘. no
covariance : ii > 37
f :
colored ; /
ALS noise
assumptions :
{ yes
Stnpl = AZcorl
Stnp2 = Alcor2
Stnpl = Ricorl Stapl = ELcorl
Stap2 = RNcor2 Stnp2 = Elcor2

yes
no Stmp3 = RF1(ii)*IREPLF(MU1+1i)

™MP2(i,1)=Stnpl*"MP2(i,i)+*Stnp2=Stnp3
no
yes

Figure 8. Flow Diagram for Subroutine DETECT (continued)

54

¥ a
forn o .
innovations ; ii = INORYP(i)
using vhite g
HLS noise i
assumptions i Stwpl = 1.0
%
Stapl=RF1(ii)*IREPLF(MU1+i1)
]
mP2(1,1)=mP2(i,1)+Stmpl
i=1i4
@ L > '
i TP1 = inverse
l TP1 = MP2**-1 |s¢ of innovations
* covariance

Figure 8. Flow Diagram for Subroutine DETECT (continued)

55

cm2[ilc = WP1=BF1[II]c

II = pointer to
input type

' -
cefifilc =0
i=1,...NFnax

forn

-HP1"B8F1lud
where BFlub
Tepresents a
matrix formed
out of the
columns of BF1
vhich correspond

to inputs with
estinated biaes
no
yos
IIT = NX1+WUB
v are any biases
4% neasurenent biases?

con2[Nubl, Nb]c = -HP1[IIT NXB]c

P ; now CM2 = -HP1{III,NXB]c

save portion of
the detection

neasurenent natrix

P2 = GAINKX*"COM2

éue there any input

mMP2 = BFlub-MMP2

THP2[NX1 NXB]r = I-THP2{NX1, NXB]r

* %

CBFI = CM2~vB1

b

|

AR

i neasurenent biases

! at this point MP2 is
; the augnented natrix:

[BF1u-GATNKX = (1P1°8F 1u+D)]
I-GAINBO*(HP1"8F1u+D)]

Figure 8. Flow Diagram for Subroutine DETECT (continued)

56

- . . .
- i3 increnent decision window
KCTdwh = KCTdwhe+l |- g 1o o

} tine to begin a new
-} decision window?

=1 oo } re-set
kCTdwh = 1 : tor o
i local flag used for %

start of =T . P IR } differentiati .

M:.”r 1oop T i i from measurement s seemmum ally rProcess
(mcrenmuinq & senso

Sensor . Lo

-.v%wmwwm%}:\h\ﬁ.v:. index =1 B index = absolute r type

are any sensors of this type
currently being used by the
NFF?...if not dont't run the
detector/LR logic

e R Uy

: are we using the RSOINMU and 1s this
Irsdfy!=0 .. sensor an input sensor?...if so
index<=NU1? T don't run detector/LR logic since

: the RSDINU has resident FDI capabilities

are we using the RSDIMU's euler angle
estinates in the NFF and is this sensor
an TNV neasurenent type?...if so

don’t run the detector/LR logic

this sensor an input sensor?

- False Lo----i St flag to indicate this
Inputs = F P sensor 1S 8 MeASUTenent Sensor

Figure 8. Flow Diagram for Subroutine DETECT (continued)
57

failure

forn input

discrete
state

transition

matrix

{ is this the first sample
7’} of a new decision window?

:

kCTewh{index) = kCTewh(index)+1

)

=

yes

II = (index-1)"3+1

v

\la:rem(imax) > Kixeun(1index)

: time to initiate
?> ¢ a new estination
* window?

g ves

XBFI(ij) = ©
PBFI(jj) = PBFIC(index)
for jj = all replications

con2(7.9]c = ABF1{7.9]c
-BOFI[II,II+2]c

IOS??.

: windows
i for all
i replications

AR TR

c8FI[index]c = 0

"

$
vazl3slc = 0 §
VEL[jjlc =0 s
VRN[3jlc = 0
for jj = all replications |:
|
vBI[index]c = 0

VTPl = HP1=Con2“VBI[index]c

v

CBFI[index]c = CBFI[index]c-VTHP1

v

computs the detector's
blender gain VBI[index]c

vs see page 43 in [1]

index2 = index
index3 = 1
index4 = Icntsn{index)

O

! pointers to specific

rﬁ' soensor replication,

i neasurenent index

Figure 8. Flow Diagram for Subroutine DETECT (continued)

58

conpute the

VINP1(1)=C8F1{INOYPI(INORYP(1)). index) mgm
* natrix for
the detector

soe page 42 in [1]

1=11

II = INORYP(IndexY)
VTNP1(index4) = VINP1(indexY)+Yscale(II)

filter elements of VMMP1 which
multiply NLS neasurements
to account for their colored
noise statistics if IuoC=1

.} is this an HLS sensor?

yes pointer to col. in DOBS !
i 2 save the observation matrix
l JJ = (index3-1)*3+index—6 I i and failure estimate
1 i (used later to detect
multiple NLS failures)

poBS[JJ]c = VPl
(EST(JJ);XBFI(indexZ)

Figure 8. Flow Diagram for Subroutine DETECT (continued)
59

LKF(XBFI(index2),PBFI(index2), VNP1, THP1,RESBOC, | |......} run the detector
RESBI[1ndex2]c,NyT) i ¢ for this sensor

v

LRT(KCTewh, PRIORI(index2) ,RESBI[index2]c, | | . ¢ perform log-likelihood ratio
™P1,Alanda(index2), Nyf) i conputation for this sensor

inactive replications yes
entry point Inputs?

%
z

index3 = index3+1 {#&i increnent replication
index

¢ done with this
; sensor type {(no
¢ more replications)?

»-

indox2 = (index3-1)*NYnax+index
v

index4 = Icntsn(index2)

index = index+1

close ninor loop....
proces next replicated
sensoxr of the same type !

been processed
tectors/LR’'s?

2

close najor 1oop.... i %
process next sensor
type £

Figure 8. Flow Diagram for Subroutine DETECT (continued)
60

(12)
Py

LRT(KkCTdwh, PRIORI{NFT1) RESBOC, NP1

Alanda(NFT1), Nyf

v

KCThlr = kCThlr+l

yes

! tine to reset
47t healer windows?

i perforn log-1ikelihood computations

& 2 for the no-fail hypothesis

proces healer
vindow counters

kCThlr = 1

]

w1 = [DEST(1)-DEST(4]/2
M2 = [DEST({2)+DEST(5]/2
W3 = [DEST(3)+DEST(6)]/2

v

f forn average failure

i estinate for LS sensors

RESBJ[1]c = RESBOC-(DOBS[1]c+DOBS[4]c)=N11
if Ireplf(7)=2

)

RESBJ[2]c = RESBOC-(DIBS[2])c+DOBS[5]*R11
IF Ireplf(8)=2

; forn multiple NLS
failure compensated residuals

v

RESBJ[3]c = RESBOC-(DIBS[3]c+D0BS[6]"n1
IF Ireplf(9)=2

)

LRT(kCTdwh,PRIORJ(1) ,RESBI[1]c, MPL,
AlandJ(1) Nyf)

v

LRT(KCTcwh, PRIORI(2), RESBI[2]c, TNPL,
AlandJ(2), Nyf)

v

LRT(kCTdwh, PRIORI(3),RESBJ[3]c, TMP1,
AlandJ(3),Nyf)

compute log-likelihood ratio‘s
for multiple NLS failures

Figure 8. Flow Diagram for Subroutine DETECT (continued)

1

;
3
AlandJ(1) = 1.0E+30 :
no H
J s
if multiple sensors are
Ireplf(8) < 27 not available., disable

detection of multiple failures

Aland)(2) = 1.0E+30
J

L U SN NP S NN O

Ireplf(9) ¢ 2?

A BAPE BN,

AlandJ)(3) = 1.0E+30
]

Figure 8. Flow Diagram for Subroutine DETECT (concluded)

62

name:
func:

call:
args:

refs:

refby:

comm:

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

LKF
LKF provides the estimator structure tfor the failure
detectors. LKF implements a linear Kalman filter using the
information form, and assumes a scalar state equation. The
module functions as foliows:
The plant eguation is:
Xmi(k+1l) = Xmi(k) 3 i.e. no dynamics
the measurement equation is of the form:
Y(k+1) = Ci*Xmi(k) + n{(k+l) 3 Y(k+1) is a vector
of ny elements
where n(k+1) ~ N(O,RT)
the filter equations are:
RTinv = RT**-1 (measurement noise covariance)
Gi = [1.0/Pmi(k)J*Ci'*RTinv (filter gain)
Pmi(k+1) = Pmi(k) + Ci'*RTinv*Ci (filter information)
where, remember, Pmi is defined as the inverse of the
estimation error covariance (i.e. the information matrix)
Ri(k+1l) = Y(k+1) - Ci*Xmi(k) (detector residuals)
Xmi(k+1l) = Xmi(k) + Gi*Ri(k+1) ("best” estimate)
For a more detailed explanation of the detectors
imp lementation see section 2.4 in [3], and section 2.1.2
in [2].
Call LKF ¢Xmi,Pmi,Ci.RTinv,Y,Ri.nv)

Xmi - double dinout scalar estimate of the state (i’'th
failure level estimate)

Pmi - double inout scalar filter information matrix
(information in i’th failure estimate Xmi)

Ci - double in effective observations matrix
(computed in DETECT)

RTinv - double in inverse of the measurement noise
covariance matrix (NFF innovations covariance)

Y - double in observations vector (expanded
innovations from the no-fail filter)

Ri - double out innovations sequence from the LKF
(failure compensated innovations sequence)

nvy - integer in number of elements in the observations
vector, Y

None

DETECT

MAIN1

63

FINDS Programmer‘s Manual
Documentation For File: FSFDI.FOR

name:
func:

caltl:
args:

refs:
refby:
comm:

name:
func:

LRT

LRT computes the log l1ikelihood ratios over a decision window.

The computations are as follows:

1V if k=1 A=-PHj. This initializes the log likelihood ratio.
A, to -In(PHj) at the start of a new decision window.
(Subroutine INITG initially stores PHj as the log of the
a-priori probabiiity of a sensors failure).

2) SUMI = RES'*RTinv*RES

3) A= 0.5%SUML + A

The reader should refer to section 2.7 in [3] or section 2.1.4

in [2] for a more detailed description of this method.

Call LRT (k.PHj,RES.RTinv,A,nv)

k - integer in decision window simulation step
counter

PHi - double 1in logarithm of the a-priori probability
that the j’th sensor will fail

RES - double in failure corrected innovations sequence
from the j'th failure detector

RTinv - double in inverse of the innovations covariance
matrix

A - double inout computed value of log Tikelihood ratio
for the j'th failure hypotheses

ny - integer in number of observations

MAT3A

DETECT

MAIN1

DECIDE

DECIDE computes the decision cost which minimizes Bayes Risk,

and chooses the most likely hvpothesis conditioned on this

cost vector. DECIDE considers singleton sensor failures as

well as dual simultaneous failures in MLS sensors. DECIDE

operates as follows:

1} find the smallest log likelihood ratio for singleton
failures (stored in A)

2) find the smallest log likelihood ratio for multiple
failures (stored in ALAMDJ)

3) pick the smallest of 1) or 2) and determine the
corresponding sensor type(s) and replication(s) of this
sensor

64

call:
arqgs:

refs:
refby:
comm:

name:
func:

call:

args:

refs:

refby:
comm:

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

4) if the chosen hypothesis is the no-fail condition
simply return:

5) otherwise, print out various messages informing the user
of the decision, and update the failure queue (i.e. NNfail,
IfailT. and IfailR)

Call DECIDE (m,cost,A,Beta)

m - integer in total number of singleton failures +1
(representing the no-fail hypothesis)

cost - double in currently not used

A - double 1in vector of Tog likelihood ratios for
singelton failures

Beta - double in currently not used

CONVRF, MXMNZ2. TLOUT, VMPRT

NAV

DCIDEI. DETINF, DETXBI, FILTRT, HFCOM, INOU, MAINZ,
MULTDT., NAMES. PLOTS, SETCOM, SIMCOM, SYSuUl

RECONF

RECONF reconfigures the FTS for proper operation (if possible)
after failures have been detected and isolated. and after
sensors heal. Figure 9 shows a functional flow diagram of
the operation of RECONF. Also. see section 2.6 of [2].

€all RECONF (IHfail,Iabort)

IHfail- integer in Heal/Fail reconfiguration flag where
IHfail=]1 for failures, and otherwise for healings
[abort- integer out run abort flag where Iabort=0

indicates normal operation, and otherwise indicates
the run should be aborted
ALTYP. CLPSIO, EQUATE, IMTCG2, KALMAN, MATCG2, MATNUL, MINSET
MSCALE, MTH$DEXP, MTH$DLOG, NOISR, PNTINV, RCOV, RESCMP,
SETISN, SUMIN, TLOUT
CHKRAD, NAV
DCIDEI. DEVINF, DETXBI, EKBFO, EKF1, FILTRT, GBLEND, HEALCM,
HFCOM, INITVL, SETCOM, SIMCOM. SYSU1, SYSX1, SYSXBO, SYSYBO

65

reconfigure |

for failures |

cycle through all ;
MNfail failures ..

resat healer,
detection, and
estination windous

v

reset Log-likelihood
ratios to “"infinity®”

)

index = 1

y

j = Rfail + index
Icnd = IfailT(j)
Ireplec = IfailR(j)

v

4

i
}

§ set nission abort flag
to “no abort™ status

reconfigure for healings

Ireplf(Icnd) = Ireplf(Icmd)-1
INoutF(Icnd, Ireplf) = -2

NB!=0

€ normal operating biases
are estinated for that

null the appropriate

column of VB0
I

4.1 15 this a measurement sensor

Figure 9. Flow Diagram for Subroutine RECONF

66

correct no-fail
prior probability

1 are.redundant
Lot ? sensors available?

Treplf(Icnd) S—20

available in
Standby?

> o7
INoutF(Icnd, Isns)=1
Ireplf(Icnd)=1
v RCOV
RCOV v
) NOISR
yes can
Ireprp = 1 the filter be ‘
collapsed? aats MR
and INORYP
CLPSIO v
' I update RESBOC
TLOUT “hission v I
v abort TLOUT
correct no-fail SETISN
prior probability *
v SETISN
SETISN T .

Figure 9. Flow Diagram for Subroutine RECONF (continued)

67

*m

Nfail = NfailsWNfall
Wifail = 0

XF1 = RBFO[1]c
PF1 = RBFO[i~1,MX]c

]

SUMIN

v

KALMN (2)

v

RESCMP

Figure 9. Flow Diagram for Subroutine RECONF (continued)

68

£} roturn

-, 4 NEaSUTenent Sensor
i has healed

correct no—-fail
prior probability

v
SETISN

jindex = IhealP(index)
Iend = IfailT(jindex)
Ireplc = IfailR(jindex)

currently using a
sensor of the
sane type?

bias estinator
running for this
sensoxr?

INOUTF(Icnd, Ireplc)=-1 < no

Ireplf(Icnd) = 1
INoutF(Icnd, Ireplf) = 1

v

TLOUT

v

correct no-fail
prior probability

v

CLPSIO

)

SETISN
l v

. re-set the
bias estimator

Figure 9. Flow Diagram for Subroutine RECONF (continued)

69

8

collapse Ifaill
and IfailR
decrenent Nfail

no
yes

adjust Ifaill and
IfailR to account for
increnental failures

Nheal = 0
]

/R;QF : Mission ABORT

Type

/

Y,
’k

TLOUT
.
Iabort = -1
3
I Tstop = Times
>4
110 l
*I

Figure 9. Flow Diagram for Subroutine RECONF (concluded)

Cexm)

70

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

name: CLPSIO
func: CLPSIO is used to collapse (or expand) the no-fail filter and
its associated data structures due to a single failure
{healing) of a sensor. In particular, CLPSIO does the
following:
1) If Iclps<O (i.e. collapse no-fail filter)
a) if Isns(=NUl {(i.e. for input sensors)
NOTE: currently FINDS doesn’t allow input sensors to
be removed. The logic that is used currently is only
partially complete.
* get OF1(Isns)=0.0
* reset PFl and PBFO by calling subroutine RCOV
* collapse the input mapping vector, INOUP and adijust
NUIC
* if NB!=0 and this sensor has a normal operating bias
being estimated, collapse the bias estimator by
calling subroutine CLPSBE
b) if Isns>NUl (i.e. for measurement sensors)
set RF1(ICmdY)=0.0
reset PF1l and PBFO by calling subroutine RCOV
update NY and INOYP
update NYF and INORYP
collapse the residuals vector, RESBOC
update the inverse measurement pointing vector.
INOYPI
if NB!=0 and the no-fail filter is estimating a
normal operating bias for this sensor - collapse the
bias portion of the filiter by calling subroutine
CLPSBE
2) If Iclps>=0 (i.e. expand the no-fail filter
a) for input sensors:
* reset the process and measurement noise matrices
OF1 and RF1. by calling subroutine NOISR
* update NUIC and INOUP
* if a normal operating bias is to be estimated add it
via subroutine CLPSBE
b) for output sensors:
call NOISR to set OF1 and RF1
update NY, and INQYP
update NYF, and INORYP
expand RESBOC
update INOYPI
if NB!=0 and a normal operating bias is to be
estimated - call CLPSBE

71

R % X F %

*

3 * * %

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

* correct the partial derivative of h w.r.t. x, HP1
by calling subroutine UPDPH
call: Call CLPSIO (Iclps,Isns,Irepic)
args: Icips - integer in flag used to control the coliapse/
expansion of the no-fail filter, where Iclips=-1 indicates to
collapse and Iclps=1 indicates to expand it.

Isns - dinteger in absolute index of the sensor
Ireplc- integer in replication of the sensor
ints: IcmdY - dinteger absolute measurement sensor index as
described in Table 1 on page 9 in [1]
IRsns - integer absolute replicated sensor index (see
Table 6).
refs: ALTYP, CLPSBE, IMTCG2, MATCG2., NOISR, PNTINV, RCOV, UPDPH
refby: RECONF

comm: DETINF, DETXBI, EKBFO. EKF1, FILTRT, INITVL, SYSU1l, SYSX1,
SYSXBO, SYSYW1

name: NOISR
func: NOISR resets the process or measurement noise covariance terms
in the no-fail filter for a given sensor type. In particular:
* if Isns (= NUl (i.e. it corresponds to an input
measurement to the no-fail filter) and if body
mounted sensors are used:
QF1(Isns) = sig(Isns)**2
otherwise if the RSDIMU is used:
QF1(Isns) = sig(18)**2 for 1<Isns{3
or OF1(Isns) = sig(17)**2 for 4{Isns<6
* §if Isns > NU1 (i.e. a measurement sensor)
RF1(Isns) = sig(Isns-NUl)**2/Ireplif(Isns)
(remember Ireplf(Isns) is the number of active
sensors of this type currently used by the no-fail

filter)
call: Call NOISR (Isns,Irepic)
args: Isns - integer in absolute index of sensor
Ireplc- integer in currently not used

refs: None
retby: CLPSIO, RECONF
comm: ASOUT, FILTRT, SIGTAU, SYSUl., SYSYW1

72

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

FINOS Programmer’s Manual
Documentation For File: FSFDI.FOR

RESCMP

RESCMP computes the expanded residuals sequence from the
collapsed residual sequence generated by the no-fail filter.
The results are then stored in RESBOC. This sequence is
the same as the one which would have been generated had the
filter been driven by all replications of the measurement
sensors rather than their average value. See section 2.3.1
in [2]. RESCMP also computes an estimate of the filter
observations and stores this result in HXKP1.

Call RESCMP

None

None

NAV. RECONF

AGOUT, ASOUT, CNTROL, DETINF. EKBFO, EKF1, FILTRT,

MLOUT, PSIR, RAQUT, RIOUT, SYSUl, SYSXBO, YOBSRV

FILCOL

FICOL estimates colored MLS noise states and compensates the
expanded innovations sequence generated by RESCMP. This is
done in an effort to "whiten” the innovations sequence, since
it is known that the MLS sensors have colored rather than
white noise statistics.

Call FILCOL

None

EQUATE, MTHSDEXP

NAV

CNEST, COLFIL., DETINF, FILTRT, FLTCTL, MAIN1, MLOUT, PJUNCK,
SENSCM, SYNC, SYSUl

CLPSBE

CLPSBE is responsible for resetting the bias estimator portion

of the no-fail filter such that a single bias can be added or

deleted. In particular. CLPSBE:

1) calls ADJSTBP to determine IBkey and IYkey and to adjust
the bias pointer vector INOBP, as well as NXB, NUB., NYB,
NUB1, and NB.

73

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

call:
args:

ints:

refs:
refby:
comm:

2) if IBkey<O (implying that either the bias exists and we’ve
tried to add it, or the bias doesn't exist and we’'ve tried
to delete it} then CLPSBE fails by printing out this
message on the terminal:

3)

4)

if
a)

b)
c)

if
a)

b)

c)

d)

CLPSBE: Routine Fails
kflag=-1 (collapse the bias estimator)
the IBkey row and column of the bias filter error
covariance, PBFO, is deleted
the IBkey column of the bias filter blender gain, VBO,
is deleted
the IBkev row of the vector of bias estimates, XBFO,
is deleted
kflag!=-1 (expand the bias estimator)
PBFO is expanded about the IBkey row and column, and
they are zeroed out
The initial value of the bias fiter error covariance is
loaded into the appropriate diagonal element s.t.
PBFO(IBkey,IBkey)}=PBFOI(Ibias)**2
VBO is expanded about the IBkey column, and it is zeroed
out
XBFO is expanded about the IBkey row and zeroed out

Call CLPSBE (kflag,Ibias)
kflag - integer in flag to indicate whether to collapse

or expand the bias filter. (-1 =) delete, +1 => add)

Ibias - integer in absolute index of bias type to be

added or deleted

[Bkey - integer pointer to the location of the bias

(absolute sensor index) "Ibias" in the reduced
no-fail filter bias vectors and matrices

iYkey - dinteger pointer to the location in the no-fail

filter measurement vector which corresponds to bias
"Ibias”

ADJTBP, ALTYP, MATCGZ2
CLPSIO
EKBFO. GBLEND, INITVL, SYSU1, SYSX1, SYSXBO, SYSYWl, YOBSRV

74

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

ADJTBP

ADJTBP increments or decrements various and

scalars used by CLPSBE and the bias filter itself, when adding
or deleting biases in the estimator.

Call ADJTBP (Iflag,Index,Irkev,Iykey)

Iflag - integer in flag indicating addition or deletion
of a bias, where -1 => delete, and +1 => add

Index ~ integer in absolute index to sensor type of
bias to be added or deleted

Irkey - integer out to bias in the reduced

bias set (i.e. the bias vectors used by the filter)
if the routine succeeds and Irkey=-1 if the routine
fails

Ivkey - dinteger out to absolute output
index which corresponds to the bias referred to by
Index. If the bias is on an input measurement then
Ivkey=0

ALTYP, IMTCGZ2, PNTINV

CLPSBE

CMPSTF. DETXBI, SYSUl, SYSX1, SYSXBO. SYSYW1

RCOV
RCOV resets the no-fail filter’s estimation error covariances
once a failure has been detected and isolated. In particular
it sets:
/ \ / \
1) | PO 0 | | PO 0 |
| J = | | + VirVi R ree2
| O Pb | | .0 Pb |
\ / \ /
where X**2 = Xmi**2 + 1.0/Pmi
2) if PBFO > PbfOI then PBFO is set to PbfOl (i.e. the initial
uncertainty) and XBFO = 0.0.
This corresponds to the conditional covariance reset method
discussed in section 2.6 of [2]. Logic still exists in this
routine which can be used to cause the other two reset methods
discussed in [21 to be used. however, a re-compilation of the
code would be required.
Call RCOV (PO,Pb,X0,Vi,Xmi,Pmi,Icmd)

PO - double dinout bias free filter estimation error

75

FINDS Programmer‘s Manual
Documentation For File: FSFDI.FOR

covariance

Pb - double inout bias filter estimation error
covariance

X0 - double inout vector of current state and bias
estimates

Vi - double in biender gain for the i’‘th detector

Xmi - double in estimate of the i‘th failure level

Pmi - double in information matrix for the i’th
failure

Icmd - idinteger in absolute sensor type of the failed
sensor

refs: MATNUL, UPDH, VMPRT

refby: CLPSIO, RECONF

comm: CMPSTF, EKBFO, EKF1, INITVL, INOU, MAIN1, SYSUl, SYSX1,
SYSXBO, SYSYW1, YOBSRV

name: MINSET

func: MINSET determines if the A/C can operate if a particular
sensor is removed, by knowing the minimal sensor sub-sets
allowed for stability. Currently MINSET will allow all
replications of IMJs to be removed, all replications of MLS
elevation - provided the radar altimeter is available, and
all replications of the radar altimeter - provided MLS
elevation is available. Otherwise, if all replications of any
other sensor are lost MINSET will abort the run.

call: Call MINSET (Isns,Ireplc,lok)

args: Isns - 1integer in absolute sensor index
Ireplc- integer in replication of the sensor - currently
not used
Iok - integer out abort/run flag where if
Tok -1 perform a misson abort, otherwise if

Iok 1 allow the sensor in question to be removed

and the run to proceed
refs: None
refbv: RECONF
comm: FILTRT, LOGIC4

76

name:
func:

cail:
args:
ints:

and

that

number.

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

HEALR

HEALR manages the operation of the healer detection logic.

Its primarvy function is to maintain all sensors selected

as "fatled" by the FDI logic and determine if they have

healed or recovered. Healer decisions are made ONLY at the
end of a healer decision window. Special logic is employed in
order to force the IMUs to heal in a coordinated fashion

{i.e. for the i‘th replication of an IMU to heal; phi, theta,
and psi must all be healthy). This logic, while specific to
the IMJs, forms the framework required to impose arbitrary
additional constraints on a sensor‘s healing. A detailed
explanation of how the healers operate can be found in section
2.5 in [2]1. Also helpful in understanding this routine is the
description of common blocks HEALCM and HFCOM. Figure 10
provides a detailed flowchart to indicate how the healers are
realized.

Call HEALR
None
Xsum - double vector of running sums - one for each

active healing process. See subroutine AVECMP for a
description of how the elements are computed

IfailP- integer where the row index is
the healer process number. and the value of each
element the corresponding failed sensor’s
location in the list of failed sensors
(IfailT and IfailR)

NfailL- integer length of IfailP., i.e. number of
healer processes currently running. Both IfailP and
NfailkL are updated at the start of each new healer
window.

[MUrep- inteqer local test vector used for IMJ healing
logic. The row index is the IMU replication number.

the value is the number of sensors within that IMU

have healed
[MUmap- integer local test matrix used for IMJ healing
logic. The column index is the IMJ repiication

the rows store particular sensors which have healed.
and the value stored is the corresponding position in
the list of healed sensors, IhealP. Note this matrix
allows us to map the locations in lhealP to each
replication of an IMU

77

FINDS Programmer‘s Manual
Documentation For File: FSFDI.FOR

refs:
refby:
comm:

Iremov-

Nremov-

AVECMP,
NAV
HEALCM,

integer local test vector used for IMU logic.
This array stores the locations in IhealP which
correspond to sensors which passed the healer decision
criterion but cannot be allowed to heal - due to other
constraints. Currently, this means only a portion of

an IMJ has healed
integer length of Iremov, i.e. number of

sensors which must be removed from the iist of healed

sensors., IhealP
BUBBLE, LRTHLR. TLOUT

HFCOM, SYSU1

78

§
i are there any failed sensors?

_E;;>>#§ %rétu!ﬂ

return

'!«W\K\"-‘W«(
N

------- 3 is it time to reset
4§ the healers?

initialize new healer
processes, i.e. set
Nfaill ¢ IfailP

L

%

H=IfailP(i) | ¢ II=pointer into failure
(J\hIfﬂlT(Il) . \' % IS

‘ kk=IfailR{1I) i JJ=absolute sensor type
'] : KK=sensor replication

AVECTP(Xsun(1).
3J,KK,kCThir)

Perform routine
processing for
each healer process :

processed ALL healers?
e s % end of
o ..~ healer window?

kCThlr<
KIXh1r?

RN R

Figure 10. Flow Diagram for Subroutine HEALR

79

_2 perrorn end or
Y S ¥ window healer
i tests
MUrep=0 g
m P - 1 mull out local pointer arrays
II=IfailP(i)
JI=IfailT(II)

T

LRTHLR(Xsun(1) KCThlr, Bthrsh{JJ),
Fthrsh(J)). Dthrsh(JJ). IHF)

i is the healer vector (IhealP) filled?

no b
4t 800 O the 1ist of healed sensors

KK=Ifai1R(II)

t i increnent the number of
i sensors that have "healed"

@ Mheal-Nheals] Lo
..o is the healed sensor NOT

i an IV output?

MUrep(kk)=TMUrep(kk)+1

Murep(Itest(kk), kik)=Nheal :
en((kKk), ki) U healed
|
,é schedule the healed sensor

Figure 10. Flow Diagram for Subroutine HEALR (continued)
80

! counter for sensors which “healed” byt cannot
.i be removed yet due to additional constraints
§ {besides those imposed by the healer logic)

%didN.LorKIEofthemtsof
.+“7 the 1°th replication of the MU “heal™?

IHUrep(i):(J. no

or
Murep(i)=3?

] . i store the column of IMUrep (which
Irenov(Nrenov+j)=DiUnap(j.i) |. :(which correspond to partial MMV

=1, .. . MUrep(5 |© % healings) into a temporary linear
special : ¥ e : array, Iremov
processing * #
roquired to ;
condition
each MU Nrenov=Nzenov+MUrep(J)
to heal as
a unit

no due to additional contraints?
(i.e. only a part of an INY
é { remove the sensors from the
_.-111st of sensors to heal and
7 yait for ENTIRE INU to “heal”
BUBBLE(Irenov.Nrenov.-1)| [
3 no collapse IhealP fron snall
i by removing the to large
sensors pointed to values
by Iremov
Nheal=Kheal-Nremov
II=-1fai1P(IhealP(1i)
JJ=Ifai1T(II)
KK=IfailR(II)
TLOUT(17,0,JJ.KX.1)
no /\ yes

Figure 10. Flow Diagram for Subroutine HEALR (concluded)
81

FINDS Programmer‘s Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
args:

refs:

refby:

comm:

name:
func:

AVECMP
AVECMP supports the operation of HEALR by computing the
running sum of (Xwork-Xfail) over the healer window of
length kmxhlr. The value of the sum is reset to zero at the
start of a new healer window. Xwork and Xfail are defined
as follows:

* for input measurement sensors:

Xwork = a measurement from a (assumed) correctly
working replicated sensor of the same type
as the failed one

Xfail = a measurement from the failed sensor

* for output measurement sensors:

Xwork = the estimate of the observation obtained
from the no-fail filter

Xfail = the measurement from the failed sensor.

Call AVECMP (Xsum,IfailT,IfaiiR.kreset)
Xsum - double dinout the running sum of (Xwork-Xfail) for
a particular faiied sensor

IfailT- integer in absolute sensor type of failed sensor

IfailR- integer in replication of failed sensor

kreset- integer in reset tflag which indicates the start
of a new healer window if kreset=l

None

HEALR

AGOUT., ASOUT. EKF1, LAOUT. MLOUT, PSIR, RAOUT, RIOUT,

RGOUT, SYSUl, YOBSRV

LRTHLR
LRTHLR performs a likelihood ratio test to determine if
a sensor has healed at the end of a healer window. The
test is performed as follows:
1) a maximum likelihood estimate of the normal operational
bias is computed as:
Best = Xsum/length
where Xsum is computed in AVECMP, and length is the number
of samples in the window. The estimate is limited by:
if Best > Bthrsh then Best = Bthrsh
if Best < -Bthrsh then Best = ~Bthrsh
where Bthrsh is the largest expected bias level for this
sensor type (set in INITG)

82

Call:
args:

refs:
refby:
comm:

name:
func:

FINDS Programmer’s Manual
Documentation For File: FSFDI.FOR

2) a maximum likelihood estimate for a failure level is
computed as:
Fest = Xsum/length
The failure estimate is then limited by:
if Fest > 0.0 & Fest (Fthrsh then Fest = Fthrsh
if Fest < 0.0 & Fest > -Fthrsh then Fest = -Fthrsh
where Fthrsh is the smallest expected failure level for
this sensor type (set in INITG)
3) a decision function is evaluated as:
xtmp = 2.0*(Fest-Best)*Xsum + length*(Best**2+Fest**2)
4} the value of the decision function is compared to a
decision threshold, Dthrsh (set in INITG), and if xtmp is
less than Dthrsh the sensor is declared "healed" (by
setting IHF=-1). A detailed description of this method can
be found in section 2.5 in [2].
Call LRTHLR (Xsum,length,Bthrsh,Fthrsh,Dthrsh,IHF)

nou

Xsum - double in the sum, over the entire healer
window, of (Xwork-Xfail) as computed by AVECMP

length- integer in the number of samples included in the
healer window

Bthrsh- double in the maximum expected value for a
normal operating bias level on this sensor

Fthrsh- double iin the minimum expected value for a
failure in this sensor

Dthrsh- double in the decision threshold to be used in
determining whether a sensor has healed

IHF - dinteger out a tflaq indicating the outcome of the

LRT. [HF=-1 if the sensor has healed and if IHF=0 it
has not healed

DABS. DFLOAT

HEALR

None

CONVRF

CONVRF determines the proper conversion factor needed to
convert from "program" engineering units to "user" or output
units. It also supplies a 5 character l1iteral name describing
the name of the units. Currently only no-fail filter states
and sensors are accounted for., The routine operates as
follows:

83

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

1) the user supplies a flag, Iopt, to indicate whether states
or sensors are to be considered

2) the user also supplies an index, n, which indicates in an
absolute ordering convention found in table 1, page 9 in
£11, which element of the state or sensor vector is
desired.

3) CONVRF then determines the conversion factor required and
stores it in the value of the function CONVRF, and the
name of the units, stored in Lname.

X=CONVRF (n,Iopt,Lname) .

n - integer in absolute index into the state or

sensor vector
Iopt - integer in a tlag indicating n is an index into

the no-fail filter state vector if Iopt=l; or n is a
sensor type index if lopt !=1

Lname - char out a 5 character name tor the units to be
converted to.

CONVRF- double out the value of the conversion factor
required to convert to user units.

None

DECIDE, INITG, PRNTIC, TLOUT

MCONCO

AVBIAS

AVBIAS computes, for a particular sensor type, the effective

average bias seen by the no-fail filter. AVBIAS operates

as tollows:

1) for input sensors it subtracts the true signal and noise
from each measurement and then, if the no-fail fiiter
uses more than one replication, averages these quantities
across replications. The true signal and noise are saved
in the appropriate sensor modules in EFBSLA and EFBSRG for
Tinear accelerometers and rate gyro‘s respectively.

2) for output measurement sensors AVBIAS simply averages the
true (i.e, simulated) bias levels across replications.

X=AVBIAS (n)

n - integer in the absolute sensor type index found
in table 1 on page 9 in [1]
AVBIAS- double out the effective average bias for the

n‘th sensor type

84

FINDS Programmer ‘s Manual
Documentation For File: FSFDI.FOR

refs: SUMMER
refby: PRINTIC, SAVIT
comm: AGMP, ASMP., EFBS, FILTRT, LAMP. MLSMP, RALMP, RGMP

3.3.3 Documentation For File; FGAC.FOR -

3.3.4 Documentation For File: FWIND.FOR -

85

FINDS Programmer’s Manual
Documentation For File: FWIND.FOR

3.3.5 Documentation For File: FSENS.FOR -

3.3.6

name:
func:

call:
args:
ints:

refs:

refby:
comm:

Documentation For File: FIO.FOR -

SAVIT
To save a user selectable set of program variables in a
periodic tfashion on a binary plot file. SAVIT uses a 3 pass
structure to provide this capability, where:
Ipass=1 provides initialization - SAVIT interactively
prompts for groups of outputs to be saved
Ipass=2 save (record) variables
Ipass=3 flush buffers and close files
The reader is directed to section 4.4 in [1] for a detailed
discussion of the plot file contents and interactive prompts
provided by SAVIT.

Call SAVIT

None

Ipass - integer in pass flag stored in common block
FLTCTL

Lsave - integer vector of yes/no responses to the

prompting questions (found in Table 6 in [71) -

used to control execution of the routine.
ALTYP, AVBIAS, FILER1, ISPEC, LASK, MTH$DSQRT, RECRDS,
SAVIT, SEQONCE, VECHG1, VECNUL
FINDS
ACCLS., AGMP, AGOUT, ANGLES, ARSTAT, ASMP, ASQUT, CMPSTF,
CNEST., CNTROL, CONTRL, CRTE, DCIDEI, DETINF, DETXBI, DETYBI,
EGUIDE. EKBFQ, EKF1, FCOM1, FCOM2, FILTRT, FLTCTL, GSLOPE.
GUIDE, GYROS, IMLS, INITVL, INOU, LAMP, LAQUT, LINAC, LOGIC4,
MAIN1, MAINZ2, MCONCO. MLOUT, MLSALL, MLSMP, PJUNK, PORT,
PSIR, RALMP, RGMP, RGOUT, RGUIDE. RGYRO, RIOCUT, RIOUTZ2,
SPCFOR, SYSUl, SYSX1, SYSXBO, SYSYW1l, VARLAT, VARLON, UPDAT,
WIND, YOBSRV

86

name:
func:

call:
args:

refs:

refby:
comm:

name:

func:

call:
args:

FINDS Programmer ‘s Manual
Documentation For File: FIO.FOR

PRNTIC

fo print FINDS Filter-detector-healer initial conditions. as
well as sensor module simulated normal operating parameters
and scheduied failure information. The output is printed to
a user specified ASCII file in a special table format. The
output is printed in three passes - corresponding to different
types of information - controlled by an input flag, IoptnZ.
The reader is referred to figure 8 starting on page 66 of [1]
for an example of the output generated by PRNTIC. See also
discussion on IoptnZ below.

Call PRNTIC (kdsk,Ioptn)

kdsk - integer in fortran unit number of the ASCII
file output will be directed to
IoptnZ- integer in output control flag where if:
* JoptnZ = 1: print page 66 of [1] - except for the

last two lines

* IoptnZ = 2: print last two Tines on page 66
in [1] and tables 1. and 1la
* IoptnZ = 3; print tables 2-5 on pages 68-69

in [13]
AHEDR. AVBIAS, CONVRF, FOR$DATE T_DS, FOR$INQUIRE.
FORSTIME T_DS, FSCHED. IDTB. MTH$DEXP, MTH$DSORT, OUTDAT,
PAGEFD. PTITL3
FINDS, NAV
AGFP. AGMP, ARFDIP, ARFP, ARMP, ASFP, ASMP, DCIDEI. DETSIG,
DETXBI., EARTH, FILNAM, FILTIC, FILTRT. FLTCTL, FTITL1, GRFDIP,
GRFP., GRMP, HEALCM, IEST, INITVL. LAFP, LAMP, LINAC2, LNAVI,
MAIN1, MAINZ2, MCONCO, MLSFP. MLSMP, MULTDT, NAMES. PLOTS.
ORAND. RALFP, RALMP, RGFP, RGMP, RIOUT, RIOUT2, SIGTAU.
SIGVOR, SIMCOM, SYNC., SYSUl., SYSX1, SYSXBO, WIND. WINDCO

FSCHED
To determine it a particular sensor (addressed by type and
replication) is scheduled to fail in this simulation run.
If FSCHED determines that a failure will occur, it determines:
* the time of failure
* the failure type (i.e. bias, null, etc.)
* the simulated failure magnitude
Call FSCHED (IsensT.,IsensR,convrt,IfailT,failT,failTy,faiim)
IsensT- integer 1in absolute sensor type (from Table 1

87

FINDS Programmer’'s Manual
Documentation For File: FIO.FOR

in [1D)
IsenshR~ integer in replication number of this sensor
convrt- double in conversion factor to be applied to the
failure level
IfailT- integer out failure indication flag where:

if IfailT = 0 - no filaures are simuiated, and if
IfailT > O then IfailT is the failure type with:

0 = no failures
1 = increased noise failure
2 = increased bias failure
3 = increased scale factor failure
4 = hardover failure
5 = null failure
6 = ramp failure
faill - double out failure onset time in simulation
seconds
failTY- double out failure type (logical) string. Ten

character string used to indicate the simulated
failure mode ~ if no failures then tailly = ' !
failm - double out simulated failure magnitude (in user
units)
refs: CHKFL, FLEVEL
refbv: PRNTIC
comm: AGFP, AGMP, ASFP, ASMP, LAFP, LAMP, MLSFP, RALFP, RALMP,
RGFP., RGMP

name: CHKFL

func: This routine checks for the occurrence of a failure. It
assumes that a sensor can only fail once.

call: Call CHKFL (IpntTF,mxtyp.mxrow,timeF,failT,Ifail)

args: IpntTF- integer in row number in timeF to be checked
(indicates which sensor is to be considered)
mxtyp - integer in maximum number of sensor failure modes
simulated (also = col. dimension of timefF)
mxrow - integer in ronw dimension of timeF, i.e. matches
dimension statement’s row dimension for timeF
timeF - double in matrix of failure times. The rows

correspond to the sensors., and the col. correspond
to the failure more. Therefore, if sensor i fails
with a bias failure., timeF(i,2) = the time of failure.

88

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

FINDS Programmer’s Manual
Documentation For File: FIO.FOR

(second col. represents bias failures, see section 3.3
in [1] for more details). If timeF(i,j) >= tstop no
failures will be simulated.

faill - double out time of failure determined by
subroutine CHKFL
I[fail - double out failure indicator flag. Ifail = 0 if

no failure and Ifail = failure type if a failure was
found. See description on Ifailt in subroutine FSCHEP
for details.

AHEDR

FSCHED

SETCOM

FLEVEL
To determine the simuiated failure level - returned in

function
X = FLEVEL (IFtype,index.Fin,Fib.Fisf,Fhard.Framp,convrt)

IFtype~ integer in absolute failure tvpe
(1 <= IFtype <= 6) See FSCHED for details.
index - integer in index into the failure level vectors

(sensor indicator). Each failure level vector is
dimensioned to be the number of sensor types in that
sensor group. For example, MLS = 3 (azim,el,rng),

Ias = 1

Fin - double in increased noise failure levels
{vector)

Fib - double in increased bias failure levels (vector)
levels

Fisf - double in incresed scale factor failure levels
{vectors)

Fhard - double in hardover failure levels (vector)

Framp - double 1in ramp failure levels (vector)

convrt- double in conversion factor to be applied to the
failure level (conversion from program to user units)

Flevel- doublie out simulated failure level in user units

ALTYP, CONVRF, MTH$DSORT

FSCHED
ANGLES, AZELRN, CRTE, DETXBI, EGUIDE, EKF1, GSLOPE,
INOU, LOGIC4, MCONCO, PSIR, SIMCOM, UPDAT, VARLON

89

FINDS Programmer’s Manual
Documentation For File: FIO.FOR

name:
func:

call:
args:

refs:

refby:

comm:

name:
func:

call:
args:

QUTDAT
To print a double precision array in a formatted fashion.
Specifically OUTDAT performs the following:
1) prints a one line comment (up to 70 characters)
2) if convrt!=1.0 each element of the array is
multiplied by convrt
3) the array is printed with up to 4 (user specified)
columns and where each element contains 15 digits.
Call OUTDAT (kdsk.A,n,convrt,ncol,Letrs)

kdsk - integer in fortran unit number of the ASCII file
output will be directed to

A - double in array to be printed

n - integer in length of the array, A

convrt- double in conversion factor to be applied to
all elements of A before printing

ncol - 1integer in desired number of columns (i.e. the
number of elements per row of printout):; 0<ncol<5

Letrs - char in a one line comment which will be
printed preceeding output of the array

AHEDR

PRNTIC

None

TLOUT

To print a coded message (corresponding to an "event") in the
time 1ine (TLN) file. The reader is referred to section 4.2
on page 71 of [1] for a detailed description of this file and

its format.
Call TLOUT (msg,Imsgl,Imsg2.Imsqg3,Imsgd)

msq - integer in message number corresponding to the
event # in table 5 in [11]

Imsgl - integer in first message qualifier - corresponds
to I.D.#1 in table &5 in [11]

Imsg2 - integer in second message qualifier - corresponds
to I.D.#2 in table 5 in [1]

Imsg3 -~ dinteger in third message qualifier - corresponds
to I.D0.#3 in table 5 in [11

Imsg4 - integer in fourth message qualifier - corresponds

to I1.D.#4 on pages 71-72, where Imsg4=0 means that
all floating point information will be recorded in

90

refs:
refby:

comm:

FINDS Programmer’s Manual
Documentation fFor File: FIO.FOR

absolute values, and Imsgd4=1 means they will be
recorded as estimation errors
Note: Information for the floating point descriptors
discussed in Section 4.2 in [1] is obtained from the
common block variables.
ALTYP. CONVRF., MTH$DSQRT
AIRSPS. ATITGS, AUTLD, BLMAS, BMRGS, CHKRAD. CKUNST, DECIDE.
FINDS, GETMLS, HEALR, LINAC1, NAV, RADALS. RATEG1l, RECONF
ANGLES, AZELRN, CRTE, DETXBI. EGUIDE. EKF1, GSLOPE, INOU.
LOGIC4, MCONCO, PSIR, SIMCOM, UPDAT, VARLON

91

FINDS Programmer‘s Manual
Documentation For File: FIO.FOR

3.3.7

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

Documentation For File: FUTSUB.FOR -

ABSLIM
Limits an input variable to lie within a symetric bound

about zero.
Call ABSLIM (X,X1im)

X - double inout variable to be limited. On return
-{X1im| <= X (= |XTim|

X1im - double in value of the boundary

None

AUTOLD. BANKTR

None

ACCVEL

Computes velocity and acceleration terms. Usually used
in G-frame,
Call ACCVEL (RDg.RDDg,hdot.Vg,dtvg,hddot,.psita.xtacc)

RDg - double in derivative of position vector [3]

RDDg - double in 2nd derivative of position vector (3]

hdot - double out vertical component of velocity vector,
i.e. hdot = -RDg(3)

Vg - double out magnitude of velocity in x-y plane

dtvg - double out down track velocity

hddot - double out vertical component of acceleration
vector, i.e. hddot = -RDDg(3)

psita - double out direction of velocity vector in x-y
plane

xtacc - double out cross track acceleration

DATAN2, DSORT

FINDS

None

92

name:
func:

call:

args:

refs:
refby:
comm:

name:
func:

call:
args:

ROTATV

FINDS Programmer’'s Manual
Documentation For File: FUTSUB.FOR

Rotates position, velocity, and acceleration vectors in the
I-frame into the E-frame and G-frames.
Call ROTATV (Ri,RDi,RDDi,comet,sinet.we,nwee,rmag,REq,RDe,

RDg,RDDe.RDDq)
Ri ~ doublie in
I-frame (3]
RD1 - double in
I-frame [3]
RDDi - double in
[-frame (3]
comet - double in
rotation
sinet - double 1in
rotation
we - double in
wee - double 1in
rmag - double out
REi - double out
RDOe - double out

RDg -
RDDe -

RDDq -

the [-frame
double out
double out
frames

double out

inertial position vector in the
inertial velocity vector in the
inertial acceleration vector in the
cosine of angle swept by the earth’'s
sine of angle swept by the earth’s
earth’s rotation rate

we * we

absolute value of the length of Ri
position vector in the E-frame

earth velocity vector coordinitized in

velocity vectors in G-frame
relative accleration between E and [

RDDe transformed to G-frame

ASIN, DATAN2, MATMUL. ROTMAT

FINDS
TRANS

ROTMAT

Computes various frame transformation matrices.

Common

block TRANS provides the inputs to this routine and common

blocks TRANS and ANGS store the results.

i -

In particular if.

i=1, ANG(1l)=phi. ANG(2)=theta and ANG(3)=psi => Thg
i=2. ANG(4)=latitude, ANG(5)=longitude => Til,Tel,Tqge
i=3, ANG(3)=1atl. ANG(4)=Tat2, ANG(5)=Ton2-lonl => Tqq
i=4, ANG(1)=phi, ANG(2)=theta., ANG(3)=psi => Tbi

Call ROTMAT (1)

integer in
to compute

flag indicating which transformations

93

FINDS Proqrammer’s Manual
Documentation For File: FUTSUB.FOR

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

DCOS, DSIN, MATMUL
ACEQIN, AUTLD. FINDS, ROTATV, RUNWAY, WAYPNT
ANGS, TRANS

RUNGK3
Perform Runge-kutta integration for one simulation step

ahead
Call RUNGK3 (dtime,Dx,X,DERSUB.N)

dtime - double in simulation step size in seconds

Dx - double out perturbation in X

X - double out state vector of length n

DERSUB- double in subroutine name of the function to
be integrated. (must be of the form DERSUB(Dx,X,n))

n - integer in length of X and Dx

DERSUB

FINDS

RUNGEK

RUNWAY

Computes the aircrafts position and velocity vectors in

the G-frame
Call RUNWAY (Reor,Ri,RDi,we.cospsi,sinpsi,cwt,swt,.Posit,Veloc)

Reor - double out runway origin in the I-frame

Ri - double in inertial position vector in I-frame
RDi - double in inertial velocity vector in I[-frame
we - double in earths rotation rate

cospsi- double in cosine of the runway yaw angle
sinpsi- double in sine of the runway yaw angle

cwt - double in cosine of we*dtime

sWt - double in sine of we*dtime

Posit - double out A/C position in the G-frame

Veloc - double out A/C velocity in the G-frame

ROTMAT, MATMUL

FINDS

TRANS

94

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

name: SETUM
func: Initializes all elements of a vector to a constant
scalar, i.e.
X(i) =v 3 for 1l (=1 (=k
call: Call SETUM (X,k,V)

args: X - doubie out vectors to be initialized

k - integer in length of vector X

vV - double 1n value to use for initialization
refs: None
refby: AUTLD

comm: None

name: VECM

func: Muitiplies two vectors in an eiement by element fashion. s.t,
A(i) = A(1)*B(i} 3 for 1 <=1 <(=n

caltl: Call VECM (A,B,n)

args: A - double 1inout output vector of length n
B - double in input vector of length n
n - integer in length of A and B

refs: None

refby: BMLAS. BMRGS

comm: None

name: VECMS
func: Increments a vector by the element by element product of
two other vectors. s.t.
A(i) = A(i) + B(iI)*C(i) 3 for 1 <=1 {(=n
call: Cail VECMS (A.B.C.n)

args: A - doubie 1dinout output vector of length n
B - double in input vector of length n
C - double in input vector of length n
n - integer in tength of A, B, and C

refs: None
refby: ATITGS., BMLAS, BMRGS, LINAC1, RATEG1
comm: None

95

FINDS Programmer’'s Manual
Documentation For File: FUTSUB.FOR

name:
func:

cali:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:

comm:

xDname:
func:

calls
args:

refs:
refby:
comm:

VECSUM
Increments a vector by another s.t.

A(i) = A(i) + B(i) 3 for 1 <=1 <=n
Call VECSUIM (A,B,n)

A - double 1inout vector to be incremented
B - double iin input vector
n - integer in tength of A and B
None
ATITGS, BMLAS, BMRGS, LINAC1l, RATEG1
None
MATV3
Muitiply a 3x3 matrix by a vector s.t.
X = A*Y

Note: X and Y CANNOT reside in the same memory locations.
Call MATV3 (X.,A.Y)

X - double inout output vector

A - double in input matrix

Y - double din input vector

None

BMLAS, BMRGS, GTOI

None

MATTV3

Multiply theAtrznspose of a 3x3 matrix by a vector s.t.
X = A'*

Note: X and Y CANNOT reside in the same memory locations.
Call MATTV3 (X,A,Y)

X - double inout output vector
A - double in input matrix

Y - double 1in input vector

None

GYROCR

None

96

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:
call:
args:

refs:
refby:
comm:

FINDS Programmer ‘s Manual
Documentation For File: FUTSUB.FOR

MATMUL

Multiply a 3x3 matrix by a vector (passed as 3 scalar
elements). Used primarily to multiply the frame
transformation matrices stored in common block TRANS
Call MATMUL (V,a,b,c,d.e,f)

vV - double in matrix stored with rows packed into
a 9 element linear array

a,b,c - double in elements of vector multipliied by V

d.e,f - double out elements of resultant vector

None

ACEQIN, AUTLD. FINDS, ROTATV, ROTMAT. RUNWAY, WAYPNT
None

MOVUM
Equates two vectors. i.e.
TO = FROM
Call MOVUM (FROM,TO,num)
FROM - double in input array
70 - double out output array
num - integer in length of TO and FROM
None
AUTLD
None
DGATIO

Prints a matrix out on unit kout with an identifier label
Call DGATIO (A,nr.,nc,let)

A - double in matrix to be printed

nr - integer in number of rows in A

nc - integer in number of columns in A

let - integer in 4 character name for the matrix
None

BIASF

INOU, MAIN1

97

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

name: SUMMER

func: Computes the average sum of the elements of a vector.
Elements are included in the average ONLY if a corresponding
entry in the row of an index matrix is exactly one.

1
SUMMER = - SUM {X(i)} 3 for 1 (= i <= nx, and
n
Index(i). MWhere n is defined as the number of unit entries
in Index
call: XX = SUMMER (X,nx,Index)
args: X - double in vector to be averaged
nx - integer in length of X and Index
Index - integer in row vector (of length nx) whose

elements indicate whether corresponding entries in
another vector are valid (Index(i)=1) or not
(Index(i)!=1). Note it is implicitly assumed that
Index is a matrix with row dimension equal to ndim.
SUMMER- double out value of the average sum of X

conditioned on the elements of Index

refs: None

refby: AVBIAS, SUMIN, SUMOUT

comm: MAIN1

name: ASUMER
func: Computes the average sum of the elements of a vector.
Elements are included in the average ONLY if the
absolute value of a corresponding entry in the row of
an index matrix is exactly one,
1
ASUMMER = - SUM {X(1)} : for 1 <=1 <= nx, and
n
| Index(i}{=1. MWhere n is defined as the number of unity
magnitude entries in Index
call: XX = ASUMER (X,nx,Index)

args: X - double 1in vector to be averaged
nx - integer in length of X and Index
Index - integer in row vector (of length nx) whose

elements indicate whether corresponding entries in
another vector are valid (|Index(i)|=1) or not
(IIndex(i)}!=1). Note it is implicitly assumed that

98

FINDS Programmer's Manual
Documentatipn For File: FUTSUB.FOR

Index is a matrix with row dimension equal to ndim.
ASUMER- double out value of the average sum of X
conditioned on the elements of Index
refs: None
refby: GTOI
comm: MAIN1

name: MAXMIN
func: Searches a double precision vector and determines the
maximum and minimum values and their corresponding

locations.

call: Call MAXMIN (V,npts,vmax.vmin.nmax.nmin)

aras: v - double in vector to be searched
npts - inteqger in length of V (i.e. number of elements

in V to be searched)

vmax - double out value of the maximum element in V
vmin - double out value of the minimum element in V
nmax - inteqger out focation of the maximum element in V
nmin - integer out location of the minimum element in V

refs: None
refby: None
comm: None

name: MAXMINS

func: Searches a single precision vector and determines the
maximum and minimum values and their corresponding
locations.

call: Call MAXMINS (V.npts,vmax,vmin,nmax.nmin)

args: vV - real in vector to be searched
npts - integer in length of V (i.e. number of elements
in V to be searched)
vmax - real out value of the maximum element in V
vmin - real out value of the minimum element in V
nmax - integer out location of the maximum element in V
nmin - integer out location of the minimum element in V

refs: None

99

FINDS Proqrammer’s Manual
Documentation For File: FUTSUB.FOR

refbyv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

None
None

MXMN2

Searches a double precision vector and determines the

maximum and minimum values and their corresponding

locations conditioned on the value of a corresponding

activesinactive flag in a second Vector. Onlv those
elements which correspond to "active" elements in the
conditioning vector are considered in the max-min operation.

Call MXMN2 (Imactv.,V,npts,vmax,vmin,nmax,nmin)

[mactv- integer in an array of active/inactive flags -
s.t. if an element of Imactv is non-zero then a
corresponding element in V is active and should be
considered in the operation.

Vv - double in vector to be searched conditioned on
Imactv

npts - integer in length of V & Imactv

vmax - double out value of the maximum element in V

vmin - double out value of the minimum element in V

nmax - integer out location of the maximum element in V

nmin - integer out location of the minimum element in V

None

None

None

VECHG1

To collapse or expand the size and ordering of a vector. X.
as directed by a pointer vector. kKX, and a flaqg kflaag, s.t.
The pointer vector kX is simply an array of
monotonically increasing index pointers into X if kflag=l1,
or Y if Klag=2, which define the proper elements of the
resulting vector,

Y = collapsed X if kflag =1

Y = expanded X if kflag = 2 (new elements are zeroed)
One of the key features of this routine is that X and Y

100

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

FINDS Proqramher's Manual
Documentation For File: FUTSUB.FOR

can be equivalent.
Call VECHG1 (ktlag,X,KX,Y.n.nmax)

klag - 1integer in tlaq indicating to collapse if 1 and
to expand if 2

X - double in input vector to be collapsed/
expanded

KX - integer in pointer vector used to allocate the
proper elements to use in the operation

Y - double out output vector which is
collapsed/expanded version of X

n - integer 1in the dimension of KX

nmax - integer in the dimensioned length of X and Y.

Note: if expanding X. elements of Y are zeroed out
between n and nmax

None

SAVIT

None

MATCGZ2

fo add or delete a row in a double precision matrix or vector.
or to add or delete a column in a matrix. If a row or column
is added. its elements are set to zero.

Call MATCG2 (jflag,index.Y,nr.nc)

jflag - integer in operation tlag where:

jflag = 1 add a row : -1 delete a row
jflag = 2 add a column : -2 delete a column

index - integer in pointer to row or column to be added
or deleted

Y - double inout matrix whose index ‘th row or column
is to be added or deleted

nr - integer inout number of rows of Y (incremented or
decremented accordingly in MATCGZ)

nc - integer inout number of columns of Y (incremented or
decremented accordingly in MATCG2)

ALTYP

CLPSBE. CLPSIO, RECONF

MAIN1

101

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

name:
func:

call:
args:

refs:
retfbv:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

IMTCQR2
To add or delete a row in an integer matrix or vector,
or to add or delete a column in a matrix. If a row or column
is added, its elements are set to zero.
Call IMTCG2 (jflag,index.IY.nr,nc)
jflag - integer in operation flag where:
jflag =1 add a row :; =1 delete a row
jflag = 2 add a column : -2 delete a column

index - integer in pointer to row or column to be added
or deleted

Iy - integer inout matrix whose "index" row or column
is to be added or deleted

nr - integer inout number of rows of Y {incremented or
decremented accordingly in IMTCG2)

nc - integer inout number of columns of Y (incremented or
decremented accordingly in IMTCG2)

ALTYP

CLPSBE. CLPSIO, RECONF

MAIN1

PNTINV

Searches a pointer vector for particular entry. The pointer
vector is an integer array with monotonically increasing
elements. Typicalily, a pointer vector will show how a
{possibly collapsed) vector’s elements relate to a standard
(absolutely indexed) vector. Therefore, this routine can
be used to answer the following question: "What element of
the measurement vector (a possibly collapsed vector)
corresponds to the indicated airspeed’s output (an absolute
index)?"

Call PNTINV (isns,Ipoint,n,index)

isns - integer in valve searched for in Ipoint (usually
relates to an absolute index in a standard mapping)

Ipoint - integer in pointer vector to be searched

n - integer in tength of Ipoint

index - integer out index in Ipoint where 1isns was found.
I[f isns was not found index < O

None

ADJTBP. CLPSIO. RECONF

None

102

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comms

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

LIMVAL
Applies a two sided. symetric limiter about zero to the
elements of a vector, A. s.t.

A(iy = A(i), it JA(i)}| <= BLim(1i)

A(d) = sign(A(i))*BLim(i), if {A{i)Y| > BLim(i)
where BLim is a vector of absolute limit stops - one for each
element in A.

Call LIMVAL (A,BLim,n)

A - double inout vector to be limited

B8Lim - double in vector of absolute limit stops
n - integer in length of A and BLim

None

ATITGS. BMLAS, BMRGS., LINAC1, RATEG1l. UPDQ

None

LIMVL2

Applies a two sided anti-symetric Timiter to the
elements of a vector. A, s.t.

Ati) = BLimck)y 3 if A(i) > BLim(k) - upper limit
A(i) = BLim(k+1) 3 if A(i) < BLim(k+1l) - Tower Timit
A(i) = A(iY : otherwise

where k = (i-1)%2+1
Call LIMVLZ (A.BLim.n)

A - double inout vector to be limited

BLim - double in vector of upper and lower 1imits
(2 for each element of A)

n - integer in length of A. and half the length of
BLim

None

AIRSPS

None

103

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

name:
func:

call:
args:

refs:

refby:

comm:

name:
func:

call:
args:

refs:

refby:

comm:

NOISEG

Generates a vector of random samples from a normal

distribution with zero-mean. and unity variance.

Call NOISEG (X, jseed,n)

X - double out vector of n samples from a N(0,1)
gaussian distribution

jseed - integer inout seed value for the random number

generator
n - integer in length of X
GAUSS
ATTIGS. BMLAS, BMRGS, LINAC1, RATEG1l. STARTF
None
BARN1

Generates a single random sample from either:
a N(0,1) distribution if iflag < O or,
a Uniform(-1,1) distribution if iflaq » O.

X = BARN1 (iflag.ikey,iseed)

iflag - integer in flag which determines the distribution
from which to select the sample. I[f iflag < O use an
N(0,1) distribution, else use a uniform (-1,1)

distribution

ikey - integer 1in not used

iseed - integer inout seed value for the random number
generator

BARN1 - double out the value of the sample conditioned on
iflag

UNIFRM. GAUSS

AIRSPS. ATITGS, BMLAS, BMRGS., GETMLS, ILNAG1. IRATG1,
NOISEG. RADALS

None

104

name:
func:

call:
arqs:

refs:
refby
comm:

name:
func:

call:
ars:

refs:
refby
comm:

name:
func:

call:
arqgs:

FINDS Programmer’s Manual
Documentation For File: FUTSUB.FOR

GAUSS

Selects a single random sample from a Nf{am,s) distribution.
Where am = mean, and s = standard deviaiton. Note: this
routine is specific to the VAX computer.

Call GAUSS (iseed.s.am,v)

iseed - integer 1inout seed value for the random number

generator
5 - double in standard deviation of the distribution
am - double in mean value
VAR double out the sampie selected

RAN. DSORT, DLOG
B8ARN1, WINDGT
None

UNIFRM

Selects a random sample from a uniform distribution
between 0 and 1. This routine is specific to the VAX
computer.,

Call UNIFRM (iseed.v)

iseed - integer inout seed value for the random number

generator

v - double out value of the sampie obtained from a
Uniform (0.1) distribution.

RAN

BARNL

None

NAMFIL

o create VAX VMS file names which have a common name. and
various extensions. The common file name is prompted for

in the first call to NAMFIL - it can be read from the TTY

or from a data file.

Call NAMFIL (kunit.Lext,Name)

kunit - integer in Fortran unit number from which
respones are to be accepted
Lext - char in a 4 character file extension of the

105

FINDS Programmer’'s Manual
Documentation For File: FUTSUB.FOR

form ".F0O0Q", which is to be appended to the common
group name
Name - char out The resulting (12 character max) file

name created by concatenating a common group name with
the specific file extension

refs: ALTYPO, ENCODE

refby: FINDS

comm: None

3.3.8 Documentation For File: FVMSUB.FOR -

name: GMINV

func: Computes the inverse of a square matrix A. If A is
sinqular or if A is NOT square, the routine computes
the Penrose generalized inverse. See Rust, B., Burrus.
W.R.. and Schneeberger, C.. "A Simple Algorithm for
Computing the Generalized Inverse of a Matrix". CACM,
vol. 9, No. 5, May 1966.

catl: Call GMINV (nr,nc, A,V .mr,mt)

args: nr - integer in number of rows in A
n¢ - integer in number of columns in A
A - double in matrix to be inverted
U - double out generalized inverse of A
mr - integer out rank of A
mt - integer in used for print control, mt=0

suppresses possible error message printout.
refs: DOT. DOT2, SWAP, VADD
refby: BIASF. DETECT. EKFN1
comm: INOU, MAIN1

106

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

calls
args:

refs:
refbv:
comm:

name:
func:

call:
arqgs:

FINDS Programmer ‘s Manual
Documentation For File: FVMSUB.FOR

MMUL
Forms the matrix product
=X Y
A sparseness test is performed on X.
Call MMUL (X.Y.nl,n2.n3,2)

X - double in input matrix (nl x n2)
Y - double in input matrix (n2 x n3)
nl - integer in row dimension of X and Z
n2 - integer in col length of X, row length of Y
n3 - integer in col length of Y and Z
Z- double out output matrix (nl x n3)
VADD1
BIASF, BLEND, DETECT, EKFN1
MAIN1
MVUL2
Forms the matrix product

=X Y

A sparseness test is performed on Y.
Call MMULZ2 (X,Y,n1,n2.n3,2)

X - double in input matrix (nl x n2)
Y - double 1in input matrix (n2 x n3)
nl - integer 1in row dimension of X and Z
n2 - integer in col. length of X, row length of Y
n3 - integer in col. length of Y and Z
Z- double out output matrix (nl x n3)
VADD
BLGAIN. DETECT, EKFN1
MAIN1
MAT1
Forms the straightforward matrix product

=X Y

No sparseness tests are pertformed,
Call MAT1 (X,Y.nl,n2.n3.2)
X - double in input matrix (nl x n2)

107

FINDS Progqrammer‘s Manual
Documentation For File: FVMSUB.FOR

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

Y_
nl -
ne -
n3 -
Z_
DOT3

double in
integer 1in
integer in
integer in
double out

input matrix (n2 x n3)

row dimension of X and Z

col. length of X. row length of Y
col. length of Y and Z

output matrix (nl x n3)

BIASF, BLEND, BLGAIN, DETECT, MAT3, MAT3A

MAIN1

MAT 1A

Forms the matrix product

Z=X Y

No sparseness tests are perftformed. Z and Y can start
at equivalent core locations.
Call MATIA (X,Y.,nl,n2,n3.2)

X_
Y_
nl -
n2 -
n3 -
Z_
None

double 1in
double in
integer in
integer in
integer in
double out

BIASF, EKFN1

MAIN1

MATZ

input matrix (nl x n2)

input matrix (n2 x n3)

row dimension of X and Z

col. length of X, row length of Y
col. length of Y and Z

output matrix (nl x n3)

Forms the matrix product

Z=XY'

in cases where the product Z is SYMMETRIC. No
sparseness tests are done. The arravs Z and Y
can start at equivalent core locations.

Cali MATZ2 (nl,n2.X,Y,Z2)

nl -

nZ -
x...

integer in
tength of Z.
integer in
double in

row dimension of X,Y, and col.

col. dimension of X and Y
input matrix (nl x n2)

108

rers:
refby:
comm:

refs:
retbv:
comm:

name:
Tunc:

calis
aras:
%

[

[S VEN

Y -
7 -
DOT2
EKFN1
MAIN1

MAT3
Forms

FINDS Programmer’s Manual
Documentation For File: FVMSUB.FOR

double 1in input matrix (nl x n2)
double out output matrix (nl x n2}

the symmetric matrix product
L= XY R

where Y is svmmetric. and no sparseness tests are done.

Call MAT3 (ni.n2.XK.v. 2}
ni - integer In roWw lenqth of X and Z. col.

length of 7.
nZ - integer in col. length of X and Y. row

tength of Y
X - double in input matrix (nl x nZ)
Y - doublie in input (symmetvric) matrix (nd x n2i
i - double in output (svmmetrici matrix (nl % ni)
0072, MAT1
BIASF. EKFNI
MATN]
MaT 3a
Forms the svmm2tric matrix product

VAR W
WNere ¥ 13 svininetriad, and No sparssnsss reqsts are danes,
Cail MATIA wni.ndon.y,
ni - integer In row lenatn of J. o wol. denatn o oandg
ng - inteader In col, Tenagtn ot v, caw oaenatn ot ana
A - AcuD e in TNOGT mMarris ang s N
Y doupie n TNGUT FSVMMeT oo MAatris ans ox po
T aoutie in GULOUIT 1 EVIMIMeT e 10 MRTO VS uni - o
Duf e |
Biadar . whi

fias

FINDS Programmer’s Manual
Documentation For File: FVMSUB.FOR

comm: MAIN1

name: MAT4
func: Forms the matrix product

Z = XY’

No sparseness tests are performed.
call: Call MAT4 (X,Y.nl,n2.n3.Z)

argqgs: X -
Y -

nl ~
n2 -
n3 -

Z -

refs: DoT2

doublie in
double in
integer in
integer in
integer in
double out

refby: BIASF, BLEND

comm: MAIN1

name: MATS
func: Forms the matrix product

Z = XY’

input matrix (nl x n2)

input matrix (n3 x n2)

row dimension of X and Z

col. length of X and Y

row length of Y, col. length of Z
output matrix (nl x n3)

A sparseness test is performed on V.
call: Cail MATS (X.Y.nl,n2,n3.2)

args: X -
y_

nl -
n2 -
n3 -

Z -

double in
double in
integer in
integer in
integer in
double out

refs: VADD, VSCALE

refby: EKFNI1
comm: MAIN1

input matrix (nl x n2)

input matrix (n3 x n2)

row dimension of X and Z

col. length of X and Y

row length of Y, col. length of Z
output matrix (nl x n3)

110

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

FINDS Programmer’s Manual
Documentation For File: FVMSUB.FOR

MAT6
Forms the matrix product

L = XY’
in cases where Z is symmetric. A sparseness test 1is
performed on Y. Neither X nor Y mav be equivalent to Z.
Call MAT6 (nl.n2.X,Y,Z)

nl - integer 1in row length of X.Y, and Z
n2 - integer in col. lenath of X. Y, and Z
X - double 1in input matrix (nl x n2)
Y - double in input (svmmetric) matrix (nl x n2)
Z - doublie out output {(symmetric) matrix (nl x nl)
VADD
DETECT
MAIN1
MADD1
Adds two matrices as follows:

L = X+cl*Y
Call MADD1 (nr,nc,X.Y.Z.cl)
nr - integer 1in row length of X,Y, and Z
n¢c - integer 1in col. length of X,Y, and Z
X - double in input matrix (nr x nc)
Y - double in input matrix (nr x nc)
Z - double out output matrix (nr x nc)
el - double in scale factor applied to Y
None
BIASF, BLEND. BLGAIN. DETECT. EKFN1
MAIN1
MADDI

Sets up square matrix A where:
A = cl*B+c2*I
I is an identity matrix,
Call MADDI (n.A.B.cl.c2)
n - integer in size of matrices
A - double out output matrix {(n x n)

111

FINDS Programmer’s Manual
Documentation For File: FVMSUB.FOR

refs:
retby:
comm:

name:
func:

call:
args:

refs:
refbyv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

B - double in input matrix (n x n)

cl - double in scale factor applied to B
c2 - double in scale factor applied to [
None

BIASF, BLGAIN., DETECT. EKFN1

MAIN1

EQUATE

Sets a matrix A equal to a matrix B (can be used for
equating matrix partitions or sub-blocks as well)

A=B
Call EQUATE (A,B.nr.nc)
A - double out output matrix (nr x nc)
B - double in input matrix (nr x nc)
nr - integer in row length of A and B
nc - integer in col. length of A and B

None
BIASF, BLEND, DETECT, EKFN1l, FILCOL, INITG. RECONF
MAIN1

MATNUL
Initializes columns of a matrix to zero. Where:

Xi =0, for nl <=1 <= n2:
and Xi is the ith col. of X. In addition, if a flaq is
set. rows between nl and n2 can be nulied out as well.
Call MATNUL (X,nl,n2,ktrig)

X - double inout matrix to be nulled

nl - integer 1in first col. (row} to be nulled

n2 - integer in tast col. (row) to be nuiled

ktrig - integer in flag, when ktrig=0 only columns
are nulled, otherwise rows and columns are nulled

None

DETECT. RCOV. RECONF

MAINI

112

FINDS Programmer ‘s Manual
Documentation For File: FVMSUB.FOR

name: MSCALE
func: Sets a matrix A equal to a matrix B and scales.

A =cl*B
call: Call MSCALE (A.B.nr,nc.cl)
args: A - double out output matrix (nr x nc)
B - double 1in input matrix (nr x nc)
nr - integer in ron length of A and B
nc - integer in col. lenath of A and B
cl - double in scale factor applied to B

refs: None
refby: BLGAIN. DETECT., EKFN1., RECONF, UPDPH
comm: MAIN1

name: TRANS?2
func: Transpose a matrix

AT = A’

call: Call TRANSZ (nl.n2,A,AT)

args: nli - integer 1in row length of A, col. length of AT
n2 - integer in col. length of A, row length of AT
A - double in matrix to be transposed nl x n2)
AT - double out transposed matrix (n2 x nl)

refs: None

refby: BLEND

comm: MAIN1

name: BUBBLE

func: Performs a bubble sort on an arrav of integers. The
elements of the arrav can be ordered increasing or
decreasing in value,

call: Call BUBBLE (NA.n.k)

arqs: NA - integer 1inout arrav of integers to be sorted
n - integer in ienath of arrav NA
k - integer 1in a kev., where k>0 orders NA decreasing

in value while k(=0 vields an increasing order
refs: None
refbv: HEALR, INITG., READRC

113

FINDS Programmer’'s Manual‘
Documentation For File: FVMSUB.FOR

comm:

name:
func:

call:
args:

refs:
refby
comm:

.

name:
func:

call:
args:

rers:
refby:
comm:

name:
func:

call:
args:

None

DOT

Computes the dot (or inner) product between two linear
arravs (column vectors), with accumulation carried out
in double precision.

x = DOT (nr,A,B)

nr - integer 1in length of arrays A and B
A - double in vector

B - double in vector

None

GMINV, MAT3A

None

DOT2

Computes the dot (or inner) product between two rows of
a matrix.
x = DOT2 (nn,A,B)

nn - integer in length of A(B) times the dimensioned
row length of A(B)

A - doublie 1in roWw vector (or row of a matrix)

B - double in row vector

None

GMINV. MATZ2. MAT3., MAT4
MAIN1 ndim - dimensioned row length of A and B

DOT3

Computes the dot (or 1inner) product between two arravs,
where one arrayv is stored as a row vector and the other
as a column vector.

x = DOT3 (n,A,B)

n - integer in length of A and B

114

refs:
refby:
comms

name:
func:

cali:
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:

refbv:

comms

FINDS Programmer ‘s Manual
Documentation For File: FVMSUB.FOR

A - double in roWw vector

8 - double in column vetor
None

MAT1

MAINI ndim - dimensioned row length of A

VADD

[o increment a given vector A by a second vector s.t.:
A = A+cl*B

Call VADD (n.cl,A.B)

n - integer 1in lenath of A and B

cl - double in scale factor

A~ double 1inout vector to be incremented

B - double 1in vector to scale with

None

GMINV. MATS, MAT6., MMULZ2

None

VADD1

To increment a given row vector A bv a second row vector
B s.t.:

Arow = Arow+cl™Brow
This routine assumes A and B are stored as matrices.
Call VADD1 (nn,cl,A.B)

nn - integer 1in length of A(B) times the dimensioned
row length of A(B)

cl - double 1in scale factor

A~ double inout row vector to be incremented

B - double in row vector to be scale

None

MVUL

MAIN1 ndim - dimensioned row length of A and B

115

FINDS Programmer’s Manual
Documentation For File: FVMSUB.FOR

name:
func:

calil:
args:

refs:
refby:
comms

name:
func:

call:
arqgs:

refs:
refby:
comm:

name:
func:

cali:
args:

VSCALE
Equates a vector A to a scaled vector B. A and B can be
equivalent.
A = cl*B
Call VSCALE (A,B.n,cl)
A - double out vector to store result in
B - double in vector to be scaled
n - integer in length of A and B
cl - integer in scale factor
None
MATS
None
SEONCE

Initializes an integer array to a monotonically

increasing sequence s.t.:
K=11.,2.3,....n,0,0,...,0)’

Call SEQNCE (K,n)

K - integer out array to be initialized
n - integer in length of sequence to be stored in K
None

INITG. READRC. SAVIT
MAIN1 - ndim - dimensioned lenath of K

INSRTN
Used to update (and maintain) an inteqer vector {(of

pointers) with a new (unique) value. The new value
is added to the 1ist ONLY if:
1. 1it’s not already present in the list
2. the current length of the list is >=0
3. the current length of the list is < a
maximum length.
Call INSRTN (Iseq. index. ivalue, mxsize)

Iseq - 1integer inout array (1ist) of unique integers
index - integer inout current length of the list
ivalue- integer in candidate for addition to the list.

116

FINDS Programmer’'s Manuatl
Documentation For File: FVMSUB.FOR

Iseq
mxsize- integer in maximum (dimensioned) length of Iseq
refs: None
refby: READRC
comm: None

name: VECNULS
func: Initializes a linear array to zero - single precision version,
Where:
X(i) = 0.0 for il <=1 (= i2
call: Call VECNULS (X,i1,i2)

args: X - real inout vector to be nulled
il - integer in starting element to null
i2 - integer in final element to null

refs: None
refbv: None
comm: None

name: VECNUL
func: Initializes a linear array to zero - double precision
version. Where:
X(i) = 0.0 for il (=1 <= 12
call: Call VECNULS (X,i1,i2)

args: X - double inout vector to be nulled
il - integer in starting element to null
i2 - integer in final element to null

refs: None
refby: BLEND, CHKRAD. DETECT. SAVIT
comms None

117

FINDS Programmer’s Manua1‘
Documentation For File: FVMSUB.FOR

name:
func:

call:
args:

refs:
refby
comm:

name:
func:

call:
args:

refs:

refby:

comm:

name:
func:

call:
args:

SWAP

Interchanges 2 rows. 2 columns, or 2 diagonals of two
matrices.

Call SWAP (A.B.n,inc)

A - double inout a matrix to be interchanged

B - double dinout a matrix to be interchanged

n - integer in number of elements to be swapped
inc - integer in interleaving factor, where: inc

swaps columns. inc = ndim swaps rows., and inc =

1

ndim+l

swaps diaqgonals. MWhere ndim is the row dimension of A

and B.

None

GMINV

None

VMAT1

Multiplies a given vector by a matrix.
Y =AX

where: X is an n2 vector and A is an nl by n2 matrix.
Call VWMAT1 (A,X,nl,n2,Y)

A - double 1in input matrix (nl x n2)

X - double in input vector (n2)

nl - integer in row of A and length of Y
n2 - integer in col. of A and X

Y - double out output vector (nl)

None

BLEND

MAIN1 ndim - dimensioned row length of A

VMAT2
Computes the vector-matrix product sum
Y = Z+A X
where 1is an n2 vector. and A is an nl by n2 matrix., Y
and Z can be equivalent.
Call WAT2 (Z,A.X,n1,n2.Y)
Z - double inout input vector (nl)

118

refs:

refby:

comm:

3.3.9

name:
func:

call:

outs:

FINDS Programmer ‘s Manual
Documentation For File: FVMSUB.FOR

A - double in input matrix (nl x n2)

X - double in input vector (n2)

nl - integer in row lenath of A, col. length of
Y and Z

n2 - integer in col. lenath of A and X

Y - double out output vector (nl)

None

BLEND

MAIN1 ndim - dimensioned row length of A

Documentation For File: PLOTD.FOR -

PLOTD
Utility program to plot the unformatted (binarv) time history
data stored in the .PLT file generated bv FINDS.
To invoke PLOTD, the user simply tvypes (at the VMS monitor
level):

$ RUN PLOTD/NODEBUG
or, if FOREIGN.COM has been executed :

$ PLOTD
PLOTD will then prompt the user for various directive
commands. Time history data is identified by a unique name
stored in the header of the .PLT file. (See Table 6 on
page 82 of [1] for a current list of these names.)
PLOTD can be used to generate plots of one or several
variables versus time, or to create cross plots of one
variable vrs. another. Currentlv PLOTD creates a single plot
per page. The plots can be generated on a TEKTRONIX
4010/4014 or anv terminal capable of emulating a 4010 or 4014.

119

FINDS Programmer’s Manual
Documentation For File: PLOTD.FOR

3.3.10 ODocumentation For File: PRINTD.FOR -

name:
func:

call:

outs:

PRINTD

Utility program used to examine the unformatted (binary) time

history data stored in the .PLT file generated by FINDS.

PRINTD can be used to either display selected data in tabular

form, or to compute temporal means and autocorrelations. The

results are presented to the users terminal, the svstem line
printer, or to a user specified data file.

To invoke PRINTD, the user simplv tvpes (at the VMS monitor

level):

$ RUN PRINTD/NODEBUG

or, if FOREIGN.COM has been executed :

$ PRINTD

PRINTD will then prompt the user for various directive

commands. Time history data is identified by a unique name

stored in the header of the .PLT file. (See Table 6 on

page 82 of [1]1 for a current list of these names.)

either:

a. A table of selected data, where each column of data is
headed by the name and engineering units. Data can be
"windowed" bv selecting upper and lower temporal limits.
Within a window, one can further segment the data by
specification of a constant skip factor.

b. A11 of the following:

1. The sample mean.

2. The sample variance.

3. The sample autocorrelation function normaliized bv the
sample variance.

4. The decision of a whiteness test performed on the
selected data.

Piease see Appendix A.l1 of [1] for a more complete

description.

120

FINDS Programmer ‘s Manual
Documentation For File: PRINTD.FOR

3.3.11 Documentation For File: DOC.RAT -

name:

func:

DOC

(Ratfor and Fortran Documentation generator)

Prepares a RUNOFF input file from specially formatted embedded
documentation contained in a RATFOR or FORTRAN program or
group of programs. Each source file is entered in the table
of contents and each source file, subroutine. and common block
is entered in the index.

The program is executed by tvping:

$ DOC
The user is prompted for the following items: :

Qutput file name The name to use for the RUNOFF input
file

Header level A header at this level is created for
each separate source file. containina
the source file name.

Line lenath Line length to specifv to RUNOFF

Input file Name of source file to be processed.

or name of indirect file.
No default extensions are assumed for anv ot the above.
In place of specifving a source file as input. the user mav
specify an indirect file by entering "@indirect _file_name"
when prompted for an input file. The indirect file shouid
contain a 1ist of the source files to be processed. This
option is useful when processing complicated proarams spread
over many source files.

Installation notes:

Simply compile and 1ink DOC, then execute this command:
DOC :== Run/nodebuq DOC

Source proaram formating notes:

A documentation header must begin with the characters "#{doc",
or "Cdoc" starting in the first column on a separate line, and
end with the characters "3} #" (without the space), or
“"Cenddoc" also on a seperate line for RATFOR., and FORTRAN
sources respectively. All the enclosed text will be inciuded
in the runoff file with the following exceptions:

121

FINDS Programmer’s Manual
Documentation For File: DOC.RAT

* The comment character "C" dis stripped off the first column
of each line in FORTRAN sources.

* LLines of the form "FIG: FFPF(n)" will be used to set aside
pages for "Floating Full Page Figures". The number 1< n <99
is the number of pages required for the figure.

Any data in a line beginning "name:'" will be assumed to be the

name of a subroutine or common block and hence will be entered

in the index.

122

FINDS Programmer’s Manual
Documentation For File: DOC.RAT

4 INTERNAL DATA STRUCTURES

This section describes the important common blocks wused bv FINDS
routines to communicate with each other. The first section reviews
some of the important assumptions and concepts used in building and
manipulating the internal data structures. The Tast section describes
each common block in detail. Each such description contains a
statement about the contents of the common block and a description of
each variable in the form:

name tvpe units description

These are followed bv a 1ist of all the routines which use the common
block.

4.1 Data Structure Conventions

In the course of developing FINDS, various indexing schemes were
required. as well as many special purpose data storage conventions.
Many of these conventions become apparent when the detailed fliow
diagrams are studied carefully. The individual realizations of these
methods are described in the next subsections. This subsection
attempts to describe the conventions and concepts themselves.

The aqeneral storagqe tormat wused for matrices 1is to allocate
(dimension) them "ndim" by "ndim". where “ndim" is an integer variable
stored in common block /MAINl/ (ndim=15 in this wversion of FINDS).
The i i element of the matrix is then stored in the i i element of the
storaqe area. Therefore, if the matrix to be stored were of size 5 bv
5., and ndim = 15, then we view the matrix as a linear arrav., with a
column offset of 15 elements (i.e. five data locations followed by
ten unused elements 1in each of 5 columns). Althouah this storaqe
scheme is less efficient (from a memorv access point of view) than
simply storing the columns contiquously (with a column offset of
five). it was necessary in order to use manv of the wutilitv routines
documented in file FUTIL.FOR.

123

FINDS Programmer’'s Manual -
Data Structure Conventions

The origins of most of the internal data storage conventions can be
grouped into the following areas:

. No-fail filter
. FDI logic
. Reconfiguration

The first two areas require internal data structures that maintain an
absolute index - so the program can relate states, measurements,
inputs., failures, etc., to particular "physical" sensors or
quantities. The Tlast area, however, imposes a need to modifv the
absolute ordering to reflect loss or addition of a sensor. Tables 1-7
define the 1important absolute indexing schemes emploved by FINDS.
These tables not only define conventions for particular arrays, but
also implicitlyv define all the matrices which operate on them.

As mentioned above, in order for FINDS to be capable of reconfiquring
itself the absolute indexing schemes had to be modified. This was
accomplished by using two techniques. They are:

. use pointer arrays to provide the mapping between the absolute
indexing scheme (actual locations of the data) and the current
collapsed/expanded sets.

. physically collapse or expand the arrays

Both methods are used in FINDS. The following is a tvypical example of
the first method:

YF1 is a fixed length vector of averaged measurements
presented to the no-fail filter. It uses the absolute
measurement indexing convention discussed in Table 2.

If ALL replications of a particular tvpe of sensor have
failed, and are therefore not availablie to the NFF., the
corresponding element in YF1l is zeroed out. A pointer
array INOYP is used to provide the mapping between the
(possibly) collapsed measurement vector required bv the

NFF and the fixed length vector YFl which is maintained.
Fiqure 11 graphically shows how this arrangement works. The
important point to see here is that the data is phvsically
stored in the array usinag the absolute indexing scheme,

and it is extracted using the pointer array INOYP which
accounts for anv reconfiquration.

124

FINDS Programmer’s Manual
Data Structure Conventions

An exampie of the second method is as faollows:

RESBOC is a variable lenath vector of expanded residuals
from the NFF. The vector is formed bv first computina the
residuals using the (absolute} replicated measurement
indexina convention (see Table 7). and then collapsing
it to eliminate elements correspondina to sensors which
are not available, The pointer arrav. INORYP is used to
map each element to the absolute index in Table 7,
Figure 12 shows how this approach works. Notice that
here the data is storea in a colilapsed fashion and

INORYP is used to identifv each element {(the value of

an element in INORYP 1is the measurement index in Table 71

The followina arravs use this method of oraganization:

HP1. RESBOG. RESBOC. RBFO. and CBFOD

Table 1. No-Fall Filter Absolute State Indexing Conventions

Array State Program
Index variable Units
1 Xru feet
2 Yrv feet
3 Zrv feet
4 Xrw feet/sec
5 Yrw feet/sec
6 Zrw feet/sec
7 Phi radians
8 Theta radians
9 Psi radians
10 X feet/sec
11 Yu feet/sec

126

Table 2. No—Falil Filter Absolute Measurement Indexing Conventions

Array Heasurement Program
Index Name Units

1 Azm radians

2 El radians
3 Rng feet

4 IAS feet/sec

5 Phi radians

6 Theta radians

7 Psi radians
.8 RA feet

127

Table 3. No-Fail Filter Absolute Input Indexing Conventions

Array Input Program

Index Name Units
1 Ax feet/sec/sec
2 Ay feet/sec/sec
3 Az feet/sec/sec
4 P radians/sec
5 Q radians/sec
6 R radians/sec

128

Table 4. No-fail Filter Process Noise Indexing Conventions

Array Program
Index Name Units
1 AX feet/sec/sec
2 Ay feet/sec/sec
3 Az feet/sec/sec
4 P radians/sec
5 Q radians/sec
6 R radians/sec
7 Xw feet/sec
8 Yu : feet/sec

129

Table 5. Absolute Sensor Indexing Conventions
Array Sensor Program
Index Type Units
1 AX feet/sec/sec
2 Ay feet/sec/sec
3 Az feet/sec/sec
4 P radians/sec
> Q radians/sec
6 R radians/sec
7 Azm radians
8 E1 radians
3 Rng feet
10 IAS feet/sec
11 Phi radians
12 Theta radians
13 Psi ragians
14 RA feet

130

Table 6. Replicated Sensor Indexing Convention

Array Sensor Program

Index Type/Replication Units
1 AX-* feet/sec/sec
2 Ay-* feet/sec/sec
3 Az-» feet/sec/sec
4 p-» radians/sec
5 Q-» radians/sec
6 R-* radians/sec
7 Azm-1 radians
8 El-1 radians
9 Rng-1 feet
10 IAS-1 feet/sec
11 Phi-1 radians
12 Theta-1 radians
13 Psi-1 radians
14 RA-1 feet
15 Azm-2 radians
16 E1-2 radians
17 Rng-2 4 feet
18 IAS-2 feet/sec
19 Phi-2 radians
20 Theta-2 radians
21 Psi-2 radians
22 RA-2 feet

» — refers to the replication currently in use by the NFF
(eg. 1, 2, or 3)

131

Table 7. Replicated Measurement Indexing Convention

Array Heasurement Sensor Program
Index Type/Replication Units
1 Azm-1 radians
2 El-1 radians
3 Rng-1 feet
4 IAS-1 feet/sec
5 Phi-1 radians
6 Theta-1 radians
7 Psi-1 radians
8 RA-1 feet
9 Azm-2 radians
10 E1-2 radians
11 Rng-2 feet
12 IAS-2 feet/sec
13 Pni-2 radians
14 Theta-2 radians
15 Psi-2 radians
16 RA-2 feet

132

H
3
§
§
!
ke
¢
2
3

INOYP YF1

8,

YYYVYy

A AR A AT AN

IDBO@Q\NNH

El
Rng
IAs

0

0

0
RA

I

Figure 11. Example of Pointer Array Indexing

RESBOC INORYP
Azm-1 - | 1
El-1 —-» | 2
IAS-1 > 1 a
Phi-1 > 15
Theta-1 : 6
Psi-1 . | 7
El-2 o | 9
Rng—2 — 10
0 0
0 0
| 0]

Figure 12. Example of Collapsed Array Indexing
133

nymax

nyf

FINDS Proarammer’s Manual
Detailed Descriptions Of FINDS Common Blocks

4.2 Detailed Descriptions Of FINDS Common Blocks

4.2.1 Description Of CMPSTF -

name: CMPSTF

cont: Quantities associated with the composite (bias-free plus bias)
no-fail filter.

vars: nxb - integer unitless the total number of states and
bias states in the NFF
GAINKX- double mixed the combined no-fail filter
gain matrix
PXF1l - doubie mixed the combined no-fail filter
estimation error covariance. (see 2.2.32-2.2.35
in [21)

refby: ADJTBP. BIASF, BLEND., CHKRAD, DETECT, INITG, NAV, RCOV,
SAVIT, STARTF, UPDPH

4.2.2 Description Of DCIDEI -

name: DCIDEI
cont: Quantities needed by the LR computations and the decision

logic.
vars: Ihyp - dinteger unitless the hyvpothesis chosen by the

decision logic. MWhere Ihyp = the replicated sensor
index of the failed sensor if Ihvp<{NFTl. or if Ihvp =
NFT1 it siqnifies nothing has failed. whereas if
NFT1<Ihyp<NFT1+3 then it signifies a multiple failure
of MLS azimuth. elevation. or range respectively

kCTdwh- inteqer unitiess counter for elapsed samples
since last decision window was started

kMXdwh- integer unitless maximum number of samples in a
decision window (i.e. number of samples/decision
window)

kCTewh—- integer unitless vector of decision window
counters - one for each detector. The elements
are arranged bv absolute replicated sensor index

kMXewh- integer unitless vector of maximum decision

134

refby:

PRIORI-

AlLamda~

Betal -
COSTI -
CHKRAD.

FINDS Proqrammer ‘s Manuai
Description Of DCIDEI

windows in an estimation window (i.e. number of
decision windows/estimation windows) - one for each
detector

double wunitiess vector of the log of the prior
probabilities of failure - one for each sensor,
ordered by replicated sensor index

double wunitless vector of the log-1ikelihood
of a sensor failing - one for each sensor, ordered
by replicated sensor index

doubie unitless not used currently

double wunitiess not used currently

DECIDE, DETECT, INITG, NAV, PRNTIC, RECONF, SAVIT

4.2.3 Description Of DETINF -

name:
cont:
vars:

DETINF

Information pertinent to the detectors

nft -

nftl -
nyf -

INORYP-

ICNTSN-

integer unitless the total number of replicated
sensors {considered for FDI)

integer unitless nft+l

integer unitless the current number of
replicated measurement sensors

integer unitless pointer vector to the

measurement sensor tvpe (from Table 1 in [11). The
array index is the replicated (and possiblv colliapsed)
set of sensors used by the NFF, and the value of an
element of INORYP is the absolute sensor type of that
sensor
integer unitless ICNTSN is used to determine
1. if a particular sensor type and
replication is being used by the NFF
2. and if it is being used - which element of
the input vector or expanded measurement
vector it corresponds to
ICNTSN is organized as follows: the array index
corresponds to the absolute repiicated sensor index,
the value is either
1) the index in the input vector

135

FINDS Programmer’s Manual
Description Of DETINF

(if index{(=NUl)
2) or the index in the expanded measurement
vector (if index>NUl)
if the sensor is not used by the NFF the value of its
element in ICNTSN is zero
RESBOC- double mixed expanded residual vector from
the no-fail filter. (see 2.3.1-2.3.3 in [2])
refby: BLEND. CLPSIO, DECIDE. DETECT. FILCOL. INITG, NAV. RECONF.
RESCMP, SAVIT. SETISN

4.2.4 Description Of DETSIG -

name: DETSIG

cont: Sensor noise statistics assumed by the detectors.

vars: PDETCT- double mixed vector containing standard
deviations of the expected noise (in program units)
assumed for each sensor type by the detectors. PDETCT
is ordered by absolute sensor type

refbv: INITG. PRNTIC

4,2.5 Description Of DETXBI -

name: DETXBI
Quantities associated with the sensor failure detectors

cont:
vars: NF - integer unitless current number of sensor
TYPES that are active (i.e. not failed)
NFmax - integer unitless maximum possible number of
sensor TYPES that can be considered
N¥Ymax -~ inteqger unitless maximum possible number of
measurement sensor tvpes that can be considered
XBFI - double mixed vector of current failure

level estimates - one for each detector. Detectors

136

refbv:

PBFI -

VBI -

BOFI -

ADJTBP.
RECONF.

FINDS Programmer ‘s Manual
~ Description Of DETXBI

are ordered usina the absolute indexing scheme for
replicated sensors. (see 2.3.18 in [2D)

doubie mixed vector of estimation
information for each estimated failure. Ordered in
the same fashion as XBFI. (see 2.3.20 in [2])

double mixed matrix of blender gain vectors
where each column of VBI is a blender gain vector.

The columns are indexed using the same scheme as XBFI.
(see 2.3.17 in [2])

double mixed matrix of partial derivatives
evaluated about the current failure estimates.
Specifically. it is the partial of BF1l w.r.t. failures
in phi., theta., and psi. The matrix is organized as a
partitioned matrix with each partition of size NX rows
by 3 columns. The partitions are ordered (in the
column direction) as the partial of BF1 w.r.t., the
first replication of phi. theta. psi. the second
replication of phi, theta. psi, and so on. If dual
redundancy is assumed the entire matrix would be

nx bv 18. (see 2.3.16 in [2])

CHKRAD., CLPSIO. DECIDE. DETECT, INITF., INITG. PRNTIC,
SAVIT. SETISN., SUMOUT, TLOUT. UPDAB

4.2.6 Description Of DETYBI -

name:
cont:

vars:

refby:

DETYBI

Observation matrices and compensated residual vectors for the
bank of detectors
RESBI - double mixed matrix of failure compensated

CBFI -

residuals vectors where each column of RESBI is a
residuals vector. The columns are ordered by
replicated sensor index. (see 2.3.14 in [2])

double mixed matrix of detector observation
matrices where each column of CBFI is an observations
vector for a detector. The columns are ordered by
replicated sensor index. (see 2.3.15 in [2])

DETECT. INITG, SAVIT

137

FINDS Programmer’s Manual
Description Of EKBFO

4.2.7 Description Of EKBFO -

name:
cont:

vars:

refby:

4.2.8
name:
cont:

vars:

EKBFO
Bias filter arravs used in the bias fiter portion of the

no-fail fiter (extended Kalman fiter). (see [4])

XBFO - double mixed bias filter state vector (i.e.
vector of current normal operating bias estimates

RESBO - double mixed residuals vector generated by
the bias filter portion of the NFF

GAINBO- double mixed Kalman gain for the bias
filter

PBFO - double mixed bias filter estimation

error covariance (or information)
BIASF., BLEND, CHKRAD. CLPSBE. CLPSIO., DETECT, INITG, NAV,
ARCOV. RECONF. RESCMP. SAVIT, SUMIN

Description Of FCOML -

FCcoml
Communication and common variables between FILER1 and

RECRDS. A1l quantities are therefore used in generating
the binary PLT file.

ntick - integer unitless ratio of no. of simulation
steps/record step

itick - integer unitless counter variable. when
itick=ntick variables are recorded in the loqical
record

nchan - integer unitless total no. of channels to be
saved minus one

ichan - integer unitless current channel number being
saved

mxchan- inteager unitless maximum no. of channels
allowed

nbuf - dnteger unitless {fixed) length of the physical
record buffer

ibuf - integer unitiess current length of the physical
record

ifold - integer unitless flaa indicating a previous
call

138

retby:

FINDS Proarammer ‘s Manual
Description Of FCOM1

to RECRDS when ipass=2 or 4

xbuf - reai mixed array of length nbuf used to
store the logical records
FILER1. FINDS. INITG., NAV, RECRDS., SAVIT, SET

4.2.9 Description Of FCOM2 -

name:
cont:

vars:

refbv:

4.2.10
name:
cont:

vars:

refby:

FCoM2

Storage for the names and units of all variables saved

in the PLT file

Lname - char string list of unique 5 character
names for each variable stored in the PLT file.
Lname is of lenath mxchan

Lunit - char string list of 5 character names for
the engineering units associated with each variable
stored in the PLT file. Lname is of length mxchan

FILER1. FINDS. RECRDS

Description Of FILNAM -

FILNAM

Stores the (12 character) names of all the disk files used
by FINDS.

KKBLNK- char string blank name used for testing
FNDK1 - char string name of PLT file

FNDKS - char string name of general input file
FNDK6 - char string name of QUT file

FNDK7 - char string name of filter input file
FNDK8 - char string name of TLN file

FNDK11- char string name of SUM file

FNDK12- char string name of sensor input file

FILER1. FINDS, PRNTIC

139

FINDS Programmer’'s Manual
Description Of FILTIC

4.2.11
name:
cont:
vars:

refby:

4,2,12
name:
cont:
vars:

Description Of FILTIC -

FILTIC

Additional initial conditions for the no-fail filter

SDXIC -

XiCerr-

SOPIC -

POSbnd-
VELbnd-
ANGbnd-
CKUNST,

double mixed vectors of standard deviations
which define the statistics of an initial normal
distribution used to choose the initial no-fail filter
state estimation error (stored in user units)

double mixed vector of initial no-fail
filter state estimation errors (stored in user units)
double mixed vector of standard deviations

of the diagonal elements of the no-fail filter state
estimation error covariance (stored in user units)
double feet position error bound for the
no-fail filter’s divergence test

double feet/sec velocity error bound for the
no-fail filter’'s divergence test

double radians angular error bound for the
no-fail filter’s divergence test

INITG, STARTF. PRINTIC

Description Of FILTRT -

FILTRT

Flags and pointing vectors used by the no-fail filter

[upc - 1integer unitless (not currently used) rate at
which NFF covariance is updated [= 1/(dt*Iupc)]

ike - integer unitless (not currenty used) rate at
which NFF is updated [= 1/(dt*Iupc*IKC)]

dtc - double seconds Iupc*Dtime

IIMUF - dinteger unitless flag to indicate if NFF uses
the IMJ measurements (O:don’'t use, !=0Q:use)

IRSDF - integer unitless Tlag to indicate where the
input measurements are obtained from. (0O:body mounted
accelerometers and rate gvros, !=0:RSDIMJ)

IRSDFY~ integer unitiess flag to indicate if the RSDIMU

computed attitudes are to be used by the NFF (Q:don:t
use. else if IRSOFi=0 & I[IMUF=0 & IRSDFY!=0 : then use
them)

140

refby:

4.2.13
name:
cont:
vars:

MXRPLF-

IREPLF-

INOUTF-

AVBIAS,
FILCOL.
RECONF,

FINDS Programmer’s Manual
Description Of FILTRT

integer unitless the maximum number of sensor
replications used in the NFF and in the FINDS FDI
logic - currentlv limited to 2.
integer unitless vector of sensor replications
used by the NFF. The array index is bv absolute
sensor type, and the value is the replication count of
that sensor used by the NFF
integer unitless a matrix which indicates the
status of all the sensors used by the NFF. The row
index of INOUTF corresponds to the absolute sensor
tvpe, and the column index is the replication number
of the sensor. The value of each element shows the
current status of the sensor where:

-3: unavailable (selected out by decision

logic)
-2: failed
~-1: available - but not used by the filter
(1.e. standby status)
0: not available to the NFF
1: available and used

BIASF, BLEND. CHKRAD, CLPSIO, DECIDE. DETECT, EKFN1,
GTOI, INITF, INITG, MINSET. NAV, NOISR, PRNTIC.
RESCMP, SAVIT, SETISN, SUMIN, SUMOUT., UPDH

Description Of FLTCTL -

FLTCTL

FINDS program control flags

Ifilt -

IBfilt~

IgqainP-

Ipass -

inteqger unitless indicates form of NFF.
Currently Ifilt=1, signifving only the standard EKF
is used (i.e. not the square root form)

integer unitiess indicates tvpe of covariance
propagation in the bias filter. where 1: propagate
covariance, and 2: propagate information

integer unitless frequency of Kalman filter
gain printout (in samples/printout)
integer unitless flag to control output to

(binary) PLT file where 1: initjalize PLT fie,

141

FINDS Programmer’s Manual
Description Of FLTCTL

refbv:

4.2.14
name:
cont:

vars:

refby:

2: write data to file, 3: close PLT file

Istop - integer unitless

not used currentily
indicates whether white or

specifies whether or not

corrections for earth’s rotation are to be used by NFF

Iwoc ~ dinteger unitless
colored MLS noise corrections should be used in the
NFF. (1: use colored noise assumptions [defauiltl,
0: use white noise assumptions)

Ierc - integer unitless
(1: use corrections [defalutl., 0: don’t use
corrections)

Iysc - Adnteger unitless

measurements are to be scaled by Yscale.

flag to indicate if

(-1: scale

(defaultl, 0: don‘t scale)

Hradar- double feet

altitude below which the radar

altimeter is used by the NFF in place of the M.S

elevation sensor

BIASF. BLEND, CHKRAD. DETECT. EKFN1. FILCOL. FINDS, INITF.
INITG. NAV, PRNTIC. SAVIT. SUMIN. SUMOUT. UPDB

Description Of FTITL1 -
FTITL1

To store the comment records to be stored in the file header

of the PLT file

nline - integer unitiess
records

mx1inl- integer unitless
in LTITL1

LTITL1- integer string

the columns of LTITLL.

mx1inl

FILER1. FINDS. INITG. PRNTIC

142

number of 56 character comment
maximum number of columns

comment records are stored in
LTITL]1 is dimensioned 15 bv

4.2.15
name:
cont:
vars:
refby:

4.2.16
name:
cont:
vars:

FINDS Programmer ‘s Manual
~ Description Of GBLEND

Description Of GBLEND -

GBLEND
No-fail filter blender gain (see [31 and [41)
VB0 - double mixed no-fail filter blender gain

BIASF. BLEND, CLPSBE. INITG. NAV, RECONF

Description Of HEALCM -

HEALCM

Quantities used bv the healer Jogic (see section 2.5 in [2])

kCThlr- inteqer unitless contains a runnina count of
the elapsed samples since the start of the current
healer window

kMXh1r- integer unitless total number of samples to
process before a healer wWwindow should be reset

CONFBD- double wunitless logarithm of the initial
confidence bound (1/19) for the healer test

PhealT- double mixed vector containing standard
deviations of the expected noise (in program units)
for each sensor type - to be used exclusively bv the
healers (this allows flexibility in specifving the
sensor noise statistics appropriate to the healers -
i.e. different from the detectors., no-fail filter. and
simulation.) PhealT is ordered by absolute sensor
tvpe

Bthrsh- double mixed vector of largest expected
normal operating biases for each sensor tvpe (in
program units}. Bthrsh is onlv used in the healer
logic and is ordered bv absolute sensor index

Fthrsh- double mixed vector of smallest expected
fajlure levels for each sensor type (1in program
units). Fthrsh is only used in the healer logic and
is ordered by absolute sensor index

Dthrsh- double mixed vector of a decision
thresholds to be applied to each healer process.
This vector is ordered by sensor type.
Dthrsh is defined as:

Dthrsh(i) = 2.0*CONFBD*PhealT(i)**2

143

FINDS Programmer ‘s Manual
Description Of HEALCM

refby:

4.2.17
name:
cont:

vars:

CHKRAD,

DETECT, HEALR, INITG., PRNTIC. RECONF

Description Of HFCOM -

HFCOM

Common quantities used by the healing and failure -
reconfiquration logic in FINDS.

Nfail -

NfailM-

NNfail-

Nheal -

NheaiM-

[failTl-

IfailR-

IhealP-

integer unitless total number of sensors that
FINDS has determined to be “failed"
integer unitless The maximum number of faijiures

that FINDS can process (i.e. dimension of IfailT &
IfailR)

integer unitless number of new failures, i.e.
the incremental number of sensors which have just been
detected as failed - but have not been removed bv the
reconfiguration logic

integer unitless total number of sensors which
the healer logic has declared healthy at the end of a
healer window

integer unitless the maximum number of sensors
which can heal in one instant. (i.e. the dimension

of IhealP)

integer unitless vector containing the absolute
sensor type for each failed sensor. Whenever a sensor
fails its absoiute sensor type (from Table 5) is added
to IfailT. Therefore. this vector is ordered by
relative time of occurrence of the failure. (failed
sensor index)

integer unitless vector containing the
replication number for each failed sensor. It is
ordered the same as IfailT. Together IfailT(i) and
IfailR(i) determine the i’'th failed sensor’s type and
replication.

integer unitless vector conta1n1nq a list of
the failed sensors which have healed. The value of

an element is the index in IfailT and IfailR of the
healed sensor. Therefore, IhealP(j) represents the
i‘th healed sensor and it (i.e. the value of

144

refby:

4.,2.18
name:
cont:
vars:

refby:

4.2.19
name:
cont:

vars:

CHKRAD.

FINDS Programmer ‘s Manual
Description Of HFCOM

IhealP(1)) points to the IhealP(j)‘th failed sensor
in IfailTl and IfailR.
DECIDE. INITG. HEALR., RECONF

Description Of INITVL -

INITVL
Initial
INOBPS-

PBFOI -

PBFIC -

CLPSBE,

values for the no-fail filter

integer unitiess INOBPS=INOBP at the start of
the run
double mixed initial values for the

standard deviations of the bias free estimation error
(in user units). Addressed by absolute state index
(see Table 1)

double mixed initial values for the
standard deviation of the detector error information
(in user units), addressed by absolute sensor index
(see Table 5)

CLPSIO, DETECT. INITG. PRNTIC. RCOV. RECONF., SAVIT

Description Of INOU -

INOU

Contains Fortran unit numbers for I/0 to the users terminal
and to all disk files.

kin -

kout -
kdskl -
kdskb -

kdské -

integer unitiess unit no. for input from TTY
integer unitless unit no. for output to TTY
integer unitless unit no. for output to PLT
file

integer unitiess unit no. for input from
general input file

integer unitless unit no. for output to OUT

145

FINDS Programmer’s Manual
Description Of INOU

refby:

4.2.20
name:
cont:

vars:

refby:

kdsk7 -
kdsk8 -
kdskll-
kdskl2-
AIRSPS,

file

integer unitless
input file
integer unitless
file

integer unitless
file

integer unitless
input file

unit no. for
unit no. for
unit no. for

unit no. for

ATITGS, AUTLD. BANKTR, BIASF, BMLAS,

input from filter
output to TLN
output to SUM
input from sensor

BMRGS, CHKRAD.

DECIDE, DGATIO, FILER1, FINDS, GETMLS, GMINV, ILNACI,
INITF, INITG, IRATG1, NAV, RADALS, RCOV, SAVIT, STABCN,
TLOUT, VMPRT, WAYPNT

Description Of MAIN1 -

MAIN1

Provides common dimensioning information for two dimensional
arravs and a scratch area for temporarv use by all
subroutines.

ndim -

ndiml -
coMl -

ASUMER,
FILCOL.

integer unitless

row dimension for two

dimensional arravs

integer unitless
temporary

double
ndim by ndim

ndim + 1

scratch arrav dimensioned

BIASF, BLGAIN. DETECT. DGATIO. DOT2. DOT3. EQUATE.
GETMLS, GMINV. GTOI, IMSCLE, IMTCG2. INITG, LKF.
LRT, MADD1., MADDI, MAT1, MATIA, MAT2, MAT3, MAT3A, MAT4,
MAT5, MAT6, MATCG2, MATNUL. MMUL, MMUL2. MSCALE, NAV,
OUTDAT. PRNTIC, RCOV. SAVIT, SEONCE, STARTF. SUMIN, SUMMER.
TRANSP. UPDA, UPDAB, UPDB. UPDH. UPDPH, UPDO, VADD1, VMAT1,
VMAT2. VMPRT,

146

4.,2.21
name:
cont:
vars:

refby:

4.2.22
name:
cont:
vars:

refby:

4.2.23
name:
cont:

vars:

FINDS Programmer ‘s Manual
Description Of MAINZ

Description Of MAINZ2 -

MAIN2
Provides a temporarv scratch array for use by all routines.
COM2 - double temporary scratch array dimensioned

ndim by ndim
BIASF. BLEND. BLGAIN, DETECT. DECIDE. EKFN1, INITG. NAV,
PRNTIC, SAVIT

Description Of MULTDT -

MULTDT

Quantities used in detecting multipie simultaneous failures

PRIORJ- double mixed vector of the logarithms of
the prior probabilitvy of more than one M.S sensor of
the same tvpe to fail in the same instant (common mode
failure) (ordered MLS azimuth, elevation. range)

ALamdJ- double mixed vector of the log-1ikelihood
of a multiple MLS sensor faijure. Ordered the same
as PRIORJ

RESBJ - double mixed matrix of multiple MLS failure

compensated residuals vectors. Columns are ordered
the same as elements of PRIORJ.
DECIDE, DETECT. INITG. PRNTIC

Description Of SENSCM -

SENSCM

Quantities used in determining the SIMULATED sensor
configuration

[IMUS - integer unitiess flag to indicate if the IMU

sensor signals are simulated (available to the NFF)
where 1: IMU exists, and 0: IMJ doesn’t exist

147

FINDS Proarammer’'s Manual
Description Of SENSCM

refby:

4.2.24
name:
cont:

vars:

refby:

4.2.25
name:
cont:

IRSDS -

MXRPLS-

IREPLS-

IREADS-
CHKRAD,

integer unitless flag to indicate if the RSDIMUJ
is simulated. Where 1: simulated: and O: not
simulated

integer unitless the largest maximum number of
replications of anv sensor that was simulated
integer unitiess vector whose elements indicate

the simulated replications of accelerometers, rate
gyros, MLS, IAS. and IMJ sensor systems, respectively
integer unitless not used currently

DETECT. INITG, FILCOL

Description Of SIMCOM -~

SIMCOM

Provides communication between the simulation and the rout1nes

used to
ifg -

thalf -
time -
delt -

nstep -
tstart-

tstop -

record the PLT file (RECRDS and FILER1)

integer not used

real not used

real seconds current simulation time
real seconds simulation integration step
size

integer not used

real seconds starting time of the
simulation

real seconds final time (estimated)

CHKRAD, CKUNST, DECIDE. FILER1. FINDS. GYROCR. INITG.
NAV, PRNTIC, RECONF, RECRDS, TLOUT

Description Of SMPRM -

SMPRM

Saves general simulation quantities associated with the

148

vars:

refbv:

4.2.26
name:
cont:

vars:

d4.2.27
nam::
cont:

Mars:

PLT file

nbuf - integer unitless

FINDS Programmer ‘s Manual
Description Of SMPRM

length of the phvsical record

used to incrementally store the data in the PLT file

ntick - integer unitless
steps/record steps
delt - real seconds
by FINDS
LCODE - integer
READRC

Description Of STITL -
STITL

the ratio of no. of simulation
the integration step size used

not used

Stores the comment records contained in the file header

of the PLT file

nline - integer unitiess
comment records
mx1ine- integer unitless
in LTITL
LTITLE- integer string
the columns of LTITLE.
mx1ine
READRC

Description Of SySyYl -
3YSi

number of 56 character
maximum number of columns

comment records are stored in
LTITLE is dimensioned 15 bv

ouantities asscciated with the Tnputs to the no-taii rilrer,

Nid - inteager unitless total number of inputs to
no-Tail rilrer Inciudinag aravitv inpurs

M - integer unitless rtatal number or inputs to
no-raiil filrer associared with an input sensor (1.8,

143

FINDS Programmer’s Manual
Description Of SYSUl

refby:

4.2.28
name:
cont:
vars:

refbyv:

NU-NG)
NU1P1 - integer unitless NU1+1
NG - integer unitless total number of aravity inputs
NU1C - integer unitless NUl - currentivy not used
INOUP - integer unitless pointer vector to absolute

input measurements used by the NFF. khere, the array
index corresponds to the location in UFl, and the
value is the absolute input measurement tvpe index
found in Table 3. Note: since we do not allow the
input vector to collapse this arrav is not strictly
required - however, it does provide much of the
functionality needed to facilitate reconfiquring the
inputs to the NFF in future releases of FINDS.
UF1 - double mixed vector of compensated inputs
used by the no-fail filter (computation in SUMIN)
ADJTBP, AVECMP, BIASF, BLEND, BLGAIN, CLPSBE, CLPSIO, DECIDE,
DETECT EKFN1, FILCOL. GTOI. HEALR, INITF, INITG. NAV, NOISR.
PRNTIC, RCOvV, RECONF, RESCMP, SAVIT, SETISN. SUMIN, UPDPH

Description Of SYSX1 -

SYSX1

Bias free filter state dimensions and system matrices

NX - inteqger unitless total number of states 1in bias
free portion of the no-tai filter

NX1 - dinteger unitless NX+1

AFl - double mixed describe state transition
matrix - set in UPDA. (see 2.2.13 in [21])

BF1 - double mixed discrete processes noise

covariance matrix (i.e. EWE’'). (see 2.2.13 in [21)
ADJTBP. BIASF, BLEND, BLGAIN. CLPSBE, CLPSIO, DETECT, EKFNI1,
INITG, NAV, PRNTIC, RCOV, RECONF, SAVIT, STARTF

150

4.2.29
name:
cont:

vars:

refby:

4.2.30
name:
cont:

vars:

FINDS Programmer’s Manual
Description Of SYSXBO

Description Of SYSXBO -
SYSXBO

Quantities associated with the bias filter portion of the
NFF.

NB - integer unitless the current number of biases
estimated by the NFF (NB=NUB+NYB)

NUB - 1integer unitless the current number of input
sensor biases estimated by the NFF

NUB1 - dinteger unitiess NUB+1

NYB - 1integer unitless the current number of
measurement biases estimated by the NFF

NBMXI - integer unitless the original (total) number
of biases requested to be estimated bv the NFF

INOBP - integer unitless pointer vector to the sensor

tvpe of each bias estimated, where the arrav index is
the bias index used bv the filter., and the value of
each element is the absolute sensor index (from
Table 5} of the corresponding sensor
ABF1 - double mixed discrete state transition
matrix which accounts for the estimation of normal
operating biases. (see eq. 2.2.30 in [2])
ADJTBP, BIASF, BLEND, BLGAIN. CHKRAD. CLPSBE, CLPSIO, DETECT
EKFNi1. INITG, KALMN, NAV, PRNTIC. RCOV, RECONF. RESCMP, SAVIT.
SUMIN., UPDPH

Description Of SYSYW1 -

SYSYiW1

Quantities associated with the no-fail fiiter's observations

and process noises

NY - integer unitless total number of possibly
averaged (or collapsed) measurements presented to the
no-fail filter

Ndistb- integer unitless total number of process noise
inputs to the NFF

NYMXI - dinteger unitiess initial (maximum) number of
averaged measurements to the NFF

INOYP - integer unitless pointer vector to "active'

151

FINDS Programmer ‘s Manual
Description Of SYSYW1

averaged outputs used by the NFF where INOYP is formed
such that the arrav index corresponds one-to-one wWith

the elements of the (possibiy collapsed) measurements

of the NFF, and the value of each element corresponds

to the absolute measurement index in Table 2.

INOYPI- integer unitless inverse mapping of INOYP. i.e.
the array index is the absolute measurement index, and
the value is the corresponding index in the current
measurement vector to the NFF. If a particular
measurement tvpe is not used by the filter its value
in INOYPI will be zero

YFl - double mixed vector of averaged
measurements used by the NFF - uses absolute
measurement sensor indexing

RF1 - double mixed vector of measurement noise

covariances organized by absolute measurement index

(Table 2). Each element in RF1l is adjusted to

refiect the number of sensors averaged

double mixed vector of process noise

covariances organized by absolute input index

(Table 3). (see 2.2.14 in [2]1)

HP1 - double mixed effective observation matrix
for NFF (partial of h w.r.t.x) (see 2.2.31 in [2])

refby: ADJTBP, BIASF, BLEND. BLGAIN, CHKRAD. CLPSBE., CLPSIO, DETECT.
EKFN1, INITF, INITG, NAV, NOISR, RCOV, SVIT. SUMOUT, UPOPH

OF1

4.2.31 Description Of YOBSRV -

name: YOBSRV

cont: Contains the scaling arrav for the tilter observations

vars: Yscaie- double mixed vector of scale factors used
to scale each averaged measurement into the NFF. The
scaling is performed to ensure that the measurement
noise variance is unitv for each sensor

retby: AVECMP, BIASF., BLGAIN. CLPSBE., DETECT. INITF, INITG, RCOV

RESCMP, SAVIT, SUMOUT, UPDH, UPDPH

152

FINDS Programmer’s Manual
Description Of YOBSRV

153

FINDS Programmer ‘s Manual
REFERENCES

5 REFERENCES

[1]

2]

£3]

4]

[51

Lancraft. R.E. and Caglavan. A.K.. "FINDS: A Fault
Inferring Nonlinear Detection Svstem - User’'s Guide",
NASA CR-172199, September 1983.

Caglavan, A.K. and Lancraft. R.E.. "A Fault Tolerant Svstem
for an Integrated Avionics Sensor Configuration"., NASA CR-3834.
1984.

Caqlavan, A.K. and Lancraft. R.E.. "An Aircraft Sensor
Fault Tolerant System"., NASA CR-165876. April 1982.

Caalavan. A.K. and Lancratt, R.E.. "A Separated Bias
Identification and State Estimation Algorithm for
Non-Linear Systems'. Automatica., Vol. 19, No. 5.

pp. 561-570. September 1983.

"WAX-11 DIGITAL Standard Runoff Version 2.0, Users Guide”,
Digital Equipment Corporation, No. AA-J268B. May 1982.

154

APPENDIX A

SUMMARY OF SPECIFIC HARDWARE AND SOFTWARE REQUIREMENTS

Computer: Digital Equipment - VAX-780 or 750

Storage: At least one disk drive

Terminals: Either a Tektronix model 4010/4014 or one that emulates a
Tektronix 4010/4014 (for plotting purposes.)

Hard-copy

devices: No specific requirements. Al]l output is directed to
disk files or to the users terminal.

Operating

System: VMS Version 3.0 or higher. VMS utilities and
libraries are required.

Software: Fortran-77 compiler

The following files are supplied:

Command Files:
FINDS.COM
FINDSLIB.COM
GETDOC.COM
MAKEFPG.COM

Executable Files:
DOC .EXE
FINDS.EXE
PLOTD .EXE
PRINTD.EXE

Fortran Files:
DOC .FOR
FGAC.FOR
FIO.FOR

A-1

SUMMARY OF SPECIFIC HARDWARE AND SOFTWARE REQUIREMENTS

FIOSUB.FOR
FMAIN.FOR
FSENS.FOR
FSFDI.FOR
FUTSUB.FOR
FVMSUB.FOR
FWIND.FOR
PLOTD.FOR
PRINTD.FOR

Libraries:
FINDSLIB.OLB

OPT Files:
PLOT.OPT
PRINTD.OPT

COM files:
FINDSC.COM
FINDSL.COM
FINDSLIB.COM
FOREIGN.COM
FPMV3.COM

FIL files:
FINDSPM.FIL
FINDSPMA.FIL
FINDSPMB.FIL

RNO files:

FPMV3.RNO

LISA floppy disk files:
A S5 1/4 floppv disk which contains two Lisa Draw applications:

1. FINDSfigs - all the fliowcharts in the FINDS programmers
manual.

2. FINDScharts - all the tables used in the FINDS programmers
manual.

APPENDIX B

GENERATING THE FINDS PROGRAMMERS MANUAL

It was stated in the introduction that this manual was generated in a
semi-automatic fashion using a combination of a rudimentary text
formatting program called Digital Standard Runoff (DSR)., an Apple Lisa

computer
appendix
appendix

o]

using LisaDraw, and a text stripping program (DOC). This
provides the details of this system. In particular this
will: ’

Enumerate the procedure required to produce a copy of this
programmers manual.

Brieflyv describe the mechanics of the automatic documentation
system.

Document the current set of "rules" for embedded source code
documentation.

Describe the steps required for adding future documentation
to the manual.

And finally, present some observed stengths and shortcomings
of this approach.

The following steps are required to produce a copy of this manual:

1.

Type ¢ @foreign and then $ @findspg , this produces a file
fpmv3.mem which can be printed on a suitable printing device
(daisv wheel, dot matrix., or laser printer).

B-1

GENERATING THE FINDS PROGRAMVMERS MANUAL

2. Load the Lisa floppy disk into an Apple Lisa computer and
print all the figures and tables using LisaDraw, or
alternatively if a file of current figures 1is maintained,
simply make copies of the figures and tables.

3. Insert the figures and tables 1into the document in the
approriate places.

As shown above, only three simple steps are required to produce a copy
of an existing manual. Now let’s take a closer look at what actually
was performed in step 1. Figure 13 shows a closeup of the wunderlying
mechanics. From this figure we can see that step 1 first stripped.
from a 1ist of files, documentation containing:

o Each file’s contents
o Subroutine descriptions
o Common block descriptions

In addition, index items were added and the files were put in a form
compatible with DSR (all done via the program DOC.) Each type of
information is saved in a separate file. These files are then
referenced in a runoff file which contains a template of the manual
(e.qg. the Introduction, Appendicies, and beginnings of chapters where
the files will be included.) The output of DSR is a file which
contains all the written text, and saves "white" space for all the
figures and tables.

FORTRAN Source

File 1

Text Editor

;

Documentation

Template File
{(e.g. DSR
Text file)

FORTRAN Source
File 2

File n

e N

File Header
Documentation

Subroutine
Documentation

Common Block
Documentation

LISA/Draw

Figures & Tables

A\

D.S.R.

Text of Manual

Finished
Manual

=

Figure 13. Mechanics of Automatic Manual Generation

B-3

GENERATING THE FINDS PROGRAMMERS MANUAL

In order for the text stripping program, DOC, to work properly various
"rules" are required for placing embedded documentation in Fortran
source files. The basic premise is that comment 1lines which occur
between special header 1lines are to be treated as documentation.
Currently the following header delimiters are supported:

1. Cfil ... Cendfil - These bracket file content comments.
2. Cdoc ... Cenddoc - These bracket subroutine documentation.
3. Ccom ... Cendcom - These bracket common block documentation.

In general, formatting within header delimiters 1is arbitrary.
However, if ‘Cname:" is encountered., the rest of the line is treated
as a file, subroutine or common block name and 1is entered into the
index. Furthermore, if fiqures are required, DOC can be used to save
space for them. This 1is done by using the following construct:
"Cfig: FFPF(n)" where 1<{n<{99 1is the number of Floating Full Page
Fiqures required. The following rules must be followed:

1. Header delimiters must occur on separate lines

2. Each 1ine between header delimiters must start with a comment
character "C" (for FORTRAN files).

3. Each 1ine of documentation must be less than or equal to 70
characters (not counting the comment character.)

4. Each line is passed verbatum into the document so that block
formatting can be performed using tabs and spaces.

5. The special symbols "Cname" and Cfig" discribed above must
start in column 1.

Although the formatting of documentation is arbitrary and therefore up
to the programmer, in order for the final document to be consistent a
documenting convention is required. In this document the following
convention was adhered to:

GENERATING THE FINDS PROGRAMMERS MANUAL

File header documentation

Cfil

Cname: Name of the file.

Ccont: Description of what the file contains.

Csubr: List of subroutines with a one line description of each,
Cendfil

Subroutine and Program documentation

Cdoc

Cname: Name of subroutine or function (with optional enumeration of
Mnemonics.)

Cfunc: Short description of how the subroutine functions.

Ccall: Sample calling sequence.

Cargs: List of arguments used in calling sequence along with a short
definition and an indication of whether they are used as inputs
outputs or both.

Cints: List of key internal variables and there definitions.

Crefs: List of subroutines referenced by the routine (with optional
description of each.)

Crefby: List of the routines that reference this routine.

Ccomm: List of the common blocks used by this routine (with optional
description of each.)

Cfig: FFPF(n) TITLEL...]

Cenddoc

Common block documentation

et tadad

Ccomb1k

Cname: Name of the common block.

Ccont: Purpose or contents of the common block.

Cvars: List of variables along with a definition of each.
Crefby: List of routines containing this common block
Cendcom

GENERATING THE FINDS PROGRAMMERS MANUAL

At this point the reader should have a basic understanding of how the
automatic documentation system works, as well as how to add
documentation to a Fortran source file (the reader is refered to (5]
for a complete discussion of the DSR commands used to format the
runoff file.) However, it is not yet clear what steps are required to
generate the manual if additional documentation, and/or figures or
tables are added or deleted. 8asically the same steps mentioned at
the start of this appendix apply, wWwith the following exception: since
DSR doesn’t support the notion of 1ists of tables, figures, or
references -- they must be maintained by hand. This means that:

1. If table or figure numbering 1is modified, all direct
references to fiqures or tables by number must be updated to
reflect the new sequence. This can be avoided if they are
refered to by title or placement.

2. The page numbers in the 1ist of fiqures and the 1list of
tables must be corrected. This is accomplished by simply
running DSR once. noting the correct page numbers. correcting
the runoff file, and re-running DSR.

3. If references are added or subtracted from the manual,
citations made 1in the body of the report must be corrected.
as well as the 1ist of references itself.

In closing, the following observations are made as to the
effectiveness of this method. On the positive side:

1. The documentation is available inside the source file itseif,
therefore it dis readily available for a programmer to
reference.

2. Documentation can be kept up to date by simply making an
incremental addition to existing text. Moreover it can
conveniently be done at the same time the code is altered -
when the concept is clearest,

3. Working documentation can be made available at any point in
the development process.

4. 1It’s flexible, A1l documentation is stored electronically.
Therefore, changes can be made without disturbing the overall
structure, or compleatly re-drawing old figures to add minor

B-6

GENERATING THE FINDS PROGRAMMERS MANUAL

modifications.

For all its strong points, there are of course some weaknesses as
well:

1. DSR’s lack of support for tables, fiqures, and references can
Create some extra maintainence effort. This could be
eliminated if a more powerful text formatter where used, or
if a pre-filter were written to do the maintainence
automatically.

2. Because the documentation 1is written in a decentralized
fashion it can be discontinuous in style and notation. unless
clearly defined rules are followed.

3. If a correction in notation is desired several files must be
moditied, rather than a single one in the case of a more
conventional document.

4. Source files will, of course. be larger 1if this method is
used. This may be a concern if disk space is at a premium,

Common blocks

cmpstf. 134
dcidei, 134
detinf, 135
detsiq, 136
detxbi. 136
detybi, 137
ekbf0. 138
fcoml, 138
fcom2. 139
filnam., 139
filtic. 140
filtrt, 140
fltctl. 141
ftitll., 142
gblend, 143
healcm. 143
hfcom, 144
initvl, 145
inou, 145
mainl, 146
main2. 147
multdt, 147
senscm. 147
simcom, 148
smprm. 148
stitl. 149
sysul, 149
sysxl, 150
sysxb0, 151
sysywl., 151
yobsrv, 152

INDEX

fio.for, 14, 86
fmain.for. 11, 18
fsens.for, 14, 86
fsfdi.for, 11, 28
futsub.for, 15, 92
fvmsub.for, 16, 106
fwind.for, 13, 85
plotd.for. 17, 119
printd.for, 17, 120

Subroutines
abslim, 92
accvel, 92
adjtbp, 75
asumer. 98
avbias, 84
avecmp, 82
barnl. 104
biasf. 41
blend. 44
blgain, 47
bubble, 113
chkfl. 88
chkrad, 48
ckunst. 36
clipsbe, 73
clpsio, 71
convrf, 83
decide, 64
detect, 51
dgatio, 97
doc. 121
dot, 114
dot2. 114

Source files
doc.rat, 1
fgac.for,

7, 121
13. 85

Index-1

dot3. 114
ekfnl, 38
equate, 112

fiicol. 73
finds - (main program). 18
flevel, 89
fsched. B7
qgauss. 105
gminv, 106
qgtoi, 36
qyrocr, 35
healr, 77
imtcg2. 102
inital, 27
initf., 32
initg, 32
insrtn., 116
kalmn., 37
Timval, 103
1imv12, 103
1kf, 63
Trt. 64
Irthir., 82
maddl. 111
maddi, 111
matl. 107
matla. 108
mat2. 108
mat3. 109
mat3a. 109
mat4. 110
matb. 110
maté. 111
matca2. 101
matmui. 97
matnul. 112
mattv3, 96
matv3. 96
maxmin. 99
maxmins. 99
minset. 76
mmul. 107
mmul2, 107

movum. 97

mscale. 113
mxmn2. 100
namfil, 105

nav (fault tolerant navigator),

28
noisea. 104
noisr. 72
outdat, 90
plotd. 119
pntinv, 102
printd, 120
prntic. 87
rcov. 75
reconf, 65
rescmp. 73
rotatv, 93
rotmat, 93
rungk3, 94
runway, 94
savit. Bb6
seqnce, 116
set, 27
setisn, 47
setum. 95
startf. 33
sumin, 34
summer. 98
sumout. 34
swap. 118
tlout. 90
trans2. 113
unifrm. 105
upda. 48
updab. 49
updb, 49
updh, 51
updph. 51
updq, 50
vadd. 115

Index-2

vaddl. 115
vechgl, 100
vecm, 95
vecms, 95
vecnul, 117

Index=3

vecnuls. 117
vecsum, 96 .
vmatl, 118
vmat2. 118
vscale., 116

Standard Bibliographic Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA_CR-177986 .
4. Title and Subtitle 5. Report Date
TINDS: A Tault Inferring Nonlinear Detection System December 1985
Programmers Manual Version 3.0 6. Performing Organization Code

7. Author(s) -
8. Performing Organization Report No.

Rov E. Lancraft Report No. 6012

9. Performing Organization Name and Address 10. Work Unit No.

BBN Laboratories 11. Contract or Grant No.
M S
10 Moulton Street NAS1-16579

Cambridge, MA 02238
12. Sponsoring Agency Name and Address

13. Type of Report and Period Covered

Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington NC 20546 505-34-13-12

15. Supplementary Notes
Langley Technical Monitor: Frederick Morrell

Computer Program NDocumentation

16. Abstract

This report provides detailed software documentation of the digital computer
program FINDS (Pault Inferring Nonlinear Detection System) Version 3.0. FINDS

is a highly modular and extensible computer program designed to monitor and
detect sensor failures, while at the same time providing reliable state estimates.
In this version of the program the FINDS methodology is used to detect, isolate,
and compensate for failures in simulated avionics sensors used by the Advanced
Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in

a Microwave Landing System (MLS) environment. Tt is intended that this report
serve as a programmers guide to aid in the maintanence, modification, and
revision of the FINDS software.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

Sensor failure detection, fault tolerant
navigation, MLS, no-fail filter T Unclassified - Unlimited

Subject Category 06

19. Security Classif.(of this report) 20. Security Ciassif.(of this page) |21 No. of Pages!22. Price
Unclassified Unclassified . 173 AO8

For sale by the National Technical informatior S=rvice, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

End of Document

