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ABSTRACT

This report presents the Final Report on NASA Grant NAG 3-31
entitled "Development of Constitutive Models for Cyclic Plasticity and

Creep Behavior of Super Alloys at High Temperature. An uncoupled
constitutive model for predicting the transient response of thermal and
rate dependent, inelastic material behavior has bhbeen developed. The

uncoupled model assumes that there is a temperature below which the
total straln consists essentially of elastic and rate insensitive
inelastic strains only. Above this temperature, the rate dependent
inelastic strain (creep) dominates. The rate insensitive inelastic
strain component is modelled in an incremental form with a yield
function, blow rule and hardening law. Revisions to the hardening rule
permit the model to predict temperature-dependent kinematic-isotropic
hardening behavior, cyclic saturation, asymmefric stress-strain response
upon stress reversal, and variable Bauschinger effect. The rate
dependent inelastic strain component 1is modelled using a rate equation
in terms of back stress, drag stress and exponent n as functions of
temperature and strain. A sequence of hysteresis loops and relaxation
tests are utilized to define the rate dependent inelastic strain rate.
Evaluation of the model has been performed by comparison with
experiments involving varicus thermal and mechanical load histories on
5086 aluminum alloy, 304 stainless steel and Hastelloy X.






SUMMARY OF RESEARCH

Constitutive models may generally be grouped into three
categories: microphenomenological, nonlinear viscoelastic, and
classical plasticity. Each group can be further separated into unified
and uncoupled theories, where the two differ in their approach to the
treatment of rate independent and rate dependent inelastic deformatlon.
The unified approach separates the total strain rate as

£=65 + €T+ €7 (1)
where & represents the total strain rate and superscripts E, I, and T
represent the elastic, inelastic and thermal components, respectively.
Alternatively, the uncoupled theories partition the inelastic strain
into plastic and creep components. This can be expressed as
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where superscripts P and C represent the rate independent "plasticity"
and rate dependent "creep" strain terms, respectively. Such uncoupling
of the strain components provides for simpler theories to be developed
(along with simple tests to define material constants) but does preclude
any creep-plasticity interaction except through ad hoc rules. More
complete discussions and literature reviews are provided in the papers
and reports contained in the Appendix.

The constitutive model developed in this research is based on
uncoupled strain components as written in equation (2). The model
.assumes that there 1is a temperature below which the 'total strain
consists essentially of elastic and rate insensitive inelastic (plastic)
strains only. Abcve this temperature, the rate dependent inelastic
strain (creep) dominates. The rate insensitive plastic strain is
modelled by an incremental model with a yield function, flow rule and
hardening law. Provisions are made for cyclic saturation and variable
Bauschinger effect. The rate dependent inelastic component is modelled
using a rate equation in terms of back stress, drag stress, and exponent
n as functions of temperature and strain. The rate dependent and
independent inelastic components are selected so that their sum is
always equal to the total inelastic strain at all temperatures.

Rate Insensitive Strain Component

The rate insensitive inelastic (plastic) strain component is
modelled using a modified and improved incremental theory applicable to
cyclic thermomechanical material response. The model makes use of four
major components. For simplicity, the following equations will be
presented in unliflal form; their extension to multiaxial form is
presented by Allen

First, we assume a relation between stress and elastic strain

Eef=rF(e-g"¢g%¢7) (3)




or in incremental form ) ..
P
Av= 8% (ag-as"- a5% 4s7) + 4E (g7 ¢C
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where U is the uniaxial stress, E is elastic modulus, and &£ 1is the
uniaxial strain. Superscripts P, C, and T denote plastic, creep, and
thermal components respectively while t denotes values at the start of
the load step, and t+At denotes values at the end of a load step.

The von Mises yield criterion is used herein in combination with a
variable ratio isotropic-kinematic hardening law. The modified
hardening rule used in this research permits the model to predict
temperature dependent kinematic-isotropic hardening behavior, cyclic
saturation, asymmetric stress-strain response upon stress reversal, and
variable Bauschinger effect. The essential features of the hardening
rule are described in the thesis by Cronenworth included in the
Appendix.

While metals 1like aluminum exhibit a similar strain hardening
behavior for reyield after the initial yield, some metals (stainless
steels, for example) exhibit different forms of hardening behavior for
each half cycle of loading even after several loading cycles, i.e., the
stress-gtrain response is asymmetric. To account for the asymmetry,
both halves of a stress-strain cycle are used as input to the model and
the hardening ratio & is allowed to be a function of the direction of
loading. Typical experimental data and the linearized representation
are shown in Fig. 1. For temperature T curve ABC corresponds to the
first half cycle of response while curve DE (or D'E') corresponds to the
second half or reverse loading response

For a combined hardening law, the hardening ratio, A? , i3 the
ratio of isotropic to kinematic hardening such that A&=g constitutes a
kinematic hardening law where the yield surface retains its initial
size, shape and orientation thus simply translating in principal stress
space. Isotropic hardening, 8=/, indicates that during plastic flow the
yield surface expands uniformly about the origin and never translates.
Using a values for the hardening ratio such as O0%S = 1 constitutes
a combined hardening rule where the yield surface is allowed to both
expand and translate. The hardening ratio may be variable if it is
defined as a function of plastic strain and temperature using

(QQ;—G;') . (5)
(203 -27;)

where the stress values are defined in Fig. 2 for each temperature. If
is a function of plastic strain as well as temperature, several cycles
of stress-strain data are required to characterize this parameter.
Typical curves for the hardening ratio are also shown in Fig. 2. As
approaches a 1limiting or asymptotic value with respect to - plastic
strain, we note that the cyclic hysteresis loops will saturate.

BT T) =

The growth law for the yield surface size K may be obtained from
using
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K=+ (7 ) @

where Oy represents the yield stress and ¢ is the applied stress. In
equation (6), K=K (P, 7). For the case where loading and reverse
loading response 1is different, we employ the following procedure at the
reverse loading point. Consider that base diagrams of K vs §7° have
been obtained as shown in Fig. 3. Recall that the "a" curves are the
ones that result from reverse yielding while the "b" curves are from the
virgin stress-strain curves. If a reverse yielding occurs at fP=§ ,
we assume the "b" curves are linked to the global diagram as shown at
the bettom of Fig. 3, always linking-on the complete curve starting from
zero plastic strain. When another reverse yielding takes place, either
the "a™ or "b" curvés are 1linked to the global diagram at that
particular value of plastic strain that has been accumulated. A similar
procedure 1is carried cut for the global uniaxial stress vs. plastic
strain diagram. ' :

The experimental requirements required to characterize the
hardening law depend upon the metal. For the most general case,
isothermal c¢yclic stress-strain tests are run till the hysteresis loops
stabilize. Cyclic tests are required for several temperatures so that
the temperature dependence can be adequately characterized. Loading
rates must be selected so that time-dependent effects are negligible.

Rate Dependent Inelastic Strain Component

In the present, the rate sensitive strain component is obtained
from Thysteresis loops and stress relaxation tests at various
temperatures. Fig. 4 shows a typical set of these tests and details how
the rate dependent deformation is extracted from the saturated cyclic
data. A reference temperature hysteresis 1loop 1is defined at a
temperature below which the total strain consists essentially of elastic
and rate insensitive plastic strains only. Above this temperature, the
rate dependent inelastic strain (creep) dominates. Experimental tests
conducted by Yuen (see Appendix) seem to indicate that such an
uncoupling is feasible for Hastelloy X. The basic concept of decoupling
strains according to Fig. 4 is to take that part of the inelastic strain
which is strongly time dependent and call it 5“: ; the remaining part
is assumed to be all rate insensitive and incorporated into j/g

Micromechanical consideration suggest a model for the rate
dependent inelastic strain of the form ‘

P
o- <2 ' | o
[

éc; ,47»4—(0"--!7-) {

where EC represents the rate dependent inelastic strain rate, L2 is
the back stress, K is the drag stress, and n is a temperature-dependent
"constant." The back stress, drag stress, and exponent n are generally
function of temperature and strain (or stress). However, for some
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materials a good assumption 1is that the drag stress and n are constant
at sufficiently high temperatures. The experimental determination of {2,
K, and n 1s based on stress relaxation tests at low temperature and
stress drop/strain transient test at high temperature. Details of these
experiments are presented in the thesis by Yuen (see Appendix).

Evaluation of the Model

The capabilities of the constitutive model develcped during this
research have been evaluated through several hypothetical numerical
experiments as well as by comparison with experimental results., Only a
few of these results are presented here. More complete comparisons and
details of the -experiments, as well "as experimental laboratory
facilities developed during this research, are presented in the
Appendix.

In the first example, we illustrate the effect of a change in
strain hardening upon stress reversal, which is typical of many alloys.
Figure 5 illustrates the stress-strain curves for a theoretical single
cycle reverse load test. The input can be taken from either first or
saturated cycle data. Curve B represents the initial strain hardening
behavior while curve ‘A represents the high rate of strain hardening seen
upon stress reversal. If a single cycle reverse load test is performed
with this theoretical data, the results will be similar to those shown
as output in Fig. 5. The revised model using both halves of the cyclic
stress-strain response (curves A and B) is a much more realistic
representation of actually observed experimental  behavior for many
metals than the combined hardening rule previously used by the current
researchers., Even the revised model representation using only curve B
is an improvement over existing hardening rules which "square-off" the
behavior upon reyield.

In the next example, we consider a hypothetical fully-reversed
cyelie uniaxial strain history of +/- 0.25% strain with two different
assumptions for the hardening law. In Fig. 6a, a combined hardening law
with 4&=z0.5 was used while in Fig. 6b results are presented for a
variable hardening ration given by B =06 - %.7 £~ . It is seen
that different rates and amounts of cyclic saturation are easily
predicted by the model.

In- the third example, we consider a uniaxial specimen subjected to
a thermomechanical lcading history as shown in Fig. 7. The stress-
strain curves do not include any asymmetric hardening ( B=¢.5 ), but
are considered to be dependent on temperature as shown. Results from
the constitutive model for modulus, strain hardening, and yield surface
size as functions of plastic strain and temperature are shown in Fig. 8
(ti in Fig. 8 corresponds to t, in Fig. 7). It is interesting to note
the change in yield surface size as a function of plastic strain. As
discussed previously, the curves are modified each time there 1is a
stress reversal which causes yield or reyleld. This physically
represents the rounded shape of the stress-strain' curve after reverse
yielding seen -in experiment in terms of the mathematical modelling,
this corresponds to the linking of the original yield surface curve onto
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the current global diagram. The squares in Fig. 8 point out where this
process takes place each time. ’

The numerical experiments discussed above serve to indicate the
potential response possible with the constitutive model. The model has
also been compared to experiments involving several different materials
and thermomechanical loading histories. Three of the comparisons are
presented here. The first involves a‘gniaxial test of 5086 aluminum
alloy between Troom temperature and 275°F. Stress—-strain curves were
obtained for one complete cycle (with "asymmetric strain hardening
accounted for) and, from experiment, the hardening ratio was found tc be
approximately 0.U45 for the first loading cycle and approximately 0.0
(kinematic) for  all reloading cycles. Figure 9 presents the cyclic
loading and temperature history. We observe that the theoretical
results are in very good agreement with experiment and the high rate of
strain hardening during load reversal is modelled accurately.

In the next test, we attempt to model the evolution of hysteresis
loops for a mechanically cycled 304 stainless steel specimen at 1,000°F.
We note from Fig. 10 that the loading-reloading response is quite

asymmetric and the difference alternates throughout many cycles. In
this case, tension preceeds compression; however, the same effect is
observed 1if compression 1is applied first. From experiment, the

hardening ratios were determined to be approximately 0.2 for the first
quarter cycle and 0.35 for the second.quarter cycle. "Results for the
first and. fourth c¢ycles indicate reasonably good - correlation with
experiment.

In the last case, we consider the prediction of cyclic saturation
of Hastelloy X at room temperature when cycled between +/- 1.1% strain
under strain control. Figure 11 presents the experimental results while
Fig. 12 shows a comparison between theory and experiment. In Fig. 12,
expérimental data is shown only for the first one-half "‘cycle and the
last (saturated) cycle. The model results depict the gradual saturation
response as well as the limiting response. A hardening ratio function
given by A= p 075 44375 £7 was used in tension while that used
for compression was & =o./0 — 0.5 £ . Notice that as model
predictions approach saturation, some fluctuation 1is seen on the
compression side. This is thought to be due to increasing numerical
error at this point as no equilibrium iterations are performed in the
finite element analysis. Most of the difference in experiment and
theory is due to difficulty in modeling of the second quarter cycle,
otherwise the model predictions are reasonably good.:

13
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CHAPTER I
INTRODUCTION

Modern computatiohal methods for the‘stfess analysis of structures
are well established. For behévior that is linear and even geometric-
ally nonlinear, the finite element method has proven to bé a very
capable tool for the structural engineer. However, nonlinear material
analysis is much more difficult‘and not yet as fully developed as proven
by the large amount of research donme in this area in recent years. Of
particular interest to this research, the solution of thermal and rate
dependent elastic-plastic material behavior is quite difficult. Appli-
cations of thi; technology are needed in components such as nuclear
reactor pressure vessels and’gas turbine blades.

Historically, the study of plasticity of metals began in 1864 with
the publishing by Tresca [1] of a prélihinary account of experiments
on punching and extrusion. This led him to state that a metal yielded
plastically when the maximum shear stress attained a critical value.
Application of Tresca's yield criterion was investigated by Saint-Venant
[2] to determine stresses iﬁ cyclinders and tubes. He also recognized
that there was not a one-to-one relation between stress and total plas-
tic strain. Levy in 1871 proposed multiaxial relations between stress
and plastic stfain [2].

Advancement to a more satisfactory yield criterion was constructed

on the basis of purely mathematical considerations by von Mises [3]

This thesis follows the style and format of the Journal of Applied
Mechanics.




in 1913. Further work was done in the 1920's by Prandtl [4], Nadai,

Lode, and von Karman [2]. It was in the early 1930's that two impor-

tant generalizations of the available theory were made. The first was
made by Reuss in 1930 [5] who allowed for the elastic component of
strain. The second was made by Schmidt (1932) and Odquist (1933) [2]
who showed how to 1ncorporate work hardening into the framework of the o ,i
Levy—Mises equations.- Thus by 1932 an elastic—plastic theory had been
constructed to model‘these properties of an isotropic metal at room
temperature [2].

Work in this area in the 1940's and beyond was done by several

prominent researchers like Hill [2], Drucker [6], Prager [7], and o :J

‘Ziegler [8]. Recently, the basic trend has been to extend the rate

» independent theoriesptovinclude rate effects by adding on a creep term.
fhis 1eads to an uncoupled'or‘partioned theory, and many are now in
use:today in-finite element structural analysis‘codes. Most recently
with the recognition:that the rate independent and rate dependent in- E =

elastic deformations are not autonomous phenomenon, a number of "uni- —

fied" constitutive models have been developed and are still underg01ng

active development [9] Present day efforts include the extension of

classical plast1c1ty to predict rate dependent behav1or and the modifi-

cation of linear v1scoelast1city to model nonlinear material response e

"1[10] Many theories are available but none have shown clear superiority

over the others : modelling material behav1or over w1de ranges of

-talftheorv:of'plasticitv‘to develop;and:evaluate:the uniaxial




constitutive relations necessary to model the nonlinear behavior of
crystalline materials experiencing thermoelastic~plastic-creep. Among
the requirements for a éound constitutive theory for the media mention-
ed above are that it incorporate the ability to model transient teﬁ—.
pérature response; cyclic behavior including cyclic satufafion, the
change in strain hardening upon stress reversal, and the Bauschinger
effect; and rate dependence.

In fulfillment of these objectives, this thesis will p;oceed in
the followiﬁg manner. First, a brief literature review of the avail-
able theories is presented along with a discussion of the details of
the constitutive modei used in this research. Next, the development
of thé model is accomplished by derivation of the uniaxial theory in-
cluding experimental data requirements and computational considerétions.
Several theorgtical examples are presented élong with comparison to

experiments on several different metals at elevated temperature.







CHAPTER II
BACKGROUND

Present Status of Constitutive Modelling

.To characterize the structural response of any general three-di-
mensional body, one must satisfy mechanics (conservation of mass.and
momentum, and kinematics), thermodynamics, and constitution. Since
mechanics and thermodynamics are well established for most continua,
it becomes the physical characteristics or constitﬁtion of a body that
deterﬁines whether one can successfully analyze its structural re-
sponse. Furthermore, because of the widely varying material‘proper—
ties and environments that structural media are subjectéd fo, consti-
tutive modelling is usually festricted to specific types of media. An
all encompassing.model that works équally well fo: all materials is
simply not feasible. One such category of material response, and the
Ene that this research-will deal specifically with, is the elastic-
plastic-rate-dependent crystalline material at elevated temperature,

N

The major types of constitutive laws available to model the ma-

- terial behavior discussed above can be grouped into three categories,

microphénémenological, nonlinear.viscoelastic, and classical plastici-
ty. Also, thefe is an existing subdivision within the categories
labeled unified and uncoupled theories, where the two differ in their
approach to the treatment of rate independent and.rate dependent in-
elastic aeformation. The unified approach separates the total strain

as

€ =€ + eI + e, ' (1




' where ¢ represents the total strain and superscripts E; I, and T repre-

sent the elastic, inelastic, and thermal components respectively. Al-

te;natively, the uncoupled theories partition the inelastic strain into

plastic and creep components. This can be expressed as

€ = EE/+ EP + ec + eT, (2)

where superscripts P and C represent the rate independent ''plasticity"

and rate depgndent "creepf'strain terms respectively. Researchers like

Walker [9] and Krieg [11] question the partitioning as it has no under-
lying physical basis and does not account for creep and piasticity in-

teraction.

. "The uhcouplihg of inelastic behavior into rate independent and
rate dependent componénts is unsatisfactory to the material scientist
because it is not microbhysically justified {11]. Although many recent
unified theories have been proposed, they still are not yet proven to
be more successful overall than the uncoupled theories.

For example, Walker's theory [9] (considered one of the better
unified models) reproduces cyclic stress-sfrain behavior at elevated

temperatures very well. Unfortunately, the theoretical hysteresis loops

at smaller strain rates or lower temperatures are too square in compari-

son with the actual experimental loops. Thus, Walker's theory does
not characterize adequately the classical plasticity that is occurring
in this load-temperature range. Walker also proposes an extension to

include temperature depemndence, but no attempt has been made to model

transient temperature response [1l0]. His theory is restricted in its

S




use to an elevated temperature environment. The author does not want
to leave the impression that Walkef's theory is an inferior one as it
is not. This discuésioﬁ is simply to point out that the ﬁncoupled
theories are nof necessarily inferior to the unified ones.

As discussed below, present theories attempt to model these physi-
cal mechanisms in a variety of ways.

Microphenomenological theories. The mechanisms for micropheno-

menological theories are discussed;in detail by Allen [12]. These
theories represent an element of material called a polycrystal as be-
ing composed of a large number of randomly oriented monocrystals.
Statistical averages of the propérties of each monocrystal and their
interactions determine the behavior of the polycrystal [13]. Theée
crystalline materials form lattice structures that contain many im-
perfegtions called dislscations Which vary in density and location de-
pending upon the processing used in manufacturing the matérial. -Plas—
tic deformation occurs by slip on certain crystallographic planes and
is explained in terms of dislocation theory of plastic deformation.
For example, dislocation interaction explains how strain hardening can
occur in any crystal [14].

One example of a microphysically based constitutive law is an

‘elastic-viscoplastic theory based on two internal state variables by

Bodner, et al. {15). The authors state the constitutive equations

abilify to represent the principal features of cyclic loading behavior
including éoftening upon stress reversal, cyclic hardening or soften- j
ing, cyclic saturation, cyclic relaxation, and cyclic creep. One

limitation of the formulation though is that the computed stress-strain




curves are independent. of the strain amplitude and therefore too "flat"

or "square"

Another example is in the paper by Miller [16] on modelling of

cyclic plasticity with unified constitutive equations. He also recog—

nizes the shortcoming of many theories in predictlng hystere51s loops

which are "oversquare'' in comparison to observed experimental behav1or.

Improvement is accomplished by making the kinematic work-hardening z

coefficient depend on the back stress and the sign of ‘the nonelastic

strain term. Results compare favorably with that observed in 2024-T4

‘

aluminum alloy. Miller states his approach appears consistent with an

existing phvsical explanation in terms of annihilation of previously—
generated dislocation»loops upon reversals in the direction of dislo- - e
_cation‘motion. i

A theory that is similar in format to Miller's is by Krieg,

Swearengen, and Rohde [11]. The model uses two‘internal state variables

to reflect current microstructure and is based upon models for dislo-~

cation process in pure metals. It is an extension of an equation of ‘ =

...
»

state theory originally attributed to Kocks [17] where the inelastic

flow rule is taken to be a power function incorporating a kinematic jq

and isotropic internal variable.‘ They assume that all the net mechani-

cal effect of the complex dislocation processes can be contained by ’ :l

one or two readily measurable macroscopic variables. The theory can- ' _ ;)

£t
. Y

'not accurately:model cyclic hardening or softening behav1or and the

strain hardening behav1or is necessarily square in nature because of

e the[powerwlaw assumption,l Also, applications of the model over a w1de

e

."_range of homologous temperatures or,to‘alIOys in general is not_advised.




Nonlinear viscoelastic theories. Nonlinear viscoelastic or ther-

‘

modynamically based theories are usually distinguished by their single

integral or convoluted form. This type of constitutive model employs
the first and second laws of thermodynamiecs along with physical con-
stréiqfs to complete the formulation [12]. A detailed review of sey-
eral existing theories is presented ih both [10] and [18].

One of the more promising theories is credited to Walker {9,18].
It is a unified integral viscoplastic theory developed by modifying the
constitutive relation for a linear three parameter viscoelastic solid.
The theory contains clearly definéd material parameters, a rate depen-
dent equiliﬁrium stress, and a proposed multiaxial model. An impor-
tant shortcoming of Wélker's theory is its failure to model transient
temperature conditions, but Allen and Milly [10] conclude that his
theory is the best presently available for predicting cyclic response
at elevated temperatures under isothermal conditions.

Other nonlinear viscoelastic theories discussed by Walker [18] .
are by Cernochy and Krempl, Valanis, and Chaboche.

Classical plasticity theories. The type of constitutive law con-

sidered in this research is derived from classical incremental plas-
ticity. It is termed a macrophenomenological theory as it derives its
state variables purely from experimental results without direct
reference to the microstructure of the material. This type of consti-
tutive law can be defined as one that attempts to describe the elastic-
plastic behavior of a material based on properties obtained from a
single stress state and then 'use them to establish relationships be-

tween the general. stress and strain tensors [13]. Most incremental




pla;ticity theories have four major components: (1) a stress-elastic
strain relation, (2) a yield function describing the onsét of plastic
deformation, (3) a hardening rule which prescribes the étrain-hardening
of the material and the modification of the yield surface during plas-
tic flow, and (4) a floQ rule which defines the component of strain
that is plastic or nonrecoverable [19].

Research in this area ié voluminous. The inviscid plasticity is
well established while the extension to include rate and thermal ef-
fects is not. References [10,12] and [13) summarize some of the im-
portant research efforts in their field of study. Of the classical
plasticity theories reviewed in [10], the most promising onés belong
to Zienkiewicz and Cormeau, and Allen and Haisler. The former is a
rate dependent unified theory which allows fof nonassociative plas-
ticity and.sfrain éoftening>but does not model the Bauschinger effect
or temperature dependence.‘ The-latter is an extension of classical
plasticity to model both rate and thermal effects. It is a two‘state
variable uncoupled theory with clearly defined material parameters and
extension to multiaxial form. Still another example is a model pro-
posed by Poﬁov and Petersson [20,21]. Excellent agreement with experi-
ment is shown in the isothermal, rate independent case. Snyder and
Bathe [22] have proposed a modification to classical plésticity which
does model both rate and thermal effects in the monotonic load case
but is res#ricted to a_kinematic hardening rule. Allen [12] suggests
that the theory praposed by Yamada and Sakurai [23,24] may be ;he best.
for modelling the tyﬁe of behavior described herein. Temperature de-

pendence of material properties, a combined hardening rule, and an
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CHAPTER III
DEVELOPMENT OF THE MODEL

The author gives the following justifications for using the un-

coupled approach proposed by Allen and Haisler. One can partition

the total inelastic strain into components as long as their sum yields

the total nonrecoverable deformation without significant adverse ef-
fects [12]. The theory is able to model behavior over a wide range
of load and temperature up to at least one-half the melting point for
several metals. It is also one of oﬁlyva few to address transient
temperature conditions. Also, with the revised hardening law pre-
sented herein, the rate independent inelastic deformation is modeled
as well as or better than the unified theories reviewed. Reasonable

experimental data requirements are another strong point of this theory.

Derivation of the Constitutive Equations

The constitutive equations of the Allen and Haisler model are de-
rived in a uniaxial incremental form relating the total stress incre-
ment to the total strain increment. Development of the theory in this
form is a logical approach as it lends itself to much simpler evalua-
tion without iﬁtroducing unnecessary complications of a multiaxial
theory. Many components of the work required are much more easily done
in uniaxial form such as the computer code development and experi-

mental model verification.

As stated earlier, most classical plasticity theories have four
major components., First, there is a relation between stress and

elastic strain

PRECEDING PAGE BLANK NO’I“'Z.FI_LMED'
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0 = Ee& = E(eme —cCme ), (3)

or in incremental form

t t t
T
P_cC ()

P-AEC-AET) + AE(st—e - =€)

20 = EFFBE (he-ne
where ¢ is the uniaxial stress, E is the elastic modulus, .and € is the
uniaxial strain. Superscripts P, C, and T denote plastic, creep, and
fhermai components respectively while t denotes values at the start of
the load step, and t + At denotes values at the end of a load step.
Note thaf the elastic modulus is measured at the end of the step be-
cause the time step is finite rather than infinitesimal as described
by Allen [12]. A graphical decomposition of the total strain is shown
in Fig. 1. The term "zero time'" denotes a loading input short enough
to negate any time dependent deformation but long enough to disregard
inertiai effects (a few seconds for many metals) [12]. Converself,
the long time éurveicharacterizes.the rate dependent deformation. Re-
call that there is no physical basis for uncoupling the inelastic de-
formation, but it is valid as long as coupling effects are insignifi-
cant or thé uncoupling is done properly.

Secondly, a yield fuﬁction describes the onset of plastic deforma-

tion. A possible functional form, supported by experiment, is given

by
F(o-a) = K>(/deb , T) ‘ (5)

where o and K represent the center and radius of the yield surface re-

spectively, deP is the history of the equivalent uniaxial plastic
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strain and T is the temperature. Note that microphysically a is a state
&ariable cémbining the effects of the back and drag stresses while
de is a second state variable representing the dislocation arrange-
ment. This arrangement of dislocations and dislocation loops will be
discussed later as to their effect on reyield and'stréin hardening be-
havior upon reyield.

A h;rdening rule preécribes the strain hardening of the material

and the modification of the yield surface during plastic flow and can

be stated in a combined isotropic-kinematic form as
da = dp(o-a) (6)

Qhere‘du is a écalar. Lastly, if yielding does occur we ﬁeed fur—
ther iﬁformation concerning the rate of deformation to complete the
description of the material behévior. This information is provided by
the flow rule which defines the component of strain that is plastic ar

nonrecoverable and can be written as

P 3F
de” = dk—a? @)

where d)\ is a scalar determined from material data. Equation (7)

is called an associated flow rule because it is the less general case
c&ntaining the partial derivative of the yield function rafher than a
general plastic potential. It is also known as a normality condition
becaﬁse it can be interpreted as requiring the normality of the plas-
tie strain increment 'vector' to the yield surface in n stress di-

mensions [26].
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Differentiation of (5) is the first step in deriving the consti-

tutive equations and will yield

oF .- oF oK
3 do - % do 2K 3e d + 2K 3T dT. (8)

The above consistency condition requires that loading from a plastic
state must lead to another plastic state [27]. Substitution of (7)
into (4)

SOt pt ¢t 1H (9)

do = (de dxs— —de -de ) + dE(e - - =€

and then (9) into (8) yieldé

t t t

%g {E t+At(d dka —dec—deT) + dE(et—eP —eC -eT )}
9F 4 _ K P, 3K
- == do = 2K, de°  + 2Kz dT. (10)
9E
Solving for dA from above
t .t .t
dr ={ aF[ t+At(de dec—ds Y + dE(e —eP —ec —aT )1 - oF do
of s
2k g2 - xR aryy BE gtHALIE, (11)

—P oT ao ls}
J€

and substituting (11) into (4) yields

: t t t
do = EX ({ae-[2E B  (demde®-deT) + dE(e—e’ —& ~T )

3F 3K ~P 3K 3F_t+AtdF, . oF
- 35 da ZI(aE_P de” - 2K= BT dT]/G——E 30)fac
t t t
—dec - deT 1+ dE(et-eP —ec -eT ). (12)

Rearranging the last equation to obtain
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do = E¥(ae-acCde’) + dm(et-ef € e

t+At 3F JIF t+At

E 30 30 (de-de —dg )
- 3F  t+it 3F
.90 3o
LEHSE OF 3 dE(Et_EP L &
80
- §§_Et+At JF
30 30
eear or ‘BF do -zx—EP g’ -2x%¥ dT
+ E 35 | ] (13)
3F _t+At OF :
30 T 30

Using the normality condition (7) one can write

—P
t+At OF t+it de
-E 35 - -E a . (14)

Then equation (4) can be rewritten as

t t t
_tHAt de _do 1 _t¥it _..C . T t_p_C T
-E FrurT d (E (de-de -de”) + dE(e -~ =~e~ =" )],
(15)
-and equation (13) can alse be rewritten as
: +
6 do = E-TCF(de dsC—de )8 - Et+At OF SF gt e deCgel)
‘ 90 90
t t t t t t
+
#dE(ete’ —eC T ) - EFPR R A p(etet O e, e
» c aq
where
_P ’ ) .
oo 2F o 2Ka GNP - L xx 17

= 30 dx dx 3T dx

SR
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Rearrange above to obtain

t+At 3F OF _t+it

do = [Et+At _ 80830 ]‘(de—dgc—deT)
pttit 2E 5F 4 t ot .t
4 [dE - 30 50 ©F e P CF_ 1"
5 : (18)

Now make the assumption made by Hunsaker [28] that

(do ~ Cdeb) %g -0 (19)

which defines C as a scaling parameter requiring (do = CdeP) to be
perpendicular to the yield surface outer normal. The verification of

this assumption is discussed by Allen [29]. Rewrite equation (8)

P
F gL dar e +xXar (20)
3o a0 — ‘ aT
d€
and equate with (19) to obtain
. _P
caef BE_0F 45 2 9F 4o 4 ¥ av o+ xXoar.
A 30 ag 90 s oT

Also, substitute the normality condition (7) into (21) will give

3F 3F OF 3F ) 3K
CdA % -50— =35 do = o do + ZKEE_P de + 2K3T dT 2
or
_P
‘ SF oF _ _1 3F - OF da 3K 2de oK 3T
30 50 _ dx 30 30 dn T ZKBEP o T KT o (23)

o Using the relations in (23), equation (17) can now be rewritten as




6 =C=—

90 Bq dg do
where
oF
€= Sga:GaF - 5
dA 5 3o dxi 3o

Applying (7), the above becomes

OF OF | t+bt 3F OF

(24)

(25)

(26)

Physically, C is the slope of the uniaxial stress vs. equivalent

uniaxial plastic strain diagram during an isothermal load increment.

However, during a nonisothermal load step

3¢ ~P , 3¢ —p
dG——_PdE +ﬁ'dT—Cd€ + — dT
ac
or
Ldo L dodT _ o,
="ty -8 ¢
de 77 de

The above statement is required because the uniaxial stress is a func-

3c dt
3T —P

(27)

(28)

tion of both the plastic strain history and temperature during non-

isothermal loading.

Finally, substitute (24) and (28) into equation (18) to obtain

t+it 3F 3F _t+at
tHAL 30_3o

] (de—dec—deT)

do = [E
OF 3F | pt¥it OF OF

'
B 30 30 30 30

18
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Etﬂt%%ﬁ | t pt ¢t Tt
+ [dE - ] (e - -¢~ -e )
yr SF 3F t+it 3F IF
90 30 30 a0
t+At OF 3F 3o |
B 3530 aT
+ [ - ] dT. (29)
,££+Et+At3_F3_F

90 90 - 30 30

Now for the yield surface translation scalar, substitute (6) into

(8) and solve for dy as follows

oK oK

3F 3F v
o do - e [du(o=-a)] = 2K 3EP + 2K 3T dT (30)
3F _3F . .. & ~P . 3K
du 5o (og-a) = 59 do 2K QEP de 2K 3T dT (31)
%g do - 2K %%? det - 2K %%-dT
du = . (32)

oF
G (o-a)

An outline for the uniaxial computer program utilizing the above

equations is contained in the Appendix.

Yield Function
The von Mises yield criterion is used herein an can be written in

terms of principal stresses o, as

;007 + (0,007 1= & (33)

F(oi) = %{(01—02)2 + (o 1

where K represents the current yield surface size. It has been shown

to be in excellent agreement with experiment for many ductile metals,
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for example aluminum, cold-worked mild steel, medium carbon and alloy
steels [2]. The von Mises yield criterion can be written in uniaxial

form (with the use of a combined isotropic-~kinematic hardening law) as

F(o-a) = (o-a)° = K° (34)

where u is the figld surface center.

Note that the aséumed yield function is dependent only on the
second deviatoric stress invarient, i.e., independent of hydrostatic
stress and with the assumptioﬁ of initially isotropic materials. Also,
the temperature dependence is handled through thermally dependent ma-
terial properties and is isotropic in nature, but there is no rate de-

pendence in this form of the yield function.

Hardening Rule

Laws governing the influence of plastic deformation on the yield
surface and strain hardening of a material are called hardening rules.
A significant amount of research has been done in this area, and there
are many different rules in use.

Consider Fig. 2 as a comparison of several hardening rules for a
given isothermal load history. Although isotropic hardening will
successfully mbdel‘loading histories in which stress reversals do not
occur, it is not satisfactory to model the Bauschinger effect or cyclic
phenomenon. Conversely, kinematic hardening will model the Bauschinger
effeét, but.neither hardening rulerpredicts the increased strain hard-
ening upon reyield as their ''square' hysteris loop predictions show.

Oak Ridge (ORNL) [30] and combined hardening rules predict overall

‘a 3
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response somewhat better. Hunsaker [13] suggests the mechanical sub-
layer model for loadings in which stress reversals may occur. Of ali
the plasticity models displayed in Fig. 2, the multisurface approach
of Petersson and Popov [20,21] clearly gives the best theoretical re-~
presentation of the experiment.

Thus, if one is interested in the exact stress-strain behavior
over the entire load history and not just an end result, a hardening
law which accounts for increaéed strain hardening upon reyield becomes
a necessity.

At temperatures below roughly one-half the melting point for many
metals, a change of loading direction in stress-spaée plays a very im-
portant role.‘ In many hardening rules emphasis is placed on how to
describe tﬁe evolution of the yield surface while little has been done
as to how the plastic modulus is affected by stress réversals in cyclic
loading [31]. Above this temperature-fhe stress-strain behavior is
controlled by rate dependent deformation and experimentally observed
hysteresis loops are relatively 'square". Thus the simulation of the
strain hardening is not as critical.

Many authors mention the "oversquareness' of predicted hyteresis
loops. Among these are Miller [16], Dafalias and‘Popov (31], Walker
(9], and Popov and Peterssom [20,21]. It seems that this phenomenon
is of some interest to the researchers in this field. Miller improves
his unified timé—dépendent constitutive equations by making the
kinematic work-hardening coefficient a function of the back stress and
the sign of the nonelastic strain rate and shows favorable agreement

with that observed in 2024-T4 aluminum alloy. Another approach by
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Dafalias and Popov which was extended by Petersson and Popov involves
enclosing the initial yield surface within a larger bounding s;rféce.
Both surfaces are allo@ed to trapslate and deform in streés space,

and the proximity of the two détermines the plastic moduli. Two other
hardening rules which provide for a high straih—hardening rate upon
reyielding are the Mroz and mechanical sublayer modéls [13].

Sincé Miller's theory [16] is microphenomenologically based, he
seeks to make his model consistent with.existing‘microphysical explana-
tions. He states that dislocatiéns moving in a given direction will
form dislocation loops by interaction with precipitate particles, and
when the direction of dislocation motion is reversed a dislocation can
annihilate a nearby loop which was previously left behind. A relative-
ly rapid change of strain in the nature of the stress field encountered
by fhe reversing dislocation would result and lead to a large value
of the slope do/de. As the strain continues to revérse, dislocations
will no longer be encountering such oppositely-signed loops and do/de
will gradually decrease. Miller models this by associating the direc-
tionality of the dislocation debris with the back stress R and the
difection of current dislocation motion with the sign of the difference
o/E-R. A similar argument is given by Polakowski and Ripling [14].

Aithough the combined isotropic-kinematic hardening rule used by
Allen and Haisler [25] cannot represent the high rate of strain har-
dening accompanying stress reversals which causé yielding, it does
account for thermally dependent material properties and the Bauschinger
effect. Thus it was felt that with some modifications, all cyclic

characteristics could be modeled. To summarize, the two important
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shortcomings of their hardening law in representing cyclic behavior
are its failure to account for the high rate of strain hardening upon
reyielding after a stress reversal aﬁd cyclic saturation.

In terms of actual modelling of the two shortcomings discussed
above, several revisions and improvements have been added to the model.
First as discussed in regards to experiméntal data requirements, ad-
ditional stress-strain inbut is required to characterize various strain
hardening rates. Metals like aluminum exhibit a similar strain harden-
ing behavior for reyield after the initial yield. Conversely, stain-
less steel can exhibit two different forms of hardening behavior even
after several loading cycles. A program flag controls which input
stress-strain curve to use to generate hardening parameters depending
on the material being modeled and thg yield (load) history. Secondly,
the hardening ratio was allowed to be a functiom of plastic stréin and
in some cases the direction of loading. This aliows modelling of cy-
clic saturation;

More specifically, the hardening rule revisions can be explained
in two different discussions. The first deals with strain hardening
upon reyiela and the second with cyclic saturation.

Use of theﬁcombined hardening law in Allen and Haisler [ 25],
predicts cyclic behavior like that‘shown in Fig. 3. The hardening
ratio, B is the ratio of isotropic to kinematic hardening. Setting
B=0 constitutes a kinematic hardening law where the yield surface re-
tains it iﬁitial size, shape, and orientation thus simply tramslating
in principal stress space. Isotropic hardenigg, B=1, means that during

plastic flow the yield surface expands uniformly about the origin and

=
B
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never translatés. Using a value for the hardening ratio such as

-0 < B £ 1 constitutes a combined hardening rule where the field surface
is allowed to both expand aﬁd t;aﬁslate. |

Notice in Fig. 3 that the reyielded strain hardening behavior is

- "squared-off" as discussed‘above; The revised model‘has the ability

to reproduce strain hardéning beﬁ&ﬁior that‘is’dependent on direétion

. or history of yielding. ‘This is observed in experiment as the high .
rate-of strain hardening upon stress reversal in a cyclic load test.
In other words, the material demonstrates two distinct forms of beha-
vior as shown in Fig. 4. 1Initial strain hardening character is usual-
ly quite "sharp" in comparison with the rounded shape of the reﬁerse
loading curve. Popov and Petersson [21] found it essential in dealing
with cyclic steel behavior to use two stress-stréin curves as input.
The first is from a monotonic test on virgin material and the second is
from a hysteresis loop which develops after several‘loading cycles.

For a large numbervof common metals, a cyclic load history 1eads

to a limiting périodic response in which the stress~strain curve for
each consecutive cycle is the éame. Tﬁis is termed cyclic saturation
and is illustrated in‘Fig.MS [32]. Capability to portray this pheno-
menon is nét contained in many common hardening laws. With the addi-
tion of a hardeningrrafio that is a function of plastic strain and

in some caseé difeqpipn‘6f>loading into thg existing model, this

‘ipheﬁbmenon can;se_godéied ﬁﬁéh mofe succeséfuiiy than a combined har-

'~ ‘dening rule with a constant-hardening ratio.

S




Fig., 4 Typical experimental results showing difference
in first and second quarter cycle response
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The reader is referred to the sections on experimental data re-
quirements and theoretical examples for more details concerning the

T - above discussion.

~ o Creep Strain Increment
| The creep strain is defined as the uncoupled rate dependent inf
elasticideformation in the present theory. Several methods are avail-
able to characterize this strain component. Traditional characteriza-
L | tion has been based on the use of standard creep tests run at constant
o o stress and temperature."Creep strain (or creep strain rate) is writ-
- ‘ | ten as a function of time, stress, and temperature through the use of
pewer law fnnctions, exponentials, hyperbolic functions, etc. obtained
by appropriate curve fitting techniques. Additional ad hoc creep
hardening rules have been devised to model rate dependent behavior
- ’ during reverse and cyclic loading. Oak Ridge National Laboratory
used such models‘for 304 stainless steel with some success [33]. 1In
many cases it isrmore expedient to use tabulated creep strain data as
opposed to curve‘fitted deta; although this requires numerical inter-
polatinn between a eet‘ot isothermal, constant stress creep curves.

In the preeent research, an alternate approach has‘been taken
}? >it ' : involving nyeteresiehlpeps and etress relaxation tests at various
e ‘ i¥'> R temperetutes; Flgv 6 showe a typlcal set of these tests and details

=‘how the rate dependent deformatlon is extracted from them. ) » ;

A reference temperature hystere51s 1oop 1s deflned at a tempera—

7 Vrate 1ndependent plastlc stralns only ‘ Above this temperature, the'

e TR A
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rate dependent inelastic strain (creep) dominates. Experimentally,

Bradley and Haisler [34,35] have shown for Hastelloy-X that such an
uncoupling appears feasible:
Micromechanical considerations suggest a model for the rate de-

pendent inelastic strain of the form

éC = (UT‘OQ_)H s (35)

where éc represents the rate dependent inelastic strain rate, 2is the
back stress, KO is the drag stress, and n is a constant. The back
stress, drag stress, and exponent n are generally functions of tempera-
ture and strain. However, for some materials a good assumption is
that khe drag stress and n are constant at sufficiently high tempera-
tures.

At the tips of the hysteresis loops, the stress and back stress
have reached maximum values omax and Qmax respectively. If we lét ol
and 9, denote the maximum stress values at two different strain rates

€ and éZ’ then the value of n can be computed as

n = 1n<él/é2)/1n[(ol-amax)/(oz-nmax)] (36)

where Qmax is assumed to be constant between El and €ye Similarly,

the constant Kocan be determined by rewriting (35) in the form

| . _l/ ,
K°= (ol-Qmax)sl n . } (37) }

It should be noted that a number of the unified models reviewed

in Chapter II (for example, Walker's [9]) utilized similar functional




»forms and experimental characﬁerizations of the inelastic strain com-
ponent compared to that used in this reseafch for rate dependent in-
elastic strain. Althbugh the funétional forms used to model the uni-
fied inelastic strain give exéellent agreement at high temperature
(where rate dependence dominates), they give overly square stress-
strain response at low temperature (wﬁere rate independent plasficity
dominates). This is.due ﬁrimarily to the failure of the present uni-
fied models to account properly for rate independent behaviecr. In
the present research, this difficulty is hopefully overcome by model-
ling the rate dependent‘inelastic and rate independent inelastic strain
more accurately with appropriate definition of a temperature range

wheré each is applicable.

Experimentai Data Requirements

One of the requirements for a good constitutive model is that is
have reasonable experimental data requirements. Characterization of
model parameters éhould follow easily from Standard tests.

All experimental data tésts afe performed at sufficient levels of
the primary variables (strain and temperature) in order to bracket
their magnitudes in the particular test of interest. Consideration

is also given to allow accurate linear interpolation between tempera-

tures.
The first set of tests required is uniaxial isothermal single cy-
cle reverse loading tests like those shown in Fig. 7. These tests

are performed at fast enough strain rates so that the rate dependent

component of deformation is negligible. Characterization of both

L2
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initial and subsequent strain hardening behavior is the reason for the

reverse loading tests. Piecewise linear representations of the data
obtained from experiment are input into the model with the number of

linear segments used depending on the accuracy desired.

'

For example as shown in Fig. 7 at T=Tl, the initial elastic-

plastic behavior is characterized by curve ABC. Similarly the subse-

quent elastic-plastic behavior is characterized by curve DE. The
piecwise linear representations become curve ABC and D'E' where D'E'
was obtained by shifting curve DE to the yield pcint B. A similar

procedure is performed for all other temperatures as required. Note

that if the difference in strain hardening behavior is not considered

critical, (the difference between curves ABC and DE is insignificant)

only curves ABC and AFG would be required input.

If the hardening ratio is constant with respect to plastic strain,

it can also be determined from the above tests using the relation

6. - (20 -0 )
z J_© (38)

= )
‘ (200 bcy)

where stress values are defined in Fig. 8 for each temperature. If
B is a function of plastic strain as well as temperature, several
cycles of stress-strain data would be required to characterize this
parameter. Typical input curves for the hardeﬁing ratio are alsp

shown in Fig. 8.

A plecewise linear description of the temperature dependence of

the coefficient of thermal expansion is also required if it varies

significantly for the temperature range of interest.

34
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Experimeptel characterizatien‘of the rate dependent terms is the
‘eame‘ae foeralker's model [9]. Stea&y state hysteresis loops at dif-
ferent strain rates uﬁder fully reversed strain controlled conditions
as shown previously in Fig. 6 (p. 30) are required. These are all per-
formed until saterated values are established. Also required are
stress drop creep and relaxation tests from initial point on a steady
state hysteresis loop. All constants are a function of temperature
and require the above tests to be perfdrmed at all temperatures of in-~
terest unless interpolation is used.

For comparative purposes, a brief description of the experimental
data requirements for several other constitutive models is presented.

*The first tests required by Krieg, et al. [1l] are stress-drop
tests during steady state creep. This means that a fraction of the
applied stress is removed rapidly, and then this reduced stress.is
held constant until the accrued strainris sufficient to permit the
strain rate immediately after the drop to be obtained by extrapolation.
The stress is then increased to its original value to re-establish
steady state creep. This procedure allows the response of a speciman

to drop tests of various magnitudes to be obtained from a single creep
stress. For full characterization, this test procedure must be re-
peated at several nominal creep stress levels and temperatures.
Steady state and‘primary creep data must also be utilized.

Miller [16] states that with a general purpose constitutive
equation a fairly wide variety ef data is required. Calculation of
a complete set of material constants for an alloy on which hysteresis

loop data are available can be a very lengthy task with a substantial

P




37

amount of experimentation required for his model.

The characterization of model parameters for the theory of Bodner,
et al. [15] requires two monotomic stress-strain curves at different
steady strain rates. Fof cyeclic loading an additional constant is
required, but determination of that constant is unclear in their pre-

sentation.

Construction of Yield Surface Size and Stress vs. Equivalent Uniaxial
Plastic Strain Diagrams

Calculation of the yield surface size and equivalent uniaxial

. X . = P ..
stress is accomplished by constructing K and ¢ vs. € diagrams and

interpolating on these diagrams at known values of EP and T. From a

T

piecewise linear representation of a "zero time" stress-strain curve,

4

the equivalent uniaxial plastic strain is given by

1 X

F.=¢ -0a /E (39)
i N ,

The yield surface size and equivalent uniaxial stress are given by

~
Il

o, + B(cxi-cy) (40)

LY

o, =g - (41)

where Oy represents the yield stress.
For the revised hardening law, two each of the above diagrams are
required. The first diagrams for each case (K and E) will be labeled

base diagram and are simply the functions calculated from equations

(39) - (41) for the input stress-~strain curves. These change only if




the hardening ratio is a functibn of plastic strain. The second set
- or global diagrams evolve throughouf the solution process. They are
ini;ialized to equal the bése‘diagrams‘but afe mo&ified each time a
load reversal which causes yielding occurs. The modifiqation process-

consists of linking the base curves to the global curves at the values

of EP, K and 3-c§rresponding ﬁo the yield stress of interest. Input-
ting two stress-strain curves at each temperature comes into play as f]
their exists for example two K vs. EP base diagrams at eéch input tem~ -
perature. Factors such as type of material and load history determine J
which base curve is linked to the global diagram. All program inter- i

polation for calculation of model parameters is done on the global ;j

diagrams.

The above procedure is bést explained by a figﬁrative example.
Using Fig. 7 (p. 33) as the inpuﬁ stress-strain curves, the K vs. EP —]
base diagram for a constant hardening ratio is shown at the top of i
Fig. 9. Recall that the "a" curves are the ones that result from re-

verse yielding while the "b" curves are from the virgin stress-strain

U

curves. Note that the Allen and Haisler model uses only the '"b"
o P _ P .
curves. A reverse yielding occurs at ¢ = ¢ , causing the '"b'" curves
to be linked to the global diagram as shown at the bottom of Fig. 9.
’
When another reverse yielding takes place, either the "a'" or "b" curves

are linked to the global diagram at that particular value of EP. A

similar procedure is carried out for the global ¢ vs. EP diagram.

Computational Considerations

For completeness of the theoretical presentation, the gradients, f]

transition step, thermal strain increment, and elastic strain
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increment are all discussed below with regards to computational consi-
derations. They are also presented by Allen [36].
Gradients. Linear interpolation is performed to compute values

between input temperatures. The yield surface temperature gradient

‘can be obtained by

3T —

D KL
T, - T, (42)

where the subscripts H and L denote the values of a particular variable

for the temperatures above and below the current temperature T.

Similarly
o, - o
d0 _ H L :
3T T T, - 1 (43)

. —— __P .
where the stress values are obtained from the ¢ vs. ¢ diagram. The

slope 6f the K vs,. EP diagram can be obtained by

(T, - T)
3K K H
5 = =) - =) ) w7 (44)
e e ;zP . oe L Ty = Tp)
and the slope of the ¢ vs. e diagram by
ooy D |
B' = (H"), - (W), - @) ] ?E;—:-sz . (45)

Transiticn step. Special treatment must be given to the transi-

tion step from elastic to elastic-plastic behavior. The portion of
the assumed elastic stress increment do which will cause yielding

is fdo and the strain increment to bring the total strain to the

et A,
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- yield surface is nde. Thus for the transition step, the stress and

strain status are modified to become

o+ 0+ zdo ' (46)
£ >~ ¢ + nde 47)
where
= -B + BZ-AAC (48)
2A
A = dodo )
B = 2(0-a)do (49)
C = (o-a)(o-a) - (K-TBTy2
t ~  _t+rt EF -
no= g + tdo - E £ (50)
' Et+At dEE

The above equations are presented here for completeness of the theory.

" A full derivation of them is given by Allen [12].

Thermal and elastic strain increments. The thermal strain incre-

ment is given by [36]

T t+At t '
de” = o (th - TR) - aT(Ttl - TR), (51)

t+At t s s .
where c and @, are the coefficients of thermal expansion at the

beginning and end of a load step respectively, T¢ and T are the
‘ ' 1 2
temperatures at the beginning and end of a load step respectively,

and TR is the reference temperature for the unstrained state.




The elastic strain increment is calculated by [36] -

1
t t t
deE = Et+At {dc-dE(et—eP —sc —eT )} . ‘ (52)

Extension to Multiaxial Theory

The approach used to derive the uniaxial constitutive equations
makes it very simple to extend them to the multiakial case. For exam-
ple, equation (29) could be simplified comsiderably by, for instance,
dividing out terms‘like dF/30. This is not done, however, to retain
generality and ease of éxtension to the multiaxialvcase. To convert
equation (29) to a three dimensional form simply let uniaxial values
of stress and strain become the respective stress and strain fensors.
-Recﬁil the yield function is stated in‘terms of principal stresses in
equation (33). The general elastic constitutive matrix is then sub-
stituted for the elastic mo&ulus.

Gradients afe still determined from uniaxial input stress-strain
data, in fact the only additional experimental data required is

Poisson's ratio. The equivalent uniaxial plastic strain is

-2 _ 2 P P
de 3 deij dEij | (53)

in tensor notation. In engineering notation this equation can be
written as

—P 2 P P P P2 P P.2
de” = {9[(dex - dey) + (dey - dsz) + (deZ - dsx)

P .2 P .2 P . 2..%
+ 6(dexy) +6(de )" + 6(dayz) 11°. ‘ (54)
A full derivation of the multiaxial theory is comtained in

reference [12].
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_ CHAPTER IV
EVALUATION OF THE MODEL

Evaluation of the constitutive model detailed in this thesis is
now performed. A section on theoretical modél»capabilities is pre~

sented followed by evaluation againét experimentt

Theoretical Model Capabilities

Several examples of the capabilities‘of fhe model proposed by’
Allen and Haisler are given in referénces [36] for the uniaxial case
and [12] for the multiaxial case. The purpoée of the following
examples is to demonstrate the improvements in the revised model by
using theoretical illustrations of experimentally observed behavior.

Example 1 ~ Change of strain hardening with stress reversal. The

revised model has the ability to reproduce strain hardening behavior
that is dependent on direction of‘yielding. Fig. 10 illustrates the
input stress-strain curves for a theoretical single cycle reverse
load test. The input can be taken from eithef first or saturated
cycle data. On the iﬁput diég;am curve B represents the initial strain
hardening behavior while curve A represents the high rate of strain
hardening‘seen upon stress reversal. If a single cycle reverse load
test is performed with thié theoretical data, the results will be
similar to those shown as output in Fig. 10. The revised model using
curves A and B is a much more realistic representation of actually
observed experimental behavior for many metals than the combined

hardening rule of Allen and Haisler. Even the revised model
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‘representation using only curve B is an improvement over existing

hardening rules which "square-off" the behavior upon reyield.

Example 2 - Cyclic saturation. A hypothetical fully reversed .

cyclic strain history of + 0.25% strain was considered using four
different.values‘for the hardening ratio. The values used are shown
in Fig. 11 following the discussion on hardening rules in Chapter III.
An allowance for cyclic saturation is made by letting B be a function
of plastic strain. This corresponds physically to allowing the yield
surface to first translate and expand and then gradually saturate to
a constant size as observed in experiment. Input stress—strain data
is the same as‘the first one-quarter cycle input.

.The results for isotropic and kinematic hardening are shown in
Fig. 12. Kinematic hardening will model the limiting periodic re-
sponse, but there is no cyclic hardening of the material in achieving
the saturated hysteresis loop. Conversely, isotropic hardening pre-
dicts that the material will eventually cycle to a limiting.purely
elastic response as the yield surface expands without bound. This
same behavior is also predicted by a combined hardening law using a
constant hardening ratio. It takes somewhat longer to cycle to the
elastic response because of the component of kiﬁematic hardening
presént. This is shown in Fig. 13.

Successful modelling of cyclic saturation is accomplished by
lefting-the hardening‘ratio in the éombined hardening law be a function
of plastic strain. For this example, the linear relationship shown in
Fig. ll‘was assumed with results as shown in Fig. 13. Both the cyclic

hardening and limiting periodic responses are depicted.
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Example 3 - Cyclic thermomechanical loading. This example is

similar to one in reference [25] but is still applicable here to show
the increased capabilities of the revised model in predicting the
strain hardening behavior and also in reiterating its nonisothermal
aspects. Depicted in Fig. 14 are the input stress-strain curves and
thermomechanical load history for a hypothetical test. Note that
these curves do not include the capacity for variable hardening in
order to maintain clarity of the example. The hardening ratio is
a constant one-half.
Results from the constitutive model are shown in Fig. 15 where
ti in this figure corresponds to ti in Fig. 14. Modulus, strain har-
deniné, and yield surface size changes with temperature are all shown.
It is also inLeresting to look at the resulting yield surface
size vs. plastic strain diagram for this example also shown in Fig. 151
As discussed previously in constructionnof these diagrams, the curves
are modified everytime there is a stress reversal which causes yield.
This physically represents the rounded shape of the stress-strain curve
after reverse yielding seén in experiment. In terms of modelling, this
correspbnds to "linking" the original K vs. EP curves onto the current
global diagram also explained in the section on construction of these
diagrams. The squares in Fig. 15 point out where this process takes

place each time. The curves at each temperature are modified for

linear interpolation purposes.
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Comparison with Experiment

As discussed earlier, characteristiés of metals such as the high
rate of strain hardening upon yield reversal are much more pronounced
at high strain rates and temperatures below one-half the melting point.
Modelling of this phenomenon is less critical at more elevated tem-
peratures where plastic deformation is more fully rate controlled.
More importantly, there is an intermediate temperature range where
the coupling of plasticity and rate effects is the most critical test
of the constitutive model. To evaluate the models capabilities’in all
of these environments, specific areas of testing are: (1) elevated
temperature tests that evaluate the rate independent capabilities of
the .model, (2) cyclic load tests that evaluate the modelling of the
Bauschinger effect, the change in strain hardening upon stress reversal,
yvield surface evolution, and cyclic saturation, (3) transient tempera-
tures tests that evaluate the modelling of thermally dependent material
properties, (4) high temperature tests that evaluate the rate dependent
capabilities of the model, and (5) thermoelastic-plastic-creep tests
that evaluate the capabilities in the intermediate temperature range.

The high temperature materials testing laboratory in the mechani-
cal engineering department of Texas A&M University was used to rumn all
tests. A Mechanical Testing Systems (MTS) machine along with an in-
duction heating coils and generator, optical and thermocouple type
temperature controllers, high temperature tension-compression grips,
a high temperature diametral strain extensometer, and constant stress
creep frames fully outfitted for high temperature testing are the main

components available in this 1lab.

M
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Cyclic thermomechanical load test on 5086 aluminum alloy. The

first experimental evaluation is for a thermomechanical load history
applied to a 5086 aluminum alloy. This test is very similar to Exam-'
ple 3. Fig. 16 shows the results of comparing the Allen and Haisler
model using several different constant hardening ratios to experiment.
One can observe both of the shortcomings of the model discussed earlier.
The theoretical strain hardening behavior upon reyield is much too
flat or square and the cyclic hardening predictions are inadequate.

By inputting a second stress strain curve to characterize the more
rounded strain hardening behavior and making ﬁhe hardening ratio a
function of plastic strain as in the revised model, this experiment
can bé modeled Qery well. The actual function of plastic strain used
for 8 is that B=0.45 (constant) for the first quarter cycle-and since
the isotropic component of the yield surface saturated very quickly

in the observed experimental results, the second quarter cycle was
treated as being kinematic in nature. These results are shown in

Fig. 17.

Cyclic loading of 304 stainless stéel at 1000°F. Several other

model features are demonstrated by this test. As seen in Fig. 18,
the comﬁressive strain hardening behavior in the first cycle is more
rounded in shape than the tensile behavior. It 1is believed that the
same behavior would be seen on the first and second quarter cycles }
1f compression preceded tension. Unlike the previous test on aluminum,
this difference seems to alternate throughout all four cycles pre-
sented in Fig. 18. Thus one must alternate between first quarter and :

second quarter cycle input stress-strain data to model this test well.
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One possible explanation for this altermating strain hardening behavior
could be that the initial yield sets up an asymmetric microstructure.
This phenomenon could also be explained by reasoning that there is

less resistance to grain boundary sliding in tension as compared to

' compression. It is clear that a similar test needs to be performed

with the initial yield in compression and then alternating tension and
compression.

Next, the ability to vary the hardening ratio between alternating
quarter cycles is demonstrated. In addition, Fig. 19 shows the results
of using fourth cycle data as input. Both Fig. 18 and Fig. 19 show
good correlation of the model with experiment. An interesting’obser—
vation is that the elastic modulus during unloading decreases slight-
ly in the experimental results. This is not taken into account by
the constitutive model and is the reason for most bf the discrepancy
between experiment and model predictionms. |

Cyclic saturation of hastelloy-X. 1In Chapter 3, there was a dis-

cussion concerning cyclic saturation. Recall that cyclic saturation
is the limiting periodic responsé in which the stress-strain curve for
each consecutive cycle is the same as shown in Fig. 5‘(p. 28). Al-
though most materials show a gradual hardening during this saturation
process, some materials may cyclically soften. Microphysically this
corresponds to the movement of dislocations from a random orientation
into a cell structure which stabilizes their movement. This results
in the limiting response of the material. At more elevated tempera-
tures, the satufation effect naturally becomes faster as the>mobility

of the dislocation increases with increasing temperature. Hastelloy-X
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displays cyclic saturation as shown in Figs. 20-25. These curves are

actual experimental results of load vé. diameter éhange from the MTS
machine. The abrupt drops in stress at various points are not dﬁe to
_ /

machine problems but are rather due to dynamic strain aging of the
material. |

The center diagraﬁ in Fig. 20 shows the cyclic saturation dis-
cussed above. Uﬁiaxial specimens were cycled under strain control
(diametral strain) between equal tension and compression strain ranges
until saturation occurred. In order to observe strain rate effects,
most tests were run at three rates corresponding to test fimes‘of 10,
30, and 300 seconds per‘quarter cycle. During the test the diameter
change rate was constant so that actual axial strain rate was variable
during the ;ycle; however, the above test times correspond to average

3 3,67 x 107%, and 3.67 X 107°

axial strain rates of 1.1 X 10
in/in/sec. These rates were chosen because they are typical‘of.strain
rates seen under normal operating conditions of hot gas turbines. No-
tice that at room temperature, the rate dependent inelastic strain

is negligible as the hysteresis loops do not change with different
diameter change rates. Fig. 21 and Fig. 22 show the results for the
same strain history at 500°F and 900°F, respectively. To define fhe
rate dependent inelastic strain, a reference hysteresis loop is
utlized as was outlined in Chapter 3. Comparing Fiés. 22 and 23,

it is seen that rate dependence of the saturated hysteresis loops is

insignificant below 900°F for the rates comsidered. Consequently,

the reference temperature is chosen as 900°F.
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An interesting phenoﬁenon most clearly evidenf in Fig. 21 is the
discontinuities or serrations seen in the curves. This is known as dy-
namic strain aging and is associated with interactions between moving
dislocations and solute atoms [37].. Dynamic strain aging is both tem-
perature and strain rate dependent.

At 1200°F, thq rate dependent inelastic strain is no longer
negligible. Fig. 23 shows the somewhat faster saturation and more
"square'" shape of the hysteresis loops. These effects are even more
pronounced at 1400°F and 1600°F as depicted in Fig. 24 and Fig. 25.

At these elevated temperatures the rate dependence dominates and can
be modelled very well with an equation like equation (35). ‘The
hysterésis loops are quite square in nafure, and a high rate of strain
hardening upon stress reversal is not seen. A critical test of a
constitutive theory would be in modelling the‘béhavior in Fig. 23
where both rate iﬁdependent plasticity and rate dependent creep are
important.

Theoreticalimodelling of cyclic saturation of hastelloy—X was
performed for the room temperature case. The results are shown in
Fig. 26. Experimental stress-strain data is shown only for the first
on;-half cycle and the last (saturated) cycle. The model results
depict the gradual saturation response as well as the limiting re-
sponse. A hardening ratio of B = —0.3755P + 0.075 was used in tension
and B = -O.SE? + 0.10 was used in compression. Notice that when the
model predictions approach saturation, some fluctuation is seen on the
compression side. This is thought to be due to increasing numerical

error at this point as no equilibrium interations are performed. Most
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of the difference in experiment and theory is due to difficulty in
) modeling of the second quarter cycle, otherwise the model predictions

are quite good.
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CHAPTER V
CONCLUSIONS

An uncoupled, incremental constitutive model for elastic-plastic
behavior of metals at elevated temperatures has been presented. Revi-
sions to the combined kinematic-isotropic hardening rule allow for
much improved modelling of cyclic phenomenon. Also, an alternative ap-
proach to characterizing the rate dependent inelastic deformation has
been proposed.

Successful evaluation of the constitutive model against experi-
ment has been accomplished for a limited range of tests. The
) Bauschinger effect, changé in strain hardening upon stress reversal,
yield surface evolution, and cyclic saturation are all modeled well
for the isothermal, rate independent case at elevated.temperature.
Unfortunately, no comparison of the theory to experiment have been
performed at this time for the load and temperature ranges where rate
dependence is a significant factor. The need to utilize an improved
model like that presented herein depends on the application. For
example, if the application is to life or fatigue predictions, then
the detailed modelling of saturation and strain hardening observed at
low temperatures may not be of utmost importance. The saturated
hysteresis ioop may be adequate to define long term fatigue response.
Conversely, for low cycle applications, many researchers in this field
are concerned with exact hysteresis loop predictions and the evolution

to saturation. In this case, the improved model has important




.applications. Finally, in regards to the rate dependence
experimental results seem to indicate that the uncoupling
Chapter 3 gives acceptable predictions, but further tests

to verify the model.
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APPENDIX

COMPUTER PROGRAM OUTLINE

The following outline describes a basic flowchart of the uniaxial

constitutive equations for a given total strain increment. Subincre-
mentation (forward integration) with no equilibrium iterations is the
so;ution technique used. Note that in the setup of any problem, the
yield surface size and equivalent uniaxial stress vs. plastic strain
diagrams are initialized using the first set of input stress-strain

curves.

A. Set up subincrementation on strain, temperature, and time incre-
ments.

B. ‘Compute elastic ﬁodulus and the change in the elastic modulus due
to temperature increment. Linearlly interpolate between input
values if necessary.

C. Compute thermal strain increment. Linear interpolation may be

necessary to obtain thermal expansion coefficient. [equation (51)]

D. Compute creep strain increment based on stress at beginning of
step and temperature at end of step. [CHAPTER III - Creep
strain increment]

E. Compute trial stress increment assuming elastic behavior. Add
this to the stress at beginning of step to obtain total stress.

F; Check for yielding
1. Compute yield function. [equation (34)]

2. Compute yield surface size for current value of equivalent
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uniaxial plastic strain at temperatures at start and end of

load step.

Compare yield function value with current yield surface size.

a. If elastic, go to step N'.

b. If yielded and last step was elastic-plastic go to step J.

c. If yielded and last step was elastic, go to step G.

Update stress and strain to yielded portion for tramsition step.

[equations (46) and (47)]

1.

Subtract assumed elastic stress increment from total since this

step is elastic-plastic.
Compute 7 and n factors. [equations (48) and (50)]
Update total strain, elastic strain, and creep strain to yield

surface.

Compute creep strain increment based on yield stress and tempera-.

ture at end of step.

Modify global K and O vs. ¢ diagrams. [CHAPTER III - Construc-

tion of K and G vs. & diagrams]

1.

If the hardening ratio is a function of plastic strain, re-
compute the base K and T vs. EP diagrams. [equations (39) -
(41)] |

If this is the initial yield or yield has occurred without

a stress reversal, no modification is ﬁecessary. Go to

step J.
If reverse yielding has occurred, modify the global diagrams.
The particular material of interest determines whether the

first or second base curves are used.
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Experiencing elastic-plastic behavior.

1. Compute 3F/30 and the gradients H', 30/dT, 3K/3e., 3K/3T
for the current value of plastic strain and temperature.—
[equations (42) - (45)]

Compute stress increment. [equation f29)]

In transition step from e;astic to elastic-plastic behavior, only

the leading term of equation (16) is used.

Compute strains and update totals.

1. Elastic strain. [equation (51)]

2, Plastic strain increﬁent is the total minus the elastic,
thermal, and creep increments.

3. Equivalent uniaxial plastic strain is the absolute value of
the plastic strain increment for the uniaxial case.

Update yield surface center. In transition step the yield surface

translation scalar is calculated assuming isothermal behavior for

temperature at end of step.

1. Compute translation scalar. [equation (32)]

2. Compute change in yield surface center. [equation (6)]

3. Update yield surface center.

Update values to end of subincrement.

1. Stress.

2. Total strain.

3. Creep strain.

4. Thermal strain.

Update values to eﬁd of load step for elastic case.

1. Stress.
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2. Total strain.
3. Elastic strain.
4, Creep strain.
5. Thermal strain.

0. Repeat above procedure for each

subincrement.
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ABSTRACT

Development of an Uncoupled, Viscoplastic
Constitutive Model for Cyclic Plasticity

of Hastelloy-X at High Temperature. (May 1983)
Shik Hung Yﬁen, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Walter L. Bradley

An uncoupled viscoplastic model is presented based on the assump=-
tion that inelastic strain can be partitioned into rate insensitive
and rate sensitive components. Unlike earlier uncoupled theories,
this model recognizes that some of the inelastic strain which occurs
during a load change is rate sensitive (or thermally activated). The
rate iﬁsensitive, inelastic strain is defined in terms cf a strain
hardening function which is determined.empirically from saturated
hysteresis loops at room temperature. The rate sensitive inelastic
strain is characterized using a standard viscoplastic model. The
physical basis for the model and’the experiments required to evaluate

the material constants are also presented. Evaluation of the

model is performed by comparing predicted hysteresis loops and stress

relaxation behavior with experimental observation. The question of
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