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ABSTRACT

The two major objectives satisfied in this investigation
include the development of an improved semi-empirical model for
microwave backscatter from vegetation and the acquisition of a
complete set of canopy attenuation measurements as a function of
frequency, incidence angle and polarization. The semi-empirical
model was tested on corn and sorghum data over the 8-35 GHz
range. The model generally provided an excellent fit to the data
as measured by the correlation and rms error between observed and
predicted data. The model also predicted reasonable values of
canopy attenuation. The attenuation data was acquired over the
1.6 -~ 10.2 GHz range for the linear polarizations at approximately
20° and 50° incidence angles for wheat and soybeans. An
attenuation model was proposed which provided reasonable agreement

with the measured data.
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NOMENCLATURE

SYMBOL UNITS NDESCRIPTINN

A - empirical constant

8 - *  empirical constant

c - empirical constant

c1,62,C3 - designation for corn fields 1,

2, and 3, respectively
c - factor obtained from t-distribution
for confidence-interval calculations

c(f,8) .- empirical constant, which is a
function of frequency and angle of
fncidence

D - empirical constant

dz m incremental path length through

- canopy

E - empirical constant

e ds ms error

e1,89,83 dB _ rms error for fields 1, 2, and 3,
respectively

f GHz frequency

h m . canopy height

HH .- horizontal transmit, horizontal
receive

HV - “horizontal transmit, vertical receive

J -- symbol used to designate imaginary
part of a complex number

k m~! wave number (2m/1)

ke .- confidence-interval limit

L m correlation length

La d8 loss from model A
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1.0 INTRODUCTION

A little over a century ago, mankind had to rely upon direct,
on-the-ground observations to acquire the kinds of information
useful in resource-management; as a result, such management was
extremely limited in scope. Over the first eighty years of this
century, aerial photography proved to be quite valuable to
resource managers, and it is still a legitimate form of r;mote
sensing today. But it was with the launching of satellites
carrying onboard visible- and infrared-sensors in the 1970's
that the science of remote sensing was revolutionized. Spaceborne
sensors were able to provide high-resolution imagery of even the

most remote parts of the Earth. Naturally, any satellite-based

image contains a large quantity of information. Therefore,

‘advances in digital-computer technology and digital image-

processing techniques have been necessary and have led to the
increased use of the resulting information Dy resource managers.
Promising research is continuing in this vital aera.
Unfortunately, visible and infrared sensors--especially
visible sensors--have some serious limitations. For example,
cloud cover renders visible sensors useless and severely degrades
the performance of infrared devices. In addition, visible
sensors can be operated only during daylight hours and are
affected by sun-angle. For this reason, much research is
currently directed toward the development of microwave remote

sensing systems, both active and passive, capable of supplementing
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the data provided by visible and infrared sensors. Microwave
systems may be operated either day or night, under clear-sky or
cloudy conditions, and over a very wide range of frequencies.
The present study is devoted to increasing the understanding of
the responses of such systems--specifically active microwave

or radar systems--to vegetation. An increased understanding of
these resporses will help to discover microwave remote sensing
applications, not only in agriculture and food production, but
also in water-resource management, energy utilization, conserva-

tion, and production.

1.1 Agricultural Applications
Agricultural resource management encompasses two major

tasks: The first 1bvolves the discrimination and classification
of crop species, which can ultimately provide an estimate of the
acreage planted for each type of crop, and the second concerns
monitoring crop growth and vigor, which in conjunction with
acreage estimates, will allow forecasts of yield.

The problem of discrimination and classification has been
studied extensively using radar alone (Bush, 1976a) and
combining radar data with Landsat data (Eyton, 1979; Li, 1980).

The results of these investigations indicate that radar and

Landsat data are complementary in nature and that classification

W




TABLE 1. Sources of
on a VWorldwide Basis

Wheat
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Corn
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Table 1.A World Production of Edible Dry Matter and Protein

Dry Matter 7 Protein 6
(metric tons x 10°) (metric tons x 10°)
Ceral grains
Wheat 27.5 32.9
Rice 26.7 23.2
Maize 23.5 24.7
Barley 11.4 11.6
Sorghum/millet 8.2 7.4
Others 7.6 1.1 .
 — 104.9 —_— 100.9
Starchy roots
Potato 6.6 6.0
Sweet Potato and Yams 3.9 2.9
Cassava 3.4 0.8
—_— 13.9 —_— 9.7
Sugar Crops
Cane 4.3(sugar) -
Beet 3.0 -
—_— 7.3
Legunes and 0i1 Seeds
Soybean 4.2 16.7
Peanuts 1.6 4.8
Peas 1.3 3.5
Beans 1.5 5.4
Cotton-seed (2.0) (7.2
-fibre (1.1) -
(3.5) (12.4
Others —_— 10.2 e 35.6
Vegetables 2.8 8.0
Fruit 2.5 1.3
Animal Products
Milk 5.2 14.5
Meat 2.8 12.6
Eggs 0.5 2.5
Fish 1.7 8.5
e 10.2 —_— 38.1
152.8 193.6



accuracies of the order of 95% appear to be feasible when multi-
date information is obtained.

The second task, 1.e., the mnr‘ltoring of crop growth and
vigor and the estimation of yield, is not well understood. This
1imited understanding can be enhanced, however, b;y the development
of improved mathematical models relating the microwave response to
plant physiological changes. Models may range from simple linear
regression analyses on microwave and ground-truth data to complex
theoretical models based inpon Maxwe:.1's equations. A middle-of-
the-road approach is the semi-empirical model, which is based upon
electromagnetic theory but 1s generally simple, utilizing easily
measured ground-truth parameters.

Electromagnetic models may be used 1n conjunction with
evapotranspiration models developed by agronomists (Hodges, 1977;
Kanemasu, 1977) to predict yield. In addition, microwave
measurements and models may provide data on crop disease or stress
and may provide valuable inputs to the hydrological models used in

water-resource management.

1.2 Advantages of Microwave Sensors

The abflity to penetrate cloud cover and to operate
independently of solar radiation distinguishes microwave sensors
from their visible and infrared counterparts., In addition to
these advantages, microwave sensors can effectively control the
“roughness” of the target under study by a change in wavelength;
this property allows studies of target structure that are not
possible in the visible and infrared regions. In addition, active
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microwave sensors have the ability to control the polarization of
the 1llumination and to make cross-polarized measurements that
often provide information not available in like-polarized data,

The Earth's atmosphere and ionosphere are not transparent to
electromagnetic radiation at all wavelengths. An "optical window"
extends from approximately 5 THz to 800 THz and a "radio window"
extends from about 30 Mz to 300 GHz. The remainder of the
spectrum 1s essentially useless for satellite-based remote sensing
purposes. Even these “windows” are not totally clear, since the
optical window contains many gaseous absorption 1ines, and the
radio spectrum s obstructed by a few oxygen and water-vapor lines
near the upper end.

Much of the interest in microwave sensors results from their
ability to peretrate cloud cover. On the average, a very large
portion of the Earth experiences 50% or greater coverage by clouds
during the year. Since neither the visible nor the infrared
sensors can penetrate this cloud cover, temporal data on crops is
extremely difficult to obtain. This problem is critical, since
plants may undergo some rather dramatic physiological changes
within a period of a few days.

Although rainfall can degrade the performance of microwave
sensors, it {s actually the cloud cover assocfated with it that
renders optical and infrared sensors useless. In fact, rainfall
is not a major problem, since precipitation rates high enough to
produce significant attenuation are in evidence only a small

fractior of the time available for observation of vegetation.



In addition to the ability of microwave sensors to operate
effectively day or night under most weather conditions, they have
the unique ability to sense changes 4n target roughness and
dielectric constant. It 1s this capability that provides the most

promise in monitoring the growth and vigor of agricultural crops.

1.3 Prior Rescarch

Some of the earliest scattering experiments on vegetation
were conducted at Chio State University in the late 1950's and
1960's (Cosgriff, 1960; Peake, 1971). Data were collected from a
wide variety of agricultural and cultural tarjets by using a
truck-mounted Doppler radar. The radar was capable of operating
in the X (10 GHz), Ku (15.5 GHz), and Ka (35 GHz) bands and could
measure backscattering from a 0° incidence angle (nadir) to an 80°
incidence angle. The absolute calibration of this early Ohio
State data 1s somewhat suspect when compared to more recent
measurements (Bush, 1976b), but its precision is still estimated
to be about ¢+ 1 dB. Unfortunately, this series of experiments
lacked adequate ground-truth support and was temporally incomplete
for the purpose of monitoring crop development ovar an entire
growing season. Despite these limitations, the Ohic State
experiments are significant in that they launcned the study of
vegetation by means of microwaves and provided the basis for more
detailed investigations.

In 1968, a program designed to investigate the racar
backscattering from vegetation, crops, and soils was initiated in

The Netherlands (deLoor, 1974). 1Initfal measurements used a 75-




meter television tower as a platform for an X-band pulse-radar
system. Because of the height of the tower and the locations of
the agricultural fields of interest, data were limited to high
incidence angles (> 80°). - Despite these 1limitations, the
experiments provided some insight into the statistics of radar
backscattering from agricultural crops and, what {s more
important, provided evidence that crops may undergo significant
changes in backscattering response over a growing season. In
1973, the group constructed a short-range FM-CW radar system that
could be moved on rajls along a series of test plots. This system
was capable of taking data over an incidence-angle range from 20°
to 75° with HH, HV, and VV polarization. This system has been
used to acquire a considerable amount of data on crops (deLoor,
1982)., The Dutcr; have also been active in vegetation dielectric
constant investigations (de Loor, 1983) and modeling (Hoekman,
1982).

In 1974 and 1975, a group from the Soviet Union conducted
experiments on vegetation wusing a K-band 1imaging radar
(Basharinov, 1976). This series of experiments, although lacking
adequate ground truth, noted significant changes 1in the
backscattering coefficient over a growing season and specifically
noted a large increase in the backscattering coefficient of winter
wheat at approximately the “heading" stage of growth. The
exper'menters also reported an inverse relationship between the
backscattering coefficient and the “productivity of green mass.”
The productivity of green mass apparently refers to the wet

biomass of the vegetation, measured in kilograms per square



meter. The Soviets have also reported backscattering data
acquired over the 0.8-cm to 30-cm range of wavelengths, as well as
laboratory measurements of microwave absorption and scattering of
isolated vegetative elements (Shutko, 1981).

A study conducted by the Agricultural Engineering Dapartment
at Ohio State University (Story, 1968; Story, 1970), unrelated to
the previously discussed backscattering measur~ at program,
concluded that the attenuation by wheat heads is many times
greater than the attenuation by stalks, and that transverse
magnetic (VV) attenuation 1is more than twice as great as
transverse electric (HH) attenuation. These results suggest that
the wheat héad should be considered individually as a
scattering/absorption element in detajled modeling studies.

Measurements of the temporal response of rice have been
completed in India at the Communications Area Space Applications
Centre in Ahmedabad (Calla, 1979). The Indian group utilized a
fixed X-band (9.4 GHz) CW radar system. This study is significant
because rice is one of the world's most important crops, and
becaus