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Figure 2. Tectonic map of the study area and vicinity showing the major bounding and internal structures. 
Figure covers part of the Sangre de Cristo Mountains, namely the southern half of the Culebra Range and the 
northernmost part of the Taos Range, along with the flanking basin-margins. 
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DESCRIPTION OF MAP UNITS
SURFICIAL DEPOSITS

Artificial fill deposits
Artificial fill (latest Holocene)—Engineered, compacted fill material composed of 

large angular rock fragments and finer material emplaced in a large earth-fill dam 
at the south end of Costilla Reservoir, near the southeast corner of the map area. 
Estimated thickness is 3–35 m

Alluvial deposits

Valley-floor alluvium (Holocene)—Mostly sand and gravel in stream channels; silty 
sand, sandy silt, and gravel lenses beneath flood plains less than about 2 m above 
modern streams. Estimated thickness 1–5 m

Sheetwash alluvium (Holocene and late? Pleistocene)—Mostly slightly pebbly, 
slightly silty to silty sand; forms alluvial aprons deposited by unconfined 
overland flow on gentle slopes. Estimated thickness 1–5 m

Stream alluvium (late and middle Pleistocene)—Fluvial deposits composed chiefly 
of interstratified pebbly sand and poorly sorted, clast-supported, cobbly pebble 
gravel that underlie alluvial surfaces along streams tributary to Costilla and 
Culebra Creeks in the western part of the map area. Clasts commonly are 
subangular to subrounded. Youngest unit (Qay) along Jarocito Creek locally 
includes outwash gravel (Qgp). Units locally may include debris-flow deposits. 
Estimated thickness 1–10 m  

Younger (lower) unit (late Pleistocene)—About 4 m above modern stream level

Intermediate unit (late and middle Pleistocene)—About 3 m above Jarocito 
Creek where deposits are partly buried by unit Qay; about 12 m above Ute Creek

Older (higher) unit (middle Pleistocene)—About 37–110 m above modern stream 
level

Outwash gravel (late and middle Pleistocene)—Glaciofluvial deposits composed 
chiefly of slightly bouldery, cobbly, pebble gravel deposited by melt-water 
streams flowing from former glaciers in the central part of map area. Boulders 
are 25–30 cm in diameter; clasts typically are moderately rounded to subangular. 
Estimated thickness 3–10 m

Outwash gravel of Pinedale age (late Pleistocene)—Underlies terrace remnants 
about 6 m above Casias Creek and about 12 m above Costilla Creek, near the 
eastern boundary of the map area. Probably coeval with nearby till deposited 
during the Pinedale glaciation (about 12–30 ka; Nelson and others, 1979; Benson 
and others, 2004, 2005). Deposits could be as old as 40–47 ka (Cole and others, 
2007), and may have been deposited during an early advance of Pinedale ice 
(Sturchio and others, 1994).

Outwash gravel of Bull Lake age (late and middle Pleistocene)— Underlies 
terrace remnants about 12 m above Casias Creek and about 24 m above Costilla 
Creek, near the eastern boundary of the map area. Probably coeval with nearby 
till deposited during the Bull Lake glaciation (about 120–170 ka; Sharp and 
others, 2003; Pierce, 2004). 

Outwash gravel of pre-Bull Lake age (middle Pleistocene)—Underlies a single 
small isolated terrace remnant about 32 m above Casias Creek and about 57 m 
above Costilla Creek near the eastern boundary of the map area. Probably 
deposited during a glacial episode that predated the Bull Lake glaciation.

Alluvial and mass-movement deposits

Alluvium and colluvium, undivided (Holocene and late Pleistocene)— Undifferen-
tiated valley-floor alluvium (Qa), sheetwash alluvium (Qsw), and younger fan 
deposits (Qfy); includes small deposits of colluvium (Qc) along minor streams 
and on adjacent lower (toe) slopes. Estimated thickness 3–10 m

Fan deposits (Holocene to middle Pleistocene)—Mostly nonsorted to poorly sorted, 
slightly bouldery to bouldery, pebble and cobble gravel and locally pebbly and 
cobbly silty sand. Deposited chiefly by streams and debris flows in fan-shaped 
accumulations near base of moderate to steep slopes. Fan deposits locally include 
sheetwash deposits (Qsw), colluvium (Qc), and probably hyperconcentrated-
flow deposits. Estimated thickness 3–15 m 

Younger (lower) unit (Holocene and late Pleistocene)—Deposits commonly have 
well-preserved depositional morphology, and are at or near modern stream level

Older (higher) unit (middle Pleistocene)—Deposits commonly have muted 
depositional morphology, and are about 12–90 m above modern stream level. 
Unit is equivalent to older alluvial fan deposits of Lipman and Reed (1989). 

Mass-movement deposits

Talus deposits (Holocene and late Pleistocene)—Deposits composed of virtually 
unsorted, granule- to boulder-sized angular rock fragments in steep, roughly 
angle-of-repose aprons below steep slopes and cliffs. Probably formed chiefly by 
rock fall, rock slide, and, perhaps, locally by debris flow. Locally may include 
block-slope and block-stream deposits (Qbs). Estimated thickness 1–10 m 

Block-slope and block-stream deposits, undivided (Holocene and late Pleistocene)— 
Blocky deposits on steep slopes near the crest of the Sangre de Cristo Mountains, 
in southeastern part of the map area, are composed chiefly of angular blocks of 
pegmatite (Ypc) and quartz monzonite (Xqct). Block size probably decreases 
with increasing depth below the top of the deposits. Deposits of unit Qbs were 
probably formed chiefly by creep, freeze-thaw, and probably by periglacial 
processes during glacial episodes. Estimated thickness 1–10 m

Colluvium, undivided (Holocene to middle? Pleistocene)—Unsorted deposits 
formed by a variety of mass-wasting processes. Deposits consist of sand and 
finer material and angular clasts that range in size from granules to boulders. 
Unit includes material transported chiefly by creep, debris flow, sheetwash, 
hyperconcentrated flow, landslide, and by periglacial processes (such as 
solifluction) during glacial episodes. Thin deposits rich in eolian silt locally 
mantle frost-creep and solifluction deposits above tree line. The down-slope 
transport of these colluvial deposits may be locally due in part to the relatively 
high moisture-holding capacity of infiltrated eolian silt. Estimated thickness 3–15 m 

Landslide deposits (Holocene to middle? Pleistocene)—Deposits of unsorted and 
unstratified debris that commonly have hummocky topography. Many younger 
landslides are bounded upslope by crescent-shaped headwall scarps and 
downslope by lobate toes. The unit locally includes material displaced chiefly by 
rock slides, debris slides, debris flows, earth slides, and earth flows, as defined 
by Varnes and Cruden (1996). Near the west boundary of the map area, relatively 
intact slide blocks of Servilleta basalt, alluvial facies of the Santa Fe Group, and 
Amalia Tuff are displaced by sliding. These slide blocks are designated Qls 
(Tsb), Qls (QTsf), and Qls (Trt), respectively. Landslide scarps in Tertiary and 
Proterozoic bedrock indicate the upslope limits of deep-seated bedrock creep or 
incipient sliding that did not produce landslide deposits. Estimated thickness 
5–45 m

Glacial deposits

Rock-glacier deposits (Holocene and latest Pleistocene)—Bouldery, lobate and 
probably locally tongue-shaped masses that commonly have steep fronts and 
flanks, and form in cirques, and along valley walls, above tree line in areas of 
high talus production.  Deposits probably consist of a veneer of angular boulders 
that overlies a thick mass of rock rubble that contains finer interstitial rock 
fragments. The lower part of the unit is ice-cemented or has an ice core. Unit Qrg 
locally may include minor talus deposits (Qta) displaced by post-depositional 
flowage, colluvium (Qc), and other mass-movement deposits. Estimated 
maximum thickness is 45 m

Till (late and middle Pleistocene)—Ice-deposited material composed chiefly of 
non-sorted and non-stratified, angular to subrounded boulders to granules in a 
sandy matrix. Probably locally includes stratified drift

Till of Pinedale age (late Pleistocene)—Deposits commonly form large promi-
nent, sharp-crested lateral moraines that are very bouldery and have distinct 
constructional morphology. Unit locally may include till of Bull Lake age (Qtb). 
Radiocarbon (14C) and cosmogenic surface-exposure ages for correlative deposits 
in Colorado suggest that Qtp is about 12–30 ka (Nelson and others, 1979; 
Benson and others, 2004). Some deposits of Qtp may be older than 30 ka, 
because uranium-series ages of travertine in the northern Yellowstone area 
suggest an advance of Pinedale ice occurred about 34–47 ka (Sturchio and 
others, 1994). Estimated thickness is 1.5–100 m

Till of Bull Lake age (late and middle Pleistocene)—Deposits commonly form 
prominent lateral moraines that have rounded crests and that lie beyond the outer 
limit of till of Pinedale age (Qtp). Deposits near Jarocito, New Mex., are partly 
buried by stream alluvium of Qay. Unit Qtb locally may include till of Pinedale 
age (Qtp) and till of pre-Bull Lake age. K-Ar and 230Th/U analyses for correla-
tive deposits in Wyoming suggest that Qtb is about 120–170 ka (Sharp and 
others, 2003; Pierce, 2004). Estimated thickness is 1.5–35 m

CENOZOIC BEDROCK
Sedimentary rocks

Santa Fe Group
Santa Fe Group (early Quaternary to Oligocene)—Syntectonic sedimentary and 

volcanic rocks deposited as fill in basins of the Rio Grande rift; everywhere 
divided into:

Alluvial facies, upper part (early Pleistocene to Pliocene)—Pebble to cobble 
sand-matrix conglomerate, pebbly sandstone and siltstone; poorly consolidated; 
ochre-colored; overlies 4.4–4.8 Ma Servilleta basalt (Tsb)

Alluvial facies, lower part (Pliocene to Miocene)—Pebble to boulder sand-matrix 
conglomerate, pebbly sandstone and siltstone; poorly to moderately consolidated; 
ochre-colored to light red; large clasts derived mainly from local Proterozoic 
bedrock and much lesser local volcanic and intrusive rocks—andesite (Ta), 
rhyolite lava (Tr), intrusive rhyolite porphyry (Tri), and Amalia tuff (Trt); 
underlies 4.4–4.8 Ma Servilleta basalt (Tsb); locally contains interbedded basalt 
or basaltic andesite flows yielding 40Ar/39Ar ages  in the range of about 15 to 
about 11 Ma 

Volcaniclastic facies (early Miocene to late Oligocene)—Boulder to pebble 
sand-matrix conglomerate of mainly volcaniclastic composition; clasts of local 
andesite, rhyolite, and tuff (Ta, Tr, and Trt), along with lesser intermixed clasts of 
local Proterozoic bedrock; includes minor tuffaceous layers which appear to be 
reworked rather than juvenile

Rock-avalanche breccia (Miocene?)—Breccia composed of shattered Paleoprotero-
zoic rocks, found as wedges locally interbedded within Santa Fe Group, alluvial 
facies, lower part (Tsfc). Mapped only in a single locale near Amalia, New Mex.; 
however, float of this breccia is common throughout the area of Tsfc to the north 
and east of this locale indicating it is more abundant than current mapping 
indicates

Conglomerates, mainly prevolcanic (lower Oligocene and Eocene)—Boulder 
conglomerates with clasts of various local Proterozoic lithologies, especially 
quartzite; but including fewer clasts of andesites (Ta) in uppermost part only; 
boulders and cobbles are well rounded; matrix commonly consists of deep 
maroon colored red clay where locally (rarely) exposed; generally equivalent to 
“Prevolcanic sedimentary rocks” of Lipman and Reed (1989) 

Volcanic rocks 

Servilleta basalt (Pliocene)—Tholeiitic basalt, thin dark-gray flows with small 
olivine phenocrysts; not dated in map area but dated in vicinity at 4.4 to 4.8 Ma 
(whole rock, 40Ar/39Ar, Thompson and others, 2007)

Mafic lava flows (Miocene)—Silicic alkali-olivine basalt and basaltic andesite lava 
flows, dark-gray, fine-grained, with sparse plagioclase and olivine phenocrysts; 
dated at about 11 to about 15 Ma to the north of map (40Ar/39Ar, whole-rock; 
Kirkham and others, 2005); equivalent to Hinsdale Formation of Thompson and 
others (2007)

Rhyolite lava (Oligocene)—Rhyolite lava with <0.5 percent phenocrysts of feldspar 
and quartz in a light grayish-blue groundmass; locally sperulitic or reddened by 
oxidation. Directly overlies the Amalia Tuff (Tat) in most exposures, and is 
presumed to be genetically related to it

Amalia Tuff (Oligocene)—Peralkaline rhyolite ash-flow tuff; mainly densely welded, 
with 10 to 20 percent phenocrysts of quartz and alkali feldspar (transitional 
sanidine-anorthoclase), and sparse to rare pyroxene, fayalite and sodic amphi-
bole; dated at 25.5 Ma (40Ar/39Ar, feldspar; Lipman and Reed, 1989)

Andesites (Oligocene)—Thick sequence of lava flows, tuffs, lahars, and lesser 
interbedded volcaniclastic conglomerates and sandstones; mainly of andesitic 
composition but includes some dacites and rhyolites; generally equivalent to 
Conejos Formation of the San Juan Mountains; equivalent rocks to south of map 
have been called “precaldera volcanic rocks,” which Lipman and Reed (1989) 
divide into 15 map units ranging in age from about 30 to about 26 Ma 

Intrusive rocks

Mafic dike (Miocene)—Basaltic andesite dike with sparse plagioclase phenocrysts and 
quartz xenocrysts; presumed to be related to xenocrystic basaltic andesite (Tbx) 
of Lipman and Reed (1989), to south of map. If this proposed correlation is 
correct, Tbi is similar in age to the oldest of the (about 11 to 15 Ma) mafic lava 
flows (Tb) of northern part of map area, based on stratigraphic position

Felsic-composition intrusions (Oligocene?)—Hypabyssal stocks and smaller bodies 
of rhyolite porphyry; most of these intrusions are probably related to rhyolite 
(Tr), but some may be younger

Intermediate-composition intrusions (Oligocene?)—Hypabyssal sills and dikes of 
andesitic (diorite porphyry) composition; most of these intrusions are probably 
related to andesites (Ta), but some may be younger

LOWER PALEOZOIC OR NEOPROTEROZOIC DIKES

Gabbro (early Paleozoic or Neoproterozoic)—Dikes of nonfoliated quartz-bearing 
pyroxene gabbro, which cut foliated Paleoproterozoic and Mesoproterozoic rocks 
throughout the Sangre de Cristo Mountains, but do not cut overlying upper 
Paleozoic sedimentary rocks. A Rb-Sr isochron on a gabbro dike near the 
confluence of the Rio Costilla and Latir Creek (near the center of the southwest 
border of the map) gave an age of 670 Ma (data from Z.E. Peterman, U.S. 
Geological Survey, 1984, published by Lipman and Reed, 1989)

CRYSTALLINE BASEMENT ROCKS
[Note on coarse sawtooth-pattern contacts: Throughout the map area, many contacts within the 
Proterozoic crystalline basement rocks are depicted with a coarse sawtooth pattern to indicate very 
large-scale interfingering or gradation between adjacent map units. This type of contact is particu-
larly appropriate for the pegmatite sheeted sill complex (Ypc), which interfingers so extensively 
with its host rocks that it cannot be shown as having definite boundaries at the scale of the map. In 
general, this pegmatite sheeted sill complex (Ypc) is mapped as solid where the sills constitute ≥ 90 
percent of the rock, and the sawteeth are used in those zones where sill concentration declines from 
about 90 percent of the rock to < 25 percent. Outlying pegmatite sills that are peripheral to the main 
mass of this intrusive complex are generalized, as are enclosed selvages of host-rock, and both are 
mapped mainly on ridge-tops above tree line, where exposures are best. Sawtooth boundaries are 
also used locally for contacts between the five compositional assemblages of mixed metavolcanic 
and metasedimentary Paloeproterozoic rocks, because the mixtures of different interbedded 
components in these rocks commonly change laterally in a very gradational way. 

The orientation of the sawteeth in all cases indicate the general trend of compositional bedding in 
the Proterozoic rocks. In contrast, the width of the sawteeth generally increases with the uncertainty 
in location of the highly gradational “contact,” and that uncertainty is largely a function of the 
extent of cover by humic and colluvial soils] 

Intrusive and metaintrusive

Pegmatite sheeted-sill complex (Mesoproterozoic)—granitic pegmatite found as a 
large complex of sills that have locally intruded so densely that remnant selvages 
of the host rock are rare; consists of quartz and two feldspars in eutectic 
proportions, along with minor to rare biotite and magnetite

Isolated pegmatites (Mesoproterozoic to Paleoproterozoic)—small pegmatite 
bodies that primarily are outliers of the pegmatite sheeted sill complex (Ypc);  
locally includes older (about 1.6–1.7 Ga) pegmatites related to local granitoid 
plutons (Xgg and Xqct)

Amphibolite (Paleoproterozoic)—Hornblende-plagioclase gneiss (meta-gabbro) 
locally found as small intrusions emplaced within granitoid plutons (Xgg and 
Xqct)

Quartz monzonite of Costilla Creek (Paleoproterozoic)—Gneissic biotite quartz 
monzonite, coarse-grained, moderately to strongly foliated; containing conspicu-
ous augen of microcline 0.5 to 5 cm long; locally includes masses of pegmatite; 
an age of 1.644 Ga (U-Pb, zircon) was reported by Lipman and Reed (1989)

Gneissic granite of Jaroso Creek (Paleoproterozoic)—Monzogranite with  a weak 
to strong superimposed gneissic foliation; locally includes masses of pegmatite; 
236Pb/238U SHRIMP dating of zircons from this granite yielded ages of 1.688 Ga 
and 1.689 Ga (analyst W.R. Premo, U.S. Geological Survey, reported in Kirkham 
and others, 2005)

Metasedimentary

Quartzite (Paleoproterozoic)—Orthoquartzite, well-bedded with minor interbeds of 
muscovite schist; locally contains trace amounts of specular hematite

Muscovite- quartz schist (Paleoproterozoic)—Interbedded muscovite-quartz schist 
and lesser quartzite, locally contains feldspar, biotite, sillimanite, and garnet; 
interbeds of other rocks types, including felsic gneiss (meta-rhyolite) and 
amphibolite, are mostly minor except near sawtooth contacts

Mixed metasedimentary and metavolcanic

Felsic gneiss assemblage (Paleoproterozoic)—Mixed unit of compositionally 
layered metamorphic rocks dominated by gneisses composed of quartz and two 
feldspars, along with a trace to abundant biotite or muscovite. Mica-poor facies is 
probably meta-rhyolite based on preserved very-fine-grained equigranular 
texture and massive character, along with local remnant fabrics resembling 
flow-banding and phenocrysts. Mica-rich facies commonly have compositional 
bedding defined by variations in mica and quartz contents and appear metasedi-
mentary. Interbeds of other rocks types, including amphibolites and mica schist 
are minor except near sawtooth contacts. Thin interbeds of banded iron formation 
(composed of quartz and specular hematite) are rare

Amphibolite assemblage (Paleoproterozoic)—Mixed unit composed dominantly 
(about 50 percent) of amphibolite (metabasalt) interbedded with a mixture of 
metavolcanic and metasedimentary rock types, including quartzites, mica-quartz 
schists, felsic gneiss, hornblende-orthoclase gneiss, and rare banded iron 
formation. Includes abundant pegmatite bodies too small to map separately. Not 
related to “Mixed unit of felsic gneiss and amphibolite” on the map to the 
northeast (Fridrich and Kirkham, 2007), which is entirely metavolcanic; instead 
correlative with “Bimodal and meta-sedimentary unit (Xb)” of that map, and to 
unit Xfa of the map to the east (fig. 1; Fridrich and others, 2009). “Mixed unit of 
felsic gneiss and amphibolite” of Lipman and Reed (1989) is mainly Xaa; 
however, greater discrimination is made on our map between areas dominated by 
felsic gneiss (Xfg) and ones dominated by amphibolites (Xaa)  

Hornblende-orthoclase gneiss assemblage (Paleoproterozoic)—Mixed unit 
composed dominantly of hornblende-orthoclase gneiss (interpreted as meta-
trachyte), with minor to moderately abundant interbeds of amphibolite, felsic 
gneiss, and mica schist
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GEOLOGIC SUMMARY

The map area extends over all but the northernmost part of the Big Costilla horst (fig. 2), a late 
Cenozoic uplift of Proterozoic rocks that is largely surrounded by down-faulted Cenozoic rocks 
exposed at significantly lower elevations. This horst is bounded on the northwest side by the San 
Pedro horst and Culebra graben, on the northeast and east sides by the Devils Park graben (Fridrich 
and Workman, 2009), and on the southwest side by the Latir volcanic field (fig. 2). The area of this 
volcanic field has undergone significantly greater extension than the area to the north of Costilla 
Creek (Fridrich and Workman, 2009). The horsts and grabens discussed above are all peripheral 
structures on the eastern flank of the San Luis basin, which is the axial part of the about 26 
Ma-to-present Rio Grande rift at the latitude of the map (fig. 2; Fridrich and Workman, 2009). The 
Laramide-age (about 70 to about 40 Ma) Raton basin lies to the east of the Culebra segment of the 
Sangre de Cristo Mountains (fig. 2).

Cenozoic strata in the map area include: (1) Eocene to lower Oligocene boulder conglomerates 
(Te) that predate the Rio Grande rift; (2) about 30 to about 26 Ma volcanic rocks of the Latir 
volcanic field (Ta, Trt, and Tr); which were erupted shortly before or at the advent of rifting; and 
(3) the Santa Fe Group, which represents syn-rift basin-fill sedimentary strata, and is divided into 
three map units (Tsfv, Tsfc, and QTsf). The oldest subunit of the Santa Fe Group (Tsfv) is 
overwhelmingly volcaniclastic and has strongly fanning (diminishing-upward) stratal dips. The 
overlying remainder of the Santa Fe Group consists predominantly of alluvial conglomerates, with 
clasts mainly of Proterozoic rocks, and is divided into two parts, subunits Tsfc and QTsf, that 
predate and postdate the 4.4–4.8 Ma Servilleta basalt (Tsb), respectively. An older group of 
interbedded volcanic rocks locally found within the middle map unit of the Santa Fe Group (Tsfc) 
consists of flows of basalt or basaltic andesite (Tb) and lesser dacite (northeast of the map), ranging 
in age from about 11 to about 15 Ma (Thompson and others, 2007). 

Subvolcanic Cenozoic intrusions in the map area include basaltic (Tbi), rhyolitic (Tri), and 
andesitic (Tai) stocks and dikes, which are interpreted as being related to Cenozoic extrusive rocks 
of the same three compositions (Tb, Tr, and Ta), and probably are approximately the same in age; 
however, younger ages for some of the intrusions are possible. The vast majority of the intrusions 
in the map area were emplaced along or in the immediate vicinity of the Costilla Creek fault, a 
large fault with predominantly strike-slip offset that intervenes between the Big Costilla horst and 
the structural block immediately to the southwest that hosts the Latir volcanic field (fig. 2).

The western range-front fault system of the Sangre de Cristo Mountains shows evidence of 
recent activity as close as 1 kilometer north of the map area (Kirkham and others, 2003, 2004; 
Thompson and others, 2007); however, there is no evidence of recent offset on range-front faults in 
the map area itself. An array of small (about 2 to about 10 m) offset northeast-striking normal faults 
in the northwestern part of the map cut Santa Fe Group strata (QTsf) that overlie the Servilleta 
basalt. Whereas the youngest of the QTsf strata may locally be as young as early Pleistocene, these 
northeast-striking faults lack discernable primary geomorphic expression and thus probably are no 
younger than middle Pleistocene. Whereas the post-about 4.5 Ma offsets on these faults are very 
small, exposures on the steep north slope of Costilla Creek valley show that at least one of these is 
a sizeable fault at deeper levels where it cuts Miocene and older rocks. This array of small-offset 
northeast-striking normal faults in the northwestern part of the map may reflect minor 
non-seismogenic reactivation of Miocene faults.

The Proterozoic rocks of the Culebra Range part of the Sangre de Cristo Mountains can be 
grouped into five major packages, from oldest to youngest: (1) a sequence of strictly metavolcanic 
(mainly meta-andesite) rocks, which are not exposed in the map area, (2) an overlying sequence of 
interbedded metasedimentary and bimodal metavolcanic rocks, (3) plutonic meta-intrusive rocks of 
mainly granitoid composition, (4) a sheeted-sill complex of pegmatite, and (5) non-foliated gabbro 
dikes. 

The first and oldest package of rocks is exposed to the northeast of the map, in the Culebra 
Peak area, and is strictly metavolcanic consisting mainly of meta-andesite and meta-dacite (Fridrich 
and Kirkham, 2007). 

The second package of rocks is the oldest exposed group of rocks in the map area, and it is 
divided into five map units based on composition (see Correlation of Map Units and Description of 
Map Units). These five map units include two fairly pure lithologies: quartzite (Xq) and quartz-
muscovite schist (Xqs), as well as three mixed assemblages, each dominated by a particular 
lithology: amphibolite (meta-basalt; Xaa), felsic gneiss (mixed meta-rhyolite and meta-
sedimentary quartz-feldspar-mica gneiss; Xfg), and hornblende-orthoclase gneiss (meta-trachyte; 
Xho). 

The third package of rocks, which consists mainly of two granitoid plutons, intrudes the mixed 
metasedimentary and metavolcanic rocks of the map area (Xq, Xqs, Xaa, Xfg, and Xho). The 
gneissic granite of Jaroso Creek (Xgg) is exposed in the northern part of the map and has been 
dated in the adjacent La Valley, Colo., 7½-minute quadrangle at 1,688 Ma (U-Pb, zircon; 
previously published in Kirkham and others, 2004, 2005). The quartz monzonite of Costilla Creek 
(Xqct) is exposed in the southern part of the map and has been dated at 1,644 Ma (U-Pb, zircon; 
Lipman and Reed, 1989). This third package (meta-intrusive rocks) also includes a minor unit 
consisting of amphibolites (Xa; meta-basaltic) rocks that are emplaced within the plutonic granitoid 
intrusions.

The fourth package of Proterozoic rocks consists of a large sheeted sill complex of pegmatite 
(Ypc) that is exposed throughout the south-central part of the map area. This complex intrudes the 
quartz monzonite of Costilla Creek (Xqct) and its host rocks. The sheeted sill complex is nonfoli-
ated, whereas the rocks it intrudes typically are strongly foliated and lineated, including some older 
pegmatite that is locally part of the about 1.7-Ga host rocks.  U-Pb dating of the sheeted sill 
complex (Ypc) has yielded only a very rough estimate of its age, about 1,400 Ma, owing to the 
strongly metamict nature of the zircons found in it (W.R. Premo, written commun., U.S. Geological 
Survey, 2011). Isolated pegmatites (YXp) of the map area consist mainly of outliers related to the 
sheeted sill complex, but may also include some older pegmatites that may be related to the about 
1,640–1,690-Ma granitoid plutons. 

The fifth and youngest package of Proterozoic (or early Paleozoic) rocks consists of 
non-foliated gabbro dikes (|Zg) that are predominantly subvertical and northwest-striking. 
Whereas stratigraphic constraints in the Sangre de Cristo Mountains only bracket these dikes 
between about 1,400 Ma and the Pennsylvanian period (about 320 Ma), a Neoproterozoic age is 
most likely based on a Rb-Sr isochron of a gabbro dike near the confluence of Costilla Creek and 
Latir Creek (near the center of the southwest border of the map; Lipman and Reed, 1989). 
However, these dikes may possibly be as young as early Paleozoic (Larson and others, 1985).

Metamorphic fabrics in the Paleoproterozoic rocks are complex. Map data gathered in this 
study indicate that there are at least four different foliations in the rocks and at least three lineations 
reflecting a complex, multi-stage tectonic history. Because of these complex structural fabrics, the 
best developed foliation and the best developed lineation in single locales are not necessarily 
coplanar. 

INTRODUCTION

This map covers the Big Costilla Peak, New Mex.–Colo. quadrangle and adjacent parts of 
three other 7½-minute quadrangles: Amalia, New Mex.–Colo.; Latir Peaks, New Mex.; and 
Comanche Point, New Mex. (fig. 1). The study area is in the southwesternmost part of that portion 
of the Sangre de Cristo Mountains known as the Culebra Range. The Taos Range part lies to the 
southwest of Costilla Creek and its tributary, Comanche Creek. This study fills a gap in detailed 
bedrock geologic mapping in the Sangre de Cristo Mountains between previous maps, listed 
clockwise from northwest by the authors (see fig. 1): Machette and others, 2008; Kirkham and 
others, 2003; Kirkham and others, 2004; Fridrich and Kirkham, 2007; Fridrich and others, 2009; 
Lipman and Reed, 1989; Kirkham and others, 2004; and Thompson and others, 2007. Nearly all of 
the mapping presented is new original detailed work; however, a thin strip of geologic mapping 
along Costilla Creek was modified from Lipman and Reed (1989) in order to show the evidence for 
two major late Tertiary faults that are largely concealed under alluvium of the river valley.  

Field work for this map was carried out by the authors during the summers of 2007 through 
2009. The map was compiled using a photogrammetric plotter and recent aerial photography 
(1:40,000-scale black-and-white National Aerial Photography Program (NAPP) photographs taken 
in 1999, available at http://egsc.usgs.gov/isb/pubs/booklets/aerial/aerial.html), in conjunction with 
Global Positioning System (GPS) measurements taken in the field. 
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Contact—Dashed where approximately located; short dash where uncertain and (or) 
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Gradational contact—Large-scale interfingering or gradation between adjacent 
Proterozoic crystalline basement rocks represented using a coarse sawtooth 
pattern. The orientation of the sawteeth indicates the general trend of composi-
tional bedding in the Proterozoic rocks.  The width of the sawteeth generally 
increases with the uncertainty in location of the highly gradational contact
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