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Abstract

QWegdeécribe 2 prototype network planning model for the U.S. Air
- ve DeR

Traffic control system.” The model encompasses the dual objectives of
managing collision risks and transportation costs-where traffic fld&s
can be related to these objectives:. The underlying structure is a
network graﬁh with nonseparable convex costs; the model is solved effi-
ciently by capitalizing on its intrinsic characteristics. Two speéialized
algorithms for solving the resulting problems are described: (1) truncated
Newton, and (2) simplicial decomposition.

The feasibility of the approach is demonstrated using data collected
from a céﬁtroi center in the Midwest. .Computa;ional reéults with different
gomputer-syétems arevpresented - inéluding a vector supercomputer
(CRAYjXMP). The risk/cost model will han two primafy Qses: (1) as a
strategic planning tool using aggregate flight informétion, and.(2) as an
integrated opergtional system for foreéastipg congestion and monitoring
(controlling) flow throughout the United States. In the latter case;

access to a supercomputer will be required due to the model's enormous

size.
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1., Introduction

By the year 2000, the U.S. Federal Aviation Administration (FAA)
plans to spend over $11 billion on a progfam fo upgrade and consolidaté,thé'
U.S. air-traffic system -- called-the National Airspgce System Plan [NASP].
bn gn average day ;n 1984 apbfoximatelyAl7,000 aircraft traveled these
routes. It is is expected that tiaffic volume will increase by 62% over
the next decade.. Tﬁe FAA has responsibility for managing the air-traffic
syétem, especially those elemenﬁs affecting ;isk} Indéed, the agency has
been §b1e>;o reduce overall (and relafive) risks dﬁriné the past. thirty
years [1]. As new hardware and’software technologies have been.implemented,
the FAA has proviaed mechanisms for ﬁohitoring factors associated with
system risks. Recently a_treﬁd'td deregulate the airline indusfry in the
interest éf gréater_efficiency and competitiveness hés‘begun. -Despite this
tréhd-the FAA muét possess efficien; procedures for assessing (and uitimately
controlling) system'risks. |

In this report Ge discuss the development of a prototype network
planning model for flights on high-altitude jet routes over the U.S. air-
space, in Eonjuﬁction with the NASP. The modéi.gncompaéses the dual objective
of assessing risk-related measures and transporfation costs. ’The_underlying
mathematical model has the special structure of yetwofks'graph. Sinpe safety
components depend upon interééting Variables, the prdpoéed model falls in
the category éf a nonlinear network with nonéeparable cost functions.

The podel can serve as the building blqck for a management information
system that can assist FAA in two basic settings:

(a) As a strategic planning tool, or

(2) As an operational planning proéram for air-traffic

scheduling and routing.



In thg former case it is essential that ﬁhe optimization can be‘solved
efficiently and acéurately. ‘In this way extensive segsitivity analyées
~ can be carried out and answers to '"what if"” quesfions obtained in a
cohparative fashion-and without regard to numericai instability. The
use of the model és an operational planning fool depequ on the ability
to "solve'" the model under real-time conditioﬁs.

Byrcapitalizing'On the special structure of the undérlying network
basis (a forest of l-trees) we have deﬁelopéd highly efficient solution~
algorithms [2, 12, 13). Thus large-scale‘problems can be handled within
minﬁtés or hours; repeated runs can be made aﬂd the use of the model for
planning is feasiEle. Going a step further we have streamlined our
algorithms for the architecture of vector superﬁomputers, in particu}ar
the CRAY-XMP at Boéing Computer Services. By taking advantage of the
Cray's pipeline features we were able to solve the test casesvin'a matter
of seconds -- thus demonstrating feasibility of the network model as an
opérational planning tool. |

The rest of this paper is organized as follows. The mathematical
models are defined in Section 2. A general descripgion'of two soiufibn
algorithms --" (1) Truncated Newton, énd (2) simplicial decomposition --
" appears in Section 3. Data requirements-for the model are listed in
-Section 4. Next, Section 5 presents the modeling of a represenﬁétive
-air-traffic control sector (Indianapolis); some computationai |
résults are given in Section 6. Finally, we discuss limitations of the

current model and directions for future research.




2. Air Traffic Control Modeling

A stochastic programming model for the air-traffic control problem

was proposed in the early work by Fergusoﬁ and Dantzig [5). More recentiy,

general aspects of air-traffic systems planning and design were the focus

of a conference at Princeton University [1 ]. We propose here a network

formulation for the air-traffic planning problem.

The generic nonlinear network model takes the form:

[NLGN] Minimize F(X)
Suﬁject to:
Loy Xyg T Z_mkixki = b, for 1 € N
jec, keé,
i i
i < xij < uij’ for (i,j) € E
whére
F(x) = convex function
{X} = set of nodes
{E} = set of arcs (edges)
xij = flow ovér.arc (i,3)
Dy = multiplier* on arc (k,i)
b, = supply/demand for node i
X = {x1j|(isJ) € E}
-+
6; = {3[(£,3) € E}
'6; = {j](,1) € E)
bound on arc (i
uij(ﬁij) upper (lower) boun (i,
X

= {x,,|x,. satisfies constraints (2.1) and (2.2)}
1j]° 13

*Multipliers are
can be modeled.

indicated so that airport congestions and other factors
These features will be descussed in Section 7.

(2.1)

(2.2)



We may rewrite [NLGN]-in the following form:
[NLGN] Minimize F(x)
Sﬁbject to .x e X
where

GlA+%=b2< %<q)

X

Since the [NLGN] basis is a "forest of l-trees" (collection of subtrees
‘with one extra arc per subtree creating a single ioop), efficient procedures
are available for storing and updating the bésis and other aspects of the
algo:ithm [91\12].

Figure 1 depicts a simplified example graph of the first'planning model.
This example consists of five airports and interconnecting routes, represénting
an aggregate of individual-flights into and out of the designated airports.
Note that each airport has three triangular nodes, indicating net traffic,
number of incoming flights and the number of outgoing flights. Network arcs
points in the obvious direction of traffic movements.

The corresponding optimization model is shown below:

[0PT1] Minimize {w, * [ - ] 'Cijz;j] + oy s(2)) £ F(*)
(i,3)€Ay TER,
Subjéct to:
X, = 2 X, itA
i ke, ik
Y, = 3 y.. = 3jEA
1 gem, K
< <
P S %y S vy (aK)EA
€
ij ykj ___ukJ (k,3) such that j A,k?Mj>
Xjp = L 2y, i€A, kel
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where we have used the following decision variables:

xi(yi) = number of total outbound (inbound) flights, airport i€A

Xik

r -

ziJ

Vi

" Notation:
A
(1,3)

Rij

number of outbound flights from airport i to airport k

number of flights over route r, airport i to airport j

‘number of inbound flights from airport k to airport i.

set of aifports
feasible pair (linking airport i to airport j)

all feasible routes for pair (ij)
outbound destinations for airport i
inbound airborts for airport j

{(i,3) |11 and jE:Li}
marginal transportation cost on route reRij

net traffic at airport i

convex nonseparable function, measuring risk



-7-

This single period planning model aggregates all individual flights
bétwéen airport-péirs over the planning horizon. While extending the model
to-a large number of multiple periods will considerably increase the model's
size, it'ﬁould be, conceptually, straightforward to.depict séveral periods.
-As such, the [OPT1] model can be used for supporting airport resource
~decisions, such as opening new runways and exﬁanding the capabilities of
‘ _ééntrol towers. The primary aims are to identify Botfleneéks and to predict
imbélances for the U.S. air-traffic system, given a variety of scenarios.

~In this repfesentation thevoptimization,model takes a bi-criteria
objéctive function consisting of risk and systemwide cost, with fespective
weights v, and'wl. It should be stressed that the weights are used only as
part of the sensitiﬁity analyseé to identify the efficient frontier aﬁd are
not meant to be set a priori. Transportation cost is eaéily quantified in
terms of traveied distance and fuel burn rates of the different aircraft
models., A monetary value can also be assigned on factors like customer
dissatisfaction due to flight delays and'so on. Quanfifying the risk
compohent of the s&stem, however, is a critical and controversial issue.
At best we may consider optimizing a relative risk measure: the key idea
is to compare some risk norm under different scenarios or system states,
:’far with other similar systems. Odoni and Endoh-[lsl consider a probabilistic
analysis of risk. In Sectioﬁ 5 we touch upon the issue of modeling risk as

 affunction of congestion in the target sector during time intervals of

interest.



The issue of identifying an acceptable point on the efficient risk-
cost frontie; is complex. It is obviously difficult for society to
compafe human risks ana congestion delays against financial criteria.

See; for example, Rowe [18]. Ultimately the solution depends upon societal
tradeoffs and can only.be derived through an informed political ﬁrocess{

. The network framewb:k provides essential input data fof this process by
tracing out the efficient frontier; see Section 5.

The aggregate model [OPT1] is unable to‘provide adequate details for
operational plénning purpoées.

Therefore, a second network model has been developed and én example
is shown in figure 2. Here, decision variables monitof possible delays and
alternative altitudes for every flight departing to or arriving at the
airports of interest. The corresponding mathematical respresentation is
defined below. In'addition to optimizing transportation and deléy costs
 this model limits the number of flights traversing regions of interest --
e.g., confrol sectors -- as a surrogate for minimizing risk. Including

these aspects causes [OPT2] to be considerably larger than [OPT1].

t t a Q a
NI pt __pt _ cg cdp+] ]l oW
[OPT2] Minimize fZF pZP tZT ce X % fZF thf £ £ ZEA keK X k
t £

‘Subject to:

g = 1 . for all feF
d;-l = d; + 1 xPt for all feF, teT,
per
2 X?t = y: + W: for all acA, keEK
pteDa



FLIGHTS | AIRPORTS
02601 ~
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o |
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Figure 2: Example Alr-traffic Network (Operational Model)
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Qz < y: < uz for all acA, kekK
x?t §.L¥ _ for all reS, keK
xpteka
f

where we have used the following decision variables:

xgt'= 0,1 : flight f follows route p during time pefidd t
d; = 0,1,te:Tf : flight f delays its depérture during period t
wi for keK : number of planes delayed at destination

a1rport a during period k

yi k = 1,2,...,k : number of planes landing at destinatidn

max

airport a during period k.

Notation:
acA : set of airports
feF : set of flights
pfeff : set of possible routes for flight £
k = 1,2,...,1(max : time of periods in planning horizon
thTf : ;et of possible time periods for departure of flight f
R:_: set of flights traversing>control sector r at period k
Di : sét\of flights whose destination is airport a,

and arrival time is k

Pt . marginal traﬁsportation cost for flight f on route

f
p during period t
c; : marginal departure delay cost for flight f during

period t
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Cpr ¢ marginal landing delay cost at airport a

during period k

uk(ﬂk) : upper (lower) limit on the total number of °
flights landing at airport a during period k

L_ : 1limit on the number of flights traversing control

.sector r during period k

S : set of control sectors

This model controls individual flights: for every flight it specifies
possible altitudes, routes to be followea and any depafture/landing delays.
The objec;ivé function iﬁcorporates the maréinal cost of transportation,
and associated delay‘costs.* Transportation risk is assessed by imposing a
limit oﬁ the number of flighfs through a particular sector during every time
interval of interest. As mentioned this formulation provides more details
than [OPT1] since it cqntrolé flights on an individual basis. The added
details result in a more complex model: the model is not only larger than
[OPT1] but also it has integer variables. It is, however, equivalent to
[OPT1]in the risk minimization aspects where congestion in an identified
region provides a Surrogéte for risk. By varying‘the limit on the number of
flights traversing a conﬁrol section during every time peiiod we may achieve
the same result as by varying the weights in the multi-objective formulation
in [OPT1). Mathematically the first formulation is more tractible: it deals
with a continuous nonlinear network model, thle the secénd model deals with

a linear multicommodity network_problem with integer variables.

*Note that the model minimizes total transportation costs, following a
utilitarian economies. 1f this approach adversely impacts individual carriers,
the model can be adjusted through multiple weightings or by means of side
payments between carriers (or the FAA).
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The two models are expected to serve different purposes. The
strategic planning model is intended to assess aggregate data, while the
operational planning model deals with more microscopic aspects of air-

traffic control.
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3. Solution Algorithms

We describe here the main features of two nonlinear programming
algofithms that have:been speciélized to éolve {NLGN]. The methods are:
(1) A second order algorithm based on truncated Newton search diréctibns

(TN), and (2) A first order algofithm based on the simplicial decomposi-
fion éf the feasible region (SD)L Both algorithms posseS;Adistinéf
characteristics: the truncated Newfon‘algorithm c§n identify solutions
to a high degree of accuracy; the simplicial decompositionlélgorithm can
-quickly converge to an approximate solution. The interested reader should
refer to the papers by Ahlfeld et:al. {2] and Mulvey et al. [13] for mo;e--

detailed description of these algorithms and some computational results.

3.1 Truncated Newton Algorithm

In a manner similar to most ﬁonlinear programming_prOCedufes, each
(TN) iteration consists of two-étages: (1) a search direction.rdutine, and
(2) a step length routine. Table 1 depi;ts the overall flow, in which the
nétation refers to the model [NLGN] presented i; Section 2;

The seérch Qiréction must fulfill certain essential features so that
the overall algorithm will converge and so thafﬂperformance efficiencies
are attained. First, the direction mﬁst both maiﬁtain feasibility and
point ﬁownhill (in a minimization'context). Defining the search direction
as‘i;k and given a feasible point §k at the kth iteration, the uéual'Neﬁtqn

method for calculating Ek would solve the following quadratic programming

problem:
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A

[QP] Mini:izefgé(sk)tc(gk)sk + g(§k)tsk
P
HSubject to:
Eepfeo0
p? :’0 if x? = Qj
p? <0 if xg = ujA
Qhere

g(§k5 gradient of F(§k) at §k

6(X) Hessian of F(zX) at X°

By restricting our attention to a special pfojected métrix Z, whose columns
form a basis for the null space of-A,'i.e., A 2Z =0, the problem [QP] can

be solved using the following two formulae:

t =k

zf 62y P =2t
-~k t =k
P =2 pg
where
-85 ™
2= S s
N n-s-m
G semi—positive-approximétion to the Hessian at point §k

Ek gradient of objective function at point ;k
and where the decision variables have been partitioned into three sets:
x = [xblxslxn]
A = [B]s|N]
g(x) = [g,lg e )

2= Ip,lp,lp ] .

(3.1.1)
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The behefits of the Newton direction;k are greatest in the neighbor—
hood of a solution; however,'it is expeﬁéive to calculate the solution of
equation (3.1.i). 1In response, we adjuét in aAdynamic fashion the degree
of accuracy of solving [QP]. A forcing séquence {nk} —> 0 is employed in

this regard. Accuracy is defined according to the relative residual in
o K
k =k

equation (3.1.1),T+L%:£%[, in which rk E (Zt G Z)-"i;s + Ztg and
‘ z . .

. ., n . . ' .
is a vector norm in R . The minor iteration (see table 1) continues only

: K _
until the required accuracy is attained. Thus, T{l%:%%T'i rk defines
. _ 2t

the termination criteria for the minor iterations.

When the algorithm is far from the solution the reduced gradient --

"I|2t§k||'—- is large and little work is required to locate a directiqn
satisfying the acceptance critéria.' Only the Basic and super basic
variables are optimized.> 1f one of these variables hits a bound, the
constraining variable is transferred into the set of nonbasics [xn]. As
||Zt§k|| is reduced the acceptancevcriteria becomgs more restrictive and
the current solution to the direction finding problem lies closer to the
.Newton direction. | | |

At this point, the noﬁbasic variables must be tested for optimality.

First order estimates for the Lagrange multipliers are computed as follows:

-t -t , _~1
p = 8, * B

“t g ‘t - —t a1
L [gn v, Nl
-t -t

Mo = M S
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In this environment non-basic variables that reduce the objective function

n
when moving away from their bounds (i.e., if UJ < 0 and Xj fu or if

uil> 0 and xj Qj) along w1th free non-basic variables (i.e., 2; < x3< uj) are
called eligible. Eligib;e variables are transferred to the superbasic set

[xs] in conjunction with a maximal basis [4], and the TN'aléorithm cgntinueé
the next ﬁajor iteration with Fhe new bartition;

A sizable portipn of the algorithm's execution time involves computing
the search direction 52. While the trhncatedQﬁewton method can use‘any'
ite;ativé method fol solving equgtion’(3.l.i), we have chosen the linear
conjugate-gradient [CG] method. Although the feduced Hessian matrix
ZtGZ is typically dense, the product required by {CG], (ZtGZ)G, ig eaéily
éomputable due to the sparsity of the largé-scale components.

. The success oflﬁhe conjugate-gradient metﬁodvdepends upon locatingia
"gobd" search direction in a small number pf.iterafions. Thus, preconditioning
the reduced Hessian by the matrix P is important so as to reduce the number of
CG iterations; Whereas the usual initial element of the CG sequence is

Ez, the vector P ° EE becomes an initial element when preconditioning,

where P is a pdsitive—definite matrix.. See [2] for further details.

3.2 Simplicial Decomposition Algorithm

While the TN algorithm is capable of solving large nonlinear network
problems, we felt that a first order approximation would be better suited
for ultra-large examples -- prgblems with more than 10,000 nodes and
100,000 arcs. The simplicial decompésition algorithm was selected by us to

meet this goal. This algorithm is best examined in the context of general
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decomposition ﬁethodsf hqulowing Geoffriop [6] wé may place the algofithm.
ir the.class of'"inne¥ linearizaticn/restriction” methods. The SD algorithm
iteratéé between (1) sélving a linearized subproﬁlem and (2) solving a
nonlinea; master problem on a restricted space subject to non-negativify
constraints. Table 2 depicts. the overall flow. The algoriihm was first
presented in th;é form by von Hohenbalken [12,20]. Holloway {8] proposed
tﬁe sﬁme algorithm, as an exten#ion of the Frank-Wolfe method, and recentiy»
Lauphongpanich and Hearn [10] devised a restricted verion for the traffic
: aséignmént problem. We have developed a ve?sion of SD specialized to A
handle [NLGN], Qﬁereby the master prdblem’is solved inexactly [13].

The following theorem due to Caratheodory provides the necessary

theoretical foundation for the algorithm.

Theorem:
let X ¢ R" be a non-empty convex polytope. Then every
x € X lies in thé relative interior of one of a finite
numbef of simplices whose vertices are extreme points of X.
See [19] for a proof. The main idea behind SD is simple in principle:
‘(l) First solve a lineariéed subproblem to get the extreme points.of X.
We need.not génerate all the extreme points of the feasible region;
this would result in a problem as complex as [NLGN]. Instead we
éenerate.ex£reme points as needed -~ in a manner reminiscent of
Daqtzing's column generation method. A (K—l)‘aimensional simplex
is defined from K extreme poihts, and the search for the optimum

is now restricted on the generated simplex.
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Table 2 : The Simplicial Decomposition Algorithm
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(2) The master problem attempts to optimize the original function onthe
simblex generated by the subproblem. We have
Minimize F(w y)

w

Subject to:

0<w, <1

i
where y = Ypo¥greeea¥yg is the set of generated extreme points and
w = WysWoseo.,w,  are associated weights. We may reduce further the

dimension of the master problem making use of the implicit function

theorem:
K-1
Minimize F(.z wi(yl - yK))
i=1
Subject to:

0 < w, i=1,...,K-1
- 7i

Thus ve have a nonlinear problem in dimension (K-1) subject to éimple non-
negativity constraints.

Reducing the master problem to a sequence of unrestricted (K-1)
dimensional problems, this préblem can be solved by any unconstfained algorithm.
Refer to the work by Mulvey et al. [13] for computational experiments. The
solution to the master problem is more important when the solution to [NLGN]
lies in the current simplex. Thus we adjust in a dynamic fashion the

accuracy in solving the master problem. Again a forcing sequence
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{nk} —> 0 is emploved and the master problem terminatgs when
l';DT . gl{ j_r} -- where D is the derived linear basis representing the‘
current simplex. Once this Qegree of accuracy is achieved we return to
the subproblen. | |
.Simplicial decomposition provides us with a modular algorithm for
solving [NLGN]. It converges rapidly to a good approximate solution,
represented as a linear combination of a few extreme points (K << mn).
If highyaccuracy is requires -- i.e., exact representation of the optimum
solution -- then we ﬁeed'generate n + 1 extreme points and the master
prqblem becomes as difficult as the origiﬁal problem. In addition the
'subproblém pfeServes any special structure that may be present in the
original problem. For [OPT] the subproblem itefations consist§ of éolving
a linear generalized netwofk ﬁroblem. Code LPNETG [12] was employed,
modified to allow restarting from the basis of the lést subproblem. The
master problem was solved using akQuasi—Newton algorithm. Reference [13]

provides further details for the implementation of SD and accompanying

results from computational experiments.
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4. Data Requirements _ ‘ , .

. One of the most important aspects of modeling real world systems is
the ability to collect the required data in a timely fashion. In the case
of the Models [OPT], data may be classified in two-Categories: static and
dyniﬁic. By static we mean data that do not change over a iéng period of
time (e.g., airport loéations) and ﬁy dypamic we refer to data that change
- with time (e.g., flights scheduled), or with_technological innovation
(e.g., aircraft fuel burn rates, navigation syétems and flight management).
For the model to be ﬁseful the input data must be readily available. A key
component of the comprehensive National Airspace System Plan is a centralized
data-base of aircraft scheduled for, or actually flying the high altitude
jeﬁ'routes [7). This data—baée.can serve on a real-time basis for updating
the data required fbr {opT].

For the érototype model developed the following data were required:
() Airporté information
(I1) Flights information
(111) Fuel burn data,
Table 3 provides more detéils. Some data, like the airport coordinates, were
available through soﬁrces used in ﬁhe past by FAA, while other data had to
be collected for the networklmodel. The following sources were employed:
B (1) International Official Airlines Guide (10AG) tape,
providing information about the airports _ |
(II) Flight Progress Strif data collected by the Control
ACenter; providing flights inforﬁation |
(1II) Fuel Burn Model developed by the FAA providing data

about fuel burn rates for different types of aircrafts.
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* Airports lnformation
1. Airport ID code
2. Geographical coordinates -

—

* Flight Information

1. Flight ID

2. Origin airpornt

3. Destination airport

4. Cruise altitude on entering target sector

5. Cruise altitude on exit from the target sector
6. Time flight enters the target sector

7. Time flight exits from the target sector

8. Flight Hemi code defining legitimate cruise altitudes

;.'_-Tuel Burn Data

1. Aircraft type

2. Fuel burn rate per hour for every legitimate cruise altitude

3. Fuel burn rate per nautical mile for every legitimate cruise altitude

Table 3: Model data requirements -
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5. Modeliﬁg a Sector of the Indianapolis Control Center -

A‘netwofk model was built for the eirspace CCﬂt:J]iéd by a seciuor of
‘ the Indianapolis center. - The pufpoég of the model is to serve as a °
prototype fo illustraté the use of the optimization algorithmsAdescribed
earlier as weil as the feasibility of the proposed model. Data were- |
collected for a high traffic period on January 9, 1985 in which a total of
185 aircrafts crossed the sector over a 6—Hour period. .The duration of
fliéﬁt through the sectﬁr rangéd'from 4 to 23 minutes. Five distinct cruise
altitudes above 29,000 feet (FL 290) were selected by the planes. ;

The model was built as a multi-period network as sthn in figure 3.
The following provisions were made in the quel:

(i) Allow for delays at the origin airport, up-to three IO-minute

intervals and similar delays at the destination airports.

This time grid- can be made finer by considering a larger".

number of progreésively smaller delay intervals (e.g., six

S5-minute interyals)ﬂ' The added accurécy-will be balanced by

the lérger network that has to be solved.‘

(I11) Allow for every'plane to follow one'or two aiternative éruise
altithdes'besides the one currently followed. Choice was
restricted to the cruise altitudes one level above aﬁé one
level below the primar& altitude. Again, this restriction can
be relaxed at the expense of generating larger network models -~
the éircrafts could be instructed to follow_any one of the'four.

.or five legitimate cruise altitudes, specified for the

_ particular flight.
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The model includes the dual objective of assessing risk and cost,.
as proposed in Section 2, ‘Delay cost was coﬂsideréd as a function of
fuel burn data. Other delay costs like crew salaries and a surrogate
_for customer dissatisfaction could also be included. The risk analysis
wés based on occupancy rates (congestlon) at the same altitude durlng
time intervals of interest.

We definé the occupancy at lével L during a périod T as:

Time spent by aircraft on route i on the same
aLT . altitude (L) as aircraft om route j during period T

ij -Time spent by aircraft on route i
altitude L during period T

The system-wide relative risk was then defined as:
7T Tol Gepenn)?
TL i,j J

where xi,xj indicate the number of flights on arcs i and j respectively.
Summation was taken over all legitimate cruise altitudes (L), and over ten
36-minute intervals.that'cover the six hour planning period. Higher
interactions -- between more than two planes -- were ignored. Figure 4
deﬁicts the different phases of the modeling procedure.
Exaﬁgle: |
(1) 1f a single plane travels at altitude 39000 feet, and the plane
is in the target section during the wﬁéle interval of{T = 30 min.,
its contribution to the risk function is O.
(2) If a second aircraft flies at 30000 feet for T = 30 min., the
corresponding risk coefficient is 1.
(3) 1f the second plane stays in the target sector for 15 min.,

the risk coefficient is 0.5.
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« INTERLCTING £BCS

*FLIGHTS AT SAME ALTITUDE

«FLIGYTS YN TAEGEY SECYOR
SIMULTANEQUELY
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POOR Q"JA.L'TY

Figure 4: Modeling the Indianapolis Control Sector
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This formulation provides for two degrees of freedom in tﬁe deqision
making process: delay the departufe/arrival times in an optimél fashion
.and instruct’aircraft to follow alternative altitudes tqbreduce congestioﬁ.
 The resulting network problem Bas'1295 ﬂodes, 2873 arcs and éppro#imately.
15000 non-zero coefficients describing interacting flighfs.‘ The'test‘case:
was solved using code NLPNETG. By varyiﬁg relative weights on the
>transportation and risk function in a systematic fashion the risk/cost |
efficient frontie; waé tréced (figure 5). Again, the efficient frontiéf
is not meant to serve as a direct way of‘éomparing risk with cost. Instead
it guides one in evaluating alternativé modes qvaperation of the air-
traffic control systém,_as‘generated by the model, or with currently
follawed procédures.

The major advantage of'this methodology is that it generates a
sequence of alternatives that are efficient; i.e., both risk and cost
'_values.cgnnot be improved simultaneously. This is easier to understand
if we notice the location of point A in figure 5 -- this point was obtained
by solving the optimization problem inexactly. From point A &e may move to
a series of alternative solutions for which the syste& is better off, both
with respe@t‘to transportation cost and risk.

To study the effect of airplane congestion, we developed a histogram of
all.planes flying at a particular altitude, during the ten time intervals of
interest. Figure 6 summarizes the results for three particular altitudes,
before and after the optimization model was used. Note that as expected planes
were diverted from a highly congeéted altitude (35000 ft.) to less congested
routes (31000 ft. and 39000 ft.). This result was oBtained with relative

weights 0.5/9.5 on both risk and transportation costs.
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Figure 5: Efﬂcient Frontier for Risk / Cost Tradeoffs
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6. Computational Results

The FAA Contfol model can grow in size to challenge the capabilities
of general purpose algorithms and gonventional mainframe computer systems.
-The deve10p¢d Indianapolis prototype consists of 1295 nodes-and 2873 arcs.
If instead we haa chosen six lo-ninute internals for possible delays, énd
five alternative cruise altitudes the r;5ult1ng problem would consist of
2405 nodes‘and 8510 arcs. If we consider simultaneously ten control sectors,
nith the same number of flights as the Indianapolis center, the network
grows to approximately 20000 nodes and 80000 arcs.

To demonstrate the efficiency of the algorithms described in Section 3,
we have solved several problems arising from a wide range of applications.
TabléAA presents relevant informétion concerning the test problems. Firs;,
eighteen test pronlems,were solved with the general purposé code MINOS [14].
The results fron this program formed a benchmark against which to compare
the truncated Newton -- code NLPNETC -- and the simplicial decomposition_-—
code NGSD -- algorithms. Problems that cannot be solved efficiently with
-the general purpose code can be solvea,with minimal computational resources ‘
using the specialized network algorithms. Tables 5 and 6 summérize the
results. We obserne'that efficiency of the specialized network codes
increases with problem size.’

Advanées in parallel processing computers are expected to ensure the
feasibility of new applications. Specifically the air-traffic control

model will benefit from the use of supercomputers in two domains:
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(i) Efficiently solve larger models that cover more than one
controi center and ultimately extent to cover tﬁe whole
continental U.S. airspace, with finer time discretization

(ii) So1ve the operational planning model, under real-time

conditions. |
To illustrate the situation we have specialized NLPNETG for the CRAY-XMP
vector computer ;; 3oeing Compﬁter Services. The optimizing compiler
brd&ed to be only'marginally effective, due to the sparsity of the net-
work problems. Wé had to analyze the algorithm in a way to take advantage
of the pipeline features, and the presence of multiple vector functional
units. Table 7 summarizes some of the results. We observe that much
can be gained by specializing the network algorithm for the architecture
of vector supercompdters. Comparisons with a VAX 11/750 and an IBM 3081
' iarge mainframe are highlighted iﬁ table 8.

Finally the network model was solQéd for a range of relative weights,
with code NLPNETG. We observe (table 9) that a complete analysis.can be
carried out within a few hours, even on a VAX minicomputer. Giving ﬁore
emphasis to the risk function (nonlinear component) causes the problem to
become, algorithmically, more difficult. This difficulty reflecfs the
pfice we have to pay in going from a linear,vtransportation cost minimizing
model, to a nonlinear model that incorporates the nonlinear form of risk

minimization.
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7. Conclusions and Future Research

We have discussed in this paper a general dptimization planning modgl
for the U.S. air-traffic system. The use of this model has beenldemonstra;ed'
using air-traffic data from a representative sector. By deyeloping
speciélized algorithms, we'wefe able to solve the resulting problem.
efficiently, thus demonstrating the feasibility of the approach for strétegic
vplénning. In addition, taking advantage of the latest technological-develop-
ments in supercomputer design we were able to solve very large probleemé in a
matter of seconds; thus, the networkvmodel can be used as an operational
planning tool under rea14timevconditions.

This research has és;ablished that network models can be used as the-
basis for assessing some aspecté of the U.S. airspace. The technology --
in terms of computer Systems and algofithms -- is available, and the requirea
data can be collected. Further research is needed, however, iﬁ modeling
the air-traffic system. We have considered a deterministic model of risk.

In general a stochastic analysis which also considers the systemwide optimiza-
tion aspects would be more appfopriate. While congestion was used as a risk
surrogate, other criteria like éxpgcted number of aircraft conflicts, or
expected'number of con;rolle; 1ﬁtervention should be evaluated as alternatives.
This is an area of potehtigifinférféce-béﬁweén the optimization model
described here and the probabilistic ﬁodels of Odoni and Endoh [15].

Other aspects of the air-traffic control system can be examined within
a network optimization framework, such as the flow control problem [l], or

aircraft scheduling problems arising from aggregate solutions of the current



model. Issues like the uncertainty involved in determining projected *
demand for air transportation merit investigation, and thg eﬁdveffgcts
due fo the finité planning horizon have to be examined. As another. |
extension, resource limitations can be imposed by introduciné arc
multipliers on traffic arriving/departing from an éirport, thus controlling
the total number of passengers an airport facilit& can handle.
While_substéntial progress has been made towards building and
verifying ﬁhe model, additional work neéds to be done in model validation.
Alternative strategies generated By the model have to be compared with
existing methodologies to establish the correspondepce of the model and
its results to the perceived reality. This is another area of potential
interface between the optimization model and the general probabilistic

framework presented in Powell, Mulvey and Babu [16].
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® Terminated when within 0.02% trom optiumum
** Did pot converge after § hours

Table 5 : Comparison of NLPNETG with MINOS

: Size Free arcs Condition No. | Objective I Norm
PROBLEM (Nodes/Arcs) | at optimum of Reduced of Reduced Description
\ value .
'%: Hessian _ Gradient __
PTN30 30 46 15 210 ~.3239322ES5 0045 Dallas  Water };
. HPTN150 150/ 196 44 2104 -4819730E5 . 0020 Distribution i
PTN660 666/ 906 240 >10° -.2061074E6 0160 models
SMBANK 64/ 117 54 2104 «7129290E7 20003 . -
BIGBANK | 1116/2230 946 310 -4205693E7 0004 fn‘a‘:’c‘, dzg’a"c
RANBANK 800/2000 13 >10¢ 3018788E6 4025 g
STICK] 209/ 454 246 210° 6934392E1 0001 Stick percula- |
STICK? 65071412 763 >10? 3124563E1 0001 tion  models, |
STICK3 782/1686 905 210? J1117978E2 0006 electrical * mnet- ||
STICK 4 832/2264 1433 >10° 1566195E1 0010 works [
GROUPlac 200, 500 100 >10° 1011792E5 .0060 Randomly gen- |
GROUPIad 400,1000 119 >10 .3834884ES 0049 erated, strictly
GROUPIlae 800/2000 230 >10° 2265714E6 4070 convex  met-
B works
MARK) 23/ 42 4 >10° -.1145214E6 0020 Markowirz
MARK?2 537102 10 210? -3271077E6 2420 protfolioc con-
MARK3 857/1710 35 >10° .1150057E8 ..0710 struction
FAATEST 28/ 64 6 210? J725644E5 0500 Air traffic con-
FAAIND3 1295,2873 787 210 2556325E1] 0501 trol model
Table 4 : Test Problems
NLPNETG Solution | MINOS Solution ||
Problem T ] - T -
- ime (sec) norm ime (sec) lonorm:
PTN30 7.33 4.5E-3 44.08 8.8E-6
PTN150 23.86 2.0E-3 305.01 8.8E-6
PTN660 267.93 }.6E-2 - 9647.35 4.0E-4
SMBANK 21.50 3.0E-4 287.20 49E-4
BIGBANK 9100.00 4,0E-4 28800.00* 40E-)
RANBANK 245.37 4,0E-] 5§477.97* 1.0E+2
STICK 19.05 1.0E-4 123%92.00 39E-6
STICK2 103.12 1.0E-4 o
STICK3 73.75 6.0E-4 L4
STICK4 166.50 1.0E-3 had
GROUPlac 1652.00 6.0E-3 2312.69 $9E-2
GROUPJad 10227.00 49E-3 20347.00 $9E-1
GROUP]ace 7376.00 4.}E-1 16115.00 2.8E-]
MARK 3.07 2.0E-3 -12.23 1.3E-}
MARK?2 2160 | 24E-} 33.03 14E-1
MARK?3 204.43 1.1E-2 1341.53 1.5E-1
FAATEST 124 S.0E-2 15.22 34E.9
FAAIND3 707.00 S.0E-2 111600.00 2.8E-4
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NGSD Solution | MINOS Solution |

Problem Time (sec) | % optimality | Time (sec) | Tnorm
PIN30 13.25 0.02 44.08 8.8E-6
PTN150 83.90 0.50 305.01 8.8E-6
PTN660 590.35 3.50 9647.35 40E-4
RANBANK 24537 40E- 547797 | 1.0E+2
STICK! 50.25 0.40 12392.00 3.9E-6
STICK?2 | 517.48 094 oo
STICK3 1387.25 0.08 o
STICK 4 2688.72 0.15 o |
GROUPIlac 31485 1.60 2312.69 5.9E-2
GROUPlad | 60690 040 20347.00 5.9E-}
GROUPlae 395.38 0.52 16115.00 2.8E-]
MARK | 3.07 2.0E-3 12.23 1.3E-1
MARK 2 21.60 24E-1 33.03 14E-1
MARK 3 204.43 7.1E-2 1341.53 1.5E-1

* Terminated when within 0.02% from optimum
** Did pot converge after 8 bours

Table 6 : Comparison of GNSD with MINOS

NLPNETG Solution fimes (sec)
Problem - e - e —
Without vectorization Compiler vectorization User vectorization
PINI50 0.328 0.317 - 0.165
PTN660 2.435 2316 1.402
SMBANK 0.358 0.327 0.177
BIGBANK 244,107 225.900 58.896
STICK4 . . 2925
GROUPIlac 18.668 17.218 4983
GROUPlac d i 49.454
MARK3 * . 2131
— - 4

® Probiem pot solved with this option

Table 7: Vectorization of NLPNETG on the CRAY/XMP
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NLPNETG Solution times (sec)
Problem 4 ; :

- I1BM 3081 VAX 11/750 (Unix) CRAY/XMP
PINI150 1.37 23.86 0.165
PTN660 36.68 297.93 1.402
SMBANK 2.33 . 21.50 0177
BIGBANK 884.53 9100.00 58.896 -
GROUP)ac 21846 1652.00 4983
GROUPJac | 1320.82 10227.00 49454
MARK3 24.87 204.43 2.131
Average 281.19(17) 3075.25 (184) 16.744 (1)

Table 8 : Testing NLPNETG on different computer systems

-?imc (sec)

Weight (w. ) Is,norm
1.0 1211 0.020
0.999999 707 0.054
0.999997 396 0.094
0.999995 396 0.150
0999992 406 0.187
0.999990 367 0.467 -
0.999575 1357 0.069
0.0 18 0.0

Table 9 : Tracing the efficient frontier with NLPNETG
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