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PREFACE 

This publication sxiinmarizes available literature on 
the use of distributed lags in the analysis of demand 
for individual commodities and contributes a substantial 
amo\mt of new material to the problem of estimating 
dynamic demand relationships. Although distributed lags 
have been used in the analysis of some economic problems, 
they have been used to date only rarely in connection 
with demand analyses. These techniques appear to be 
particiilarly useful in measuring long-r\in and short-run 
demand functions. Several applied examples are discussed 
in detail in this publication. These techniques are 
currently being used by the Agricultural Marketing 
Service in an analysis of the demand for textile prod- 
ucts; results on this application will be reported in 
later publications. In this report considerable 
emphasis is placed on methodological aspects, in part 
to call attention to problem areas. It is hoped that 
this publication will result both in a stimulation of 
additional research on methodology and in increased   \ 
use of this technique in applied areas. 

For sale by the Superintendent of Doc\;iments, U. S. Government Printing Office 
ící^ashington(|25, D. C. - Price 60 cents 
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DISTRIBUTED lAGS  AND DEMAWD MALYSIS FOR 
AGRICULTURAL AND OTHER COMMODITIES 

Marc Nerlove y 
Agricultural Economic Statistician 
Agricultural Marketing Service 

SUMMARY 

In economics, a cause often produces its effect only after a lapse of 
time. For example, a drop in the price of potatoes in the fall cannot affect 
potato acreage until the following spring, nor can it decrease potato produc- 
tion until the following fall. The lapse of time between a cause and its 
effect is called a lag. The lag may be a specific time, say three months, or 
one year. But in many cases, the effects of an economic cause are spread over 
many months, or even many years. In such cases, we have a distributed lag. 
Distributed lags with respect to variables that affect consumption may arise 
for the following reasons: (l) Psychological, under which we include forces of 
habit and assumptions on the part of consumers that changes may be only tempo- 
rary; (2) technological, which include factors such as, in a general case, 
lack of knowledge about possible substitutes or, in a specific case, the ina- 
bility to increase greatly the use of frozen foods without first acquiring 
adequate freezer storage space; (3) institutional, which include situations in 
which certain contractual items of expenditure or savings may need to be 
adjusted before shifts can be made in consumption patterns, and the fact that 
some markets, particularly for durable goods, are imperfect in an economic 
sense. 

One way to measure the degree of lag with respect to a particular varia- 
ble is to find by statistical analysis that distribution of lag which maxi- 
mizes the effect of the causal factor. Empirical analyses based on this 
approach have been run which (l) make no assumption as to the form of the 
distribution of lag, (2) are designed to estimate certain characteristics of 
an assxmied general form for the distribution, or (3) derive and statistically 
fit a model based on the fundamental cause of the distributed lag but which 
yield a specific distribution of lag only incidentally. Examples of each are 
discussed in some detail in this report. 

One way to formulate models for generating distributed lags is to assiame 
that the lags arise chiefly because of technological and institutional rigidi- 
ties. The traditional distinction between long- and short-run elasticities 
rests largely on causes of this sort. Although observable points each lie on 
a short-run curve, the coefficients of the long-run curve can be estimated if 
the model is properly formulated. Relations between long- and short-run 
demand curves depend chiefly on the path which observed consimiption would 
follow if it moved directly toward its long-r"un equilibriimi level following an 
initial change in a causal variable. The shape and form of such paths are 
determined by the type of institutional and technological rigidities that 
exist. Several alternative paths are described in this report in terms of 
difference or differential equations. 
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Another way to formulate models that generate distributed lags is to 
assume that technological and institutional rigidities are absent but that 
uncertainty about the future exists, and that habit is a powerfxil force. Under 
conditions of uncertainty, a change in price or income may be tho\aght of by 
consvimers as divided into two components—one permanent and one transitory. 
The permanent part changes expectations in all relevant future years, whereas 
the transitory part changes expectations in only some future years, or perhaps 
in none. The average level about which future prices or incomes are expected 
to fluctuate is called the "expected normal;" this level is affected only by 
that part of the initial change in a causal factor that is considered perma- 
nent. If forces of habit are strong, the effects of a change in current price 
or income on consumer behavior are slight compared with the effects of a 
change in the expected normal. Hence, models need to be formulated so as to 
emphasize the effects of changes in the expected normal. 

Hicks (18, p. 205) 1/ defines "the elasticity of^a particular person's 
expectations of ttie price of a commodity x as the ratio of^jtíae proportional 
rise îïr^îggecte^ of x to the pro|^prtimalT*iseTn^ 
price." The elasticity can flange between Ó and 1. 2/1^^       affect the 
elasticity of expectations; some affect all commodities equally, whereas 
others affect different commodities differently. Among the latter is the 
typical variance of prices of the commodity. For any given commodity the 
elasticity of expectations need not be stable over time, but models are sim- 
pler if we assume that it is stable. A number of applications based on this 
assimiption are discussed. Frequently an equation that contains one or more 
distributed lags can be reduced by algebraic manipulation to an eqiaation that 
does not contain such lags. The reduced equation then can be fitted statis- 
tically and the results used to obtain certain characteristics of the lag. A 
difficulty with this approach is that the number of variables added in the 
reduced equation is greater than or equal to the square of the number of 
variables with distributed lags that enter the initial equation. Thus the 
method is not feasible when the initial equation contains more than two or 
three variables with distributed lags. 

In working with commodities that substitute for, or complement each other, 
we generally are interested in a system of equations rather than a single 
equation. Each equation frequently contains lagged values of the same varia- 
bles. The multiple eqviation method of reduction of a demand equation which 
involves distributed lags takes advantage of the existence of all of the in- 
terrelated equations. By way of contrast with the single equation method of 

1/ Underlined numbers in parentheses refer to Literature Cited, page II6. 
2/ That the elasticity lies between zero and one is not necessary to Hicks' 

definition nor to much of the analysis contained in subsequent pages. The 
chief justifications for assuming the elasticity to lie between zero and one 
are: (l) Its interpretation as a proportion (see page 23); (2) mathematical 
convenience; (3) empirical validity. The last is, of course, the most compel- 
ling. In all statistical investigations in which the elasticity of expecta- 
tions has been estimated without restricting it to lie between zero and one, 
it has been found to do so. 
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reduction described in the preceding paragraph, if each original demand equa- 
tion contains n expected nonnal prices and expected normal income, each re- 
duced demand equation in the multiple set includes, in addition to n + 1 
current values of prices and income, n + 1 lagged values of the quantities 
demanded and aggregate consiamption of all commodities. Thus, whereas the 
single equation method leads to one reduced demand equation containing (n 4- l) 
+ (n + 1)2 independent variables, the multiple equation method leads to n 
reduced demand eq\aations each containing 2(n + 1) independent variables. For 
statistical purposes, the latter are clearly preferable when n exceeds 1 or 2. 
Some systems of demand eq\jiations are of such a nature as to be "separable" in 
a mathematical sense defined in this paper. An example is a sysi^em containing 
several demand equations and a consumption function; here we may (l) reduce 
the whole system, including the consumption function or (2) solve the consump- 
tion function for expected income, substitute this into the demand equations, 
and then reduce only the demand equations. This is the sense in which the 
term "separable" is used. 

Equations that contain distributed lags that are due only to technologi- 
cal or institutional rigidities can be reduced easily. Reduction becomes more 
complex when the lags are due to uncertainty about the future, but a consider- 
able degree of simplification may be obtained by the multiple equation method 
of reduction. When the lags are due both to uncertainty and rigidities, in 
general no simplification of reduction is possible. But if the distributions 
of lag are of a special form, simple reduction is possible. Several examples 
are discussed. 

Statistical estimation of the coefficients in demand equations that con- 
tain distributed lags can be done theoretically in two ways—(l) by dealing 
directly with the equation that involves the distributed lags, or (2) by using 
one or more reduced equations. Maximum likelihood procedures under the first 
approach are given and a likelihood ratio test is described. This approach 
requires a large number of repeated steps; for this reason, it is called the 
"iterative" method of estimation. In order to use the iterative method, the 
unexplained residuals in each equation that contains a distributed lag must be 
normally and independently distributed. If the lags arise solely because of 
technological and institutional rigidities, this will be true only under 
special conditions. If the lags are caused by uncertainty, problems of serial 
correlation in the residuals do not arise but the iterative procedure is com- 
putationally feasible only in the simplest cases. Thus the iterative approach 
can be used only under special circumstances. 

If a distributed lag is due only to rigidities of a technological or in- 
stitutional nature, the coefficients can be estimated easily by using a single 
reduced equation fitted by least squares. Estimation becomes more complicated 
if the lags are caused by uncertainty about the future. If three or more 
variables with distributed lags are involved and we use the single-equation 
method of reduction, the nuníber of variables in the reduced equation become^ 
so large as to make statistical fitting virtually impossible with time series 
of normal length. Complications from serial correlation of the residuals also 
enter. Only in the simplest of cases should the non-iterative method be based 
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on a single reduced equation- In using the multiple reduced equation 
approach, we must assume that the distributions of lag for the same variable 
in each of the equations is the same. If the multiple equation method can be 
used, it is computationally much simpler than the single equation method. 

In analyzing the demand for commodities in general, if anticipated dis- 
tributed lags result from uncertainty about the future, we should specify a 
system of equations before proceeding with any estimation. If the distributed 
lags are believed to result only from technological or institutional rigidi- 
ties, only a single demand equation for the particular commodity need be 
specified. 

In a concluding section, the permanent income hypothesis, advanced by 
Friedman (l6), is discussed in some detail. Two empirical tests of this 
hypothesis are given. Although a firm conclusion cannot be reached based on 
these, they suggest that technological and institutional rigidities may play a 
greater role in demand analysis than does imcertainty about the futiore. If 
this is true, estimation of distributed lags by the methods discussed in this 
paper is simplified. 

INTRODUCTION 

Irving Fisher (13) was the first to use and discuss the concept of a dis- 
tributed lag. Although the idea that one economic variable depends on another 
variable lagged in time is an old one, the use of lagged variables in empiri- 
cal research has been restricted primarily to areas other than demand analysis. 

Distributed lags arise in theory when any economic cause (for example, a 
price change or an income change) produces its effect (for example, on the 
quantity demanded) only after some lag in time; so that this effect is not 
felt all at once, at a single point of time, but is distributed over a period 
of time. Thus, when we say that the quantity of cigarettes demanded is a 
fTonction of the price of cigarettes taken with a distributed lag, we mean, 
essentially, that the full effects of a change in the price of cigarettes is 
not felt immediately, and that only after some passage of time does the quan- 
tity of cigarettes demanded show the full effect of the change in the price of 
cigarettes. 

This example may be made more concrete: Let time be divided into discrete 
periods and let q^ = the quantity demanded during period t, p^ = the price 
during period t, Pt-i = '^^^  price diiring period t-1, and so on. Then, in line 
with the above, q^ may be written as a function of past prices: 

^t "^^ i*(Pt^ Pt-1> Pt-2^ •••) (l) 

Suppose that a tax is levied which raises the price of the commodity by an 
amount A p. 3/ Then, in period t+1, equation (l) yields 

3/ We assume that the supply of the commodity is perfectly elastic. 
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In period t+2, we have 

qt^2 = ^(Pt+2 + APvPt+l -^ AP> Pv Pt-1 •••) (3^ 

so that qt^p is not generally the same as qt+1 ^^^^ though no further change 
in price has occurred. Thus, the effect of a price change may be distributed 
over many periods of time. 

CAUSES OF DISTRIBUTED LAGS 

The economic variables which affect demand may do so with a distributed 
lag for a variety of reasons. These reasons fall into three broad groups: 
(1) Psychological, (2) technological and (3) institutional. Typically, some 
conjunction of factors falling in all three groups operate to produce a dis- 
tributed lag. 

Psychological 

Whether we consider the demand for individual commodities or consumption 
expenditures as a whole, we can reasonably suppose that people are loath to 
change their pattern of consumption or their level of living radically in 
response to changes in prices or income. Two basic reasons cause this rigid- 
ity of behavior: (l) Habit is a powerful force; the process of change is an 
activity to which disutility may be attached, particularly when the change 
tends to resxat in a reduction in the standard of living. (2) Changes in 
economic variables may be considered only temporary; hence, the disutility 
involved in adjustment and readjustment may more than offset the utility to be 
gained by maintaining a continuous position of equilibrium even at a higher 
level of living. Consequently, habit and uncertainty about the future make 
for rigidity in consumer behavior. If a change in price or income persists 
for a sufficiently long period, consiamers may become convinced of its perma- 
nence and act accordingly.. 

Changes in total expenditures for consimiption in response to changes in 
income may be considered from a slightly different approach. It is reasonable 
to suppose that consimaers wish to even out their consumption to a certain ex- 
tent over their "lifetimes,"or at least over the forseeable future. 4/ If this 
is true, an individual consumer tends to save when his income is temporarily 
high and to dissave when his income is temporarily low; his total consumption 
during any period of time thus is related to his expected longer-term earn- 
ings, not to his current income. Consequently, total consumption expendit\ares 
tend to be stable relative to current incomes, and a change in current income 
tends to affect consxmaption only insofar as it affects consumers* notions of 
their "lifetime" or "permanent" incomes. If these notions are relatively 

4/ See Friedman (16, Chap. II) and Fisher (l4, ^-g.  13-1Ô,  231-262). 
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inelastic with respect to current income, changes in total consiuaption expend- 
itures lag behind changes in current income, and this lag is likely to be of a 
distributed nature for, if a change in income persists for a sixfficiently long 
period, people come to believe in its permanence. If total consumption is re- 
lated to income taken with a distributed lag, at least some individual items 
must be also. 5/ 

Technological 

The economic theory of the individual consiamer or family unit is similar- 
to the theory of the individxxal firm: a firm maximizes profits subject to 
various restraints and a consimier maximizes satisfaction or utility subject to 
restraints. Just as a firm produces a product with fixed as well as variable 
factors, so a consumer produces satisfaction with stocks of durable or semi- 
durable goods as well as with goods of a more perishable nature. The existence 
of consumption goods of a durable nature leads to a lag in the reactions of 
consumers for technological reasons: the shift from one perishable commodity 
to another may be delayed because of the existence of complementary goods of a 
durable nature. For example, the introduction of frozen foods was probably 
delayed because consumers did not have proper storage facilities. Manufac- 
turers of refrigerators took time to recognize the need for larger freezer 
compartments and to produce such refrigerators. Furthermore, consxamers took 
time to adjust their stock of refrigerators, given the existence of those of 
the older type. 

The ability of consumers to substitute one commodity for another depends 
on the passage of time for another reason—imperfect knowledge. A rise in the 
price of one commodity may provide the incentive to consumers to substitute 
others for it, but time may be required to discover what commodities may be 
easily substituted and how to substitute them. Similarly, a fall in the price 
of a commodity may lead to a desire, on the part of consxmiers, to substitute 
it for another commodity, but time is required to make the relevant substitu- 
tions. 

Institutional 

Institutional factors may also produce a certain rigidity in consumer 
behavior for the following reasons: (l) Many contractual items of expenditure 
or saving exist, for example, insurance premlxmis, installment credit, and the 
like. Given time, all these may be adjusted, but in the short run they may 
cause consxmiers to adjust purchases less than they otherwise would. 
(2) Markets for many goods are imperfect, and large costs to the consumer may 
result from changes in the pattern of expenditure. For example, the 

5/ In an empirical context, the accuracy of these statements depends upon 
the distinction between savings and consumption. Purchases of some goods, 
such as refrigerators or automobiles, reflect saving more than they do con- 
sumption. This problem is discussed in subsequent paragraphs. 
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secondhand market for many durable goods, say refrigerators, tejds to be im- 
perfect, so that buyers and sellers have difficulty in getting together. Costs 
involved in selling or negotiating for a sale may persuade a consumer to re- 
tain his old refrigerator longer than he would in a more perfect market. 

The distinction between the various causes of distributed lags is never 
clear-cut. In practice one must decide on the basis of available evidence 
whether the behavior of the consumer is likely to be affected by one^or more 
of these considerations; if so, a distributed lag might properly be introduced. 

Effects of Uncertainty 

When we discuss models leading to distributed lags, we condense the three 
categories of causes into two categories. Even if no uncertainty about the 
future exists, rigidities in consumer behavior might arise for all three types 
of reasons, but the distributed lags in such a case might be quite different 
from those arising in a world of uncertainty. A practical example of this 
distinction is as follows: Suppose the Government announces a fixed price for 
bread, higher than the current price, at which the Government is willing to 
b\iy or sell bread in unlimited quantities. Contrast this with a more usual 
case in our economy in which the price of bread rises because of a short wheat 
crop. In each sittiation people tend to cons\jme less bread and, if the new 
price persists, an equilibrium will eventually be reached. Even if the equi- 
librium position is the same in each case, the approach to equilibrium may be 
quite different, since in one case the change in price may be considered per- 
manent whereas in the other it may be considered temporary, at least for a 

while. 

In many practical uses to which demand analyses may be put, the distinc- 
tion between lags in adjustment under more-or-less certain conditions and lags 
under conditions of uncertainty is of great importance. The discussion begin- 
ning on page 1^ is therefore concentrated on this twofold distinction rather 
than on the three categories discussed in preceding paragraphs. 

EMPIRICAL ANALYSES IN WHICH DISTRIBOTED LAGS HAVE BEEN USED 

According to Fisher (15, p. 323) the basic problem in applying the theory 
of distributed lags "... is to find the 'best' distribution of lag, by which 
is meant the distribution such that ... the total combined effect [of the 
lagged values of the variable taken with a distributed lag] ... [has] the 
highest possible correlation with the actual statistical series with which we 
wish to compare it." That is, we wish to find that distribution of lag which 
maximizes the explanation of "effect" by "cause" in a statistical sense. 

This problem of finding the "best" distribution of lag may be attacked 
in several ways: (l) We may make no assumption as to the form of the distribu- 
tion; this approach is taken by Alt (2) and Tinbergen (31).  (2) We may assume 
a general form for the distribution of the lag and estimate certain of its 
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particular characteristics; this approach is taken by Fisher (13> 15) ^^^ 
Koyck (22) and is suggested by Alt (2).  (3) We may develop a specific model 
based on the considerations suggested in the preceding section; this model 
yields a specific distribution of lag only incidentally. This approach is 
examined further in the sections that begin on page 1^. Approaches (2) and 
(3) do not yield the "best" explanation in a statistical sense, but they do 
offer certain advantages in terms of ease of computation and interpretation. 

When No Assxmption Is Made As To 
the Form of the Distribution 

Tinbergen (31) suggests that the typical form of a demand equation is 

xt = a + boPt + ^iPt-1 + ••• = a + £   ^iPt-i W 
i=0 

where x^ is the quan,tity demanded in period t; p^, the price in period t; 
Pt-1^ the price in t-1; and so on, and the bQ, bj^, •.. are constants. Let 63 
be the short-run elasticity of demand (that is, the immediate effect of a one 
percent change in price), and let €L ^^ ^^^  long-run elasticity of demand 
(that is, the eventual effect of a one percent changé in price). Tinbergen 
proposed to intei*pret the short-run elasticity as 

«S = ^0 -|- (5) 

and the long-run elasticity as 

where (p, x) is the point on the demand fimction at which we wish to evaluate 
the elasticity. 

The method proposed by Tinbergen for estimating an equation such as (h) 
involves no assimiption as to the relation among the b¿, that is, no assumption 
regarding the distribution of the lag effect of past prices on the quantity 
demanded. Tinbergen proposed to add lagged prices successively to the least 
squares regression of quantity on price. This procedure stops when the signs 
of the coefficients become erratic and cease to make sense. Such behavior of 
the coefficients is usually a consequence of the intercorrelation of the 
lagged explanatory variables. Sizable standard errors of the coefficients, 
even where the signs of the coefficients have not yet become erratic, may sug- 
gest stopping the procedure at an earlier stage. 
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An example of this method is given by Alt (2, p. Il6). Let y-^ represent 
fuel oil consumption in quarter t,  and x^ represent new orders in quarter t; 
Alt's calculations for the period 1930-39 are 

y^ = Ô-37 r 0.171 x^ (Ta) 

y^ = 8.27 4- 0.111 x^ + 0.064 x^^i (7b) 

y^ = 8.27 + 0.109 x^ + 0.071 x^^i  -0.005 x^^g ^'^^^ 

y^ = 8.32 + 0.108 x^ H- 0.063 x^.-L + 0.022 x^.g -0-020 x^.3 (7d) 

Alt chooses equation (7d) because, at the stages represented by (7c-d), the 
coefficients of x^^2  ^^ ^t-3 ^^^^  erratic. Hence, (7b) is chosen, not be- 
cause the influence of new orders two and more quarters removed is zero, but 
because the influence cannot be safely ascertained. Two points should be 
noted: (l) The determination of whether the signs of the coefficients are 
erratic depends on some a priori notion of the distribution of lag, although 
alternating signs in successive equations certainly suggests an erratic situ- 
ation; and (2) the fact that a variable taken with a given lag does not have a 
determinable influence (in a least squares regression) does not mean that it 
has no influence. When the intercorrelations among lagged values of the inde- 
pendent variables are high, the method suggested by Tinbergen is not likely to 
prove useful. 

When the General Form of the Distribution Is Assumed and 
Estimation Is Made of Certain Characteristics 

Fisher (13, 15), Alt (2), and Koyck (22) suggest that the form of the 
distribution of the lag may be appropriately assumed and that specific char- 
acteristics of the distribution may then be estimated, given the form. 

Use of a logarithmic normal curve time path.—Fisher (15, p. 323) writes: 
"This best distribution [see the quotation from Fisher on page 73 presxmiably 
has the general form of some type of probability curve. The working assump- 
tion is made that, immediately following the cause ..., the effect is very 
small, but that it rises fast, reaching its mode after a very short interval 
and then tapering off slowly. More specifically, the type of distribution 
assumed is the 'normal* probability curve, provided, however, that not time but 
the logarithm of time is used as the abscissa, (if time itself is plotted, 
the cujrve is evidently very skew.) That is, the type is 'normal' logarithmic- 
ally." 

If time is treated as a continuous variable, rather than a discrete 
variable, eqiaation (4), which represents a demand function, might be written 

/C50 

b(u) p(t-u)du (8) 
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where the quantity demanded, x(t), and the price, p(t), are continuous fimc- 
tions of time, and b(u) is the "weight" attached to price at the instant of 
time t-u. Fisher's assumption was that the weights b(u) follow a logarithmic 
normal distribution, such as that shown in figure 1, Clearly, the initial 
effect of a price change is small, but as time passes the cumulative effect of 
the change becomes greater. The full effects of a change are realized theo- 
retically, however, only after the passage of an infinite amount of time. All 
this, of course, is on the assumption that the change in price persists. If 
the change occurs only instantaneously, the variable x(t) itself follows a 
path such as that shown in figure 1. The maximum effect of an instantaneous 
change occurs only at time u^ after the event, where Uj^ is the mode of the 
distribution of b(u). Koyck (22, pp. 9-10) calls the distribution of b(u) the 
"time-shape of an economic reaction" and the c\amulative distribution of b(u), 
"the adjustment path." 

Fisher (13) used a distributed lag of the form shown in figure 1 to study 
the relation between changes in the general price level and changes in busi- 
ness activity. The logarithmic normal distribution of figure 1 was approxi- 
mated by a discrete distribution, and the correlation between a weighted 
average of current and past price levels and the level of business activity 
was maximized with respect to changes in the variance of the distribution of 
weights. 

Use of an approximation to the logarithmic normal curve.—Later Fisher 
(15) suggested an approximation to the distribution shown in figure 1 which 
involves considerably less computational labor. Fisher (15, p. 32^) describes 
his short-cut method as follows: "By ... [the] short-cut method the influence 
of any cause ... is assumed to be the greatest at the very next time unit 
(month or quarter) and then to taper off by equal decrements for each succes- 
sive time unit. That is, the distribution curve becomes a straight line 
beginning one month, or other time unit, after the 'cause.' There is only one 
parameter to determine, namely the length of time elapsing to the end of the 
distribution." The weight given to the value of the independent variable 
lagged i periods by Fisher's short-cut method is proportional to 

N-i 
N 
£   n 
n=l 

< N (9) 

where N is the total number of periods to the point at which the effect be- 
comes zero. If time is taken as a continuous variable, the weight for the 
value lagged an amount of time t is proportional to 

1 i^ t   t < N (10) 

The form of Fisher's second distribution of lag is shown in figiare 2. 
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FISHER'S FIRST DISTRIBUTION OF LAG 

b(u) 

U.S.   DEPARTMENT   OF   AGRICULTURE NEC,   4408-87(8)        AGRICULTURAL   MARKETING   SERVICE 

Figure 1 

FISHER'S SECOND DISTRIBUTION OF LAG 

b(u) 

U.  S.    DEPARTMENT   OF   AGRICULTURE      NEG,   4409-87(8)        AGRICULTURAL   MARKETING   SERVICE 

Figure 2 
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Fisher's short-cut method may be illustrated by Berger*s study of India's 
glass imports from the United Kingdom (k). Berger ran the following least 
squares regressions: 

x^ = a + b (3Pt + 2p^.i + Pt.2) (11^) 
 5  

H = ^ + ^ (^Pj -^ 3Pt-i -^ gPt-2 -^ Pt>3) (11^) 
10 

x^ = a + b ($Pt -h 4p^,i ^ ... -i- p^,i^) (lie) 

15 

x^ = a + b (6p^ H- 5P^,-^ H- >., H- P^^^) (lid) 

21 

where x^ = the ratio of glass imports from the United Kingdom to total glass 
imports during period t^ and p-^ = the ratio of British glass prices to prices 
of competing glass. The simple correlations between the dependent variable 
and the weighted average independent variable were O.858, O.881, O.856, and 
0.751 for regressions (lia), (llb)> (lie), and (lid), respectively. Regres- 
sion (lib), with the largest correlation, was selected as showing the 'T^est" 
distribution of lag. 

Lag distributions used by Alt and related distributions. —Alt (2) sug- 
gested special lag distributions of the general form 

A e-«(N-i-c)2 ^^^^ 

or 

A(N-i) e-B(N-i-^)^ (13) 

where N and i have the same meaning as before. The derivatives of most of the 
commonly used growth curves, such as the Gompertz or the Logistic, also pro- 
vide reasonable distributions of lag. All of these distributions are diffi- 
cixlt to estimate in practice due to the nuxriber of parameters involved. 

Lag distributions that involve only a single parameter.—^Koyck (22) sug- 
gests an ingenious distribution of lag which involves only one parameter and 
which lends itself readily to statistical application. Let time be measured 
as a discrete variable and consider a demand equation such as (k).    Koyck's 
assumption is that after a certain point, say i=k, the series of coefficients 
bjL, i=0, 1, ..., can be approximated by a convergent geometric series, so that 

^k+m = öbk-wn-l (l^) 

where m^0and0<ô<l. From (k)  and (ik)  it follows that 
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x^ = a + bo Pt + • • • + ^k-1 Pt-k+1 + 

^k Pt-k + ^k ôPt-k-1 + ^k Ô ^Pt-k-2 + 

bjç. §'^Pt-k-2 ■*" ••• "^^ ^k Ô Pt-k-m + ••• • 

= a + bo Pt + • • • + ^k-1 Pt-k+1 + ^k S  S "^Pt-k-m      (^5) 
m=0 

Thus, x^ is a function of k-1 unweighted lagged prices and a geometrically 
weighted average of all other past prices. If time is treated as a continuous 
variable, Koyck's distribution of lag has the fona shown in figure 3. Figure 3 
shows the distribution plotted for different values of the parameter ô • 

If k=0, the long- and short-r\m elasticities and the exact distribution 
of lag are particularly easy to estimate if the distribution has the general 
form assumed by Koyck. Consider equation (15) with k=0. Then 

x^ = a + boPt + 1^0 ^ Pt-1 + ^0 S^t-2 + ••• • (16) 

If we lag (16) one period and multiply by 6 , we get: 

&x^-l = a Ô + bo Ô Pt-l •♦• ^0  ^ Pt-2 + •♦• • (IT) 

Now subtract (17) from (16) to get: 

x^ = a(l- 6 ) + boPt + ^H^i (18) 

The distribution of lag is given by the estimate of Ö, and the short-run 

elasticity of demand is given by bo -£-«• The cvimulative effect of a main- 
tained price change is x 

^0 Ï   ^"' = -1:^ (19) 

if 0 < 6 < 1. Hence, the long-rvm elasticity of demand is given by 

The statistical difficulties which arise in the use of Koyck's distribution of 
lag are discussed below. 
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KOYCK'S DISTRIBUTION OF LAG 

4.m 
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Pigixre 3 

Based on Models of Expectation 

Friedman (l6) and Cagan (5) each siaggest a model of expectation formation 
which leads to a distribution of lag remarkably similar to Koyck's distribu- 
tion. This model is discussed beginning on page 20 after certain siinpler 
models have been described. 

MODEIS FOR GENERATING DISTRIBUTED LAGS BASED ON TECHNOLOGICAL 
AND INSTITUTIONAL RIGIDITIES 

A variable with a distributed lag can be introduced into the demand 
fimction in many alternative ways; only a few are considered here. As indi- 
cated on page 7, factors that cause distributed lags can be divided into two 
categories~(l) those related to uncertainty about the future, and (2) those 
related to technological or institutional rigidities. Alternative models 
under each of these categories are discussed in detail in this and the follow- 
ing section. 
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Distinction Between Long- and Short-Run Elasticities 

The traditional distinction between long- and short-run elasticities of 
demand rests primarily on the consideration of technological or institutional 
rigidities. 6/ Here we implicitly assvmie that changes in prices or income are 
expected to be and are permanent changes. In the real world, any change may 
be thought of as having a permanent and a transitory component. Only the per- 
manent component is actually treated in the traditional analysis of the dif- 
ference between long-run and short-arun demand. 

To illustrate, let us begin with the simplest case: Suppose that expecta- 
tions of prices and income are static, that is, consumers expect current 
prices and incomes to persist indefinitely. Under an expectation of this 
kind, all changes in prices or in income are expected to be permanent. Given 
sufficient time to adjust, for every set of prices and,incomes one and only 
one equilibrium quantity will be demanded. Call this the long-run equilibrium 
quantity demanded and denote it by x^. The subscript t indicates that the 
qixantity xf is that which would emerge in the long-run if the prices and the 
income during period t were to persist indefinitely. 

The quantity x* is never observed, because another change always occurs 
before full adjustment to an initial change can take  place. Nonetheless, the 
quantity x* is important to consider because it is the only quantity uniquely 
determined by prices and income. Figure k  illustrates this point. Suppose 
real income and the prices of commodities other than the one in question are 
both held constant. Suppose, however, that the price of the commodity is 
varied. Given siofficient time for adjustment, the quantities demanded trace 
out the curve DLDL i^i figure k.    This curve shows x^ as a f\inction of p^, the 
price of the commodity in question. Consider the two points on DL^L corre- 
sponding to the prices pg and p^. Given sufficient time for adjustment, x* is 
consumed at a price PQ and x*, at a price p^. If, however, we suddenly change 
the price from PQ to pj^ consxamers increase their consumption, not from XQ to 
X*, but from x* to x^, where xj^ < x*. Since x^  differs from x* only on 
account of the difference in the time allowed for consiimers to adjust, it can- 
not exceed xj^.  7/ The point (x^, p^) lies on a short-run demand curve DQDQ. 
If consumers fully adjust to the change in price, and then the price returns 
to a level PQ, the quantity demanded will not be x* but XQ ^XQ. The point 
(^0^ PQ) li^s on a different short-run demand curve D¿I)¿. The curve DQDQ  is 
appropriate only if we start from a position where x* is demanded; the curve 
DQDQ  is appropriate only if we start from a position x*. A different short-run 

6/ See Marshall (24, pp. 37Ö-379)• 
7/ The ciirves DLDL ^^^ %i^S ^^^  obtained for an individual consxamer by 

assuming that he maximizes a utility function with certain properties subject 
to some set of restraints. Under our assumptions the set of restraints is 
larger the less the time allowed for adjustment, x* represents the maximimi 
amount consiamers would demand at a price p^ provided they have time to adjust; 
they always have the alternative of consuming less than x*, say x-j^. 
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LONG-RUN AND SHORT-RUN DEMAND CURVES 

PRICE 

XQ       X^   XQ      X* 

QUANTITY 

U.   S,    DEPARTMENT   OF    AGRICULTURE NEG.   4411-57(8) AGRICULTURAL   MARKETING    SERVICE 

Figure if. "Diagram that illustrates the relation between the lon^-run demand 
curve^ DIPL^ ^^^  various short-run demand curves, Ds% ^^^ %%• 

demand curve corresponds to each and every point along the long-run demand 
curve. Although we observe only points lying on short-run demand curves and 
these curves all differ, each curve is related to the unique long-run curve. 
Normally we wish to estimate the coefficients of the long-run curve rather 
than the coefficients of the many varying short-rvin curves. We can do this if 
we formulate oior relationship properly. 

Time Paths Followed in Moving Toward Equilibrium 

If we hold real income and other prices constant, we may write 

x^ = a + b p^ , (21) 
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as a linear approximation to the long-run demand function. The relation 
between this function and the short-rim demand functions may be derived from 
an assxamption about the path which observed consiamption woxild follow as it 
moves toward its long-jnm equilibrium level if no further changes in price 
occurred. Two such paths are plotted in figure 5* If at time 0,  x* becomes 
the new long-run equilibrium and if XQ = x*, then a curve such as A or B 
describes "üae path of x-t to the new equilibrium position. The shape and form 
of this path is determined by the type of institutional or technological 
rigidities which exist. 

If the rigidity is due primarily to technological factors, we might ex- 
pect x^ to start rising immediately toward x*. As x* is approached, easy 
substitutions are exhausted so that x^ proceeds more slowly towards x*. Such 
a path is described by curve A in figure 5. After t periods have elapsed, 
consumption is x(^) if A is the appropriate time-path. On the other hand, if 
rigidity is due primarily to factors of an institutional nature, such as im- 
pediments to the spread of information concerning the price change, we might 
expect consiamption to change only slowly at first, then more rapidly, and 
finally slowly again; such a path is described by curve B in figure 5. After 
t periods, consumption is x(|0 if B is the appropriate time path. xiÇ) is 
less than xv^), in this case, but after a certain point in time it may exceed 
x(^). The case of a fixed lag of t periods in the adjustment of x^ to x* 
could be described by a curve with a horizontal segment lying along the time- 
axis, a vertical segment at the point t, and another horizontal segment at a 
level X* from t on out. 

Difference or Differential Equations that 
Characterize Alternative Time Paths 

The time-paths under discussion may be characterized by the nature of 
dx 

their derivatives,-¡j:p, if time is considered as a continuous variable. If 

time is considered discrete, analogous difference equations may be formulated. 
The basic differential equation which we may consider is 

^ = 6(t) [x* - x^] (22) dt 

where Ô (t) is some function of time whose range is the interval between zero 
and one. By varying the function ô(t) we can produce time-paths of different 
forms. 

For example, let ô(t) be equal to a constant 6 for all t; then the 
solution to (22) is 

xt = (xS - x*)e - S t ^ ^^ ^gg^j 

where XQ is the initial eqizilibrium position. The curve described by (22a) is 
of the same general form as the ciirve A in figvire 5. 
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ALTERNATIVE TIME PATHS 

TIME 
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Figure 5.—^Alternative time-paths, A and B, of the movement of the observed 
quantity consimaed, x^, toward the long-run equilihrium quantity, x*. 

The functions Ô (t) which produce curves of the same general foirm as B in 
figure 5 are typically rather, complicated. One such, for example, is the 
probability density function of t where t is logarithmically normally distri- 
buted. We also could choose ô(t) in such a way as to obtain the Pearl-Reed 
logistic cu3rve, which is of the same general form as B. We shall deal here 
only with the simplest case in which ô (t) is a constant. It should be empha- 
sized, however, that the appropriate form of the function ô(t) should be 
selected on the basis of evidence related to the character of the rigidities 
in consumer behavior. 

Derivation of the Lag Distribution Assumed by Koyck 

When ô (t) is a constant ô, the difference equation analogue of (22) is 

H - ^t-1 = ô [xj - x^..i], 0 < Ô < 1 (23) 
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In this fonnulation we allow x^ to be a function of time. Clearly prices and 
income are continvially changing over time, so that x* is also changing over 
time. Eqxjation (23) may be solved for x-^ as a function of the fiinction x* and 
the parameter Ô ; the solution is 

xt= L      6(1-0)*-^ xt (2lf) 

provided period 0 is in the sixfficiently distant past. 8/ Equation (24) shows 
x^ to be a weighted average of the past values of x*, where the weights de- 
cline as one goes back in time. The sum of the weights 

L       6(1- 0)^-^ 

eqxmls one since 0 < Ô < 1. 

If we retain the simplifying assumption that real income and other prices 
are held constant, we have by equations (21) and (24) 

X. = a-fb  r  6(1-0)*-^ p. (25) 

that is, the quantity demanded is a linear function of lagged prices. The 
distribution of lag is that assumed by Koyck (22), since the coefficient of 
price lagged k+l years is (l- 6) times the coefficient of price lagged -k 
years.  (See pages 12-13.) If the demand equation is not (21) but 

x^ = a + b p^ + c y^ (26) 

we have 

xt = a + b L      Ôd-Ô)*"^ p^+c E      Ô(l-Ô)^-^ y^    (2?) 
x.=o. \=0 

The important thing to note about equation (2?) is that the distribution of 
lag for both income and price is the same. No essential difficulties are in- 
troduced if additional prices are added to the demand equation. If the demand 
eqviation is 

x^ = a + 2; bi Pi^ + c y^ (28) 
i=l 

this reduces to 

0/ See Nerlove, Marc. Estimates of the Elasticities of Supply of Corn, 
Cotton, and Wheat. Ph.D. thesis, Johns Hopkins University, I956, pp. 52-53. 
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n     t t 
x^ = a+X bi £     6(1-6)*-^ Pi;, +c  X  0(1-6)^-^ y;,  (29) 

i=l    A.=0 \=0 

Again all prices and income enter with the same distributed letg. 

An even simpler formulation results from equations (23) and (28), If we 
substitute (28) into (23) we have 

n 
x^ = a 6 + r b^ 6 p^^ + c 6 y^ + (1- 6 ) x^^^^ (30) 

This result is the same as that obtained by Koyck's method of reduction if 
applied to equation (29). (See pages 12-13.) The usefulness of our proce- 
dure, as opposed to Koyck's, is discussed in later paragraphs. 

MODELS BASED ON UNCEEÎTAINTÏ ABOUT THE FUTURE 

Let us now assume instead that technological or institutional rigidities 
are absent, but that xmcertainty about the future exists and that habit is a 
powerful force. Let us further suppose that expectations are not static. 

Definition of Terms 

Autonomous and induced price expectations.—For simplicity we begin by 
considering only price expectations and chajiges in those expectations. Any 
change in price expectations may be divided into two components: (l) autono- 
mous and (2) induced. 9/ 

Autonomous changes in price expectations are the result of particular 
causal factors such as, for example, changes in the levels at which the prices 
of certain farm commodities are supported or changes in the taxes levied on 
commodities like liquor or cigarettes. Autonomous changes may also be due to 
wars, other social upheavals, or natural phenomena. Changes in price expecta- 
tions due to sudden technological change may also be classed as autonomous. 

Part of any change in expected future prices, however, typically is in- 
duced by a change in current prices. If people knew in every instance exactly 
what factors caused a change in current price, no changes in price expecta- 
tions would be induced: any change in price expectations would be related to 
the specific causal factors. The typical consumer, however, is not generally 
aware of the specific reasons for a change in a partic\ilar price. He there- 
fore uses past prices as his guide to the future, at least to some extent. 

9/ See Enthoven and Arrow (11, p. 289). 
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Expectations as to the future values of the price of a commodity gener- - 
ally are not single-valued, that is, a consumer's expectations concerning the 
price of a particular commodity cannot, in general, be represented by a single 
nxmiber, but only by a fvmction of time. Both current price and price expecta- 
tions may be asstimed to affect the quantity demanded for two reasons: (l) The 
consumer maximizes not only today's satisfaction, but also tomorrow's, and 
(2) the consumer may suffer a loss in utility or satisfaction if he alters his 
accustomed habits. In order to analyze consumer behavior, however, we must 
reduce the problem of price expectations to manageable proportions; single- 
valued expectations are more manageable than are multi-valued expectations. 

Permanent and transitory components of price changes.—Consideration of 
induced changes in expectations of price leads to an interpretation in terms 
of single-valued expectations. Any change in current price can be thought of 
as divided into two components—(l) the permanent component; and (2) the tran- 
sitory component. The permanent component of a change in current price 
affects all expected futvire prices; the transitory component affects only some 
of them and perhaps none of them. What is permanent and what is transitory 
clearly depends on the length of the consumer's economic horizon. If the 
horizon is short, almost all of a change in current price may be supposed to 
be permanent; on the other hand, if the horizon is long, almost all the change 
may be supposed to be transitory. 

Let the average level about which future prices are expected to fluctuate 
be called "expected normal price." Expectations about normal price are, of 
course, single-valued. More important, however, is that, as defined, changes 
in expected normal price are induced only by the permanent components of 
changes in ciorrent price. The transitoary components of changes in current 
price affect only the deviations of expected future prices about the expected 
normal price. 

If the force of habit is strong, two things result: (l) Changes in the 
behavior of a consumer due to the pennanent component of a change in current 
price are large compared with changes due to the transitory component. (2) The 
effects of changes in expected normal price are even stronger as compared with 
the effects of deviations of expected futxire prices about expected normal 
price. It follows that, if the force of habit is strong, the effects of a 
change in current price on consumer behavior are slight compared with the 
effects of a change in expected normal price, and the effects of deviations 
of expected future prices about expected normal price are negligible. 

Permanent and transitory components of changes in income.—Similar con- 
clusions apply when income is considered. The grounds are firmer, however, 
for supposing that the effects of changes in expected normal income are strong 
compared with changes in current income and even stronger compared with the 
effects of deviations of expected future incomes about expected normal income. 
Indeed Friedman (l6. Chap. II) has gone so far as to say that changes in ex- 
pected normal income are the only changes in income that affect aggregate 
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consumption expendítiires, 10/ The reason for Friedman's hypothesis is related 
to his discussion of the tendency of consumers to even out their consimrption 
over long periods of time. (See pages 93-96 .) The importance of Friedman's 
work on the aggregate consumption fxanction goes beyond this point, however, 
and is discussed in detail beginning on page 93 . 

Induced changes in the expected normal price of a commodity may depend 
upon changes in the current prices of commodities other than the one in ques- 
tion. For example, a change in the current price of steel may affect con- 
sumers' expectations of the normal price of automobiles even more than a 
change in the current price of automobiles. For the present, however, we 
neglect the effect of changes in the current prices of commodities other than 
the one in question upon that commodity's expected normal price. 

Definition of the coefficient or elasticity of expectations.—A model 
which shows the effect of a change in c\irrent price upon expected normal price 
may be derived from Hick's definition of the elasticity of expectations. 11/ 
Hicks defines "the elasticity of a particular person's expectations of the 
price of a commodity x as the ratio of the proportional rise in expected 
future prices of x to the proportional rise in its current price." Hicks 
distinguishes two limiting cases: an elasticity of zero, implying no effect 
of a change in current price upon expected future prices; and an elasticity 
of one, implying that if prices were previously expected to remain constant, 
that is, were at their long-r\m equilibrium level, they are now expected to 
remain constant at the level of current price. Clearly, an elasticity of ex- 
pectations equal to one implies "static" expectations in the sense in which 
the term is used above. By allowing for a range of elasticities between the 
two extremes. Hicks implicitly recognizes that a particuilar past-price may 
have something but not everything to do with people's notion of normal. 

Hicks' definition of the elasticity of expectations implies that prices 
have actually been "normal" until some chajige occxarred, as the change in ciir- 
rent price is expressed as a deviation from what prices were up to now. But, 
of course, we know that conditions are seldom if ever "normal" in the real 
world; and "noxiuality" itself is a subjective matter. Instead of expressing a 
change in c\irrent price as a deviation from a level of past prices, let us 
express it as a deviation frooa what was previously the expected normal price. 
Let pt be the expected normal price of a particular commodity during period t, 
let pt be the actual price of the commodity during t, and let ß be the elas- 
ticity of expectations. Hicks' definition of ß implies 

log p* - log p*.i 
 iz  = ß (31) 
log Pt - log Pt-i 

10/ Friedman uses the term "permanent income" rather than our term "expected 
nonnal income." The use of the longer term in our case is related to the fact 
that we consider price expectations as well as income expectations. 
11/ See Hicks (l8, p. 205)> Arrow and Nerlove (3), and Nerlove, op. cit., 

pp. 50-51. 
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If the prices in equation (31) are expressed, not in logarithms, but in terms 
of actual values, it seems appropriate to call ß , not the elasticity of 
expectations, but the coefficient of expectations. Thus, 

Pt -Pt-l =ß tPt -Pt-ll (32) 

where ß is now defined as the coefficient of expectations* 

Equation (32) exactly expresses the distinction between the permanent and 
traasitory components of a change in current price. If the change in current 
price is expressed as a deviation from the previous expected normal price, the 
coefficient of expectation, ß , is just the proportion of the change which is 
regarded as the permanent component of the change; 1-ß is the proportion re- 
garded as the transitory component. 

Variables that affect the coefficient of expectations.—The elasticity or 
coefficient of expectations may be a fimction of a variety of variables. As 
indicated on pa^e 21, it is related to the length of a consumer's economic 
horizon. In times of great social upheaval, war, or revolution, the repre- 
sentative economic horizon may grow very short. Other institutional factors 
may influence the length of the economic horizon as well, but if they do, 
these factors are likely to affect equally the elasticities or coefficients of 
expectation for different commodities. 

More important are those factors which may influence the coefficients of 
expectation for particular commodities while not affecting, or affecting dif- 
ferently, the coefficients for other commodities. For example, the elasticity 
or coefficient of expectation may be a decreasing function of the typical 
variance of prices. Consider two markets, one in which fluctxiations about 
some "norm'' are of small magnitude and one in which frequent fluctuations of 
large magnitude are common. In which market will consumers pay most attention 
to a given price change in forming their expectations of "normal" price? It 
seems intuitively clear that ß will be larger for the first market and 
smaller for the second. 12/ If a market for a particxaar commodity changes in 
character and becomes, say, more like the second market and less like the 
first, then we might reasonably expect the coefficient of expectation for the 
price of that commodity to fall. 

A model which applies when Jß^ is a constant between zero and one.—In 
spite of the difficiilties discussed in the preceding paragraphs, it seems use- 
ful, as a first approximation, to assxmie that ß is a constant. We fiirther 
assume, in light of the relation between ß and the concepts of permanent and 
transitory components, that ß lies between zero and one. The model based 
upon equation (32) and the assumption that ß is a constant has been used in 
the study of supply functions for agricultural commodities; the differential 
equation analogue of the model has been used by Cagan (5) in his study of 
hyper-inflations, and by Friedman (I6) in his study of the aggregate consump- 
tion function. 

Ig/ See Nerlove, op. cit., pp. 5^-59^ 
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The model based on equation (32) may also be applied to income. Let y^ 
be expected normal income during period t, let y^ be actual income during t, 
and let a be the coefficient of income expectation; then, euialogously to (32) 

y* - yt-1 =   ^tyt - yt-i^^ o< a < i (33) 

Equations (32) and (33) are first-order difference equations in expected 
normal price and expected normal income, respectively. Hence, they may be 
solved for p* and y^ as functions of the fimctions p-t and y^, respectively. 
The solution to (32) is 

PÎ=: £     ß(l.ß)*-^  p;, (34) 
X=0 

and the solution to (33) is 

yî= L    a(l-a)*-^  y;,  13/ (35) 
x.=o 

We assvone that period 0 is in the distant past. 

The current demand for a commodity, x^, generally depends on both the 
cvurrent and expected normal values of price and income. If all prices other 
than the price of the commodity in question are held constant, we may write a 
typical demand function, in linear approximation, as 

xt = a + ho Pt + i3i Pt + CO yt + ci y* (36) 

Substitution of (3^) and (35) into (36) yields 

t 
xt = a + bo Pt + Di     X     ß (1- ß )*-^   Px   + 

\=0 

Co yt + ci     X     a(l- a)*"     y^ 
X=0 

= a+ (bo +biß)pt + bi     L     ß(l-ß)*-^   p^   + 
\=0 

(CQ + cia)y^ + c^     L     a(l-a)^-     y;, (37) 

13/ See Nerlove, op. cit., pp.  52-53« 
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Hence, the qiaantity demanded, x^, is a function of price and income each taken 
with a distributed lag. If we neglect the terms in unlagged price and income, 
each distribution of lag, for price and for income, taken by itself, is simi- 
lar to Koyck's distribution of lag, discussed on pages 12-13. Each taken by 
itself is also similar to the distribution of lag discussed beginning on page 
18 when expectations were assigned to be static.but rigidities of a technologi- 
cal or institutional nature existed. Note, however, that while, in the case 
of static expectations, we found the distribution of la^ to be the same for 
both price and income, we now have different distributions of lag for price 
and income. 

Reduced equations.—^When expectations were assumed to be stati'c and 
rigidities of a technological nature were introduced, a simple reduction of an 
equation involving a distributed lag was found to be possible. Thus, equation 
(29) (see page 20) was reduced to eqioation (30). The former, (29), involved a 
distributed lag; the latter, (30), did not. JEquation (29) was not reduced 
directly to eqiiation (3Ó); instead the two equations from which (29) had been 
derived, equations (23) and (28), were used to derive eqxmtion (30). In what 
follows we call an eqiaation such as (30), which is derived from or related to 
an eqioation which does involve a distributed lag, such as (29), a "reduced 
equation." This term shoxald not be confused with the "reduced forms" used in 
the theory of estimation of simultaneous equations. 

The study of reduced equations that involve distributed lags is important 
because such reduced eqixations may be estimated statistically more easily than 
the parent equations that involve distributed lags. Koyck (^) proceeds 
directly from an equation involving a distributed lag to its reduced version. 
He does this primarily because he does not formiilate a model leading to a dis- 
tributed lag but directly assumes the existence and form of such a lag. Under 
the assumption of static expectations, our indirect method of arriving at a 
reduced equation is only slightly easier than Koyck's direct method. When the 
distributed lags are of an expectational nature, however, our method is more 
direct than Koyck's and indeed makes reductions possible which would be impos- 
sible if Koyck's method were used. When we come to consider models involving 
both imcertainty and technological or institutional rigidity, its virtues 
become even more apparent. 

An Indirect Method for Obtaining Reduced Equations 

The general demand equation corresponding to (36) is 

x^ = a + £ [boi Pit + ^li Pit] + <^o yt +^1 yt (38) 

where p^^ is the acttial price of the ith commodity and Pj_* is the expected 
normal price of the ith commodity. We assiame that there are n-1 commodities 
related in demand to the commodity under consideration. If ß. is the coeffi- 
cient of expectations for the ith commodity, if ^ 
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Piî - Pitl = ßi fPit - Pitl^ (39) 

for ail commodities, and if equation (33) holds, we have, for the general 
demand equation involving a distributed lag, 

xt = a + r  I (boi + bii ßi)pit + X  ßid- ßi)*"^ PiXI  + 
i-1 I V-0 J 

*-l        t X 
(CQ + o^a)y^ + X   a(l. a)^"'^ y^ (hO) 

X=:0 

An eqxiation such as (^0) is virtually impossible to reduce directly. 

In order to illustrate our indirect method, we may assume, without loss 
of generality, that 

a = 0 

^Oi"^ 0 for all i, 

and CQ =0 (4l) 

for otherwise we might simply define the variable on the left hand side of 
(38), not as the quantity demanded, x^, but as 

n 
(x^ - a - X boi Pit - ^0 yt) 

i=l 

The method may best be illustrated by considering only simple cases at first. 

When only one expected price varies.—Let all expected prices but one be 
held constant and let expected real income be held constant, then o\ir demand 
equation becomes 

^t = ^li Pit (^2) 

and o\ir expectation fiinction may be written 

-   ßi Pit = - Pit + (1- ßi) Pit-1   iit/ (^3) 

Lagging both eqxiations (42) and (43) one period we have 

x^.i =     bii Piî.i +0 1 
(■ (^) 

-   ß i Pit-1 = - Pit-1 + (1- ßi) Pit-2 . 

Ik/  Equation (43) may be derived from equation (39) above. 
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These two equations may be solved for a unique value of P-L+.I • Let 

and A 

A = 

(i) 

T=li 0 

-1 (1-ß l) 

^t-1 0 

-ßi Pit -l(l- Pi) 

i^3) 

Then 

Pit-1 = —t^ 

SO that, substituting (k6)  in (^3), we have 

- ßiPit = -Pii-*-(i-ßi) iíil 
or 

Pit = ßi Pit + (i-ßi) 
Substituting (k8)  into (k2)  we have 

±m. 

H = ^ii ßi Pit + (i-ßi)bii ^(1) 

On expanding the determinants à ,^\  and A, we have a reduced equation 

^t = "^11 ßi Pit + (1-ßi) ^t-l 

(k6) 

(^7) 

(U8) 

ih9) 

(50) 

which is just the equation we should have found if we had employed a direct 
method of reduction. The original demand equation (¿1-2) involves one expecta- 
tional variable and its reduced form, (50), involves one more variaEle than in 
the original equation. 

When one expected price and real income vary.—Wext, consider the case in 
which one expected price and expected real income are left free to vary. Our 
system is thus composed of one demand equation and two expectational 
equations : 

^t    = ^li Pit + ^1 yt ^ 

ßi Pit =    -Pit      + (1-ßi) Pitl > > 

ayt -vt + (1-  oc ) yj. 

(51) 

If we lag the demand equation one and two periods and lag each of the expecta- 
tional equations one period, we obtain a system of four equations 
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Let 

and 

^t-1          =    "bii Pit-1 + °i yt-i 

H-2          =            0 + 0 

ßi Pit-1    =        Pit-1 + 0 

a yt^i     =          0 + -A-, 

A = 

(i) 

A' = 

+ ^li Pit-2   + °i yt-2 

+ (l-ßi)Pit-2 +   0 

+ 0 + (l-a)y*_2 

>  (52) 

^>li Cl 0 0 

0 0 ^li °1 
-1 0 (1- ßi) 0 

0 -1 0 (1- a) 

^t-1 °1 0 0 

xt-2 0 ^li ci 

-ßi Pit-1 0 (1-1 3i) 0 

-  ayt -1 -1 0 (1-a) 

T^li ^t-1 0 0 

0 H-2 ^li °1 
-1 -ßi Pit-1 (1- ßi) 0 

0 - °^ yt-1 0 (1-a) 

it-1 " A 
and y^ -1 = ■ 

A' 
A 

Clearly, 

Hence, substituting (54) into (51) and solving for x^, ve have 

x-t = 1311 ßi Pit + °i "^yt + 

(53) 

i3h) 

H± (1-ßi) -^ + °1 (l-oc)4^ (55) 
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Equation (55) is the reduced equation of the system defined by eqxiations (51); 
it involves the variables x^, p^^, y^, x^-i^ x^-2> Pit-1^ ^^^ yt-1- ^^ ori- 
ginal demand equation involved two expectational variables and its reduced 
equation involves four more non-expectational variables than expectational 
variables in the original equation* 

The determinants A /¿\, A', and A may be expanded to yield an explicit 
equation in x^, p^^, y^^, H-l> H-2> Pit-1> ^^^ yt-1* 1^ "^^^s is done, we 
find (55) gives 

xt = l^li ßi Pit + ci a y^ - 

bj^i (1-a) ß^ p^^^^ - c^ a (1- ß^) y^^^ + 

^[(1-oc) + (1-ß)] xt.i - 

(l-a) (l-ßi) xt.2 (56) 

This same reduced equation may be found by using a variant of Koyck's method, 
but reduction is then quite involved. 15/ 

Application to a general case.—^The method of solution in the general 
case follows qid.te readily from the siitrple illustrations discussed above. In 
our general system we have one demand eq\aation and n+1 expectational equations. 
We assume that n-1 commodities are related, in demand, to the commodity lander 
consideration. Our general system is 

n 

^t      ^ ^ ^li Pit +     ^1 yt 
i=l 

- ßi Pit =   - Pit  + (1-ßi) Pit-1  (i=lr2, ...n)       (57) 

- oc yt  =   - yt   + (1-a) y^.-L 

We now lag the demand equation 1 period, 2 periods, etc., up to n+1 periods; 
and we lag each of the expectational equations 1, 2, ..., up to n periods. 
This gives us a system of n+l + n(n+l) = (n-f-l)^ equations involving (n+l)^ 
expectational variables. This system may be written 

15/ See Nerlove, op. cit., pp. 25Ö-260. 
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n 
xt-1 

^t-n-l    = 

^   ^li Pit-1    + 
i=l 

ci'yt-1 

n 

^   ^li Pit-n-1    + 
i=l 

=1 yt-n-1 

- ßi Pit-1=    - Pit-1 + (1- ßi) Pit-2 

-ß i Pit-n=    - Pií-n + (1- ßi) Piî-n-1 

i=l,   .•.•  n 

<^yt-i - yï-i + (1- oc ) y*_2. 

(58) 

°^yt-n    = - yt-n + (i-«^) yt-n-1 

The relevant detemünant of these eqtiations is 

Cj^ O      . • •      O 

A = 

^11 
• 

b-L2 
• 

••'. ^In • • •    \J                    • • • 0 

• 
>.  0 

• 
0 0 •  •  •      D"i n                • • • ^in 

-1 0 0 ...(1- ßl)... 0 

0 -1 0 • • •   vj               • • • 0 

-1      (1- a)   ...      o 

O -1      ...      O 

(59) 

O    O  ...  -1     o    ... (1-ßn) o     o  ...(1-a) 

The determinant A /^\ is A with the substitution of the vector 

(xt_i> ••',  H-n-1' - ß 1 Plt-1' ■•>  - ß n Pnt-1^ "^ yt-1' ••• '^ yt-n) ' 

for its ith colTjmn, i=l, 2,   ...,  n. The determinant A ' is A with the sub- 
stitution of the same vector for its (n2+n+l)st column. The solution of 
eqiaations (58) for Pit-i and y*_i may be written 

Pit-1 = 
Aiil (i=l, ..., n) 

andyti =-~- (60) 
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Consequently, equations (57) reduce to 

n 
^t == ^ ^li ßi Pit + ci a y^ + 

i=l 

^ ^li (1- ßi) -^ -*• ^1 (1-^)4^ (^1) 
i=l 

Equation (6l) is the reduced eq\aation of the demand equation involving distri- 
buted lags that could have been derived from equations (57)• The original 
demand equation involved n+1 expectational variables; equation (6l) involves 
(n+1)^ more non-expectational variables than the original equation involved 
expectational variables. In principle the determinants A, ^(i)> ^^* ^'> 
could be expanded to yield an explicit equation for x^. 

The method of reduction described in the preceding paragraphs involves 
the reduction of only one equation, the particxilar demand eqxiation in which we 
have an interest. For that reason we may call it the "single-equation" method 
of reduction. As noted above the reduced equation obtained by the single- 
equation method contains many variables; in fact, the nuniber of additional 
variables added to the nxmiber already in the eq\iation increases as the square 
of the nvmiber of expectational variables involved. For purposes of statis- 
tical analysis, therefore, the single-equation method is only efficient when a 
small niirriber of expectational variables are involved. Two or three expecta- 
tional variables are all that can be handled comfortably by the single- 
equation method of reduction: in the case of two expectational variables, the 
reduced equation contains six independent non-expectational variables; in the 
case of three expectational variables, it contains twelve. For cases that 
involve more than two or three expectational variables, the "multiple-equation" 
method of reduction is preferred. 

The M\iltiple Eqi^ation Method of Reduction 

If one commodity is a substitute for or a complement of another, that is, 
if the two commodities are related in demand, it follows that the second will 
also be a substitute for or a complement of the first; that is, if the price 
of one commodity enters the demand equation for another, the price of the 
latter enters the demand equation for the foimer. Pxnrtlxermore, if the quan- 
tity demanded of individual commodities is related to income, so is the aggre- 
gate consumption. The multiple equation method of reduction of a demand 
eqviation involving distributed lags of an expectational natvire takes advantage 
of the existence of all of the equations which involve the same expectational 
variables. 16/ 

16/ For an application of this method to supply eqi;iations, see Nerlove, 
op. cit., pp. 260-262. 
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When only one expected price varies.—Consider first the simple case in 
which all expected normal prices but one are held constant. We retain the 
assumption that the quantity demanded depends only on expected normal price 
and expected nonnal income and not on current price or current income. This 
assumption is relaxed in the models discussed beginning on page 39* 

In this simple case we must consider two eqiiations, a demand equation and 
a consumption function, in order to apply the multiple equation method. Let 
Ct be aggregate real consumption expenditures in period t, and let cm+i be 
the marginal propensity to consume out of expected normal income. Neglecting 
constant terms, our system is 

xt = l^ii Pit + ci y* 

Ct =   0 •f c in+1 yt 

Pit = ß i Pit ^ (1- ßi) Pitl 

yt   + (1- ^ ) yt-i  . 

> 

yî = a 

(62) 

where the subscript i indicates that we are varying only the price of the ith 
commodity. Equations (62) may be written in the form of two matrix equations 

Pit 

yt 

o • [■ - C: 1 
(63) 

Lagging the first of these equations one period and multiplying both sides by 
the inverse of 

( 

li 

0 ^ln+1/ 

we obtain an expression for (Pit-i> yt-l) ^l^ich may be substituted in the 
second of equations (63): 

(6k) 

Equation (ok)  may be substituted in the first of equations (63) to yield a 
reduced matrix eq\iation: 



'li 

o 
I - 

a 

'li 
-1 

(65) 

This yields the follovitig two eq\iations vhen expanded 

^t »li Pi Pit + ci    i^yt + (1- ßi) ^t-l + 

[(1-a)  - 'li (1- ßi)3 Vi 

Ct = 

^In+l 

cin+1     ayt + (1-a) Ct-i 

> (66) 

Thus, by the multiple equation method, a demand equation involving two 
expectational variables and a consumption function involving one expectational 
variable are reduced to a demand equation involving only tvo more non-expecta- 
tional variables than the expectational variables involved in the original 
demand equation, and a consumption function involving only one more non-expec- 
tational variable than the expectational variables involved in original con- 
somption function* This resxilt should be contrasted with the result of the 
single-equation method when applied to a similar case.  (See page 29.) 

Application to a general case.—The multiple-equation method may easily 
be generalized to the case in which each demand equation contains the prices 
of n commodities. It is only necessary to consider the demand equations for 
all n commodities. Let x^^ be the q\iantity demanded of the ith commodity, 
then the complete set of n demand equations may be written 

n 

^it = ^ ^lij Pjt + <^ii y* 

To this we must add a consumption function 

Ct = 

and n+1 expectational equations 

ßi Pit +  (1-ßi) Pit-1 

ay^  +  (l-a) y*^^ 

(i=l, ..., n) 

^m+i yt 

Pit == 

yl   - 

(i=l, ..., n) 

} 

(67) 

(68) 

(69) 

Let 
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H   = («It» *2t» •••» 3Cn^.)' 

PÎ   = (Plt» P2V '"> Pnt)' 

Pt   = (Plf P2t> •♦.. Pnt)' 

c (c-Li,  Ci2> •••-' ^In)'   . 

> (70) 

and let B = l^ä be the matrix of the coefficients of expected normal 
prices in equations (67) and ß "be a matrix with the ß^ along the diagonal 
and zeros elsewhere. Then equations (67) and (68) may be written in matrix 
form as 

^In+l 

Equations (69) may be written in matrix form as 

17/ (71) 

ex, 
I - 

OCv 
(72) 

Equations (71) and (72) are of exactly the same form as equations (63), 
and they may be solved for the reduced versions of the demand equations and 
the consuniption function in exactly the same way. Doing so we have 

^O 

'ln+l> 

'B 

.0  <^ln+l, 

I - 

-1 

-ln+1 

H-l 

't-1 

Equation (73) may be reduced to still simpler form. We note that 

-1    /B-1 -B-^cc-l  , 
ln+1 

-1 

(73) 

where c£n+i = /^In+l ^^ ^^^^  particular case. Substituting (74) into (73) we 
have 

17/ The reader shoxad note that B and ß in this and the equations that 
follow are matrices and x^, c,  and p^ are column vectors. C^, ^ln+l> ^^* ^t 
in this equation are sealers. 
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/Bß ca 

'B 

-ln+1 

'ln+1/ 

(l-ß) 0 

. 0   (1- a ). 

B-^ -B-\  c¿M / x^_^ 

0 °ln+l t-1. 

'ln+1 

B(l-ß )B"^ -B(I- ß)B" c c^n+1 + =(1"°^ )<^în+l 

(1-a) 
(75) 

Since the matrix ß is not an identity matrix times a scalar, that is, since 
the coefficients of expectations for the prices of different commodities gen- 
erally differ, we cannot reduce the terms B(l- ß )B"-'- any further. 

Since the terms involving B(l- ß )B'"-'- cannot be further reduced, each re- 
duced demand eqiaation, in addition to n current prices and current income, 
also generally involves lagged values of the quantities demanded of the n 
commodities included in the system and the lagged value of aggregate consump- 
tion. Hence, each reduced demand equation contains twice as many non-expecta- 
tional independent variables as the expectational independent variables 
contained in each original demand equation. Thus if each original demand 
equation contains n expected normal prices and expected normal income, each 
reduced demand eqxxation contains, in addition to n+l current values of prices 
and income, n+1 lagged values of the quantities demanded and aggregate con- 
sxmiption. This result should be contrasted with the result for a similar case 
obtained using the single equation method of reduction.  (See page 31•) 

The single equation method leads to one reduced demand equation contain- 
ing (n+l) + (n-fl)2 independent variables; the multiple equation method leads 
to n reduced demand equations each containing 2(n+l) independent variables. 
For statistical purposes, the latter are clearly preferable: whenever the 
nuniber of expectational variables to be included in the demand equation ex- 
ceeds two or three, the multiple equation method of reduction shoxild be 
employed. 

Separability of Eqiaations 

Equations (75) show that the reduced equation of the consuinption fxanction 
is "separable" from the reduced equations of the demand equations in the sense 
that it involves only lagged consumption in addition to current income. The 
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demand equations, however, are not separable in this sense. This property of 
separability may be generalized and, as we shall see, the case in which the 
original demand eqxiations involve non-expectational variables is a special 
case of generalized separability. The case discussed immediately above is 
also a special case of generalized separability. 

Consider the system of demand equations 

t = ^ '^ t ^t- ^  vl (76) 

where ç ^ is a vector of quantities demanded, 7; ^ is a vector of expectational 
variables, and F is an (n+m) x (n+m) matrix of coefficients. The expecta- 
tional variables rj "^ are assimaed to be generated by expectational equations of 
the. form 

^t =  ^^t + (I-^) -^t-l (TT) 

where €   is a matrix with e^  (i=l> 2, ... n+m) along the diagonal and zeros 
elsewhere. We call the system defined by (76) and (77) separable if and only 
if the matrix T can be partitioned in the following way: 

"{I D <^^' 
where B is an nxn matrix, A is an mxm matrix, and D is an nxm matrix. 

Corresponding to any partition, such as (78), we may also partition ^^, 
V tf   "^t^ ^"^^ ^ as follows: 

77+ = 

^t = 

and € = (79) 
\0     a/ 

where zt is a vector (z^^, ..., z^^)', q.-^  is a vector (q^^, ..., q^t) S ^t ^^ 
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a vector (qit> •••> %it)> ^"^^ ^ ^^ ^"^ ■''^^™^ matrix with a^  (i=l> •••> m) along 
its diagonal and zeros elsewhere. Thus, a separable system may be written 

and its expectational equations may be written 

(80) 

ß 

0 

(i-ß)  o 

o    (I-Ot) 
(81) 

Equations (80) aaá  (8l) may be reduced by the multiple equation method in 
exactly the same vay as equations (63) were reduced; the resxolt is 

D 

A 

ß 

0 

B"-^D A"^' 

^t-1 

't-1 

(82) 

(83) 

B(I- ß)B~l 

0 

-B(I- ß )B-^D A"^ + D(I- a )A-1' 

A(l-a)A"l 
i6k) 

Equation. (8U) clearly indicates that the reduced deimand eq\witions for the 
zit (i=l> ^^'^  m) do not involve the lagged values xit-l (i=l> •••, n). These 
reduced demand equations are therefore separable in exactly the same sense as 
the reduced consumption function of the previous example. 

A separable system of demand equations possesses an interesting property, 
as illustrated by the following. Equation (8U) may be written as the two 
equations 
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^t-1 
(B(I- ß )B-1, -B(I- ß )B-1M-1 + D(I- a )A'^) ^'-^ (85) 

EUld 

z^ = A a q^ + A(l- a )A~-^ z^.-^ (86) 

Equation (86) may be solved for q^: 

q^ = a -1A-1 z-t -   ^ ''^^''^ A (I- a )A-1 Z^_-L 

= a -1A-1 zt - (I- a )A-1 z^.i (8?) 

Substituting (87) into (85), we have 

xt = (B ß, DA-1) (   1 - D(I-a)A-1 z^.i + 
H 

H-l 
(B(l-ß)B-l, - B(I-ß )B-1 DA-1)   '"•'] + 

D(l-a)A~l z^^3^ 

= (B ß, M-1) r^\ + 

H-l^ 
(B(I- ß)B-^ - B(l-ß)B-l DA-l) (   ■^] (88) 

On the other hand, we might start with eqiiation (8o) and solve part of 
the equations for q* in terms of z^. Since z^ = Aq*, we obtain 

x^ = (B, D) r*^  j= (B, DA-l) r* j (89) 

Application of the multiple eqimtion method of reduction to equation (89), 
with expectational equations 

Pt = ß Pt + (I-ß ) Pt-1 

leads to equation (88). 
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If, therefore, a system of demand equations is separable, it does not 
matter whether we separate the original equations by the elimination of some 
expectational variables or whether we separate the reduced eq\aations by elimi- 
nation of some current variables. l8/ Thus, in the example involving the 
consumption function discussed beginning on page 32, we could proceed in two 
ways: (l) as we did, by reducing the whole system, including the consumption 
fiHiction; or (2) by solving the consunrption function for expected income, sub- 
stituting this solution into the demand equations, and then reducing only the 
demand equations without bothering about the consunrption function. 

Modifications When C\irrent Price and 
Income Enter the Demand Equations 

In most of the preceding discussion we have maintained the assumption 
that current values of price and income do not enter the demand equations; 
that is, we have assumed for each commodity that the coefficients bQi and CQ, 
in equation (39) (s^e page 26), are zero for all i. If current prices arid 
current income do enter the demand eqimtions, then bQi (i=l^ •••> n) and CQ 
cannot be assxmied to eqxxal zero. 

A system of demand eqxaations involving both current and expected normal 
values of prices and income may be written in matrix form as 

^t = ^oPt + BiPt + CQyt -^ c^yï (90) 

where BQ is a matrix of coefficients, bQii^ of current prices; Bj^ is a matrix 
of coefficients, b^j^j, of expected normal prices; CQ is a vector of coeffi- 
cients, CQi, of ctarrent income; and c^ is a vector of coefficients, c^^^, of 
expected normal income. The subscript i refers to the ith commodity, and, for 
simplicity, we again assvime that all constant terms in the demand equations 
are zero. To make the system complete we must, of course, add a consumption 
fiinction and a set of expectational eqtmtions such as (72). The complete 
system thus obtained is a special case of a system in which the demand equa- 
tions involve non-expectational variables as well as expectational variables. 
We shall show that such a system is, in turn, a special case of a separable 
system (as defined by equations (8o) and (6l)). 

Suppose we have a system of demand equations that express the quantity 
demanded of each commodity as a linear function of n expectational variables 
and m non-expectational variables. Let ¿^^ be a vector of quantities de- 
manded, '^ * be a vector of expectational variables, Í ^ be a vector of non- 
expectational variables, T be a matrix of coefficients of the expectational 
variables, and A be a matrix of the coefficients of the non-expectational 
variables. Then the system of demand equations may be written 

^ = rr, * + A C t (91) 

10/ A statistical difference^ however^ is involved in the two approaches. 
See the material beginning on page 6k. 
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If ß is a matrix with coefficients of expectation along its diagonal and 
zero elsewhere, we may write the n expectational equations 

^t = ß^ t + (l-ß) 77 t-l (92) 

where v t '^^ '^^^ vector of current values of the expectational variables. 

In order to show that (91) and (92) define a special sort of separable 
system, we introduce a dummy variable ^ * defined by the eqxiation 

If we etdd equation (93) to equations (91) and (92) > we have 

'ft\ /r  A' 

and 

(93) 

i9k) 

(95) 

The system defined by (9^^) and (95) is clearly separable. 

Comparison with equations (8o) and (8l) show that the following substitu- 
tions yield (9^)  and (95): x^ = it>  H = ^t* Pt = ^t» <lt = ^t> B = ^ » 
D=A,A = I, and a = I. Consequently, from (84), we see that the reduced 
equation of (94) is 

r(i-ß)r-i 

0 

-r(i- ß)r'^A 

0 
(96) 

that is, 

^^ = rß T7t+ A u +r (i-ß)r-i ft-i - r(i-ß)r"^^ ^t-i (97) 

The reduced version of the system defined by equations (90) and (72), 
that is, the system in which the demand equations include current values as 
well as expected normal values, follows as a special case of equation (97); it 
is only necessary to substitute (Bi, cj) for F, (BQ,  CQ) for A , rj ^  and i^ 
for (p^, y^)*, and to let the matrix of coefficients of expectations be 



rather than ß . From (97) we have, therefore, that the reduced equation of 
the system (90) and (72) is 

(Bici) r'^ /  ] (Bici)-l (Bo Co)  f""^"^ 

(BiCi) ( ^"     °  ) (Bici)-l [l-(Bo Co)]  ( ^"M    (98) 
0    1-a, .yt-i, 

MODEIS THAT INVOLVE BOTH RIGIDITIES AND UNCERTAINTY 

Reduction of equations with distributed lags to equations without dis- 
tributed lags is of importance in connection with statistical estimation. Our 
discussion of reduction illustrates two points that are crucial to the under- 
standing of distributed lags: (l) Reduction of an equation with a distributed 
lag due to technological or institutional rigidities alone can be accomplished 
simply (see equation (30), page 20).  (2) Reduction of equations involving 
distributed lags of an expectational nature is much more complicated, but a 
considerable degree of simplification may be obtained through the multiple- 
equation method of reduction. The reason for the great simplicity of reduc- 
tion in the case of distributed lags of a non-expectational nature is the fact 
that the distribution of lag for every variable entering the equation with a 
distributed lag is the same. The simplicity of reduction in the case of dis- 
tributed lags of an expectational nature through the use of the multiple- 
equation method is possible only because the distributions of lag for the same 
variable in different equations are the same, even though the distributions 
for different variables in the same equation are not. When distributed lags 
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are due both to imcertainty and rigidities of technological or institutional 
nature, the distribution of lag is both different for different variables in 
the same equation and different for the same variable in different eqxjations; 
hence, no simplicity of reduction is possible in general. If, however, the 
distributions of lag are of a special form, simple reduction is still 
possible. 

When Current Price Does Not Affect the Long-R\m Equilibrium Demand 

First podel.--Suppose that real income and other prices, current and ex- 
pected, are held constant. If we suppose that the current price of the com- 
modity in question does not affect the long-run equilibrium demand for it, we 
have, in this simple case 

4 = 1^ Pt (99) 

where x^ is the long-run equilibrium quantity demanded, and Pt is the expected 
normal price of the commodity in question. We suppose, without loss of 
generality, that the constant term in the demand equation is zero. We may 
also suppose that the expected normal price is related to past actual prices 
by an equation of the same form as equation (32) (see page 23), 

Although current price does not affect the long-run equilibriiam quantity 
demanded, we cannot assume that it does not effect the current demand. Conse- 
quently, we cannot use an equation of the form of equation (23) (see page l8) 
to express the relation between the current quantity demanded and the long-rim 
equilibrium quantity demanded. Instead, we suppose that the change in current 
demand depends not only upon the difference between the actual and long-run » 
equilibrixmi quantities demanded but also upon the difference between current 
price and expected normal price, that is, 

^t - ^t-l = SQ[P^ . p^] + Ô3.[xt - xt.i] (100) 

If current price is greater than expected normal price, we might expect the 
adjustment of current demand to long-run equilibrium demand to be slower than 
if current price were less than expected normal price, with a given difference 
between long-rvin equilibrixmi demand and current demand; hence, we assume that 
6 0 is negative or zero, but not positive. 

Equations (32), (99)> and (lOO) lead to a relationship between the cur- 
rent quantity demanded and price taken with a distributed lag. The distribu- 
tion of lag in this case is complicated. Equations (32) and (lOO) each are 
first-order difference equations: the solution to (32) is given in equation 
(3^) (see page 2k);  the solution to (lOO) is 

xt=  X (l-ôi)*-^ [Sixt + 6o (Px -P1)]       (101) 
\=0 
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Substituting (3h)  into (99) and (lOl), and substituting the result from (lOl) 
into the resiat from (99), we have 

x+ = L   /(l-ôi)*-^ [ô^b L    ß(l.ß)^-^ 

5oP>^  - So  X yß(l-ß) ^'^ P;. 
fj.-0 

^l) "  ^0 Px 

X 
(1-03^)*-^ (ô^b - ÔQ)  r  ß(l-ß)^-^pA   (102) 

^=0 J 

Clearly, the distribution of lag is complicated. The reduced form of (102) is 
not, however, particularly complicated. Substituting (lOO) into (99) we have 

x^ = (b 63^ - SQ) P* + ^0 Pt + (l-^l) ^t-l (103) 

Applying equation (97)   (see page ^^O), with the appropriate siibstitutions, we 
have 

x^ = [b ß 5i    + (1- ß )   SQ] pt - (1-ß )   ÔQ Pt-i + 

[(1-ß) + (1-61)] xt.i - (1-ß)   (l-ôi) xt.2 (lOM 

Demand equations which contain more than one expected normal price and/or 
expected normal income offer no further complications. Substitution of the 
long-run demand equations into the relations between the change in current 
demand and the difference between long-run equilibrium and current demand 
yields a system of equations in which expectational and non-expectational 
variables enter* These equations, along with the corresponding expectational 
equations, may be reduced without difficiilty by the m\iltiple equation method. 

Second model.—A form\ilation, alternative to equation (lOO), of the rela- 
tion between the rate of change in current demand and the differences between 
current and expected normal price and between current and long-run equilibrium 
demand may be stated: In our discussion of rigidities due to institutional or 
technological causes, we expressed the derivative of the time-path of the 
movement of the current quantity demanded toward the long-run equilibrium 
quantity as 

-^ = Ô (t) [X* - X] 
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or in first-difference form as 

Equation (lOO) arose out of a specific choice of the fiinction 6 (t), namely 

0. + 0^ [p. - PÏ] 
S (*) =    r   ^ \ (105) 

t^t - ^t-li 

Another reasonable choice for ô (t) might he 

Ô(t) = Ô1 -I- Ô0 [Pt - Pt3 (106) 

Eqxmtion (106) thus leads to 

H - xt^i = ( 6 1 + Ô 0 [Pt - Pt3) tx| - xt^il (107) 

Eqviation (lO?) s\jggests that if the difference between current and long- 
run equilibriimi demand is zero, no change in current demand is to be expected 
even if current price is not eqvial to expected normal price* On the other 
hand, equation (lOO) suggests that even if current demand is equal to long-run 
equilibrium demand, some change may be expected in current demand as long as 
current price differs from expected nonnal price. If we suppose that current 
price's do influence demand, even though that influence may be slight, the for- 
mulation expressed by equation (lOO) seems somewhat more reasonable than that 
expressed by equation (10?)• In any case, models which incorporate equations 
of the form of (107) are exceedingly difficult to reduce by the methods out- 
lined thus far. 

An identification problem.—If the influence of ciirrent price or income 
on current demand is negligible, an interesting "identification" problem 
arises. Suppose that expected real income and the expected normal prices of 
all commodities except the one in which we are interested are held constant; 
then we have a system consisting of equations (99)> (32), and (23), that is, 
we have: 

XÏ = b PÎ (99) 

PÎ - Pt-1 = ß [Pt - Pt-i3 (32) 

H - ^t-l = 5 [x^ - x^.i] (23) 

Comparison of (23) with either (lOO) or (107) shows that we assume that 
Ô 0 = 0 and 61= ô • Solving the difference eqiaations (32) and (23) and 
making the appropriate substitutions we have 
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xt =bß ô L   (l-ô)*-^  X (1-ß) ^-^ P;x 

= bß ô {p^ + [(l-ß) + (l-ô)] p^^l + 

[(l-ß)2^ (1-ß) (1-5) + (1-5)2] p^^2 ^ 

[(l-ß )3 + (l.ß)2 (i.ô) + (1-ß ) (1.5)2^(1.0)3] p^_^3 ^ ..,|  (108) 

Comparison of equation (108) with equation (102) (see page ^^3) indicates that 
a much simpler distribution of lag arises when the effect of curi^ent price is 
assumed to be negligible. A difficulty also arises/ however. 

The important thing to note about equation (108) is that ß and Ô enter 
into the expression for x^ in terms of past prices in a way that is exactly 
symmetric. The particular value of ß which we obseirve is the result of the 
behavior of consumers when confronted by uncertainty about the future. If the 
conditions \inder which that uncertainty exists change, then so will the value 
of the parameter ß . Similarly, if technological or institutional factors 
change, the parameter 5 may be expected to change. The fact that ß and 5 
enter the relationship between current qiaantity demanded and past prices in a 
symmetrical way means that we cannot distinguish the effects of changes in ß 
from the effects of changes in 5. 

The two need to be separated, however, inasmuch as the relationship of 
c\arrent demand to past prices differs for different products and changes in 
different ways depending on which type of lag predominates, the one due to 
uncertainty or the one due to technological or institutional rigidities. If 
the first type of lag were more important, we might expect differences among 
products in the relationship between current demand and past prices to depend 
in large part upon the characteristics of the market which consumers face and 
upon the strength of their habits with regard to the individual commodities. 
In this case, changes in these factors produce chsuiges in the relationship, 
but changes in technological or institutional factors have little effect. On 
the other hand, if the second type of lag.were more importstnt, differences in 
the relationships among products depend on the ease with which one conamodity 
may be substituted for another and other technological or institutional 
factors. 

Take, for example, an agricultural product like apples in comparison with 
an industrial product like refrigerators. Presimiably, the typical variance of 
apple prices about some normal level is greater than the variance of refriger- 
ator prices, but apples can be more easily substituted for other commodities 
than can refrigerators. If the distributed lag is due primarily to uncer- 
tainty, we might expect the distribution of lag to have a greater variance for 
apples than for refrigerators; on the other hand, if the distributed lag is 
due primarily to technological rigidities, we might expect the variance of the 
distribution of lag to be greater for refrigerators than for apples. 
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The fact that ß and 6 enter (108) symmetrically thus leads to a problem 
of identification which is similar to the type of identification problem con- 
sidered in the theory of estimation of sim\iltaneous equation systems. 

Exactly the same identification problem arises when we consider the re- 
duced version of equation (108), that is, of the system (99)-(32)-(23). If 
(99) is substituted into (23), the resiolt may be reduced by the multiple 
equation method. The general form of the result is given by eqviation (97) 
(see page ko);  the specific reduced equation turns out to be 

x^ = b ß Ô p^ + [(1- ß ) + (1- Ô )] x^.i - (1-ß ) (1-5) x^.2   (109) 

Again, ß and ô enter this expression symmetrically. 19/ 

When Current Price Does Affect the Long-Run 
Equilibrium Demand 

Suppose we have a system of demand equations 

^ï = r r^* (110) 

* 
where f ^ is a vector of long-run equilibrium quantities demanded or other 
such variables, 7?* is a vector of expectational variables, and T is a matrix 
of coefficients. The expectational equations correspond to equations (77) 
(see page 36); they are 

r)*=  6 77^+ (1-6) vtj^ (77) 

where € is a diagonal matrix of coefficients of expectations. The relations 
between current demand and long-run equilibriimi demand for the ith commodity 
may be written 

^it = P±   ^it "^ (1- ^i) ^it-l 

Hence, the complete set may be written in matrix fonn as 

^^ = R ÎÎ + (I-R)  f^^3^ (111) 

where f^ is a vector of the current quantities demanded. Substituting (llO) 
into (ill), we have 

^^ = RT 77* + (i-R) ^^^^ (112) 

19/ Equation (104) (see page ^3) presents much the same problem, only it is 
not so apparent. Further discussion of the type of identification problem 
posed by (l04) is left to the section on methods of statistical estimation. 
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Applying eqxaation (97) to the system consisting of equations  (112) and (77) we 
have 

^^^ = R r 6 7? t + (I-R) ^t-1 "^ 

R r (i-€)r "V^^^^3^ - 

R r (i-€)r "V^ (i-R) ^^^2 

= Rr € 7]^ H-[(i-R) + Rr (i-€)r "V^l ^^.^ 

- R r (I- €)r -1R"^ (I-R) ^t-2 (^^3) 

In this case, the matrices R and € do not enter eqiaation (113) symme- 
trically; hence, an identification problem of the sort described previously 
does not arise- Other difficulties do arise, however, and are discussed in 
the next section. 

It is clear that the method of reduction used in the preceding example 
applies to separable systems in general, and in particiilar to systems of de- 
mand equations which contain non-expectational variables; hence, the method 
also applies when the difference between current and expected normal price has 
an effect on the rate of change of current demand (see equation (lOO) on page 
i^2). 

METHODS OF STATISTICAL ESTIMATION 

In this section we discuss two methods of estimating the parameters of 
demand eqijations involving distributed lags: the first deals directly with an 
equation involving a distributed lag; the second, with the reduced eqxiation of 
such an equation or system of equations. 

Consider the simple model of demand based on eqxaations (21) and (23): 

xt = a + b p^ + u^ (21) 

H  - H-1 = S [xj - xt^3_], 0< Ô < 1 (23) 

Note that we have added a residual term u^. to equation (21) to represent the 
factors unaccounted for; the result is to make the system (21) and (23) a 
statistical model as well as a mathenâtical one. 20/ As shown on pages I6-I8 
equations (21) and (23) lead to the following demand equation containing a 
distributed lag: 

20/ In private correspondence. Professor L. R. Klein of the Oxford Institute 
of Statistics has suggested that a residual term be added to the adjustment 
eqimtion (23) as well as to the basic demand equation. His suggestion applies 
equally to the expectational models discussed beginning on page 20. Such an 
addition may introduce statistical problems of considerable complexity. It is 
hoped that subsequent research will be devoted to these problems. 



xt = a ^ b X Ô (1- Ô r^^   Px + wt (25) 

where 

t 
wt =  X 6 (1- 6 ) u^ 

X=0 

Thus x^ is obtained as a function of past prices* This is a linear function, 
but the parameter 6 does not enter it linearly, that is, the coefficients of 
past prices are not themselves linear functions of the parameter ô . 

A Method That Makes Direct Use of Equations 
That Involve Distributed Lags 

The first of the two methods discussed here attempts to estimate the 
parameters a, b, and Ô directly in the context of an equation such as (25); 
the method is similar to the short-cut method described by Fisher (15) for 
calcilla ting a distributed lag. 21/ 

If ô were known, a and b could be estimated easily. Since 0 < 0^1, 
the size of the weights for prices in the very distant past is negligible. In 
fact the s\jm of the weights for the first N past observed prices is 

1 Ml-ô )N-»-l = Sjj 

and this can be made as close to one as we please by taking N large enough* 
S^ clearly depends on the size of S : for very large ô , that is, 6 close to 
one, only a few past prices need be included in order that Sjj differ from one 
by an arbitrarily small amount. Thus, depending on the size of ô, all prices 
after a certain point N years back receive negligible weight in the aggregate. 

t 
Hence, if ô is known the expression  X  6 (l- 6)    pr may be computed 

X=0 
from past prices with any desired degree of accuracy. 

If 6 were known., the parameters a and b of eqviation (25) could be esti- 
mated by ordinary least squares provided the w^ were independently distri- 
buted. Since S is not known, another method must be employed. 

Let us denote the weighted average of current and past prices at time t, 

*        t-X 
X s (l- ô )    Px Í ^y P( ô )• Let b* be a vector (a, b), and ^ be a 

X=0 

21/ See page 10. The method discussed here is also ixsed by Cagan (¿) in his 
study of hyper-inflations. 
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vector of observations on the observed quantity demanded and current and past 
prices. Provided the w^ are normally and independently distributed, say with 
mean zero and variance cr^^ the parajneters b* and ß can be estimated by 
maximum-likelihood methods. 22/ 

Derivation of maximum likelihood coefficients.-«The likelihood function 
to be maximized may be written 

L(b*, 6 ; ^ ) = TT r-^       ^^P /- "^ ^H - a - b i^i Ô )]^        (lHv) 
t=l V 2 TTCT     \    2G  "" J 

where T is the total number of observations. L is a complicated function of 
b* and 6 , and it is not possible to solve analytically the equations obtained 
by setting the derivatives of log L with respect to b* and ô equal to zero to 
obtain b* and S ♦ Resort must be had to so-called stepwise maximization of 
the f\mction L. 23/ 

Let us assume that L has a unique maximum with respect to b* and 6 for 
every value of f ♦ Suppose now that we maximize L with respect to b* for each 
Ô given f . We thus obtain b* as a f lanction of 6 and ^ : 

b* = b*(ô;^) (115) 

where b^ is the value of b* that maximizes L given ô and ^ . Substituting 
(115) into (lllf) we obtain 

L(bM5 ; ^ ), 5 ; ^ ) = M(ô;^ ) (ll6) 

where M is a function of ô and ^   only. The definition of M implies that 

M(ô ; i ) > L(b*, S   ;  ^ ),  for all b*, ô , and á' .        (il?) 

Now let us maximize M with respect to ô , obtaining a value of 8 ,  ô ( ^ ), 
such that 

M(ô (^); ^ ); > M( 5; ^ ), for all 6 and f . (ll8) 

Comparison of (ll8) and (11?) indicates that if we define 

inn ^ s*(ô(^); n (119) 
we have 

L(S*(^),    5(^);   ^  )   =   M(ô(^);   f )   >   L(b*,   6   ;   ^) (120) 

22/ The discussion that follows is adapted from Nerlove, op. cit>^ pp. 248- 
25^ 

23/ This procedure is discussed in Koopmans and Hood (21, pp. 156-158). 
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for all b*, § , and Ç . Clearly, then, the values h* and ô obtained by step- 
wise maximization are the same as those obtained by simultaneous maximization 
of L with respect to b* and 6 . 

The value of b* which maximizes L given ô is simply the vector of least 
squares estimates of a and b in equation (25). . For each value of 6 we may 
compute these estimates and obtain a value of the function b*( Ô ; ^ ). Sub- 
stitution of these values into L yields the function (M( 6 ; ^ ) which we seek 
to maximize with respect to ô • But this must be done numerically. Ideally, 
one shovild select successive values of Ô in such a way that, starting from 
any ô ^^^, the successive values of 6 chosen converge to the value 6 for 
which the function M reaches a maximum. Gradient methods of maximization, as 
described by Chemoff and Divinsky (6, pp. 246-i|-9), do just this, but they 
involve evaluating the first and second derivatives of the function M with 
respect to 6 at the value Ô (i) for the ith step ;of the successive approxima- 
tions to 8 . When the great complexity of M as a function of ô is recalled, 
eval\aation of derivatives of M for particular values of ô does not appear 
feasible. 

Two alternatives are open: (l) We might compute values of M for par- 
ticular values of ô each differing from the preceding value by some small 
amount and find ô by graphical interpolation. This procedure is feasible in 
the case under consideration, since ô is not a vector. Later we consider 
cases, however, where a parameter such as ô may conveniently be considered 
as a vector consisting of different components. In this case, graphical in- 
terpolation is not practical.  (2) Instead, we might choose a small positive 
number e. Then at each stage of the approximation we might increase or 
decrease each component of 6 by an amoimt depending on the product of e and 
the preceding increase of M divided by the increase or decrease of the com- 
ponent of ô in question. The vector of ratios is actiaally an approximation 
to the derivative of M with respect to ô , so that this procedure is an 
approximation to a strict gradient maximization. 

In order to maximize M with respect to ô , we need not compute values of 
M for different values of ô . The fxinction M is simply the likelihood func- 
tion L in which the least sqxiares estimates of b*, for the given value of ô , 
is substituted. Now the logarithm of M is a monotonie increasing function of 
M, so that log M reaches a maximum at the same value of ô for which M reaches 
a maximimi. But 

T 
log M = - -|- log 2 7T (7 ^ ^ X [x+ - a - b p^( 6 )1^ 

^ 2a '^ t=l 

Hence, M reaches a maximxam when 

T 
L 
t=l 
L   [x^ - a - b p^(ô )f (121) 
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reaches a minimixtn. But (l2l) is the expression for the residual sum of 
squares calculated by means of the least squares regression between x^ and 
p+( 6 ) for a given 6. Hence M reaches a__maxim\mi for that value of 6 which 
maximizes the correlation between x^ and p^( Ô ). 

Use of the likelihood ratio test.—Strictly speaking, it is impossible in 
generalato obtain confidence intervals for the estimates of the parameters of 
a population distribution of known or assumed mathematical form, unless the 
sampling distributions of those estimates are known. 24/ The estimates of a, 
b, and ô are complicated fxmctions of the observations on the quantities de- 
manded and prices; hence their sampling distributions cannot be obtained with 
ease. Any point hypothesis, however, can be tested by means of the likelihood 
ratio test. 

The likelihood ratio is defined by 

k = -i^ (122) 
L( Q ) 

where L(W) is the maximum of L over the region of nxill hypotheses, and L( ß ) 
is the unrestricted maximum of L over the region of all alternative hypothe- 
ses. Under certain regularity conditions, the asymptotic distribution of -2 
log ^ is the X ^ distribution with as many degrees of freedom as there are 
restrictions on the maximum of L contained in the set of null hypotheses. 25/ 

The use of the likelihood ratio may be clarified by an example: Suppose 
we wish to test the hypothesis that no more time than our unit period is re- 
quired for consumers to adjust to their long-run equilibrium position, that 
is, the hypothesis that 6=1. The maximimi-likelihood estimate of the variance 
of the residual term w^ in equation (25) may be derived by stepwise maximiza- 
tion of the likelihood function. It is 

T 
S^ =-^   L    [xt - a -Sit(8)]2 (123) 

T t=l 

By the definition of R 

2 = [1-R2(S )] â 2 (121^) 

where R^ is the coefficient of correlation reached at 6 , and 5^ ^"5 *^® 
.2 '     ^ variance of x. Similarly a-, may be defined as the estimate of the residual 

variance obtained by maximizing L for ô=:^l; it is 

â2-^..2,.^^  .2 [l-R^(l)]  a^^ (125) 

24/ See Cramer (9, p. 507). 
25/ See Wilks (3^, pp. 151-152) 
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From equation (ll4) we have 

log (w) = - ' -^ log 2 77 a -^^ 

Similarly 

log L(Q) = - -5- log 2 7r a '^  - 

T 
—i^ X [x^ - â . b P^d)]^    (126) 
2cr "^ t=l 

T 
^ L   [xt - a - b i^( S)]2   (127) 

2 Cr ^ t=l 

It follows from equations (126)-(127) that 

-2 log \ = T log a ^^ - T log 5- ^ 

= T log [1-R2(1)] - T log [1-R2( 8 )] (128) 

Using a one-tail test we find the value of X^ for which the cumulative for 
one degree of freedom equals 0.95; call this value X^(1)Q;QC. Then if 

T log [1-R^( §)] < T log [1-R2(1)] +X2(1)Q Q5 (129) 

we reject the null hypothesis ô =1; otherwise we accept the hypothesis that 
consumers are always in long-run equilibrium. 

Hypotheses concerning particular values which b* may take also may be 
tested by means of the likelihood ratio. In addition, what might be called 
conditional confidence intervals can be obtained for a or b given the particu- 
lar estimated value of ô . This conditional confidence interval is obtained 
in the usual way from the least squares regression of x^ and Pt( 6 ). The 
problem is to determine the appropriate number of degrees of freedom to use in 
computing the interval. Since § is not given but has in fact been estimated, 
the usual confidence interval for a or b at a level of significance a is too 
small, or, what is the same, the interval obtained involves a level of signi- 
ficance less than a . Bearing these facts in mind, however, these conditional 
confidence intervals may prove a useful tool in the evaluation of results. 

Prevalence of serial correlation in the residuals.--The method just 
described requires a large nixmber of repeated steps; for this reason we call 
it the "iterative" method of estimation. In the case under discussion (in 
which the distributed lag is assumed to be due solely to rigidities of a tech- 
nological or institutional nature), it is necessary to assiime that the 
residuals, w^, of equation (25) are normally and independently distributed in 
order to derive the iterative method. Thus the residuals of the equation con- 
taining a distributed lag are assxamed not serially correlated. This will be 
true, however, only imder special conditions: The w^ are uncorrelated serially 
only if the residuals, u^, of the original demand equation follow a compli- 
cated autoregressive scheme: 
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ut = - r (1-0)^-^ u. + €t (130) 
x=o 

where €t is normally and independently distributed. If the ut do not follow 
(130), but rather are serially uncorrelated as is usually assumed, it can be 
shown that the w^ are positively serially correlated• 26/ Thus, use of the 
iterative procedure in the case \mder consideration may introduce serial cor- 
relation. This point is further discussed beginning on page 75, 

Application to a general case.--Application of the iterative method to 
more general cases offers no further difficulty beyond that connected with 
serial correlation. Equation (29) gives the general form of a demand equation 
with distributed lags due to technological or institutional rigidities. All 
prices and income enter with the same distributed lag. Consequently, in the 
derivation of the iterative method, 6 may be still considered as a scalar, 
but b* should now be considered as a vector (a, b^, b2, ..•> bj^, c). Because 
the iterative method rests on variation of the parameter Ô , the fact that Ô 
is a scalar is of utmost importance in determining the feasibility of using 
the iterative method. In the case in which distributed lags are due to tech- 
nological or institutional rigidities, the iterative procedure is computation- 
ally feasible, but, as is shown below, when the distributed lags are of an 
expectational nature the iterative procedure is computationally feasible only 
in the simplest cases. 

26/ The proof of this assertion is as follows 

t 

hence 

w^. = 2:     6(1-8 )*-^ u;^ 
X=0 

w^.l =  X, 6 (l-ô)t-^ u^ 
x=o 

If the u^ are independently distributed, then for i, j, =0, ..., t, ..., oo 

r=  0 , f or i j^ j 

^ "t-i "t-j <. p 
= a*^ , for i = j 

u 
P p 

where a^^  = E u^ ; hence, provided t is large enough. 

E w, w,., =-Alii^ 0^2 
1-il-bf 

since 0 < ô < 1. Clearly, then E v^ wt_i > 0. By a similar proof we can 
show that E w-^ W^^.J; > 0 for all i. For further details, see page 78. 
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Application \mder conditions of uncertainty when current price and income 
do not affect current demand.—Consider the case in which the distributed lag 
is of an expectational nature and current price or current income does not 
affect the current quantity demanded. In this case the original demand equa- 
tion may be written 

xt = a + bi p* + ci yt -f ut (l3l) 

where u^ is a random residual. 27/ The expectational equations necessary to 
complete the system are (32) and (33): 

Pt - Pt-1 = ß [Pt - Pt-ll (32) 

yt - yt-1 = ^ fyt - yí-i^ (33) 

Equations (l3l)> (32), (33) lead to the following demand equation with dis- 
tributed lags: 

t 
x^ = a + bi L     ß(l-ß)^-^ p 

\=0 
X 

t 
+ ci X a (1- a)*- ^ y^ + u-t (132) 

\=0 

Two points about (132) are noteworthy: (l) the distributed lags for the 
two independent variables, price and income, are different, and (2) the re- 
sidual term in (132) is the same as the residual term in eqiaation (131). In 
order to use the iterative method, therefore, we must iterate on variations in 
a vector ß*=(ß,cx) rather than on variations in a scalar parameter. 

On the other hand, no additional difficulties due to serial correlation 
are introduced by the use of the iterative method per se; If serial correla- 
tion is present in the residuals of equation (l3l)^ it will also be present in 
(132); but if it is absent in the residxials of (l3l)^ it will not be intro- 
duced by the iterative method into the residuals of the equation estimated, 
that is, (132). The addition of additional expectational variables to the 
system defined by equations (l3l)^ (32), and (33)> poses no further conceptual 
problems. It is clear, however, that the computational difficulties are 
greatly increased. 

Application vinder conditions of uncertainty when current price or income 
affects current demand.—^An interesting case arises when current prices or 
current income is assumed to affect the current quantity demanded. The re- 
sulting demand equation with distributed lags is equation (37) plus a random 
residual term when only one price is assxmied relevant: 

27/ Equation (l3l) should be compared with equation (36) (see page 2^). Note 
that bQ and CQ of (36) are assumed to be zero. 
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t-l 
x^ = a -f (bo + biß ) p^ + bi'   X    ß  (1- ß )*- ^ p;^   + 

t-1 .   . 
(CQ + cia) y^ + ci   L   CL (l-a)^"''   y.    + u^ (37) 

t-l t-1 
If p*.3^( ß) -     X    ß (1- ß)*-^   px   and yt.i( a) ^     E   a (l-a )*" ^   , then 

(37) may be written 

x^ = a + (bQ + bj^ ß ) p^ + bjL PÎ.I( ß ) 

+ (CQ + cj^a ) y^ + c^ y*,i( a ) + u^ (133) 

If the iterative method is applied to equation (133)^ we obtain estimates 
of a, bo^ bjL, CQ, C^, ß ,  and a ♦ * Estimates of bg and cg, however, must be 
obtained indirectly from the estimates of the coefficients of current price 
and income and estimates of b^, c^, ß ,  and a • This case shows that it is 
possible to include nbn-expectational variables in the demand equation when 
the iterative method is used, and that doing so involves no great increase in 
conç)utational difficulty. 28/ If the non-expectational variables are not cur- 
rent values of the expectational variables, all coefficients can be estimated 
directly by the iterative method. 

Application to models that involve both rigidities and uncertainty.— 
Application of the iterative method to equations containing distributed lags 
of both an expectational and technological or institutional nature poses grave 
difficulties. These difficulties are due to the identification problem dis- 
cussed beginning' on page kk. 

Consider the statistical model implied by equations (99), (32), and (33): 

4 = '^ Pt + ^ (99) 

where u^ is a random residual; 

PÍ - PÎ.I = ß [Pt - PÎ-I] (32) 

^t • H-1 = 6 [x^ - x^.-^] (33) 

28/ The iterative method in this case is no longer maximum-likelihood, how- 
ever. In order to obtain maximvim-likelihood estimates, current price and 
current income should be included in p*( ß) and y*( a), respectively. 



- 56 - 

Solution of these equations by the approach outlined in the preceding section 
gives : 

x^ =b ß Ô [p^ + [(l-ß) -f (1-Ô)] Pt-i + 

[(l.ß)2+ (l-ß) (l-ô) + (1-6)2] p^^^^ 

[(l-ß)3 -H (l-ß)2 (l-ô) + (l.ß) (1-0)2+ (1.6)3] p^^^^ 

• .. + X  ô (l-ô )^-^ u;^ (13^) 

Because of the introduction of technological or institutional rigidity, 
problems of serial correlation may arise if (13^) is estimated by the itera- 
tive procedure as it may not be reasonable to assume that the residual term in 

t 
(134), L    0(1-0)*^"^ \x\, is  serially uncorrelated• This difficulty is 

X=0 
not, however, the most important. 

By choosing pairs of ß and Ô in such a way that the series of weights 
for past prices entering (13^) 6onverges to zero as we go progressively 
farther back in time, we could, in principle, estimate equation (13^) by the 
iterative method. 29/ As noted above, however, ß and & enter the weights of 
prices symmetrically. This means that the maximum correlation between the 
current quantity demanded and prices with respect to variations in ß and ô 
is achieved at two points in the (ß , ô^) plane. Thus if one maximum is 
achieved at the point ß = ß and ô = S , the other maximum, which equals the 
first, is achieved at ß == S and ô = ß . Hence, having reached a maximum 

29/ A sufficient, but not necessary, condition that the weights in (13^) 
converge is that 

|l- ß + 1- ô I < 1 

since, after the weight of price lagged one year, the terms of the weight 
series are all less than the corresponding terms of the series 

[1-ß  + 1- ô]^ i=0, 1,  ..., CO 

It is plausible, a priori, that this should be the case. Since 0 ^ ß , 
ô < 1, the condition implies that 

ß +  Ô > 1 

Unless rigidity is extraordinary, this is reasonable. 
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with respect to the variation of two parameters, it is impossible to tell 
which parameter belongs to equation (32) and which to equation (33)• It is 
clear, however, that the coefficient b can be estimated without difficulty by 
the iterative method. 

When current price, as well as the long-r\an equilibrium quantity de- 
manded, affects the rate of change of current demand, identification problems 
of this sort do not arise. But, as suggested by equation (102), the distribu- 
tion of lag is extraordinarily complicated, so that it is difficult, if not 
impossible, to use the Iterative method. 

If it is possible to find a relevant non-expectational variable which 
enters the demand equation, no identification problem arises: Consider the 
system consisting of equations (32), (33) aj^d the demand equation 

^t = ^ Pt + ^ H •*" ^t (^35) 

where z-j^ is the non-expectational variable and u^ is a random residual. Equa- 
tions (32), (33) a-nd (135) lead to the following demand equation containing 
distributed lags: 

xt = b ß Ô X (1-0)^^^ L    (l-ß)f'-^ p 
M.=0 X;=0 k 

t t 
c6   E    (1-0)^"^- ^    ^      ¿; 0(1-0 )^-f^ u,,     (136) 

¡a=0 ^ fJi-0 ^ 

Provided the residual term in (136) can be reasonably assumed normally and in- 
dependently distributed, the parameters of (136) may be estimated by the 
iterative method. The distribution of lag in z contains only the parameter 
Ô ; hence, no problem arises in distinguishing between the two pgirameters ß 
and Ô . The computations involved in using the iterative procedure, however, 
are laborious^ since iteration must be performed on a pair of parameters. 

A Method That Makes Use of Single Reduced Equations 

We have seen that, except in the simplest cases, extraordinary computa- 
tional difficulties are encountered if the iterative method is used. Conse- 
quently we turn now to a non-iterative method which results in fewer difficul- 
ties of a computational nature. This method rests on estimation of the 
reduced equations discussed extensively beginning on page 17. 

Application when only rigidities are involved.—If a distributed lag is 
due only to rigidities of a technological or institutional nature, estimation 
is simple. Consider the model based on equations (23) and (28): 
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n 

i=l 

where u-^^ is a random residual; 

H  - H-1 == 5 t^ - H-l^ (23) 

Substitution of (28) into (23) leads to 

n 
x^ = a 6 + r ^±b Pit •*• ^ S yt 

i=l 

+ (1-6) x^.i + Ô ut (137) 

The residual term of (137)^ Ô u^, is much simpler than the residual term 
which would appear in the equation corresponding to (l37)> (25) page 19, if 
the former contains a distributed lag, namely 

t 
wt =  X 6 (1-6)^-^ u^ 

As remarked on page 53> if the u^ are serially uncprrelated, w^ tends to 
be positively serially correlated. It is clear, however, that if u^ is seri- 
ally uncorrelated, so will ô u^ be; hence no additional difficulties with 
serial correlation are introduced if the parameters of the reduced equation 
are estimated rather than the parameters of the demand equation containing a 
distributed lag. 

Equation (137) suggests that we run a regression of the following form: 

n    . . 
H = '^o ■»- ^   ""i    Pit + "^ 2 yt + ""3 ^t-1 + ^t (138) 

i=l 

If the residuals v^  are uncorrelated with the p^^^ yt^ ^^^ ^t-l> ^^ well as 
serially iincorrelated, the parameters of (138)' inay be estimated by oixiinary 
least squares. Let the estimated values of TTQ,   TTQ^V^) (i=l, 2, ..., n), TT 2 
and no  be denoted by n Q,   ír-|^(i) (i=l, 2, ..., n), 7^2 ^^^ ^ 3> respectively; 
then for estimates of a, b^ (i=l, ..., n) c, and 6 we have: 
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a = 

c = 

1-7T O 

1- 7? q 

l-n 

8  =  1-^ 

(1=1, ...y  n) 

> (139) 

An ordinary confidence interval may be constructed for the estimate of 
h  ,' $ ,  "but special methods must be used for the other estimates, a, ^^  (i=l^ 
..., n), and c. A method by which the variances and covariances of the esti- 
mates listed in (139) ^^J ^^ obtained is discussed by Klein (20, pp. 258-261). 

Application to models based on uncertainty.—The situation becomes some- 
what more complicated if distributed lags of an expectational nature are con- 
sidered. Reduced demand equations containing distributed lags of an expecta- 
tional nature may be obtained either by the single eqioation method or by the 
multiple equation method. As noted on pages ifl-42, for statistical purposes 
the important distinction between distributed lags of an expectational nature 
and those due to technological or institutional rigidities is that the latter 
distributions of lag are the same for every variable in a given equation and 
different for the same variable in different demand equations, while the 
former are different for every variable in the same equation and the same for 
the same variable in different equations. The peculiar characteristics of 
distributed lags of an expectational nature lead to statistical complexities. 

Consider the model defined by equations (l3l), (32), and (33); 

x^ = a + bi p^ + ci y| + u^ 

H - Pt-1 = ß  tPt -- Pt-l^ 

^t - yt-1 = ^ t^t - yt-i^ 

(131) 

(32) 

(33) 

If these equations are reduced by the single equation method, a consianption 
function is not needed to complete the system. When we make use of equations 
(51)-(56), we have as the reduced form of the above system 
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x^ = a a ß + b^ ß Pt + cj^ a yt - 

bi (1-a ) ß pt^i . ci oc (l-ß ) y^^j^  + 

[(1-a) + (l-ß)] x^.i - (l-a) (1- ß) x^.2 + 

u^ - [ (1- a ) + (1- ß )] ut.i + (1- a) (1- ß ) ut.2 30/    (l4o) 

An important point to note about (l4o) is its residual term- If v^ is 
defined as 

ut - [(1-oc) + (1-ß )] ut.i + (1- oc) (1« ß) ut.2        (1^1) 

then the v^ are serially uncorrelated only if the ut follow the following 
autoregressive scheme: 

Ut = [(1-oc) + (1-ß)] u^.i - (l-a) (1-ß) ut«2 -^ ^t      (1^2) 

where 6 ^ is independently distributed. Second-order serial correlation as 
well as first-order must be assumed in the residuals u-^^ of the original demand 
equation in order to make the estimates of the parameters in the single- 
equation reduced equation unbiased and statistically efficient. (See page 80.) 
Comparison of the iterative method in this case shows that no additional dif- 
ficulties with serial correlation are introduced by its use, whereas such 
difficiilties may be introduced by the non-iterative method imder discussion. 

When the single-equation method of reduction is used on demand equations 
containing three or more expectational variables, estimation by the non- 
iterative method becomes extremely difficult. As indicated on page 31> if n 
expectational variables are included in the original demand equation, the 
single equation reduced equation contains rfi more variables' than the original 
equation. If non-expectational variables sis well as expectational variables 
are included in the original demand equation, the situation becomes even more 
complex: If the original equation contains n expectational variables and m 

30/ Comparison of equation (l4o) with equation (56) (see page 29) shows the 
effect of the addition of a constant term ajid a random residual term to the 
basic equation when the single equation method of reduction is used: The 
effect is to define new variables y^ = x^ - a - u^, y^.^^ = -^t-l "" a - u^.^^ 
yt-2 = ^t-2 - a - ut-2* Substitution of these for x-^^, x^.j, and ^t^2>  ^^"" 
spectively, in equation (56) yields equation (l4o). 
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non-expectational variables, the single equation reduced form equation con- 
tains n^ + m more variables than the original equation, 31/ 

As a special case of this proposition we have the result that when the 
current quantity demanded depends on both the current and expected normal 
values of n expectational variables, the reduced demand equation contains 
n(n+l) more variables than the original eq-uation. In addition to the great 
difficulties with the number of independent variables, the single-equation 
method also introduces increasing difficulties with possible serial correla- 
tion as the nimiber of variables in the original eqioation becomes larger. Only 
in the simplest of cases should the non-iterative method be based on the 
single equation reduced eqixation. 

The case discussed beginning on page 59 is simple enough to warrant fur- 
ther discussion. Equation (l4o) suggests a regression of the form 

^t = ""O "^ ^11 ï^t + ^12 yt + ^21 Pt-1 + '^ 22 yt-1  + 

77" 31 ^t-l + ^32 ^t-2 "*" ^t (1^3) 

Estimates of the parameters a, b^, c^^, ß , and a may be derived from esti- 
mates of the TTS in (1^3)- Let the estimated value of a parameter be denoted 
by placing a hat over it, " A"^ then one such set of estimates is 

ß = 1 + 

s = 1 + 

■22 

^^12 

TTgl 

,7 11 

a = 
TTQ 

31/ This fact may be derived from eqviation (6l) by setting yt = x^ - 
m 
p   ^i<lit^ where the q^^ are non-expectational variables, and substituting y^, 

■^t-1' etc., everywhere for x^, x. ,, etc. 
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bi = ^11 

TT 22 
1 +  

12 

Cl = 
^12 

1 + -^ (l41f) 

The estimates indicated by (l^^i-) represent only one possible set of such 
estimates, however- If ß is estimated by 1 + ^22/^12 ^^^^  "^^^ alternative 
estimates of a may be obtained in addition to the estimate in (l^^), one from 
77 01  and one from n -^2*    Consequently, two additional estimates of a, b-j^, and 
ci may be obtained using these two estimates of a . Similarly, if oc is esti- 
mated by 1 + ÎÎ 21/^ 11^ ^^^ additional estimates of ß may be obtained. In 
addition, a quadratic in n oj^  and í? ^2 ^^^ ^^ solved to yield two pairs of 
estimates of ß and a . Clearly, the set of estimates exhibited is only one 
among several possible sets; it is, however, the simplest of these sets and 
the least open to statistical difficulties. The variances and covariances of 
the estimates may be obtained by a method outlined by Klein (20, pp. 258-261). 

A Method That Makes Use of Multiple 
Reduced Equations 

Because of the difficulties involved in using the single reduced equation 
approach, it is usually advisable to use the mxiltiple reduced equation method 
to make estimates. If, however, the distribution of lag for the same variable 
in different equations cannot be assxmied the same, the multiple-equation 
method of reduction cannot be used. If the lags are not solely of an expec- 
tational nature, they tend to differ in different equations, so that the 
single equation method must be used. The value of thé single equation method 
lies primarily in its wider range of applicability. If the multiple equation 
method can be used, use of reduced equations derived by it renders the non- 
iterative method of estimation much simpler computationally. 

A simple example.—Consider the system defined by the following 
equations : 

^It = ^11 Pit + ^12 P2t -*• ^It 

^2t = ^21 Pit + ^22 P2t + ^2t 

Plï= ßlPlt-»- (1-ßl) Pltl 

P2t = ß  2 P2t "*" (1- ß 2) P2t-1 

\> (1^5) 
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xt = ^ P* + "t 

In matrix form, this systam of eqtiations may be written 

(11^6) 

Pi = ß Pt+(l-ß) PÎ-i ■ 

where x^ is a vector (x-^^^ '*^2t)'^ Pt -^^ ^ vector (p^t^ P2t)'> ^t ^^ ^ vector 
(u^^, Ug^), B is a matrix 

^11    ^12 

^21     "^22 7 

ß is a matrix 

ß 

and p^ is a vector (Pit^ P2t)'• ^® reduced version of (1^6), obtained by the 
multiple equation method, is 

x^ = B ß P^. + B(I- ß )B"^ x^_-L + 

ut - B(I- ß )B-1 ut.i (147) 

Equations (1^7) suggest two regressions of the form 

^It = "ir^ Pit + ^A^^  P2t + ^11^^ ^lt-1 + ^12^^ ^2t-l + ^It 
(l48) 

^2t = ^2^^ Pit + ^2^"^^ P2t + ^2P^ ^lt-1 + ^2^^^ X2t-1 + V2t 

or, in matrix form, 

xt = n(i) p^ + n<2) x^.i + vt (149) 

A complicated problem of serial correlation in the residuals of (l48) or 
(1^9) may arise: Only if the residuals u^ follow a very complicated autore- 
gressive scheme, 

u^ = B(I. ß )B-1 u^.^ + €^ (150) 

are the residuals v^ serially imcorrelated. Equation (150) implies only first 
order serial correlation, as contrasted with equation (l42) above, but the 
current residuals from one demand equation must be correlated not only with 
their own lagged values but also with the lagged residxials of other demand 
equations. When the single equation method of reduction is used, successively 
higher order serial correlation must be assumed in the residuals of the 



original demand equation as more expectational variables are included. On the 
other hand, the multiple equation method never results in having to assume 
more than first order serial correlation. Furthermore, if the residimls of 
the original demand equations are in fact serially uncorrelated, the single 
equation method of reduction introduces serial correlation in the residuals of 
the reduced equation of successively higher orders; whereas, the multiple 
equation method introduces it only to the first order. 

Estimates of the parameters of equations (1^5) or (l46) may he derived 
from estimates of the parameters of equations (iW) or (1^9). As before, let 
the sign "A " over a parameter denote Its estimated value, then, since 

n(i) = Bß 

n^^) = B(i-ß)B' 
(151) 

we have 

B = (i-n(2))-i n(i) 

ß = n(i)-i (I- n(2)) n(i) ^ ^^^'^ 

Note, however, that unless the estimates of n ^^^  and n^^^ are restricted in 
some way, the estimated matrix ß is not necessarily diagonal, even though the 
matrix ,Ç is diagonal.^ Under the type of assimiptions normally made, the off- 
diagonal elements of ß might be taken to indicate the effects of current and 
past prices of other commodities upon the expected normal price of a given 
commodity. 3^/ 

As in other examples, the standard errors of the estimates^ and p inight 
be derived from the variances and covariances of the estimates H (1) and 11(2) 
by a method suggested by Klein (20, p. 258). 

The general case when the original equations are separable.--The general 
case oF'a system such as that represented in (1^5) offers no difficulties be- 
yond those previously encoxmtered. Some interesting res\ilts are obtained, 
however, when the system of original equations is separable (see page 36). A 
separable system may be written 

^t 

2t 

(153) 

32/ In previous work on multiple equation reduction in connection with the 
study of agricxiltural supply functions, off-diagonal elements of ß were 
typically close to zero as compared with the diagonal elements even though no 
restrictions were placed on the estimates of 11 (l) or 11 v^)^ See Nerlove, 
op. cit., p. 285» 
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where x^ and z^ are vectors of quantities demanded or other non-expectational 
variables, B, D, A are matrices of coefficients, p* and q* ^^^ vectors of ex- 
pectational variables, and u^ and v^ are vectors of random residual terms. 
The expectational equations needed to complete this system are 

(i-ß)  0 

0    (I-a) 
(15M 

As indicated by equation (84) (see page 37), the reduced form of (153) and 
(154) is 

"'] -( 
^Bß Da \ /Pt 

H)    \ .    0 A a / V^t 

"B(I- ■ ß)B-1 

0 

-] -B(I- ß)B"^DA~^ + D(I- a)A"^ 

A(l-a)A"^ 

'u+ 

B(l-ß)B-l 

0 

-B(I- ß )B"%A"1 + D(I- a)A"^ 

A(I- a)A-l 

u. t-1 

't-1, (155) 

Equations (155) and (153) each represent sets of equations; the parti- 
tioning of the matrices represents a partitioning of the sets of eqviations 
into two sub-sets. The second of these sub-sets, obtained either from (153) 
or (154), may be used to eliminate some of the expectational variables, namely 
the q^. Hence the first subse-^ of eqxjations of (l55) may be written 

-li x^. = (B ß , DA--^) 
Pt 

(B(I- ß)B-1, - B(I- ß)B-^ DA-1) 
^t-1 

't-1. 

u^ - B(I- ß)B-l "t-l - S(l-ß )B'-'- DA-1 v^._-L + DA-1 (156) 
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Equation (156) may be obtained either by eliminating q* from equation (153) 
and reducing the equation so obtained or by eliminating q;^ from equations 
(155) (see page 39)- 

Equation (155) suggests a set of regressions which may be written in 
matrix form 

^t = n-L3^ Pt + nj^2 <lt + "13 xt^i + nj^4 z^.i + Wit 

z = n 22 q^ + n 24 Zfl "^ ^2t 

> (157) 

whereas equation (156) suggests a set of regressions which may be written in 
the matrix form 

^t = n^î vt + n^* z^ + n^l x^^-^ + n-^î z^^^ ^ w^J     (158) 

Although set (l57) involves almost the same variables as set (158)^ the two 
sets of regressions cannot be interpreted in the same way. In order that the 
residual vector w^-^ be serially \mcorrelated, the vector of residuals u-^ must 
follow the autoregressive scheme 

u^ = B(l-ß )B~^ u^.i - [B(l-ß )B"^ DA"-^ + 

D(l-a)A"l] v^.i -»- ^ t (159) 

whereas, in order that the vector of residual terms w^^ be serially uncorre- 
lated, the residuals u^ must be correlated not only with lagged values of 
themselves and v^ but also with current values of the residuals v^, that is, 

ut = -DA-1 vt + B(l-ß )B-1 ut-i - 

B(I- ß )B"1 DA"3- V:^^^ + 6 ^ (l6o) 

Hence, if the regressions set forth in (158) are run and the u-^ do not follow 
(l6o) to a first approximation, the true residuals of the fitted equations 
tend to be both serially correlated and correlated aÄong themselves. 

Estimates of all the parameters of the original equations, (153) and 
(15U), may be derived only from estimates of the parameters in eq\iations (157)- 
Estimates of only some of the parameters of (153) and (15^) inay be derived 
from estimates of the parameters in equations (158). One of several possible 
sets of estimates of all the parameters of (153) and (15^) is 
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p   = ñ i^-i (I- ñ 13) ñ 11 

â =    n    gg'"""     (I-      "21+)        ñgg 

B    =    (I-   0^3) n 11 ^ 

.-1 -1 D  =   (I- ni3)"-^ t ni2 + (I- n24)     n22 niui 

Â  =   (I- n^k) -1 n 22 

(161) 

Only B and ß may "be obtained from the estimates of the parameters in (158). 
We may write the following matrix equations in these estimates: 

(162a) 

(l62b) 

ñ * ^^ 11 = eß 

ni2 = D A"-*- 

n * ii3_3 = B(l-ß )B-^ 

n   * — -B(l-ß )£"■'■ D Â"l 

(l62c) 

(l62d) 

We have four equations to solve for the four xmknown matrices B, ß ^ D, and A, 
but these equations are either not independent or not consistent^ In particu- 
lar, (l62d) may be derived from (l62b-c), provided n^íf = ft j^* n^^l* Equa- 
tions (l62a) and (l62c) may be solved in the usual way for B and ß . 33/ This 
particular difficulty does not occur if the separable system is the special 
case of non-expectational variables in the^original equations. In general, 
though, imless we are interested only in ß and B, system (157) should be 
estimated in preference to system (158). 

On page 36 we pointed out that a set of demand eqxiations containing both 
expectational and non-expectational variables is actually a special case of a 
separable system. The same is true in the context of a statistical model. If 
the q-t = zt ^^^ non-expectational variables, the matrices A and a are 
identity matrices and the residuals v^ are all zero; hence the reduced equa- 
tions are 

33/ Under special circumstances, an assumption concerning either D or A can 
be made which sunnounts this difficulty. See page 57 on ,the inclusion of non- 
expectational variables and page 109 on Friedman's permanent income hypothesis. 
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(B(l-ß)B-^,   -B(l-ß)B-lD) + 

ut - B(I- ß )B-1 ut.i (163) 

Not only are the additional difficulties with intercorrelation removed in this 
special case of equation (I56), 3^/ hut equations J[l62a-d) may he used to 
derive estimates of B, ß , and D from ni^i^ ^12> ^13 ^^^ ^ví* 

Application to models that involve hoth rigidities and uncertainty.— 
Separability of an equation system becomes especially useful when we deal with 
models that involve distributed lags due both to xmcertainty ahout the future 
and to technological or institutional rigidities. 

Consider the model consisting of equations (99)> (32), and (23): 

4 == ^ pt + ^t (99) 

H - Pti = ß [Pt - Ptil (32) 

^t - H-1 = ^ tx* . x^^^] (23) 

Note that a random residual term has been added to (99)* ^^^ reduced equation 
of the system (99).(32)-(23) is 

xt = b ß 8 pt + [(1- ß) + (1-8 )] xt«! - 

(1. ß)(l- 8) x^.2 + 8 [ut - (1-ß ) u^^il (iSk) 

For this equation, the residual term 8 [u^ - (l- ß) u^-i] tends to be 
serially imcorrelated only if there is positive first order serial correlation 
among the residuals xx-^.    Second, as noted on page k6,  the parameters ß and 8 
enter (l64) symmetrically (except on the residual tenn), and this produces a 
difficulty in estimation. Equation (l6k)  suggests a regression of the follow- 
ing form 

H = ^ 1 Pt + ^2 ^t-1 + ^3 ^t-.2 + ^t (165) 

Estimates of ß and 8 may be ohtained from the estimates of the parameters of 
(165) in the following way: Let n 2 an<ä ^ 3 denote the least squares estimates 
of -^2 ^^^ '^ 3* Comparison of (165) and {16k)  shows 

3^/ See equation (160) and the text beginning on page 6k. 
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ß or S =1 —^ — (166) 

If ß is given by the root taken with the plus sign, S is given by the root 
taken with the minus sign, and conversely. Hence, two pairs of estimates of 
ß and S may be obtained from a regression based on (l65), A unique estimate 
of b may, however, be obtained from such a regression. The product of ß and 
S may be estimated by 1-'^ Q^*^ 3^ so that 

1- TT 2~ '''■ O 

This model may be generalized by making use of equations (llO), (77) and 

X   =   e   v^   +(!-€) vl_^ (77) 

it = R i Î + (I-R) i t.i (111) 

Note that a vector of random residvials has been added to (llO). Following the 
method of reduction leading to equation (113) (see page 47), we have 

ç^ = Rr6rit4. [(I-R) +Rr(i.€)r-V^] E. ^^^ . 

Rr(i«6)r"V^ (i-R) Ç ^^2 + Rt^t - ^ (I- ^^^'^ ^t-i^ (^^®) 

Since R is a diagonal matrix, the residuals of (l68) are serially imcorrelated 
only if the residuals u^ follow the autoregressive scheme 

u^ = r (l-6)r-^ u^^l + e^ (169) 

which is the same condition as for a model involving • only distributed lags due 
to uncertainty. 

Equation (168) suggests a set of regressions which may be written 

^ t = "l ^t -*• "2 - t-l + "3 ^t-2 + ^t (170) 
where 
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v^ = R[ut - r (i-€)r-iut.i] 

The following equations may^be solved for the matrix of estimated values of 
each set of parameters F, R, and € : 

ñi = R r € (171a) 

n g = (I-R) + R f (I- € ) f -1R-1 (171b) 

n^ = Rf (l-€)f'%^ (I-R) (171c) 

Substituting (171b) into (l71c) we have 

ñg = (ñg - (I-R) )(I-R) (172) 

which is a qx;iadratic in the matrix (l-R). The individual equations from (l72) 
are of the form 

^(3)iJ= ^2)ij (1-^j) - (l->i)^ (173) 

Where p ^ is the ith diagonal element of the diagonal matrix R, and ^  (3)ij 
and n  (2)iJ ^^^ typical elements of the matrices ft ^ and fig^ respectively. 
These equations cannot in general be solved ifp±f  p ¿  for all i ?^ j; hence, 
(172) cannot be used to estimate the matrix R from estimates of the matrices 
IIl>  112, and II^. 35/ If it were possible to estimate R, equations (l71a-c) 
could be used to estimate F and €.    The reader will see, however, that each 
of the equations ^derived from (iTlar-c) other than (172) contains more than one 
of the matrices R, f, or € , making the derivation of estimates difficult; 
hence, equation (170) does not represent a very firuitfia set of regression? 
for estimation purposes. 

If the system of original demand equations is a separable system, how- 
ever, the situation is different. If a system of demand eqioations is separa- 
ble it can be written 

^t, 

where x*, z*, p*, q*, u^, and v^ are vectors, and B, D, and A are matrices. 
The expectational equations may be written 

0   a/  \ qt/   \ ^   ^"^^ 

where ß and a are diagonal matrices of coefficients of expectations. 

35/ This was the difficulty alluded to in the. text on page k6. 
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If the current values of the expectational variables are assumed to have 
no effect on the rate of change of the current qusmtities demanded, we may 
write the relationship between the ciorrent quantities and the long-run equi- 
librivun quantities as 

^t R 

0 

Xt-1 

't-1, 

(176) 

where R and S are diagonal matrices whose elements lie between zero and one. 
Applying multiple equation reduction to the equation obtained by substituting 
(17^1-) into (176) and equation (175), we have 

'I-R 

0      I-S, 

'RB(I- ß )B"% 1«-1 RB(I- P)B~1DA-1S"1 
+ RD(I- a)A-ls'l 
SA(l-a)A-ls-l 

'RB(I- ß )B~-'-R -1T,-1 

0 

RB(l-ß )B~^DA"^-1 
+ RD(I-a)A-ls-l 
SA(I-a)A-ls-l 

H-2 

't-2 

'R      0 

,0      S 

- B(I-ß )B"1DA-1 
+ D(l-a)A-l 
A(l-a)A"l 

t-1 

t-1/ 
(177) 

Equation (177)  s\iggests two sets of regressions of the following form 

and 

^t = "li^^ Pt + ni(^> qt + ngi^) xt.i + 

"22^^ H-l + "3(1) xt.2 + ^i^l  H-2 + 4^^ 

H = n J^) qt + n^is) ^^_^ ^ 03(2) ^^_2 + w[2) 

Provided the residuals u^ and v^ follow the autoregressive schemes 

u^ = B(I- ß )B~^ u^^-L - [B(I- ß )B-^DA-^ 

(178a) 

(178b) 

+ D(l-a)A-l] v^_^  +  € It (179a) 
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and 

v^ = A(I- a)A-^ vt_i + €2t (I79t) 

the matrices of coefficients in (l78a-b) may be estimated by ordinary least 
squares. Estimates of the matrices of parameters in the eqijations (174), 
(175)Í and (176) may be derived from these estimates solely by the solution of 
linear equations. 

From (177) and (l78a-b) we have the following equations: 

n ^(1) = RB p (l80a) 

n ^(1) = RDâ (l80b) 

n gil) = I-R + RB(I- ß)B-lR-l (l80c) 

n 2^^^ = -RB(I-ß)B-lDA-^S-l + RD(I- ôi)Â-^S-^ (l80d) 

n ^(1) = -RB(I-ß )B-^r^ (I-R) (l80e) 

n (1) = RB(I-ß)B-1DÂ-1S-1 (I-S) - RD(I- â)Â-ls-l (I-S) (l80f) 

n ^(2) = (i-ê) + sÂ(i- S)Â-is-i (i8oh) 

n 2^^) = -sÂ(i-5)Â-is-i (i-s) (i8oi) 

We have nine eqxiations to solve for the seven unknown matrices, B, 5, A, ß , 

5. , "k,  and S; hence, more than one solution may be possible. 

One possible solution to (l80a-i) may be obtained as follows: Equations 
(l80d) and (l8öf) lead to 

n^^i) = [^(I-^)B-IDÂ-IS-I - RD(I-â)â-1S-1] (I-S) = -^^"^  (i-s) 

So that 

S = I + n^^i^-i n^g (l8la) 

Hence, S can be estimated and we can use S for S in subsequent calculations. 



- T3 - 

From equations (l80g) and (l80i) we have 

SO that 

Â = s-i (I + n^is))-^ n J2) (i8ib) 

s may be substituted in (l8lb) from (l8la) to give an estimate of A¿ hence Â 
can be used in place of A in subsequent calculations. Since S and Â are knovn 
we have from (l80g) that 

â  = Â-ig-i n ^(2) (3^3^ç.j 

Hence, â can be used for a in subsequent calcxxlations. From equations 
(l80d), (l80b), and (l80a), we have 

SÂ ñoo''"^ = ^(i- ^) - RB(i- ß )B"'^^ 22 

= RD - n^(i) - RD + n^[i) D 

= n (1) D - n (1) 11 "      12 
hence 

D = n^fi)"*^ (n Ji) + SÀ n^^^)) (i8id) 

Since S and Â are knovn from (l8la) and (l8lb), D can be estimated from 
(l8ld)* From equation (l80b) we have 

R = n^(l)  a-^D"^ (l8le) 

Since D and à are known from (l8ld) and (l8lc), (l8le) may be used to find R* 
From (l80c) and (l80a) we have 

ngji) = I-R + I . n ^(1) B-^R"^ 

hence 

B = R"^ ( n ^^^  + R - 21)"^ n ^^^ (l8lf) 

Finally^ from (l80a) we have 

ß = n^(i) R-iß-^ (l8lg) 

It follows from (l8la-g) that estimates of the parameters of (I7¿i.)-(l76) may 
be derived from estimates of the parameters of (l78a-b) by the solution of 
linear equations. 
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In the preceding examples, current values of expectational variables are 
assumed to have no effect on the rates of change of current quantities 
demanded. We now ass\mie instead that the rate of change of the ctJirrent quan- 
tity demanded depends not only on the difference between the long-run equi- 
librium and current q-uantities demanded but also on the difference between the 
current and expected nonnal prices of the commodity in question. Thus we use 
relations of the form of (lOO) rather than of the form of (23)• 

First, consider the model consisting of equations (99)^ (32), and (lOO) 

X* = b PÎ + ut (99) 

Pt - Pt-1 " P fPt - Pt-1^ (32) 

^t - H-l = S 0 [pt - Pt] + S 1 [xï - x^.i] (100) 

The reduced version of the system (99), (32), (lOO) may be obtained by the 
same method that was used to obtain (104); it is 

x^ = [b ß 6 1 + (1- ß ) ÔQ] Pt - (1- ß ) 5 o Pt-1 + 

[(1-ß) + (l-ôi)] xt^i - 

(1-ß ) (1-5 i) x^^2 "^ ^1 [u^ - (1- ß) u^^^l.       (182) 

Here the residual term, on [u^ - (l- ß) ^j^-iL l^a-s the same properties as the 
residual term of equation t^6k)  (see page ö8).  ß , ô Q^ and 6-^ enter (l82) 
asymmetrically, however. 

Equation (l82) suggests a regression of the form 

H =" '^ 11 Pt + "^12 Pt-1 *♦• "" 21 ^t-1 "•• 

"22^t.2^^t (^^3) 

If the appropriate serial correlation exists, at least approximately, among 
the residuals u-^, eqtxation (183) may be estimated by least squares. 

Estimates of b, ß , b Q,  and ô 2. loay be obtained from the estimates of 
fT 2_xy   '^12^ '^ 21> ^^^   '^22' ^ Unfortxmately, this requires the solution of a 
quadratic in the estimates n g-^ and ^ 22 ^-^ ^ 21 ^^^ ^22* ^^ indicated on 
page 69, certain difficulties arise from this, particularly since ß and 6 ^ 
enter the coefficients TT 21 and u 22 symmetrically. We therefore cannot tell 
whether a particular root is an estimate of ß or of S-j^. 

As in the preceding example, this case may be generalized. Substantially 
the same results emerge concerning the possibility of estimating the coeffi-' 
cients of the structxiral equations and the effects of separability. 
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EFFECTS OF SERIAL CORREIATION 

As noted previously, the statistical estimation of the structural para- 
meters of equations containing distributed lags by least squares frequently 
requires rather imusual ass"umptions concerning the nature of the residual 
terms in the original demand equations. When the distributed lags are due 
solely to technological or institutional rigidities, these complications do 
not arise in estimating parameters in the reduced equations but they do arise 
when ve use the iterative procedure. 

In our discussion of estimation techniques we have come across several 
types of problems that involve possible serial correlation. Outline 1 sum- 
marizes the possibilities in a number of cases: Column (l) öhows the supposed 
basic cause of the distributed lag under consideration. Column (2) indicates 
the method of estimation to be employed; the iterative method is used to esti- 
mate the parameters of the demand equation and the distribution of lag 
directly from an equation involving a distributed lag, and the non-iterative 
method is used to estimate the parameters of the original demand equation and 
the distribution of lag indirectly by estimating the parameters of a reduced 
demand equation or set of such equations which involve only discrete lags. 
Column (3) shows the type of reduction used if appropriate. Single and mul- 
tiple equation methods are indicated, and the multiple equation method for a 
separable system is designated by the term "System separated." In the last 
case we suppose that the equations which may be separated from the main body 
of the system (such as the consumption function) are solved for the expecta- 
tional variables they involve; these solutions are then substituted in the 
main body of the system of equations before reduction. Column (h)  shows the 
actual residual term in the equation or equations used for estimation in terms 
of the residual term(s) of the original demand equation(s). If the distri- 
buted lags are due to uncertainty and the non-iterative method is used, the 
methods of reduction are supposed to apply to a model such as 

^It = ^11 Pit + ^12 P2t + ^It 

^2t = ^21 Pit + ^22 P2t + ^2t 

or 

^ (l8ifa) 

^it = ^11 Pit +^1 y* + ^It 

Ct -   0   + ^n+1 yt + %+l t 

(l8ifb) 

In the case of single equation reduction, ß and a refer to different coeffi- 
cients of expectations, and in the last two cases the a*s are complicated 
fimctions of the b's or c*s in (l84a-b) and the coefficients of expectations. 
Colimm (5) shows the type of serial correlation present in the residuals of 
the estimation eqiaation if the residvials of the original demand equations, u^ 



Outline 1.—Alternative methods of estimation: Effects on serial correlation in the residxaals of the estimating 
equation 

Case 

Cause of 
: distributed 
1    lag 

:   Method 
:     of 
: estimation 

;    Tyipe  of 
reduction    ; 

Residual term in 
estimating 
eqxiation 

: Nature of serial 
correlation 
introduced 
if ut is 

independently 
distributed 

(1) (2) (3)       i (k) (5) 

1 . Technological 
or 

: institutional 
, rigidities 

Iterative None L    5(1-5) ux  1/ 
Moving summation 
(positive serial 
correlation) 

2 Do. Noniterative Single eqxaation 5ut   2/ None 

3 . uncertainty Iterative None "t  3/ Do. 

k do. Noniterative Single equation 4/ 

+ 

[(1-a) + (l-ß)] u^..i 

(l-a)(l-ß) ut-2 5/ 
Moving average 

5 : do- do. Multiple equation k/ ^It - (ai(^)uit_i + a2(^)u2t .1)6/ Moving average 

^t - (^l^^^^lt-l + a2^^^^t. -l) Intercorrelation of 
residuals in dif- 
ferent equations 
as well as serial 
correlation 

6 ! do. do. System separated k/ 
(multiple equation) 

^It 

^S^^^^t-l  1/ 
Moving average 

1/ See equation (130), page 53- 2/ See equation (137)^ page 58. 3/ See equation (132), page 5^ . 4/ Two 
iqoectational variables assumed to be involved in original equation or equations. 5/ See eqtiation (l^O), page 

ON 

expectational ,^*-.—^^^  ^^^w«^«. »,« ^^  ***,v.^,wv. *« v**.e>j.4L*v*j. V.V4V*W.WJ.WJ.í V 

60. 6/ See equation (l47), page 63. 7/ See equation (156)^ page 65. 
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or ujt ^^^  ^2t> ^^^ ^^ fact independently distributed. 36/ Cases which resvilt 
from a combination of technological rigidity and uncertainty are not dis^ 
cussed, inasmuch as the residual tenns possess properties identical with those 
of a noncombination model. 

A brief summary of the effects of nonindependence in the residual terms 
of an estimating equation when least squares estimating techniques are used is 
given here. If no lagged values of the dependent variable enter as independ- 
ent variables, the estimated coefficients are statistically unbiased and con- 
sistent, but they are statistically inefficient and the ordinary t- and F- 
tests do not apply. The estimates of the residual variance are biased. When 
lagged values of the dependent variable enter as independent variables, the 
coefficients are biased for small samples. 37/ Mann and Wold (23^ pp. 175- 
192) show, imder fairly general assumptions about the nature of the residual 
serial correlation, that the least squares estimates of the coefficients are 
asymptotically unbiased and consistent. The term asymptotic indicates that 
these properties are realized only for large samples. 

Alternative Cases 

With the above comments in mind, we may analyze the effects of the alter- 
native cases presented in outline 1. 

Case 1.—Here the distributed lag or lags are due to technological or in- 
stitutional rigidities and the iterative method of estimation is used. Unless 
the residuals of the original demand equation follow the complicated autore- 
gressive scheme indicated in equation (130) (see page 53); the residuals 

t 
wt =  r 6(1-0)^-^ ux (185) 

x=o 

are not independently distributed. 38/ Provided we take our origin in the 
sufficiently distant past, it may be shown that the correlation of w^ with 
n-n^ P n^ is 

P n = (1-Ô )^ (186) 

36/ The terms "moving summation" and "moving average" refer to a specified 
type of nonindependence in the residual terms. Their meaning should be clear 
in this context. 

37/ See Hurwicz (19). Hurwicz shows, for a number of simple cases, that the 
bias of the coefficients of the lagged dependent variables tends toward zero. 
Some of his results are also applicable to maxim\mi likelihood estimates of the 
coefficients in systems of simultaneous equations which contain lagged endo- 
genous variables as well as predetermined variables. 

38/ We partly proved this in footnote 26. The results which follow are 
based on the general formula for the correlogram of a stationary stochastic 
process of moving summation. 
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if the u^ are independently distributed. The variance of w^ can be shown to be 

^ ^ l-(l-ô)2 ^^ (187) 

2 
where cr^^ is the variance of the residual term u^ of the original demand 
equation. Consequently the variance-covariance matrix, ß, of the residuals 
in the estimating equation is 

(1-8)  (1-0)2 _; 

.2 a 2   /  (1-Ô)     1    (1- Ô)  . 

1.(1-6)^     (1-5)2  (1-0)     1 

Equation (l88) should be compared with the usual assumption that ß = 
G ^    I,  where I is the identity matrix. Because of this nonindependence, the 
estimates of the coefficients in the estimating equation are not statistically 
efficient and the estimate of the residual variance is biased. 39/ Recalling 
that the iterative procedure involves maximizing the calculated multiple cor- 
relation between the observed quantity demanded and weighted moving averages 
of current and past prices with respect to the weights in those averages, we 
see that, since the estimate of the residual variance is biased, so may be our 
estimates of all the coefficients, Ô included. In sum, independence of the 
u^ leads to biased estimates in the first case of outline 1, even though'no 
lagged values of the dependent variable are included as independent variables 
in the estimating equation. 

A relatively simple solution to this problem exists. Aitken (l) has 
shown that if the variance-covariance matrix of the residuals in the estimat- 
ing equations is known, it is possible to specify a transformation of the 
variables which removes all nonindependence from the resulting residual terms. 
Furthermore, it is not actually necessary to specify the transformation, but 
only to compute the moments of the normal equations in a way which depends on 
the inverse of the original variance-covariance matrix, Q  . Since the matrix 
Q.   depends only on the parameter 6 (in the case londer consideration), it is 
feasible to use Aitken's method at every iteration of the procedure: Just as 
the weighted moving averages of prices is different for each iteration, so is 
the exact way in which the moments are computed. All this, of course, rests 
on the assumption that the residuals u^ are independently distributed; if this 
assumption cannot be made, little can be done. 

39/ The fact that the ordinary t- and F-tests do not apply need not concern 
us in this case, since they never apply when the iterative procedure is used 
regardless of whether the residuals are independently distributed or not. 
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Case 2.—Here the distributed lag is again due to rigidities of a techno- 
logical or institutional nature but, in contrast to case 1, the noniterative 
method is used. In this case, the assumption that the residuals of the ori- 
ginal demand eqiaation are independently distributed does not lead to any 
complications: the residual S u^ also are independently distributed. 

If, however, the u^ are not independently distributed, their lack of in- 
dependence shows up in the residuals of the reduced equation. Since the 
lagged quantity consumed is treated as an independent variable, the estimates 
of the coefficients in the reduced equation are biased for small samples. In 
this instance we have no a priori basis on which to specify the form or con- 
tent of the residual variance-covariance matrix; consequently Aitken's 
generalized least squares cannot be easily applied. Cochrane and Orcutt (?) 
suggest an iterative method of autoregressive transformation which might be 
applied in this case. 

Case 3.—The next three cases presented in outline 1 deal with distri- 
buted lags due to uncertainty. When the iterative procedure is used, as in 
case 3, no serial correlation is introduced in the residuals of the estimating 
eq\aation if there is none present in the residuals. This is in contrast to 
the sitxaation when the iterative method is used but the distributed lags are 
due to technological or institutional rigidities. 

If the residuals of the original demand are not distributed independent- 
ly, the estimates of the parameters in the demand eqiaation and the coeffi- 
cient(s) of expectation may be biased, since the estimate of the residual 
variance is. Since we have no a priori basis on which to specify the residual 
variance-covariance matrix, Aitken's method cannot be employed. If we have 
reason to suspect that the u^ are not independently distributed, or if we find 
significant serial correlation in the calculated residuals of the final 
result, 4o/ the best that can be done, at present, is to use the technique 
suggested by Cochrane and Orcutt (8). 

Case k.—Here the parameters of the original demand eqxaation are to be 
estimated from a reduced equation obtained from the original by the single 
eq\iation method. If the residuals of the reduced eqimtion are a "moving 
average" pf the residuals of the original demand equation, the residxials 

wt = u^ - [(1- a) + (1- ß)] u^^i + (l.a)(l. ß) ut^2      (^^9) 

tend to be serially correlated if the u-^^ are not. The correlogram of the 
residuals w-j;^ is as follows 

ko/  Using, for example, the Durbin-Watson statistic. See Durbin and Watson 
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n = < 

[(l>^a) ^ (1-ß)] [1 + (l>a)(l->ß)] 

1 + [(1-a) + (l-ß)]^ + [(l-a)(l-ß)]^ 

1 + [(1-a) + (1-ß)]^ + [(l-a)(l-ß)]^ 

k 

n = O 

n = 1 

n = 2 

n> 3 

(190) 

Since O < a, ß < 1^ the first-order serial correlation is negative and the 
second-order serial correlation is positive. Because lagged values of the de- 
pendent variable are included as independent variables, the least squares 
estimates of the parameters in the reduced equation tend to be biased for 
small samples, if the residuals of the original equation are independently 
distributed. As indicated in our previous discussion of estimation based on 
single equation reductions, the more expectational variables included in the 
original equation, the greater the number of lagged residual terms, u^, in- 
cluded in the residual term of the reduced form, w^. 

If all the coefficients of expectations (a and ß in this case) were 
known a priori, Aitken*s method of generalized least squares could be applied 
in case we had reason to believe the residuals of the original demand equation 
were independently distributed. Since, however, they are not known, other 
methods must be used. One possible procedure would be to apply the transfor- 
mation procedure implied by Aitken's procedure, but with unspecified coeffi- 
cients of expectations. We could then minimize the sum of squared residuals 
with respect to these parameters and with respect to the parameters in the 
original equation and the coefficients of expectations. kl/   Although this 
method leads to statistically efficient estimates, it is not certain that they 
are xinbiased. Furthermore, the "normal" equations resulting from such minimi- 
zation are not linear in the parameters and, hence, are difficiilt to solve. 
Alternatively we could use the method suggested by Cochrane and Orcutt (8). 

In the case presented in the table, the residuals of the reduced equation 
are a linear fiinction of the residuals of the original equation and two of 
their lagged values; thus we have a second-order difference equation in these 
original residuals. Solution of this difference eqixation yields an autore- 
gressive scheme. The first few autoregressive coefficients in the scheme 
might then, as Cochrane and Orcutt suggest, be estimated from the calculated 
residuals. The results coiild then be used to transform the variables entering 
the reduced equation. Such a procediere would, however, be difficxilt in prac- 
tice and likely to yield only crude approximations to the correct transforma- 
tions . 

kl/  This method follows from one suggested by Klein (20, pp. I86-I89). 
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Case 5*—Here the m*ultiple equation method of reduction is used. Column 
(h)  shows that the residuals of one of the reduced equations are linear func- 
tions of the residuals of one of the original demand eqiaations and lagged 
values of the residuals of tvo of the original equations. If all the resid- 
uals of the original equations are independently distributed^ the fact that 
the residual term of the reduced equation contains more than one lagged 
residual of the original equations causes no more difficulty than the case in 
which only one expectational variable is included. In the latter case single 
and multiple reduced equations are identical: the reduced residual is a linear 
function of the resid\ial of the original equation and its lagged value. Be- 
cause^ in the case presented in outline 1, the residual U2t-i is independently 
distributed, it may be taken as a random addition to the residual, w^^^, of the 
first reduced equation. As noted in the outline, however, the effect of the 
two random terms in w-^^ and W2^ is to make them nonindependent. This, of it- 
self, is not sufficient to cause bias in the estimates of the coefficients. 
The serial correlation of W2^-^ and W2t does, however, cause bias in the esti- 
mates of the parameters of the reduced equation. 

The correlogram of Wj^-j^ is 

>   (i=l, 2) (191) 

pj^^      = 0 ,      n > 1 

Since, as reference to equation (1^7) indicates, a^v^) is a complicated func- 
tion of the parameters in both original demand equations and both coefficients 
of expectations, it is impossible to apply Aitken's method. The best pro- 
cedure probably is to use either of the two methods suggested in the previous 
case. 

CO'Se 6.—This deals with a separable system which is separated prior to 
reduction. When a system is separated, the dependent variables of some of the 
equations enter as independent variables in the equations used to estimate the 
parameters of part of the original system of demand equations. The residual 
terms of the eliminated equations also enter the residual terms of the reduced 
equations'used for estimation; consequently, severe bias of the estimates of 
the coefficients may result. In view of this additional difficulty, it is 
usually wise not to separate a system of separable demand equations, but 
rather to estimate them as a group or any one of them from a single reduced 
equation. k2/ 

h2/  This statement differs from a suggestion made in connection with a test 
of Friedman's permanent income hypothesis. See page 112. 
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Alternative Assumptions 

As suggested in our discussion of estimation procedures, all the diffi- 
culties so far presented in this part may, in theory, be obviated by assuming 
that the residuals of the original demand equations follow more-or-less com- 
plicated autoregressive schemes. In view of the nature of most economic time 
series, to assume these autoregressive schemes is neither better nor worse 
than to assume the residuals in the original equations are independently dis- 
tributed. On the other hand, false specification of any kind may lead to 
serious errors. 

One procedure is as follows: Test the residuals of the estimating equa- 
tions for evidence of serial correlation; if significant serial correlation is 
fo\md, then worry about it. 

INTERDEPENDENCY OP VARIABLES WITHIN A SYSTEM 

Although the problems of serial correlation are serious, they are more 
easily managed by assimiption than the group of problems to which we now turn. 
In our exposition of the miatiple equation method of reduction, we made use of 
the fact that an individual demand equation generally is part of a system of 
equations. We restricted the other equations in this system, however, to be 
demand equations. In doing so we neglected a problem of crucial importance: 
both current prices and current quantities frequently are determined jointly 
by a system of demand and supply equations. If no distributed lags are in- 
volved in either set, the problem is that usually discussed in the theory of 
estimation of simultaneous equations. h¿¡    The introduction of distributed 
lags raises problems which are hitherto unsolved. As we show, these problems 
are closely connected with the problem of serial correlation. 

Conditions Which Must Be Satisfied If the 
Method of Least Squares Is Used 

In a recent article, Phillips (28) summarized the necessary conditions 
for the use of least squares on systems of simultaneous equations that involve 
distributed lags. Although Phillips deals only with a relatively simple case, 
his main results are useful, kk/ 

Consider the following demand equation involving a distributed lag: 

xt = ^0 Pt + "^1 Pt-1 + ^2 Pt-2 + •*• + ^r Pt-r -^  ^t       (192) 

¿4-3/ See Klein (20) or Koopmans and Hood (21). 
íí5/ The model used here for expository purposes is slightly different from 

that given by Phillips. 
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where the constant term is neglected for simplicity. Note that this equation 
is almost identical to equation (k)  (see page 8). We suppose that we also 
have a supply equation: 

H = ^O Pt + ^1 Pt-1 "»• ^2 H-2  "^ • • • **• % Pt-s ^  ^t       (193) 

The quantity consumed and produced, x^, and the current price, p^, are assxmied 
to be jointly determined by equations (192) and (193)• Under what conditions 
may the coefficients of (l92) be estimated without statistical bias by least 
squares? 

Phillips gives four conditions, all of which must be satisfied if the 
least squares estimates are to be unbiased. If the number of past prices 
which we must include in (192), r, is known, Phillips* first condition is not 
applicable. In practice, however, r, is not known. Instead we might choose to 
introduce R past prices, so that we actually try to estimate 

xt = ^0 Pt + ^1 Pt-1 + .. • + bp pt«R -f u^ (19^) 

Phillips' first condition is that 

R > r (195) 

For if R < r, the lagged prices Pt-(R4.l)> Pt-(R+2)^ *•• Pt-r^ ^^^ omitted from 
(19^) and the residual term is 

^' = Vl Pt-(R+1) + ^R+2 Pt-(R+2) + ••• + l^r Pt-r "^  ^t     (^^6) 

Equation (193) is an s-order difference equation in price as a function 
of time; it may be solved for p^ in terms of past values of x^. Equation 
(192) and its lagged counterparts may be used to substitute for x;^, x^^^^ • • • 
in the result. Such substitution yields another difference eq\aation in price 
as a function of time. In addition to price, this difference equation con- 
tains current and lagged values of u^ and v^. The new difference equation may 
be regarded as an autoregressive process if u^ and v^ are independently dis- 
tributed; consequently p^ is serially correlated and the R+1 current and past 
values of price included in (19^) are correlated with the residual term u^. 
As is well known, this correlation leads to statistical bias in the least- 
squares estimates of bQ, b-^, ..., bj^. 

As indicated (193) is an s-order difference equation; \mder the appropri- 
ate initial conditions it has a solution of the form 

Pt = AQ (X^ - v^) ^ Al (x^.3^ - V^^-L) + ... (197) 

Phillips' second condition is that 

AQ = 0 (198) 
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that is, that the system (192)-(193) is recursive, k^/    Otherwise, p^ depends 
on x-t and, from (192), x-^ depends on n^;  hence, by X196) pt is correlated with 
u;. 

Suppose that Phillips* first and second conditions are fulfilled and sup- 
pose further that 

Ai = 0  for  i = 0, 1, •.., j 

so that price is not affected by x^, x^.3^, ..., x^^j. Phillips* third 
condition is that the residuals u^ must not be autocorrelated over intervals 
containing more than j periods; that is, the correlogram of u+ should be such 
that 

Eu+Uf ^ 

 p-^^ = Pn = 0  ^^^  ^ >J (199) 
Eut 

To prove this we solve (192) and (197) for p^. As Phillips (26, p. 110) 
points out, the general solution may be written 

Pt = (Li ut.i + L2 ut.2 +•••)+ (wt + Ml Wt^i + M2 wt.2 + •••)  (200) 

where 

^t = -AQ V^ . A^ v^^3^ - ... (201) 

and where the L*s and M*s are functions of the b's of (192) and the A*s of 
(197). According to Phillips (28, p. 110), if A^ =0 for all i from 1 to j, 
where j is any integer, then LJL = 0 for all i from 1 to j; and if A^ ^ 0 for 
i = j+1 then Bi ?^ 0 for all i > j+1. Multiplying (200) by ut and taking 
expected values we have 

EPt ^t = (LI EutUt«! + L2 EutUt.2 + .••) + 

(EutWt + Mx EutWt«! -f ...) (202) 

It follows from (202) that EptUt ^ 0  imless p^^^ = 0 for all n such that 
Ln ?^ 0, that is, for all n > j. 

Phillips' fourth condition is that ut must be imcorrelated with the Wt> 
^t-l^ ••• • This condition follows directly from equation (202). By (201) we 
see that if ut is uncorrelated with Vt> Vt.i> •.., Phillips' fourth condition 
is satisfied. 

Phillips' four conditions must be satisfied if we are to use least 
squares to estimate the coefficients of (l92), but his conditions do not sug- 
gest what method or methods should be employed if they are not satisfied. 

fi¿/ See Wold and Jureen (36, p. Ik). 
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This difficulty results because Phillips does not specify a model which gen- 
erates a distributed lag or lags, but only assumes the existence of such lags. 
When we do specify a model (especially if we specify one of the types dis- 
cussed above), the problem of what to do if least squares is not appropriate 
is readily suggested. 

An Approach Which Can Be Used If the Method of Least 
Squares Is Not Directly Applicable 

We have shown that when distributed lags are generated by the models dis- 
cussed in this paper, equations containing them may be reduced to equations 
containing only discrete lags, albeit at the expense of introducing serial 
correlation in the residuals of the reduced equations if there is none to 
begin with in the original equations. An equation or group of equations may 
be reduced whether the equations deal with demand or supply; consequently we 
may write any system of equations containing distributed lags as a system of 
equations containing only discrete lags. Provided we can neglect the problem 
of serial correlation in the residuals of the reduced equations, standard 
techniques are available for dealing with the problem of simultaneity. 

Before concluding this section, we briefly indicate the operation of this 
method in a particular case. Suppose we have a demand function 

a consumption function 

and a supply function 

xt = b pi;^ + c y| (203) 

Ct = 0 + c» y^ (204) 

x^ = d p^ + e z^ (205) 

where z^ is an exogenous variable determining supply and p^ is the producers* 
expected normal price. Note that we assijme that (l) income is exogenous, 
(2) current price and current income do not affect demand, (3) current price 
does not affect supply, and (h)  that producers' and consiomers' expectations 
are different. Let ß be the consumers' coefficient of expectations for 
price, a be the consumers' coefficient of expectations for income, and ß * be 
the producers' coefficient of expectations. We neglect the problem of serial 
correlation. Equation (66)  (see page 33) shows that the reduced equations of 
(203)-(204) are 

xt = ^ ß Pt + c ^ yt + (1- ß) ^t-1 + 

[(l«a) ^^  (l.ß)] c^.-L (206) 

C^ = C a y^ + (l-a) C^^3^ (20?) 
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Equation (97) (see page ko)  shows that the reduced eqiaation of (205) is 

H = d ß * Pf»- ^ H + (1- ß *) H-1  - ^(1- ß^) Zt-1       (208) 

Equations (206) and (208) Jointly determine p^ and x^. y^,  x+ ., C+ n/ z+, 
and z^.i are predetermined; consequently, equation (20?) may be estimated by 
least squares. Equations (206) and (208) each are overidentified (whether or 
not we count C^ as a variable in the system) and may be estimated by the 
method of limited information, 

DEMAMD FOR DURABLE CONSUMPTION GOODS AND THE DISTINCTION 
BETWEEN CONSUMPTION AND SAVING 46/ 

The distinguishing characteristic of a durable commodity is that utility 
is derived from its services over time rather than from consumption of the 
commodity itself at a point in time. As a definition of a durable consumption 
good, however, this distinction is rather loose. We do not observe a con- 
sumer's utility derived from the consumption of goods and services but only 
his expenditures on the number of physical imits of each which he purchases. 
Expenditure on goods and services frequently is called consumption, and is 
called the "cost of living" or "real income" by Fisher (l4, pp. 6-8). 

The utility which consumers derive from their expenditures on goods and 
services may not be accurately measured by those expenditures. Fisher (ik. 
pp. 8-9) put the point well: — 

"The only ... discrepancy worth carefully noting is that which occurs 
when ... money spent is not simply for the temporary use of some object but 
for the whole object, which means merely for all its possible future uses. If 
a house is not rented but bought, we do not co\mt the purchase price as all 
spent for this year's shelter. We expect from it many more years of use. 
Hence out of the entire purchase price, we try to compute a fair portion of 
the purchase price to be charged up to this year's use. In like manner, the 
statisticians of cost of living [that is, consumption] should distribute by 
periods the cost of using a person's house furnishings, clothing, musical in- 
struments, automobiles and other durable goods, and not charge the entire cost 
against the income of the year of purchase. To any given year should be 
charged only that year's upkeep and replacement, which measures, at least 
roughly, the services rendered h^  ttie goods in question during that particular 
year [underlining minejl The true real annual income from [that is, consump- 
tion of] such goods is the equivalent approximately of the cost of the 
services given off by those goods each year. 

"Strictly speaking, then, in making up our income (consumption) statis- 
tics, we should always calculate the value of services, and never the value of 
the objects rendering those services. It is true ,that, in the case of short- 
lived objects like food, we do not ordinarily need, in practice, to go to the 

i!;6/ This topic is partially covered in Nerlove (27), with special reference 
to the demand for automobiles. 
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trouble of distinguishing their total cost from the cost of their use. A loaf 
of bread is worth ten cents [this was written in 1930] because its use is 
worth ten cents* We cannot rent food; we can only buy it outright. Yet there 
is some discrepancy ... in the case of foods that keep, such as flour, pre- 
served foods and canned goods. These we may buy in one year but not use until 
a later year, and in such cases the money given for the food might almost be 
said to be invested rather than spent, like the money given for a house. A 
man who buys a basket of fruit and eats it within an hour is certainly spend- 
ing his money for the enjoyment of eating fruit. But, if he buys a barrel of 
applies in the fall to be eaten during the winter, is he spending his money or 
is he investing it for a deferred enjoyment? Theoretically the barrel of 
apples is an investment comparable to a house or any other durable good. 
Practically it is classed as an expenditure, although it is a border-line 
case. 

"Spending and investing differ only in degree, depending on the length of 
time elapsing between the expenditure and the enjoyment. To spend is to pay 
money for enjoyments which come very soon. To invest is to pay money for en- 
joyments which are deferred to a later time. We spend money for our daily 
bread and butter or for a seat at the theater, but we invest money in the pur- 
chase of bonds, farms, dwellings, or automobiles, or even suits of clothes." 

It is important to note that Fisher uses investment in the sense that we 
usually use saving, namely as consiomers* additions to their assets. Thus the 
quotation from Fisher not only sheds light on the nature of durable goods pur- 
chases but also on the distinction between consumption and saving. Purchases 
of durable goods are partially in the nature of saving just as are bond pur- 
chases, life insurance premiums, retirement fund contributions, social secu- 
rity payments, and additions to one's bank accoiint. Expenditures on durable 
goods in excess of the use value of services rendered by them should be 
treated as savings and not consimption. hij 

Purchases of individual durable goods, automobiles, clothing, and the 
like, are therefore not entirely susceptible to the usual type of demand 
analysis. By treating the problem of the demand for durable consxmption goods 
in terms of the flow of services from those goods, we can indeed apply the 
usual type of analysis. This approach, however, leaves a good deal to be de- 
sired, for the industry producing a durable good is directly interested not in 
the demand for the services of those goods but in the number of new units pur- 
chased or the total current expenditure for new units. Thus the cotton farmer 
or the wool grower is interested in the demand for the services of cotton or 
wool textiles only insofar as this demand affects new purchases of cotton or 
wool textiles. 

47/ It follows that the Commerce Department's definition of aggregate con- 
simp tion is not entirely appropriate for use in demand analyses of the type 
suggested in this paper. 
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At the beginning of this paper we emphasized the role which the durabil- 
ity of certain goods plays in causing changes in the quantities of various 
goods and services consumed to lag behind changes in prices or incomes; we 
argued that the durability of certain goods helped to implement the psycho- 
logical^ technological^ and institutional factors causing distributed lags. 
In subsequent paragraphs we develop this idea more fully and show how the 
methods discussed in preceding sections of this paper may be used to study the 
new purchases of durable commodities. We do this by making use of an example 
concerning automobiles, hd/ 

An Example Relating to Automobiles 

Given a homogeneous group of automobiles with given age and quality 
characteristics, we may reasonably assume that the flow of services is propor- 
tional to the nimiber of automobiles in the group. This is just another way of 
saying that identical automobiles are perfect substitutes, so that the mar- 
ginal rate of substitution between any two automobiles equals one. It is 
clear that we cannot consider the total number of automobiles in the hands of 
consumers as a homogeneous group: a 1937 car in the moderately-priced class 
can hardly be considered as yielding the same net flow of services as a 1956 
car in a high-priced class. Cars of different makes or different ages are not 
perfect one-for-one substitutes; consequently the flow of services from the 
cars now in the hands of consumers cannot be considered proportional to their 
numbers. A possible solution to the problem of investigating the demand for 
automobiles is to consider the market for cars as a set of inter-related mar- 
kets for close but not perfect substitutes. ^9/ On the other hand, evidence 
presented by Chow (7), suggests that cars of different ages and/or makes may 
be perfect substitutes albeit with marginal rates of substitution different 
from one. 

Estimating the stock of automobiles.—Let the stock of automobiles at any 
given time be a number to which the flow of services is proportional. We can 
derive the stock of automobiles from the numbers of different makes and ages 
in the hands of consumers only if such automobiles are perfect substitutes. 
If the market for new cars were perfect, in an economic sense, we could de- 
velop an index of new car purchases based on the value of new cars sold each 
year, but to do this we must assume that an automobile selling for $5^000, 
say, yields twice the flow of services as one selling for $2,500. Under this 
approach, we use the market prices to determine the marginal rates of substi- 
tution (which are constant if all new automobiles are perfect substitutes) 

48/ The demand for automobiles has been ably treated by Roos and von 
Szeliski (29), Farrell (12), and Chow (7)• îhe latter contains a useful sum- 
mary of the studies of Roos and von Szeliski and Farrell. The discussion of 
long-run automobile demand presented here is not meant to be a study of the 
demand for automobiles but is designed only for illustrative purposes. 

49/ This is the approach taken by Farrell (12). 
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among automobiles of different makes and^ on this basis, form an aggregate in 
which make or quality is held constant. Although it is by no means clear that 
the market for new cars is perfect, we neglect the problems which may arise 
because of imperfections in the new car market. 

If cars of different ages are perfect substitutes and if the used-car 
market were perfect, we could presumably develop an index of the stock of 
automobiles, adjusted for both age and make, based on an index of their total 
value. Observation suggests, however, that the market for used automobiles is 
far from perfect; so that, while we might stretch the facts a bit to assume 
that the new car market is perfect, we are less justified in assuming the used 
car market to be perfect. The difference in the degree of perfection of "new" 
and "used" markets for other durable goods is even more marked, with clothing 
as perhaps the most extreme example. Nevertheless, the assumption of constant 
marginal rates of substitution between automobiles enables us to derive, with 
one additional assumption, a stock of automobiles, adjusted for age, from the 
purchases of new cars. 

The magnitudes of the marginal rates of substitution between cars of dif- 
ferent ages are roughly indicated by the way in which automobiles depreciate. 
It is common knowledge that cars depreciate rapidly the first few years and 
more slowly thereafter; hence, constant percentage depreciation seems to indi- 
cate the pattern of substitution between automobiles of different ages. Let d 
be the percentage rate of depreciation, then, by our assumption, 1-d is 
roughly the marginal rate of substitution between two cars of a standard make 
differing in age by one year. Assume that new car purchases are adjusted for 
make and model. Let s^ be the stock of automobiles during period t, that is, 
the n\miber of automobiles to which the flow of services is proportional; let 
x^ be new car purchases during t; let xt-i be new car purchases during t-1; 
and so on. Under our assiamptions 

s^.l = H + (1-cL) H-1 •*• (l-<i)^ H-2 + ••• (^9) 

Thus, the stock of automobiles at any time is a special kind of function 
of new car p\irchases taken with a distributed lag. As discussed previously, 
this form of distributed lag allows the reduction of (209) to 

s^ = xt -h (1-d) s^.i (210) 

Under our assimiptions, the demand for automobiles may be considered as the de- 
mand for a stock of automobiles adjusted for both age and make, that is, s^. 

Factors that affect the demand for the services of automobiles.—This de- 
mand for the services of automobiles depends on a variety of factors. These 
include: (l) the price of automobiles relative to other commodities, (2) real 
disposable income, (3) population, (4) the extent and quality of the highway 
network, and (5) the degree of urbanization and/or suburbanization. The long- 
Tun  elasticities of demand with respect to these variables may differ from the 
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corresponding short-rim elasticities, and the quantity demanded may depend on 
expected normal price and income as well as on the ciorrent values of these 
variables. We may therefore formulate a variety of models. 

Let p^ be the current price of automobiles relative to other commodities, 
y^ be current disposable income, and z+ be any other current factors which in- 
fluence the demand for automobiles, 50/ The simplest model is to assume no 
difference between long- and short-nm elasticities of demand due either to 
technological or institutional rigidities or to uncertainty. In this case the 
demand for the services of automobiles may be written in linear form as 

^t = ^1 Pt + ^2 yt ^  ^3 H (211) 

For convenience we neglect the constant and residual terms. 

Substituting (211) and (211) lagged one period in (210) we have 

^t = ^1 Pt "*" ^2 ^t "»• ^3 H 

= x^ + (1-d) [ai pt«i + a.2 yt-i + ^3 z^-i] (212) 

Hence, x^, new car purchases in period t, may be related to p^, y^, z^ and 

Pt-1^ yt-1^ ^^* ^t-1 ^^ follows 

^t = ^1 Pt + ^2 yt + ^3 H - 

a^ (1-d) p^.i - ag (1-d) y^.i - ag (l-d) z^.^        (213) 

under suitable conditions, the coefficients in (213) laay be estimated by means 
of an ordinary least squares regression perhaps with the restraint that 

a-t       ap       a-^ 

^ ai (1-d) " ag (1-d) = a3 (l-d) ^^^^^ 

To develop a model which includes rigidities of a technological or insti- 
tutional nature, we introduce the notion of long-run equilibrium stock of 
automobiles, s*, and suppose that consumers try to change their current stock 
in proportion to the difference between their long-run equilibrixmi stock and 
the stock they currently hold, that is, we suppose 

H  - ^t-l = S [sí - s^.i], 0 < 6 < 1 (215) 

Replacing s^ by s!^ in (211) we have 

H = 8-1 Pt -^ ^2 yt -^ ^3 H (216) 

50/ If both stock and income are taken on a per capita basis, z^ need not 
include population. Otherwise z^ includes population as well as other 
factors. 
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If we do not know the appropriate rate of depreciation, d, we cannot 
reduce equations (215) and (2l6) in such a way that we obtain equations in- 
volving only observable variables; instead we proceed as follows: Lag (215) 
one period, multiply through by (1-d) and subtract the result from (215) 
thus 

St = (1-d) s^^i =.6  [s^ - d s^.i]  + 

5)  [st.i - d st.gl (217) 

From (217) and (210) we have. 

*      ^  «* x^ = Ô [s^ . d s|.i] + (1-0) x^^i 
4 

Substituting from (2l6) for s* and s*.n   in (2l8) we have 

(218) 

X t = ai 6 pt - ai Ô (l-d) p^.i + ag ô y^ - ag ô (l-d) y^^^ + 

^3 ô zt = ag Ô (l-d) zt.i + (1- Ô) x^ 1 (219) 

which contains only observable variables. Under appropriate conditions, the 
coefficients in (219) may be estimated by ordinary least squares, perhaps with 
the restriction that 

»2, ^        ^2^ ^'\^ 

a-L ô (l-d)  ag 5 (l-d)  a3 ô (l-d) 
(220) 

We now drop the assumption that rigidities are due to technological or 
institutional causes, and assume, instead, that they are present due to \m- 
certainty. Let p-^ and y% be expected normal price and expected normal inca 
respectively. For simplicity, let us assume that current price and current 
income have no effect on the demand for automobiles. Then we may write the 
demand equation as 

*     # 

St = ^1 Pt + ^2 yt + ^3 H (221) 

Substituting (221) in (210) we have 

^ ..       i^    A\   J^ . ^  .Jf   .   /,  -v  * H = Ö.1 p^ - ai (l-d; p^^i + ag yt - ag (l-d) y^.i + 

^3 H  - ^3 ^^-^^ ^t-l (222) 

«3 == -^2 ^-a^^(l-df "tSn^"^ ^ ^^  ^^^^^  ^^^^ ^'^^ ^^ ^ ^^"  ^^  " "^^ ^^"^^^  ^3 " ^2> 

* . ^ «.*  . _.  *     * 

^t = Si Pt + S2 Pt-1 + g3 yt + «4 yt-l (223) 

Our expectational equations are 
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PÎ = ß p^ + (1- ß ) pï^i (224) 

y^ = a y^ + (l-a) y^.^ (225) 

By treating p^.^ and y^.j. ^^ separate expectational variables and writing 
(224) and (225), lagged one period, as their expectational equations, we 
could, in principle, reduce (223) "by the single equation method. As indicated 
in that discussion, the resulting reduced equation, which contains only dis- 
crete lags, includes 52 variables in addition to x^, since each of the 4^ = l6 
added non-expectational variables includes lagged values of z^ and z^^-j_ as 
well as x^. The single equation method, directly applied, is clearly imman- 
ageable. 

^  Since we have specified no additional demand equations in which p*, Pt-.i> 
y^, and yt-i enter, we cannot directly apply the multiple equation approach* 
The situation, however, may be somewhat alleviated by specifying a consumption 
function, say 

Ct = g5 yt (226) 

Equations (223), (226), and (226) lagged one period form a separable system of 
demand eqiaations; these may be separated prior to reduction. Although, as we 
have seen, such a procedure is not to be recommended generally, we have no 
choice in this case. Separation of (223), (226), and (226) lagged one period 
leads to the following equation: 

Ht = Si Pt + 82 Pt-1 + -^ Ct + —— Ct-i (227) g5     g5 

The equation 

Kt = Ht - -g2- Ct - -g^ Ct_i = gi PÏ + g2 PÏ-i (228) 

may be reduced by the single eqiiation method of reduction, taking (224) and 
(224) lagged one period as expectational equations. By (56) (see page 29), 
the result is 

Kt = gl ß Pt + ^2 ß Pt-l - gi (1-ß ) ß Pt-l - 

g2 (1- ß ) ß Pt.2 + 2 (1- ß ) K^.^ - (1- ß f  K^^2        (^29) 

where K+ is defined in (228) and g^,  ^^^ gp si^re defined in (223). Substitution 
for K^ fo-nd for H^ in K^) shows that (229j involves 1? variables in addition 
to Xf While this is a considerable improvement over the 52 obtained by ap- 
plying the single equation method directly, it is still a large ninnber of 
variables• 
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Conclusions 

If we think that rigidities of an expectational nature are important to 
the \mderstanding of the demand for consumer durables, we would do well to 
specify a system of demand eqioations for durable commodities before proceeding 
with any estimation. When distributed lags are introduced because of techno- 
logical or institutional rigidities, it is not necessary to specify demand 
equations for additional durable commodities. 

FRIEDMAN»S PERMANENT INCOÍE HYPOÎHESIS AND ITS 
IMPLICATIONS FOR DEMAND ANALYSIS ¿l/ 

In our discussion of Friedman's hypothesis, we take up first the theoret- 
ical formulation which led Friedman to believe that, if consimiption and income 
are defined correctly, consumption shoiad tend to be a constant proportion of 
income independent of the absolute level of income. We next turn to Fried- 
man's statistical specification, which is actually the key to the whole perma- 
nent income hypothesis* Following this discussion we examine some of the 
implications of Friedman's hypothesis, especially in regard to estimating the 
income elasticities of demand for individual categories of consxamption and the 
appropriate procedure to be followed when combining cross-section and time- 
series data. In conclusion, we present a simple test of the adequacy of the 
permanent income hypothesis as applied to individual categories of consxmp- 
tion. Although the test is a crude one, it suggests that Friedman's 
hypothesis is inadequate in certain respects. 

Theoretical Formulation 

Friedman (l6. Chap. II) first considers a simple 2-period model: Under 
conditions of perfect certainty, a consimiers' tastes at a point in time, say 
period 1, may be summarized by a 2-dimensional system of indifference cxirves, 
as in figure 6. C^, measured along the vertical axis, is the money value, 
measured in period 1 prices, of services consumed in period 1 (n.b., not ex- 
penditures on goods in period l); C2, measured along the horizontal aScls, is 
the money value at period 2 prices of the services consimed in-period 2. A 
point on an indifference curve thus represents a particular combination of 
consumption in the two periods. We must suppose that underlying each point 
there is a prior maximization process, that is, that the expenditures repre- 
sented by Ci and Cg are optimally distributed at the prices expected in 
periods 1 and 2. 

51/ Friedman (16) presents a detailed exposition of the permanent income 
hypothesis and many of its implications, complete with empirical applications 
and a discussion of several alternative theories. The present discussion does 
not aim at completeness; for further details the reader is advised to consult 
Friedman's own discussion. 
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INDIFFERENCE CURVES AND A BUDGET LINE 

U.  S»   DEPARTMENT   OF   AGRICULTURE NEG*   4419*97(8)        AGRICULTURAL   MARKETING   SERVICE 

Figure 6.—Hypothetical indifference curves and a budget line of a consumer 
imit for consxamption in two time periods.  (From figure 1 in Friedman (l6, 
p. 8)0 

Let R-j^ and Rg be the consumer's expected receipts in periods 1 and 2 and 
let i be the rate of interest at which the consumer may borrow or lend freely. 
Then the maximxmi amount the consumer may consimie in period 1, represented by 
the distance OA in figure 6,  is 
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and the maximum he may consiime in period 2,  represented by OB, is 

Wg = Ri (1+i) -f R2 (231) 

The line AB thus represents the budget line of the consumer. It is clear from 
the diagram that the opportunities of the consumer, which we have represented 
by three variables Rj, Rg, and i, actually depend on only two, W^ and i, or W2 
and i, that is, the slope of the budget line and its height. 

As Friedman points out, this elementary formulation sheds considerable 
light on the usual view about the consumption function: "What we have been 
calling receipts in ... [period] 1 (R^) or some slight modification thereof, 
is usually, and partici;aarly in statistical budget studies, called 'income' 
and taken as the variable on which consumption depends. Now in our simple 
case it is clear that consxamption in .. • [period] 1 does not depend directly 
on R^ at all; a change in R^ affects consumption only through its effect on 
W^ and, if accompanied by an appropriate opposite change in R2, may not affect 
consumption at all. This is clearly eminently sensible: if a consumer xanit ") 
knows that its receipts in any one year are xmusually high and expects lower L >|^ 
receipts subsequently, it will surely tend to adjust its consumption to its f 
'normal' receipts rather than to its current receipts." (16, pp. 9-10.) 

Friedman also points out the inadequacy of the usual measure of consump- 
tion expenditures: "We have been using the term consumption to designate the 
value of the services that it is planned to consume during the period in ques- 
tion, which, under conditions of certainty, would also equal the value of the 
services actually consumed. The term is generally used in statistical studies 
to designate actual expenditures on goods and services. It therefore differs 
from the value of services it is planned to consume on two counts; first, be- 
cause of additions to or subtractions from the stock of consimier goods, 
second, because of divergencies between plans and their realization." (16, 
p. 11.) — 

It can be seen from the simple 2-period model that we already have the 
germ of the type of theory enunciated in this paper concerning distributed 
lags due to uncertainty. As Friedman has stated in his theory, however, it 
does not bear a direct relation to the theory discussed at the beginning of 
this paper. The latter actually provides additional reasons for supposing 
that current consumption and current income, as usually measured, do not re- 
late directly to the pure theory of consumer behavior. 

In addition to supposing that the indifference curves of figure 6 are 
negatively sloped and convex to the origin (for the usixal reasons), Friedir^n 
supposes that there is an absence of "time preference proper," that is, that 
the indifference curves are symmetrical aro\md OD (the k^o  une) so that On 
and C2 coiad be interchanged without altering the curves. It is not unreason- 
able to suppose, further, that the indifference curves have common slopes at 
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the point where they intersect the line OD; thus, for a given level of W^ orí 
W2 and a given interest rate, a consixmer tends to consime the same proportion ^ 
of receipts in period 1, whether those receipts are large or small. That is^ 
in this simple case, the rate at which the individual is willing to substitute 
consumption in period 2 for consiimption in period 1 depends only on the ratio 
of consumption in the two periods, not on the absolute level of consuorption. 
In other words, Friedman supposes the consumption function to be homogeneous 
of degree one in W^ or Wg. Friedman argues that this is sensible since C]_ and 
C2 are of the "same stuff, differing only in dating." Since, "... it is hard 
to see any reason why this difference should have an asymmetrical effect ...," 
we may reasonably question the "initially plausible conjecture that the ratio 
of consumption to income decreases with income, if income is appropriately de- 
fined as a flow that can be permanently maintained [that is, income defined in 
terms of Wj or Wg]-" (16, P- 13.) 

For indifference curves that satisfy Friedman's assxxmptions, the consump- 
tion function assumes a particularly simple fonn 

cl = k(i) • YI ^ k(i) • i • Wt (232) 

where the asterisks on the variables C^ and y* indicate consumption and income 
variables, respectively, which may differ from consumption and income as 
usually meas\rred. k(i) is a constant, supposed to depend only on the rate of 
interest, 52/ and the last equation indicates that y* is related to the amount 
of wealth "fboth human and non-hxaman) at the disposition of the consumer. In 
writing (232), Friedman has generalized from the 2-period case, while still 
abstracting from uncertainty. In subsequent discussion, Friedman goes con- 
siderably beyond the simple fonraaation in (232), but for our purposes it 
should sxiffice. 

Statistical Specifications 

The real interest in the permanent income hypothesis lies, not in Fried- 
man's formulation of the pure theory of consumption behavior as expounded 
above, but in his treatment of the relation between the unobservable varia- 
bles, Cf and y| (called by Friedman "permanent" consumption and "permanent" 
income, respectively) and the variables C^ and y-t> which are the consumption 
and income we actually measure. Friedman treats this relation in a chapter 
entitled "The Permanent Income Hypothesis" (Chap. Ill), and this chapter is 
the key to the permanent income hypothesis. Friedman states the basic problem 
well: "The magnitudes termed 'permanent income* and 'permanent consumption' 
that play such a critical role in the theoretical analysis cannot be observed 
directly for any individual consumer unit. The most that can be observed are 
actual receipts and expenditures during some finite period, together, perhaps, 
with some verbal statements about expectations for the future. The theoreti- 
cal constructs are ex ante magnitudes; the empirical data are ex post. Yet in 

52/ In actual empirical analyses of time series data Friedman neglects the 
effects of changes in the rate of interest. 
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order to use the theoretical analysis to interpret empirical data, a corre- 
spondence must be established between the theoretical constructs and the 
observed magnitudes." The usual way of establishing such a correspondence has 
been simply to treat ciorrent cons"umption expenditures and current income as if 
they were the theoretical constructs. Friedman's approach is different. 

Let y-j. represent the measured income for a given period of time, and let 
Ct represent his measured consumption expenditures for the same period. Fried- 
man proposes the division of these measured magnitudes into two parts: ^3/ The 
first may be called the permanent component, y* or C*; the second may be 
called the transitory component, yî or C?. 

Thus the permanent income hypothesis now consists of three equations: 

CÏ = k(i) yl (232) 

yt = yt + yt (233) 

Gt = CÍ -h CÎ (23Í+) 

However, the system of equations (232)-(23^) is not, perhaps, the most reason- 
able form of the permanent income hypothesis. On several grounds the loga- 
rithmic form seems preferable; consequently we may write 

log C^ = log k(i) -f log y* (232») 

log y^ = log y^ ^ log y^ (2330 

log C^ = log cj -f log C^ (234») 

In his theoretical development Friedman frequently switches from the linear to 
the logarithmic form and back, but in his empirical applications he usually 
uses the logarithmic form. 

The interpretation of the permanent and transitory components of either 
income or consumption is slightly different depending on whether we think of 
the hypothesis primarily in the context of budget studies (cross-^section data) 
or primarily in the context of time-series analyses of the aggregate consump- 
tion fiinction. In his chapter III, "The Permanent Income Hypothesis," Fried- 
man gives the. following interpretation: 

¿3/ As Friedman points out, this division into two components is arbitrary. 
At one point in his monograph, Friedman generalizes his assxmiption so that the 
observed magnitudes are divided into an arbitrary number of components. The 
choice of two components was made primarily on the grounds of simplicity. (See 
footnote 2^16, p. 22) and (16, p. 186). ) 
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"The permanent component [of income] is to be interpreted as reflecting 
the effect of those factors that determine  the consimier imit's capital value 
or wealth: the non-human wealth it owns; the personal attributes of the 
earners in the [consumer imit under consideration] ... such as their training, 
ability, personality; the attributes of the economic activity of the earners, 
such as occupation followed, the location of the economic activity, and so on. 
It is analogous to the 'expected' value of a probability distribution. The 
transitory component is to be interpreted as reflecting all 'other' factors, 
factors that are likely to be treated by the lonit affected as 'accidental' or 
'chance' occurences, though they may, from another point of view, be the pre- 
dictable effect of specifiable forces, for example, cyclical fluctuations in 
economic activity." (l6, pp. 21-22.) 

Two types of forces produce the transitory component: The first is that 
specific to an individual consimier unit. The second is not specific to an in- 
dividual unit but affects all or part of the group of consumer units under 
consideration. For the group as a whole, the transitoiy factors affecting 
specific consumer units tend to cancel out by the law of large numbers, so 
that the mean transitory component, if caused by factors of the first type, 
generally tends towards zero. On the other hand, transitory factors which 
affect all or a large number of the members of the group under consideration 
do not tend to cancel one another, fn our earlier discussion of distributed 
lags due to uncertainty, our primary emphasis was on transitory factors which 
do not tend to cancel out. These are likely to be important in time series 
analyses and their importance depends on the nature of the period covered. 
Factors specific to individ\xal consumer units are of importance primarily in 
the analysis of budget data and they depend on the nat\ire of the group being 
studied. 

The transitory forces affecting consumption are likely to be specific to 
particular consumer xmits. Consequently, Friedman argues that the transitory 
component of consumption may be assumed to have zero mean when we deal with 
time series data. However, on the basis of o\ir discussion in an earlier sec- 
tion of this paper, it is clear that rigidities in consumer behavior may arise 
from causes of an institutional or technological nature. In this case, we may 
well regard current consumption expenditures for an entire group of consumer 
units as having transitory components whose mean is not zero. It therefore 
seems iinreasonable to assume before hand that the transitory component of con- 
sumption averages zero when we deal with time series data. 

In the general fonn stated in equations (232)-(23^) or (232')-(234'), the 
permanent income hypothesis is empty: two additional eq\aations have been spe- 
cified but so have two additional variables. No empirical data could contra- 
dict the hypothesis as it stands. Additional assimiptions are therefore 
necessary. The particular additional assumptions that Friedman makes are as 
follows : 

Assumption I: The transitory components of income and consumption are un- 
correlated with one another and with the corresponding peimanent components. 
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Ass\3inption II: The mean transitory coniponents of consumption and income 
are "both zero. 5^7 

Assimiption II is clearly \injustified for time-series data. Its chief 
justification for cross-section data is that it enables Friedman to explain, 
intearpret, and predict a wide variety of empirical phenomena. The justifica- 
tion for Assumption I is given by Friedman as follows: 

"[The assumption that the correlation between the transitory components 
and the corresponding permanent components] ... are zero seem[s] very mild and 
highly plausible. Indeed, by themselves, they have little substantive content 
and can almost be regarded as simply completing or translating the definitions 
of transitory and permanent components: the qualitative notion that the tran- 
sitory component is intended to embody is of an accidental and transient 
addition to or subtraction from income, which is almost equivalent to saying 
an addition or subtraction that is not correlated with the rest of income. ... 
The assumption that [the correlation between the two transitory components of 
income and consumption] ... is zero is a much stronger assumption. It is pri- 
marily this assumption that introduces important substantive content into the 
hypothesis and makes it susceptible of contradiction by a wide range of 
phenomena capable of being observed. ... The common notion that savings ... 
are a »residual* speaks strongly for the plausibility of the assumption. For 
this notion implies that consxmiption is determined by rather long term con- 
siderations, so that any transitory changes in income lead primarily to addi- 
tion to assets or to the use of previously accimiulated [cash] balances rather 
than to corresponding changes in consumption. ... yet from another point of 
view, the assxmiption seems highly implausible. Will not a man who receives an 
unexpected windfall use at least some part of it in 'riotous living,' in con- 
sumption expenditures? Is it not imreasonable to suppose that he will add the 
whole of it to his wealth? In answering these questions much depends on how 
'consumption' is defined. The offhand affinnative answer reflects in large 
measure, I believe, an implicit definition of consumption in terms of pur- 
chases, including durable goods, rather than in terms of the value of 
services. If the latter definition is adopted, as seems highly desirable in 
applying our hypothesis to empirical data, much that one offhand classifies as 
consumption is reclassified as savings. Is not the windfall likely to be used 
for the purchase of durable goods? Or, to put it differently, are not the 
timing of the replacement of durable goods and additions to the stock of such 
goods likely to some extent to be adjusted so as to coincide with windfalls'?" 
(16, pp. 26-28.) 

5^};/ Assumption II actually is not necessary for the development of the per- 
manent income hypothesis. Friedman indicates this but makes the assixmption 
primarily to facilitate exposition. We make it here for the same reason: It 
renders the distinction between the permanent income hypothesis as applied to 
budget data and the permanent income hypothesis as applied to time series data 
more clear-cut. Assumption I applies to both cross-section and time-series 
data; Assumption II is relevant only in the case of cross-section data.  (See 
(16, p. 30).) 
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Friedman warns us not to interpret the permanent components as corre- 
sponding to average life-time values: "It is tempting to interpret the perma- 
nent components as corresponding to average lifetime values^ and transitory 
components as the difference between such life-time averages and the meas\rred 
values in a specific time period. Such an interpretation is not, however, 
appropriate, and this for two reasons. In the first place, the experience of 
one unit is itself but a small sample from a more extensive hypothetical "uni- 
verse, so there is no reason to suppose that transitory components average out 
to zero over the imit's lifetime• In the second place, and more important, it 
seems neither necessary nor desirable to decide in advance the precise meaning 
to be attached to *permanent.* The distinction between permanent and transi- 
tory is intended to interpret actual behavior: we ... treat consimter units as 
if they regarded their income and their consumption as the sum of two such 
components, and as if the relation between the permanent components is the one 
suggested by o\ar theoretical analysis. This general approach is suggested by 
theoretical considerations, but the precise line to be drawn between peniianent 
and transitory components is best left to be determined by the data them- 
selves, to be whatever seems to correspond to consumer behavior." (l6, p. 230 

Thus the notion of permanent income corresponds to what we would call 
"expected normal income;" as such it should be interpreted, not as average 
lifetime earnings, but as the income a consumer \m±t  expects as his normal 
income, where his expectations hold only for a finite period into the future. 
The length of this period may be called the particular person's economic hori- 
zon. The concept of "permanent" is related to the length of this horizon: the 
shorter the horizon, the more of any given income change will be considered 
permanent. 

When the hypothesis is interpreted in logarithmic form. Assumptions I and 
II should, of course, be construed in logarithmic terms as well. 

Specification of the permanent income hypothesis in the form (232)-(234) 
or (232')-(234') under Assimiptions I-II enables Friedman to interpret the 
nature of the usual statistical relationship between measured consumption and 
measured income. Suppose that we compute the least squares regression of C^ 
on y^, then we have, say 

Ct = a + b y^ (235) 

where a and b are the estimated coefficients. The regression may be taken 
over individiials or over time periods, however, maintenance of Assimiption II 
suggests that we should consider (235) in the context of a budget study. 

Friedman shows that the least squares regression coefficient b may be 
interpreted as 

b    =    k     (i)      •     Py (236) 

where Py is the fraction of the total variance of income in the group [or over 
the period, if we are dealing with time series] contributed by the permanent 
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component of income. As Friedman states: "The regression coefficient ID mea- 
sures the difference in consimption associated, on the average, with a one 
dollar difference between consumer \mits in measured income. On our permanent 
income hypothesis, the size of this difference in consumption depends on two 
things: first, how much of the difference in measured income is also a differ- 
ence in permanent income, since only differences in permanent income are 
regarded as affecting consumption systematically; second, how much of perma- 
nent income is devoted to cons\;imption. Py measures the firstj k, the second; 
so their product equals b. If Py is unity, transient factors are either en- 
tirely absent or affect the incomes of all members of the group by the same 
amount; a one dollar difference in measured income means a one dollar differ- 
ence in permanent income and so produces a difference of k in consumption; b 
is therefore equal to k. If Py is zero, there are no differences in permanent 
income; a one dollar difference in measured income means a one dollar differ- 
ence in the transitory component of income, which is taken to be uncorrelated 
with consumption [by Assumption l]; in consequence, this difference in 
measured income is associated with no systematic difference in consumption; b 
is therefore zero." (16, p. 32.) 

If Assumption II holds, that is, if the mean transitoiy components of 
both income and consumption are zero, and if permanent consumption is propor- 
tional to income, as is continually assumed in the permanent income hypothe- 
sis, (236) yields an extremely simple interpretation of the regression of 
consumption on income. Let 97Qy be the elasticity of measured consumption on 
measured income as computed at the mean values of measured consumption and 
measured income, for the linear case, or as the coefficient of log y-^y  in the 
logarithmic case. Friedman shows that 

r]Cy   = Py (237) 

at mean measured consxmaption and income in the linear case and throughout in 
the logarithmic case. That is, the income elasticity of aggregate consump- 
tion, as measured from budget data, measures not the elasticity of permanent 
consimption to permanent income (the theoretically relevant variables) but the 
proportion of the variance of measured income in the sample contributed by 
variation in the permanent component! On Friedman * s interpretation, there- 
fore, the regression of measured consumption on measured income tells us 
nothing about the relation of consiamption to income but rather something about 
the relation between the distributions of wealth and of measured income in the 
sample xander consideration. 

It should now be clear why, in dealing with cross-section data. Assump- 
tion II is an integral part of the theory, although, as we have remarked, it 
is not a necessaiy part. If the mean transitory components of consumption and 
income equal zero for the sample londer consideration, then the ratio of the 
average consumption for the group to the average income for the group measures 
k(i). The elasticity of measured consumption on measured income measures Py. 
Both parameters can be identified. If Assxmption II does not hold, neither 
Py nor k can be measured separately; only their product can be measured. 
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A similar situation arises in the case of application of the permanent 
income hypothesis to time-series data. As we have indicated, Assxamption II is 
imreasonable when applied to aggregate consiimption and income over time; con- 
se<iuently, if only Assumption I could be made, the regression of measured 
aggregate consumption on measured aggregate income over a period of time would 
tell us something about the product of k(i) with Py, where Py measures the 
contribution of the permanent component to the total variance of income over 
the period in question; it would not tell us anything about k(i) and Py sepa- 
rately: k(i) could not be measured as the ratio of average measured aggregate 
consumption to average measured aggregate income and Py could not be measured 
by the elasticity of measured consumption with respect to measured income. An 
additional assumption or assumptions must therefore be introduced. 

In Chapter V, "Consistency of the Hypothesis with Existing Evidence on 
the Relation between Consumption and Income: Time Series Data" (l6, pp. II5- 
156), Friedman specifies additional assumptions appropriate in the context of 
time-series data. On the basis of an examination of existing time-series 
studies of the relation between income and consumption, Friedinan concludes 
that permanent income should be susceptible of representation as a weighted 
average of incomes for current and past years. The transitory component of 
consumption is taken to be a purely random error term; that is, no systematic 
relationship between the transitory components of different time periods 
exists and the transitory components have mean zero. The possible existence 
of rigidities of consimier behavior of a technological or institutional nature 
makes this assumption seem somewhat doubtful. 

The particular model which Friedman constructs to represent the relation 
between what people consider the permanent component of income to be and past 
measured income is closely related to the model derived from Hicks' definition 
of the elasticity of expectations. Friedman assumes that 

yt = a /  e-a[t-X] y^ ¿L,j^  55/ (238) 
«/«oo 

Equation (238) may be derived from the following equation: 

dt 
* 

= <^ [yt - yt] (239) 

¿5/ Friedman actually allows for the expectation of a time-trend in perma- 
nent income. But this refinement need not concern us here. 

In the actual fitting procedure, (238) is approximated by a discrete sum- 
mation. The fitting procedure that Friedman uses is essentially the same as 
the iterative procedure described above. 



- 103 - 

which is the differential equation analogue of (33) (see page 2k).    in the 
case of (238), however^ static expectations, that is, the "belief that the per- 
manent component of income is equal to measured income, is given hy a =00 
rather than a = 1, as when the discrete representation of (33) is assumed. 

Implications of Friedman's Hypothesis 

Of the many implications of Friedman's permanent income hypothesis for 
the analysis of the demand for individual commodities, we can discuss only a 
few of the most general: (l) The effect of the type of group covered by the 
sample on the income elasticities for individual items of consiamption derived 
from cross-section data; (2) the effect of the length and type of period 
covered on the income elasticities derived from time-series data; and (3) the 
valid way to combine income elasticities derived from cross-section data with 
other time-series data in a demand analysis. 

Measurement of income elasticities from cross-section data.—Consider the 
planned expenditures on, or the planned quantity to be consumed oí, an indi- 
vidual item of consumption like food. We may expect this quantity to be 
related, via consumer tastes and preferences, to the prices (current and/or 
expected) of food and other items, and to the income the family expects to 
receive, or the permanent component of income. If current and expected prices 
may be taken as the same, we may suppose, without loss of generality, that 
each consumer \mit in a cross-section faces approximately the same prices 
[current and/or expected]. 56/ 

In Chapter VIII, Friedman describes the situation as follows: "[A con- 
sumer xinit's] ... measured expenditvires on food differs from its planned 
expenditures because of a transitory component of food expenditures, and its 
measured income differs from its permanent income because of a transitory 
component of income. When the regression of measured expenditures on measured 
income is computed from budget data for a group of families—the regression 
that has come to be called an 'Engel cui^e'—the transitory component of food 
expenditures tends to average out, 57/ but the transitory component of income 

56/ This is, of co\irse, the usual assixmption with regard to prices in any 
cross-section analysis. Dropping the assumption of static price expectations 
leads to difficulties similar to those which are encountered when we drop the 
assumption that measured income is the relevant income variable. In the 
latter case, we assume that diversity of past experience leads to expected 
incomes systematically different from measured incomes; we neglect the distri- 
bution of coefficients of expectations among the members of the sample. In 
the case of prices this distribution is of principal importance. A discussion 
of the implications of non-static price expectations in cross-section analysis 
would take us too far afield here, however. 

57/ As indicated on page 102, this may not be the case if rigidities exist 
in consumer behavior of a technological or institutional nature. 
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does not. ... In consequence^ the elasticity of measured expenditiares with 
respect to measured income reflects not only ... [consumers'] tastes and pre- 
ferences hut also the transitory components of income. 

"Let Cf stand for the mean observed consumption on food of families with 
a given measured income, and assume that the transitory component of food ex- 
penditures is uncorrelated with the permanent or transitory component of 
income and averages zero for the group as a whole, so that c^ be regarded as 
the mean permanent component of food expenditures. The elasticity of c^ with 
respect to measured income then is 

^"f      y 
Cf y  dy    Cf 

dCf 

" cLy* 

dyf        y    ^ 

äy   y* 

* 
yf 
Cf 

dCf   yj 
~ dyj   Cf 

dyj 
äy yj 

= 77   * . 
'cf yf 

77 * 
'yf y 58/ (240) 

r        ^ 
[where y^ represents the permanent component of meastired income based on an 
economic horizon for food expenditures]. 59/ 

"But, on our hypothesis, y* = iTpT ^*> §9i/ ^hich means that [if y* = y*] 

^yf , y  ^ 1  dc^ ^ k(i)y 

f 
^ yj y  dy ' y* " k(iy dy '  c* 

dc^ ^ y ^ 
dy    c*   ' c*y = Vr^^r (2^1) 

58/ The notation in (24o) is altered slightly so as to correspond to the 
notation used elsewhere in this paper. 

59/ The  rationale for distinguishing between permanent components appropri- 
ate to various categories of consxmiption and that appropriate to total con- 
sumption is given below. Althoiigh Friedman explicitly assumes that the same 
concept of the permanent component applies equally to total consumption and 
its individual categories, he is in some doubt as to its validity. As we 
shall see, differences in the concepts of permanent income appropriate to 
various categories of consximption is one of the key reasons for doubting the 
adequacy of Friedman's permanent income hypothesis. 

60/ See equation (232) on page 96 . 
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so that 

The first elasticity on the right hand side^ between permanent food expendi- 
tures and permanent income^ reflects the influence of tastes and preferences 
proper; the second^ the influence of transitory factors affecting income. 

"It follows that the differences among groups of families in the observed 
income elasticity of particular categories of consuniption cannot be inter- 
preted as reflecting solely the influence of differences in tastes or of 
differences in prices or similar factors affecting opportimities [such as 
income^ sici]; they may [also] reflect a third set of forces^ namely, differ- 
ences in a particular characteristic of the income distribution, the 
importance of transitory components of income. 62/" (16, pp. 206-20?.) 

If the elasticity of measured food expenditures, or, for that matter, 
expenditures on any particular category of consiomption, with respect to mea- 
sured income depends in part on the contribution of the permanent component to 
the variance of measured income, it follows that the income elasticity 
obtained from a budget study depends crucially on the group of households 
covered by the sample. 

For example, consider two groups one of which typically has highly vari- 
able incomes and the other of which typically has stable incomes (for example, 
farmers versus civil servants). On the basis of the permanent income hypo- 
thesis we would expect the income elasticity for a particular consumption good 
to be lower for the first group than for the second, even if the distribution 
of tastes, income, and the like were the same for the two groups. The reason 
for this is simply that, for the group whose incomes are typically highly 
variable, the permanent component varies much less than measured incomes; 
whereas, for the group whose incomes are quite stable, the variation of the 
measured income within the group is accounted for almost entirely by the 
variation of the permanent component. Thus we would expect both 77y^ and Py 
to be smaller for the first group than for the second. 

61/ The notation in (24l) and (242) is altered slightly from Friedman's 
original notation. 

62/ This statement in qualitative form follows directly from (24o). If we 
wish to express it in usable form 

^Cf y = ^Cf y* • Py (i) 

^ 
we must assume, first, that y^^ = y* and, second, that the mean transitory com- 
ponents of food consumption and total consumption equal zero. Both assxmp- 
tions are questionable. 
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Similarly^ if we compare the elasticities of expenditure on particular 
categories of consumption with respect to measured income for two representa- 
tive samples^ one of the urban population of the United States and the other 
of the total population of the United States^ we might expect to find the 
former higher than the latter, since a sample of the urban population excludes 
the farm population and this population might be expected to have more highly 
variable incomes than those of the xjirban population. In general, we may sup- 
pose that the more typically stable a group's incomes the more nearly will an 
elasticity of measured consumption expenditures (for total consumption or for 
an individual category of consumption) on measured income tend to approximate 
the elasticity with respect to the permanent component of income appropriate 
to that group. 

Measurement of income elasticities from time'-series data.—In the case of 
cross-section data, the characteristics of the group sampled are of crucial 
importance in the interpretation of income elasticities; in the case of income 
elasticities computed from time-series data, the characteristics and, particu- 
larly, the length of the period considered are of crucial importance. In 
Chapter V, Friedman malees this point in reference to total consumption as 
follows : 

"The length of the period is important because, other things the same ... 
[the contribution of the permanent component to the variance of measured in- 
come], and so the observed income elasticity, can be expected to be larger, 
the longer the period covered, provided that the society in question is under- 
going a systematic secular change in income. The total variance of [measured] 
income equals the variance contributed by the transitory component plus the 
variance contributed by the permanent component, given our assumption that the 
two components are uncorrelated. The variance contributed by the transitory 
component is not systematically affected by lengthening the period: by defini- 
tion, the transitory components are largely random and short-lived. True, the 
variance may be larger at one time than another—this is why the historical 
characteristics of the period are important—^but there is no reason why it 
should be systematically larger or smaller for a long than for a short 
period. 63/ The variance contributed by the permanent component, on the other 
hand, tends to be systematically larger, the longer the period covered, for 
the more widely separated two dates are, the larger will tend to be the secu- 
lar difference in income between them. ... the ratio of the variance contri- 
buted by the peimanent component to the total variance [of measured income], 
will therefore tend to be higher, the longer the period, and to approach unity 
as the period is indefinitely lengthened. If secular change were the only 

63/ Friedman points out that this statement should be taken as referring to 
the variance of logarithmic components rather than the actual values. With a 
secular increase in income, we expect the variance of the transitory compo- 
nent, expressed in actual values, to increase over time; hence, imless we 
express our variables in logarithms, we expect the variance of the transitory 
component to be systematically larger for longer than for shorter periods. 
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source of variation in the permanent component the lower limit of •.. [the 
ratio of the variance contributed "by the permanent component to total vari- 
ance] would be zero and this limit would tend to be approached as the length 
of the period covered approached zero* Since there are other sources of 
variation in the permanent component [over time], all one can say is that ••. 
a lower limit greater than zero [will tend to be approached] as the length of 
the period approaches zero/' (l6, pp. 125-127-) 

Friedman finds that this expectation is well fulfilled by the elastici- 
ties computed from regressions of measured total consumption on measured 
income for periods of different lengths: the elasticities are systematically 
lower for shorter than for longer periods. With certain qualifications, this 
implication of the permanent income hypothesis may be extended to individual 
categories of consxmiption: If we are willing to accept the assimptions \mder- 
lying equation (2^2) (see page 105), '^^^^^  "the elasticity of the demand for 
food with respect to measured income, obtained from time series data, tends to 
be 6k/  the product of the elasticity with respect to permanent income and the 
proportion of the variance of measured income contributed by the permanent 
component* Thus, for example, the income elasticity computed for the period 
between the World Wars I and II should be lower than the elasticity computed 
for a period including both the interwar and postwar periods. 65/ 

The only reservation we may have to this as a general statement is that 
the assumptions on which (2^2) is based may not be fulfilled when we deal with 
elasticities estimated from time-series: First, the permanent component appro- 
priate to the particular category of consumption under consideration may not 
be the same as that appropriate to total consumption. Thus, if the permanent 
component appropriate to, say, food is all of measured income, the income 
elasticity computed for the interwar period might be greater than, less than, 
or equal to the elasticity computed for both interwar and postwar periods* 
Second, systematic transitory components in the expenditure devoted to the 
particular categoiy may occur, for the reasons mentioned above; in general, 
however, this might be expected to strengthen the qualitative conclusions 
based on the permanent income hypothesis but the quantitative relationship, 
(242), would no longer hold. 

Combining income elasticities from cross-section data with other time- 
series data.—Several recent studies of the demand for individual commodities, 
for example. Stone (30); Wold and Jureen (36), and Tobin (33)> attempt to com- 
bine cross-section and time-series data. The procedure is generally to obtain 
an income elasticity from a cross-section sample and to assume that this elas- 
ticity applies, with or without certain minor adjustments, to the aggregates 

6k/  "Tends to be" rather than "is", since the correlations between prices 
anéTmeasured income are not taken into account. 

65/ This is in fact true for meat; see Nerlove, Marc, ^e Predictive Test 
as a Tool for Research: The Demand for Meat in the United States, M.A. thesis, 
the Johns Hopkins University, 1955. Numerous other examples could probably be 
cited. 
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over time. The income elasticity so obtained is inserted into the demand 
fimction and the remaining parameters are estimated from time-series data. It 
is clear that this procedure is inconsistent with the permanent income hypo- 
thesis; as Friedman states in Chapter V: "On our hypothesis, income elastici- 
ties of [total] expenditures computed from time series and from budget data 
are estimates of different things. Neither tells us anything directly about 
consiomption behavior. ... Both measure instead a feature of the income struc- 
ture, and they measure different features. The budget elasticity measures the 
fraction of the variance among incomes of a group of consumer vinlts  at a point 
î? ^^^^  contributed by differences in permanent components. The time series 
elasticity measures the fraction of the variance among aggregate or per capita 
incomes of a series of time units contributed by differences in permanent 
components. ... our conclusion that the elasticities computed from budget data 
and from time series are estimates of different magnitudes applies also to the 
elasticity for a particular category. ... The income elasticity computed from 
budget data can be expected to be the same (on the average) as that computed 
from time series data for a particular span of years only if transitory com- 
ponents of income have the same importance for the two bodies of data. There 
is no reason to expect the transitory components to have the same importance, 
and ..., if they do for one span of years, they will not for a longer or 
shorter span." (l6, pp. 136-I37.) 

On the basis of equation (2^2) Friedman suggests a way to combine cross- 
section and time series data which is consistent with the permanent income 
hypothesis: Simply divide the income elasticity for a particular commodity by 
the income elasticity of total consumption expenditures, both estimated from 
the same budget study. In this way we obtain an estimate of the elasticity of 
expenditures on, or demand for, the particular commodity under consideration 
with respect to permanent income. This estimate is a valid one only on two 
assumptions: (l) the same concept of permanent income appropriate to the par- 
ticular commodity is appropriate to total consumption; and (2) the mean 
transitory components of expenditure on, or consiamption of, the commodity and 
of total consumption are zero. An estimate of aggregate permanent income over 
time may be constructed from the procedure which Friedman uses to estimate the 
consxmption function from time series data, or by the non-iterative procedures 
suggested in this paper. The resulting series and the estimated elasticity 
with respect to permanent income may be combined with other time-series data 
to obtain estimates of the other parameters which appear in the demand func- 
tion for the commodity under consideration. 

We have already indicated the reason why the second of the two assimip- 
tions underlying the procedure discussed above may be suspect; Friedman 
himself suggests that the relation between the permanent and transitory com- 
ponents of income may be interpreted in terms of the length of the economic 
horizon of the consumer, hence: "One possible source of difficiaty with this 
approach [that is, the procedure discussed above] is the necessity of taking 
permanent income to mean the same thing for the different categories of con- 
sumption. We have interpreted the exact meaning of permanent income in terms 
of the horizon of the consumer unit. Now there seems no reason why the hori- 
zon should be the same for all individual categories of consumption and some 
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why it should differ systeinatically. For example, it seems highly plausible 
that housing expenditures are planned in terms of a longer horizon, and so a 
different concept of permanent income, than expenditxires on, say, food. If 
this turns out to be a meaningful way of looking at the problem, the concept 
of permanent income applicable to total consumption will have to be regarded 
as an average of the concepts applicable to each category. 

If both consumption and income are properly defined, it does not seem 
reasonable that the horizons for different categories of consumption should 
differ greatly from one another. Only if indivisabilities, difficulties of 
short-run substitution, or various institutional factors are introduced would 
the concept of differing horizons appear to be useful, but, as we have indi- 
cated elsewhere in this paper, it may be useful to treat this type of rigidity 
differently from expectational rigidity in consumer behavior. We thus think 
of expenditures for housing in terms of rental (or rental value) rather than 
in terms of purchase price; if it were not for imperfections in the capital 
and housing markets, an individual consumer experiencing a rise in his income 
which he considered to be peirmanent with respect to total consumption, or any 
of its categories, would iiomediately adjust his housing expenditure. Even if 
we accept Friedman*s view that the concept of permanent income might be dif- 
ferent for different categories of consumption, it is plausible that it would 
not differ greatly for highly similar commodities. In any case the attractive 
simplicity of Friedman's permanent income hypothesis is greatly reduced if one 
must assimie different concepts of permanent income for different categories of 
consumption. 

Tests of the Permanent Income Hypothesis 

First test.—The notion that the concept of permanent income appropriate 
to individual categories of consimiption ought really to be the same from cate- 
gory to category at once suggests a simple test of the adequacy of the perma- 
nent income: When dealing with time-series, Friedman's model suggests that 
both total consumption and each individual category of consumption depends on 
income taken with a distributed lag. No mention is made of whether the con- 
sumption of particular commodities depends on prices taken with a distributed 
lag, but it is explicitly assumed that the transitory components of total 
consimiption and the consumption of individual items have zero mean and are 
independently distributed. Thus, Friedman's permanent income hypothesis 
appears to assimie only a distributed lag in income. 

If Friedman's hypothesis is to provide a ixseful tool for the analysis of 
the demand for individual commodities, the distribution of lag should be the 
same for each individual commodity and for total consimiption, or, at least,' 
for similar commodities or groups of commodities. SSj    It  we assxmie the 

66/  It is interesting to note that this test of Friedman's hypothesis was 
suggested by Friend and Kravis (ij, p. 5^7)- Their work came to the attention 
of the author only after his results had been obtained. 



- lio - 

distribution of lag to be generated by a model of expectation formation, such 
as (239) or (33) > the distribution of lag can be summarized by the value of a 
single parameter, namely the coefficient or elasticity of expectations. 
Thus   should be the same for every individual commodity and for total con- 
sumption. In order to simplify the computations, the model represented by 
equation (33)> rather than by (239), vas used. 

In addition to total consumption, the demand for all food and the demand 
for meat were investigated. Meat and all food are similar commodities as 
compared, say, to housing expenditures or clothing expenditures, and we would 
not, therefore, expect the "horizons" appropriate to these two commodities to 
differ greatly, although we might allow some difference between food and meat, 
on the one hand, and total consumption on the other. 

Let y(t) = log of observed income during period t 

y*(t) = log of permanent or "expected normal" income 

C(t) = log of observed aggregate consxmption 

q^(t) = log of the consumption of all food 

qj^(t) = log of the consumption of meat 

IP fit) = log of the price of food 

Pjjj(t) = log of the price of meat 

For statistical purposes these variables, except for y^(t), were defined as 
follows : 

y(t) : Per capita disposable personal income (Commerce definition) 
deflated by the BLS consximer price index (19^7-49=100) 

C(t) : Per capita personal consumption expenditures (Commerce 
definition) deflated by the CPI 

qf(t): The Agricultural Marketing Service index of per capita 
civilian food consumption at retail (not expenditure) 

qjjj(t): Total civilian meat consumption per capita, in pounds, 
excluding lard 

Pf(t): The Bureau of Labor Statistics index of food prices at retail 
deflated by the CPI 

Pjji(t): An Agriciiltural Marketing Service index of the retail prices 
of all meat excluding lard, deflated by the CPI 
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The data on observed total consiomption and income are not entirely appro- 
priate for this test: the Commerce definition of consimiption includes many- 
items which are properly savings^ and the Commerce definition of disposable 
income excludes many items which might properly be considered as income (for 
exsunple, social security taxes). Friedinan has constructed series on consump- 
tion and income more appropriate for work of this kind, but these series were, 
at the time of writing, unavailable to the author of this paper. The computa- 
tional difficulty of constructing such series precluded their use in the 
simple test presented here. 

The basic equations to be estimated are a consumption function, a demand 
function for all food, and a demand function for meat: 

C(t) = aoo + aoi y^(t) + uo(t) (243) 

qj(t) = aj^Q + a^i Pf(t) + aj^g y^i"^) "^ ^l("^) (2^^) 

%i(^)  = ^20 + ^21 Pm("^) •*" ^22 y*(^) "^ ^(^) (^^5) 

where uo(t), ui(t), and U2(t) are residual terms. As our expectational equa- 
tion we have 

y*(t) - y*(t-l) = a [y(t) - y*(t-l)] (2tó) 

where oc is an elasticity of expectations (since y*(t) and y(t) are expressed 
in logarithmic form). 

The system (243)-(245), with expectational equation (246), may be reduced 
by the single or multiple equation methods. 67/ Performing the reduction, we 
have 

C(t) = BQQ  a + agi a y(t) + (l-a) C(t-l) + 

uo(t) - (l-a) uo(t-l) (247) 

q^(t) = a^Q a + a-^^ ^ yi"^) "»" (l-^) ^fi^-l) + 

^11 Pff"*^) - ^11 (1-^) Pf('t-l) + 

ui(t) - (1- a) ui(t-l) (248) 

^m^"^) " ^20 ot + a22 a y(t) + (l- a) qjt-l) + 

^21 Pm(^) - ^21 (1-oc) Çm('t-l) + 

U2(t) r  (l-a) U2(t-1) (249) 

67/ Since only one expectational variable enters each equation, the two 
methods amoiont to the same thing in this case. 
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The system (2^3)-(245) is a separable system and may be separated prior 
to reduction, that is, equation (2^3) may be used to eliminate y*(t) from 
{2kk)  and (245). In this case reduction after separation is not necessary 
since the separated equations contain no further expectational variables. 
Separation leads to the following two equations, alternative to (2^2) and 
(2^9), respectively: 

9-12^0   ^12 ^("t) 
<lf (^) = (^10 - ~^^ ^ i;^ c(^) ^ ^11 Pf -^ ^i(^) - -"5^    (250) 

Sn(t) " (-20 - ^) * ^ =(*) * -21 P.(t) + -^(t) - ^  (251) 

On Friedman's permanent income hypothesis, the coefficient aoi should be 
one, since all the variables are expressed in logarithms. 

In an earlier section we suggested that, as a general rule, a system of 
equations should not be separated prior to estimation because an element would 
then be introduced which wo\ild. tend to bias the estimates of certain coeffi- 
cients in the estimated equation. This principal is illustrated by (250) and 
(251): Since C(t) is positively correlated with ug(t) by equation (2^3), it 
tends to be negatively correlated with u-|^(t) - UQ^t) or U2(t) - UQ(t), the 
residuals in (250) and (251), respectively. There are two reasons, however, 
why separation should not introduce serious correlation between C(t) and the 
resid^ials of (250) and (251): (l) the correlation between total consumption 
expenditures and expected normal income is likely to be high, and (2) the 
transitory components of food and meat consumption are likely to be highly 
correlated with the transitory component of total consumption expenditures. 
Since 

2 var u^it)  - cov [uQ(t), u^(t)] 

^C(t)[ui(t).uo(t)] = var luo(t) - Ui(t)J var Ct ^^^^^ 

for i=l, 2, it follows that this correlation is low if var uo('fc) is small and 
if cov [\io('t), %(t)] does not exceed var UQ(t). Wold (35) shows that under 
these circimistances the bias in the least sqxiares estimates is not great. 
Consequently, it is possible to justify estimating equations (25O) and (251). 

Regressions based on eqixations (2^7)-(251) are presented in table 1. In 
addition to the estimates of the coefficients in the regression, table 1 gives 
the square of the multiple correlation coefficient, the number of observa- 
tions, the Durbin-Watson statistic, the estimated or assumed elasticity of 
expectations, and the estimated elasticity of total consimiption or demand with 
respect to permanent (or expected normal) income. Each regression was run for 
two periods: the interwar period, 1920-'^1, and the interwar and postwar 
periods, 1920-41 and 19^8-55. 



Table 1,—Demand for aggregate consumption, food, and meat based on the permanent income hypothesis: Least sqxaares regressions 
and related statistical data 1/ 

Aggregate 
consumption, 

equation (24?) 

Item 

1920-41 
1920-41 
and 

1948-55 

Food, based on equation— 

(248) 

1920-41 
1920-41 
and 

1948-55 

(250) 

1920-41 
1920-41 
and 

1948-55 

Meat, based on equation— 

(2l»9) 

1920-41 
1920-iH 
and 

191*8-55 

(251) 

1920-in 
1920-41 
and 

1948-55 

Regression coefficient for sped- : 
fied independent variable: 
y(t)  : 0 

C(t)  : 

C(t-l)   

<lf(t-l)   

qb(*-i)  ••• 

Pf(t)   

PmW  •• 
Pf(t-l)   

Pm(*-1)   

: ( 

729  0.726 
056)  ( .057) 

0.199 
( .030) 

0.291 
( .028) 

0.296 
( .016) 

0.351  0.387 
( .074) ( .060) 

0.422 
( .101) 

0.554 
( .063) 

099  .209 
077) ( .064) 

... ... 
  

... 

  
.182 

( -128) 
.266 

( .108) 
*■"*■■ "'*■'* 

w<-                  »...                  _..» 
""■" 

-.065  -.088  -.133  -.137 
( .058) ( .058) ( .045) ( .038) 

.231   .432 
( .161) ( .117) 

-.470  -.485  -.475  --458 
( .088) ( .076) ( .086) ( ,072) 

Constant term 
R2   
Nimiber of observations   : 
Durbin-Watson statistic, d : 1, 
Estimate of— : 

The elasticity of the dependent 
variable with respect to per- 
msuient income   

( 

... ... -.094 
( .045) 

-.052 
( .045) 

— — — — — — 

-.015 
( .085) 

.093 
( .067) 

— — — ——— 

315 .122 1.545 1.323 1.681 1.682 1.774 1.134 2.120 1.855 
97 .99 .92 .97 .85 .96 .74 -.83 .62 .76 
22 30 22 30 22 30 22 30 22 30 
56 1.48 1.86 1.89 1.52 2/1.42 2.13 2.21 2/1.08 3/.92 

90 •79 .82 .73 4/. 90 4/. 79 •77 .57 4/.9O 4/. 79 
08) { .06) ( .13) ( .11) ( .16) ( .12) 

.81 .92 .24 .29 .29 .30 .46 .68 .42 .55 

I 

1/ Numbers in parentheses beneath the coefficients are their respective standard errors. 2/ Durbin-Watson test inconclusive 
at the 5 percent probability level.' 3/ Significant positive serial correlation. 4/ Assumed? 
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The regressions based on equation (2^7) appear to indicate that the elas- 
ticity of total consiJinption expenditures with respect to income is not one as 
suggested by the permanent income hypothesis. If aQi = 1, as required by the 
permanent income hypothesis, the sum of the coefficients of y(t) and C(t-l), 
in the regressions based on (2^7)^ should equal one. Thus we can test the 
significance of the difference between the two relevant elasticities from one 
by testing the significance of the difference of the sum of the coefficients 
of y(t) and C(t-l) from one, A likelihood ratio test may easily be derived to 
test the null hypothesis that the s\m of the coefficients of y(t) and C(t-l) 
is one. The likelihood ratio for the period 1920-41 is kS,  and for the period 
1920-41 and 1948-55 is 12. Since the value of Chi-square for one degree of 
freedom is 11 at the 0.001 probability level, we reject the null hypothesis 
and conclude that the estimated elasticities of total consumption with respect 
to permanent income do differ significantly from one.- This result, however, 
should be interpreted with care. First, the use of more-or-less inappropriate 
data on consumption and income may have led to this result inconsistent with 
the pennanent income hypothesis. Second, the fact that the estimated elasti- 
cities rise when a longer period is used is consistent with the permanent 
income hypothesis, and suggests that some transitory component of income may 
be affecting the regression. Third, although the Durbin-Watson statistic does 
not indicate the presence of positive serial correlation, it is sufficiently 
low to warrant caution. 68/ 

The most interesting row of table 1 is the second to last. There the 
estimates of the elasticities of expectations based on the various regressions 
are presented. Although the elasticities derived from the different equations 
differ depending on the length of the period, the differences are more marked 
as between commodities, especially between total consumption and food, on the 
one hand, and meat, on the other. In addition, when consumption, rather than 
income, is used in the regressions for food and meat, the multiple correla- 
tions are markedly lower for the interwar period, and the same is true for the 
interwar plus postwar period in the case of meat. The only significant or 
inconclusive Durbin-Watson tests are also found for these regressions. 

Are these differences in the elasticities of expectations among commodi- 
ties and total consumption significant? If they are, we have reason to doubt 
the adequacy and/or utility of Friedman*s permanent income hypothesis as 
applied to individual categories of consumption. An F-test, based on a test 
described in Meinken (25, pp. 100-102), was used to test the significance of 
the differences between the coefficients of C(t-l), qf(t-l), and qnj(t-l) in 
the regressions based on equations (247) to (249). The procedure followed is 
described in full in the Appendix. A significant F-ratio indicates a signifi- 
cant difference among the coefficients, and, hence, among the elasticities of 
expectations for total consiomption, all food, and meat. The F-ratio for the 
regressions using data for the period 1920-41 is 20, with 2 and 53 degrees of 

68/ If positive serial correlation in the residuals of (247) is present, the 
estimates of the coefficients are biased, since C(t-l) enters as an independ- 
ent variable. 
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freedom; the F-ratio for the combined periods 1920-41 and 19^4-8-55 is 26l, with 
2 and 77 degrees of freedom. Each ratio is highly significant. 

We cannot, of course, definitely conclude on the basis of the simple and, 
perhaps, crude test that the permanent income,hypothesis is false; all we can 
say is that it does not appear useful when applied to individual categories of 
consumption. 

Second test.—A simpler, alternative hypothesis is suggested by consider- 
ations discussed in this paper with reference to rigidities in consimier 
behavior due to technological or institutional factors. If these factors are 
the sole causes of rigidities, we have distributed lags in both prices and 
income, but within any eq\:iation the distributions of lag is the same for both 
price and income. In place of eqiaation (246), we have three equations of the 
same form as equation (23) (see page l8): 

C(t) - C(t-l) = Ô ^ [c*(t) - C(t.l)] (253) 

qf(t) - qf(t-l) = Ô f [qf(t) - qf(t-l)] (254) 

am(^) - qm(t-l) = S ^  [qj(t) - q^^Ct-l)] (255) 

Where C*(t), qf(t), and q^(t) are the long-run eqviilibrivun values of total 
consumption and the quantities demanded, and ô g, S^^, and Ô  are the para- 
meters determining the distributions of lag. Our basic demand equations are: 

C*(t) = aQQ + SQ^ y(t) + UQ(t) (256) 

q*(t) = a-Lo + »11 Pf (*) + »12 y(*) + «l("t) (257) 

<lî(*) = »20 + ^21 Pm(*) + ^22 ^i*) + "2^*) (258) 

When equations (256)-(258) are reduced we have: 

C(t) =3^0 5^, + aoi 0^ y(t) + (l- 6^.) C(t-l) + 5 ^^ uo(t)     (259) 

OLf(t) = aio of. + a-^-L 5^ p^(t)  + a-^g ^f y("t) + 

(1-0^) qf.(t-l) +0^ Uj_(t) (260) 
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<ljt)  = ago   5 m -^ ^21   ^m Pm(^) + ^22   ^ jji y(t) + 

(1-ÔJ  qj^(t-l)  +   ôin^2(^) (261) 

Equation (253) suggests a regression of exactly the same form as is sug- 
gested by (2^4-7); but equations (260) and (26l) suggest somewhat different ones 
than those under the permanent income hypothesis. Comparing (26o) with (2kQ) 
and (261) with (2^9) we see that p^(t-l) does not enter a regression based on 
(260) and p^(t-l) does not enter a regression based on (26l). The fact that 
the coefficients of these variables in the regressions presented in table 1 
are not significantly different from zero or are of the wrong sign suggests 
that the alternative hypothesis may have some merit- The coefficients of 
C(t-l), qjp(t-l), and qjj^(t-l), of course, need not be the same. Regressions 
based on equations (259)-(261) are presented in table 2 for the period 1920-41 
and the combined periods 1920-ifl and 19^8-55. As can be seen, the results 
compare favorably with those presented in table 1, 

It is perhaps too early to conclude that technological and institutional 
rigidities play a greater role in demand analysis than rigidities of an expec- 
tational nature. Nonetheless the results presented in this section suggest 
that this may be the case. If so, it would simplify matters greatly. In 
order, however, to reach a firm conclusion, further research is necessary. It 
is hoped that this paper makes a modest contribution to that research. 
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Table 2.--Demand for aggregate consimption, food, and meat "based on an alter- 
native to the permanent income hypothesis: Least squares regressions and 
related statistical data l/ 

Item 

Regression coefficient 
for specified inde- 
pendent variable: 
y(t) .. 

c(t-i) 

<if(t-i) 

Pf(t) . 

Pm(t) . 

Constant term 

Number of observations 

Durbln-Watson statis- 
tic, d  

Estimate of— 
S  
Long-run elasticity 

wi-üi respect to— 
Income   
Price  

Aggregate 
consumption, 

eqijation (259) 

1920-41 
1920-41 
and 

1948-55 

Food, 
equation (26o) 

1920-41 
1920-41 
and 

1948-55 

Heat, 
equation (26l) 

1920-41 
1920-41 

and 
1948-55 

0.729 
(.056) 
.099 

(.077) 

.315 

.97 

22 

1.56 

.901 

.81 

0.726 
(.057) 
.209 

(.064) 

.122 

• 99 

30 

.791 

.92 

.151 
(.139) 

-•155 
(.042) 

1.563 

.89 

22 

.237 
(.106) 

-.142 
(.036) 

1.366 

.97 

30 

.248 
(.127) 

-.478 
(.076) 
1.730 

.73 

22 

.26     .29 
-.183   -.186 

0.217   0.219   0.350   0.421 
(.031)  (.028)   (.071)  (.056) 

.371 
(.111) 

-.429 
(.065) 
1.263 

.82 

30 

1.48   1.91   1.89   2.16   2.04 

.849   .763   .752   .629 

.47    .67 
-.636   -.682 

1/ Numbers in parentheses "beneath the coefficients are their respective 
standard errors. 
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APPENDIX 

A Test of Significance for the Equality of the Elasticities 
of Expectations Obtained for Several Commodities 

Equations (245)-(2it9) may he written 

C(t) = TToo + '^Ol y('t) + "02 C(t-l) + Vo(t) (262) 

qf(t) = ^^10+ '^ii y(t) + ^2.2  PfCt) + ^^13 Pf(t-l) 

•^   -"Ik  tlf(t-l) + v-L(t) (263) 

q.m(*) = ^^20+ ^^21 y('t) + ^^22 Pm(*) + ''23 Pm("'^-l) 

+ "2J+ 1m(*-l) + ^2^^) (264) 

We wish to test whether 

^^02= ^^14 =^^24=  .. (265) 

where '^ .. is the common value of the coefficients of C(t-l), qf(t-l), and 
<lm("t-l) • 

The test may be carried out in the following steps: 

Step 1: Compute the adjusted sums of squares of the dependent variables 

Mc(t)c{t) - ^01 My(t)C(t) (266) 

%f (t)qf (t) - ^11 My(t)qf (t) - ^12 ^p^(t)qf (t) 

- ^13 %f(t-l)qf(t) (267) 

Mqm(t)qm(t) - ^21 My(t)qjt) " - 22 %(t)q„(t) 

- -23 %(t-l)qjt) (268) 

Add these together and call the sijui M^^- 

Step 2: Compute the adjusted moments of C(t) or C(t-l); qf(t) on qf(t-l); 
qjn(t) on qjn(t-l) after the effects of the other variables have "been removed. 
That is^ compute 

^^C(t)C(t-l) - -01 My(t)C(t-l) (269) 

^qf(t)qf(t-l) - -11 My(t)q^(t-.l) - ^ 12 Mp^(t)qf(t-l) 

- ^13 i'^f(t-l)q^(t.l)        > (270) 
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^qm(-t)qin(t-l) " "21 My(t)qj„(t-l) " -22 Mpj„(t)qjn(t 

''23%ia(t-l)qin(t (271) 

Add these together and call the si^m M-L2 

Step 3: Add the moments Me(t-.l3c(t-l)^.%f(t-l)qf(t-.l)> ^^^ 
Mn (t-l)q (t-l) together and call the sura M22 

Step k:  Compute the residual sum of squares for the combined simple 
regression: 

Si = Mil —-;* 
Mop 

(272) 

This residual sum of squares has N-10-1 degrees of freedom, where N is the 
total number of observations (that is, the sum of the numbers for each reg 

j. The number of degrees of freedom lost in computing the adjusted 
moments is 10, and in computing the combined regression is 1, The 

value we suppose •^02-' '^l4^ ^^^   ^2^1- *° have 

Ml2 

\TGSU! 

77 = -^ 

M22 
(273) 

•   • 

step 5: Compute the residual sijms of squares for each of the three 
regressions 

2 
S2 = Mc(t)c(t) (1-% ) + 

2 
%(t)qf(t) CI-R2 )  + 

(27i^) 

where Ri^, ^2 ,  and IR^^  are the squares of the respective coefficients of mul 
tiple correlation. S2 has N-13 degrees of freedom, where the 13 is obtained 
by counting one for each coefficient and constant term in the three regres- 

sions. 

Step 6: Compute So = Si - Sg. S3 has N-11-(W-13) = 2 degrees of freedom 

Step 7: Compute 
S 

F' 
2 

S 2 
N-13 

F' is distributed as F with 2 and N-13 degrees of freedom. If F' < F,o 
2, N-13) "we accept the hypothesis that 

^^02 " ''lif = ^^211 - " 
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