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Abstract 

The U.S. krny Research Laboratory (ARL) and the University of Delaware (UD) have 
developed an enabling technology to produce a polymer matrix composite-based integral armor 
with improved multihit ballistic capability, Current applications for integral armor composites 
include the Composite Armored Vehicle (CAV) technology demonstrator and Crusader 
self-propelled howitzer platforms. Present integral armor manufacturing processes involve 
adhesive bonding of a compbsite structure with ballistic armor tiles, spa11 shield, and nuisance 
cover. ARL, UD, and the CAV/Crusader composite structure contractor, United Defense 
Limited Partnership (UDLP), assessed through-thickness stitching to improve the multihit 
capability and reduce manufacturing costs. The patent-pending co-injection resin-transfer 
molding (CIRTM) process was used to produce a stitched, co-injected integral armor panel that 
demonstrated improved multihit capability. The spa11 shield was fabricated with a phenolic resin 
for fire, smoke, and toxicity protection, while the remainder of the integral armor (structural 
composite resin encapsulating the tiles and the nuisance cover) was fabricated with an epoxy 
resin for structural performance. Through-thickness stitching and CIRTM were used to enhance 
the damage tolerance and to reduce the cost of the armor. 
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1. Background 

Composite materials are playing a key role in the development of lightweight integral armor 

for military vehicles. Current and developing Army applications have identified the need for 

lightweight structural materials in order to enhance deployability and mobility of land combat 

forces. Several research and development programs have demonstrated the effectiveness of 

composite materials for combat ground vehicles to meet these needs. Recent advances include 

the development of composite/ceramic integral armor systems that provide significant 

improvement over monocoque composite structures with applique armor. To optimize the 

weight and performance of the vehicle, integral armor was developed as part of the Composite 

Armored Vehicle (CAV) Program with United Defense Limited Partnership (UDLP) [l]. The 

integral armor system exploits the structural contribution of the armor tiles to the structural 

design of the vehicle and allows the composite structure to perform a role in the ballistic 

protection of the vehicle to minimize area1 density. 

The integral armor designed by UDLP for the CAV upper hull and ramp structures is based 

on hybrid composite technology (i.e., combinations of polymeric, metallic, and ceramic 

materials) to meet multifunctional requirements such as structural; ballistic; signature 

management; electromagnetic interference (EMI) shielding; and fue, smoke, and toxicity (FST) 

protection. Such hybrid systems are designed for optimal utilization of not only the unique 

characteristics of each component material but also the synergistic effects of the entire 

system [2]. 

The manufacture of composite armor components generally involves multiple manufacturing 

steps to produce each composite layer. The individual layers are then adhesively bonded 

together in separate operations, resulting in an integral armor structure. These labor-intensive 

operations increase costs, pollution, part-to-part variability, and part-to-part dimensional 

tolerances and introduce defects at interfaces. Opportunities to enhance multihitidamage 

tolerance are limited by a multistep fabrication process. 



2. Demonstration of Processing Innovations 

Co-injection resin-transfer molding (CIRTM) is a patent-pending process developed by the 

US. Army Research Laboratory (ARL) and the University of Delaware (UD) as a cost-effective, 

pollution-reducing, performance-enhancing alternative to multistep vacuum-assisted 

resin-transfer molding (VARTM) for multifunctional composite structures [3]. A distinct 

advantage of the CIRTM process is the ability to include all of the composite armor elements in 

a single-preform assembly, including various fiberglass fabrics, an elastomer layer, and ceramic 

alumina tile [4-61. At dissimilar material interfaces, a separation layer must be used. For 

integral armor applications, separation layers consisting of polysulfone film and epoxy-film 

adhesives were used. These CIRTM-compatible resin barriers have been shown to produce 

diffusion-enhanced adhesion (DEA) bonds with outstanding properties [7-lo]. A 

high-permeability distribution media is placed on either side of the preform to enable rapid resin 

flow in lateral directions prior to through-thickness preform infiltration. Since no adhesives are 
used in secondary bonding operations and the entire process is performed within a closed, 

controlled system, volatile organic compound (VOC) hazardous air pollutant (HAP) emissions 

are drastically reduced. 

The CIRTM process introduces four distinct advantages for fabricating multiresin composite 

parts. First, Newton et al. [l l] reported significant pollution-prevention benefits to the 

application of CIRTM in production of composites. Second, CIRTM reduces costs by allowing 

single-step manufacture of parts by reducing cycle time and secondary operations. Third, the co- 
injection process results in a tougher interface between layers when compared with 

manufacturing the layers separately and then postbonding them together. Reduction of 

manufacturing steps is shown in Figure 1. Finally, and perhaps most important for realizing the 

potential of integral armor, the co-injection process enables through-thickness reinforcement of 

multiresin systems, which provides optimal load transfer between structural, fne-protective, and 

shock-wave-management layers of the composite armor. 
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material waste 
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Figure 1. Schematic Comparing Traditional Sequential Manufacturing to the CIRTM 
Process. 

To demonstrate the feasibility of the co-injection process to enable through-thickness 

reinforcement and improved ballistic performance in a manufacturing environment, several 

23 x Z-ft targets were fabricated for ballistic evaluation. The baseline targets were fabricated by 

UDLP, using a conventional multistep manufacturing process where the nuisance cover, tiles, 

and fiberglass composite structure were placed in a dry mold and VARTM was used to wet the 

part out with an epoxy resin (Applied Poleramic SC-15). After wet-out and cure, the part was 

demolded and the ballistic liner was placed on the previously cured laminate and a second 

VARTM manufacturing operation was used to wet-out the ballistic liner with a phenolic resin 

(Applied Poleramic SPH-4). Adhesion between the two resins (epoxy and phenolic) was 

minimal, resulting in poor multihit performance. After a single shot, there was extensive damage 

between the epoxy composite interface with the phenolic composite ballistic liner. The second 

shot resulted in complete separation of the ballistic liner from the epoxy composite (Figure 2). 

To improve multihit performance, through-thickness stitching was employed to join the 

composite backing plate with the ballistic liner. The ClRTM manufacturing process was used to 



Figure 2. Ballistically Tested Panel Manufactured Using Traditional Multistep Process. 
Photo Courtesy of UDLP. 

fabricate the part in a single step, while maintaining separate and discrete layers with the two 

resin systems. A schematic of the co-injected, stitched integral armor target is shown in 

Figure 3. 

for FST performance 

stitching 
thread 

re hard material 

tailored interface 
for enhanced adhesion 

suchasepoxyor 

nuisance 
cover 

Figure 3. Schematic of Through-Thickness Stitching and Co-Injection of Integral Armor. 
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The co-injected, stitched integral armor target resulted is’ a composite with a stitched, 

co-cured interface between the separate resin layers that provides superior performance and 

reduced cost compared to traditional multistep fabrication approaches. For this target 
configuration, a UDLP-proprietary barrier was used as a means of controlling the flow of the two 

resins. Co-injecting the phenolic fite-protective layer with the epoxy structural layer in a single 

composite part improved the multihit performance of the targets. 

Ballistic testing showed multihit performance of up to six shots into a single target without 

separation of the spall liner from the epoxy composite (Figure 4). The stitching and toughened 

interlayer bonding clearly improved the damage tolerance of the panels apparent through the 

significant reduction in lateral delamination. Previously reported results show that interlaminar 

shear strength provided by CIRTM is enhanced relative to the weakest resin in the specimen [5]. 

In all CIRTM-manufactured specimens, failure occurred within the phenolic composite layer. 

For the Mode I fracture toughness testing, failure of the co-injected samples was observed to be 

cohesive; conversely, the failure of the secondary-bonded multistep manufactured panels was 

adhesive failure between the epoxy adhesive and the phenolic composite. During Mode I crack 

propagation, multiple delamination planes formed in the phenolic laminate, which is a reflection 

of the higher toughness offered by the CIRTM interphase. Results of both interlaminar shear and 

Mode I fracture toughness for CIRTM were comparable to or exceeded the phenolic baseline. 

The multihit performance of the stitched co-injected integral armor targets showed substantial 

improvement when compared to targets fabricated with the sequential manufacturing process. 

Another advantage of the co-injection process is a lower cost manufacturing process, 

Figure 5 compares the cost of the co-injection process with a sequential two-step manufacturing 

process for an integral armor structure. The activity-based cost analysis was performed on the 

ramp section of the CAV in a simulated manufacturing model. Manufacturing models 

incorporating co-injection and sequential injection processes have indicated that co-injection will 

result in approximately a 15% cost savings over the sequential injection process. These savings 

are mostly due to the decreased material handling time and decreased cycle time for production. 

Materials savings (e.g., bagging materials, waste resin, etc.) are also a component. Not included 

5 



Figure 4. Co-Injected, Stitched Integral Armor Target Exhibiting Six-Shot Multihit 
Performance Without Separation of the Ballistic Liner Fabricated With 
Stitching and Co-Injection, Photo Courtesy of UDLP. 
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Figure 5. Activity-Based Cost Analysis Showing the Cost Savings of CIRTM. 

&I the model are environmental cost savings issues. More detail on environmental cost savings 

for this process are covered elsewhere [ll]. Greater annual production volume may &so be 

achieved from co-injection, given an equal capital investment in manufacturing equipment [ 121. 
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3. Composite Armor Testing 

3.1 Test Matrix. Previous work studied the ballistic properties of polyester- [13] and 

epoxy-based [ 14, 151 composite panels. A goal of this study was to provide ballistic properties 

of more cost-effective and VARTMCIRTM process-friendly vinyl-ester resin systems. To test 

the equivalency of a VARTM-compatible vinyl-ester resin system (Dow Derakane 41 l-C-50) 

with a VARTM-compatible toughened epoxy (Applied Poleramic SC-4) and a polyester prepreg 

baseline system (CYCOM 4102), a series of SZ-glass composite panels was fabricated, with 

area1 densities of 7 psf and 20 psf. A 24 oz/yd2, 5 x 5 plain weave, SZglass fabric was used in 

the 20-psf armor systems, while an 18 ozlyd2, 2 x 2 twill weave S2-glass fabric was used in the 

7-psf armor systems. The effect of through-thickness stitching was assessed for ballistic damage 

confinement for. the VARTM-produced panels. Additionally, the ZO-psf panels were tested with 

0.7~in-thick AD90 alumina ballistic tiles bonded to the outer surface. Tables 1 and 2 summarize 

the test matrix for the 7- and 20-psf panels, respectively. 

Table 1. Testing Matrix for Panels Without Alumina Tiles 

Material Stitching Area1 Vsa Against .50&l. FSP Projectile 
Density SO-ml. FSP Velocity for Testing 

(PSO VP> m> 

VARTM Vinyl Ester No 
VARTM Vinyl Ester Yes 
VARTM Epoxy Resin No 
VARTM Epoxy Resin Yes 

Note: FSP - fragment-simulating projectile. 

7.2 1,780 1,550 
7.0 - 1,550 
7.0 1,750 1,550 
7.0 - 1,550 

The stitched composite targets were fabricated using the following procedure. First, the 

fabric was laid-up dry. The dry preform was stitched using a chain-stitching machine with a 

m-T-87128, 3-cord, soft, Kevlar thread (2,000 denier). The dry preform was stitched in both 

the X and Y directions, with stitch rows on l-in centers. The stitch spacing within the stitch row 

was approximately five threads per inch. The stitch spacing along the stitch row varied slightly, 
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Table 2. Testing Matrix for Panels With Alumina Tiles 

Material Stitching Area1 20-mm FSP Projectile 
Density Velocity for Testing 

(PSO (fps) 

Polyester Prepreg No 20 2,700 
VARTM Vinyl Ester No 20 2,700 
VARTM Vinyl Ester Yes 20 2,700 
VARTM Epoxy Resin NO 20 2,700 
VARTM Epoxy Resin Yes 20 2,700 

due to the weight of the preform and the inability to accurately index the preform by hand. An 

estimate of through-thickness reinforcement is 3-4% volume fraction. It should be noted that 

two threads pass completely through a single needle hole in a chain stitch pattern, effectively 

doubling the thread denier. 

3.2 Ballistic Testing. Four-shot V50 testing was used to determine a velocity at which the 

projectile would likely penetrate the 7-psf targets using a SO-&. fragment-simulating projectile 

(FSP). Targets were fabricated using the CYCOM prepreg material and using the SC-4 resin to 

perform the VSO testing. From the 4-shot Vso results, a reduced velocity was chosen to test the 

remainder of the targets. By performing a &hot Va, comparing the results and reducing the 

velocity, it was confidently assumed that the energy level imparted to the targets would cause 

sufficient damage to the laminate without completely penetrating the target. This allowed for 

comparison of the ballistically impacted panels based on the extent of damage given relatively 

equivalent input energies. A velocity of 1,550 fps was chosen for the constant velocity testing of 

the remaining targets. This allowed for subsequent structural testing at a constant velocity and 

correlation with residual strength models. Testing was done in accordance with NIJ Standard 

0101.03. Due to the light powder charge in the projectile case, velocity varied somewhat on the 

constant velocity testing with the .50-cal. projectile but still permitted an accurate relative level 

of comparison between the various targets. Velocity was determined using light screens and a 

chronograph. 
c 
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The composite backing plates for the 20-psf alumina-composite armor targets were 

fabricated in a similar fashion as the 7-psf targets, and a single alumina hex tile was bonded to 

the face using an epoxy-paste adhesive. A 0.4mm to 0.6~mm glass bead was used as a spacer to 

maintain a constant thickness within the bondline. This combination provides a line-of-sight 

(LOS) area1 density of 20 psf to the projectile. For the ceramic-faced composite armor targets, a 

20-mm fsp at 2,700 fps was selected for the projectile and velocity given an estimated 

lower-bound 3,000-fps V 50. The velocity was chosen to impart a significant level of damage to 

the projectile with little or no penetration of the projectile into the composite backing plate. 

3.3 Extent of Damage. The damaged targets were nondestructively tested to determine the 

extent of delamination resulting from the projectile impact. All of the targets were ultrasonically 

scanned using four gates to record delamination profiles through the thickness of the panel. 

Gate 1 is located nearest the impact surface of the composite backing plate, Gate 4 near the back 

surface, and Gates 2 and 3 equally spaced through the thickness. A ~-MHZ focused transducer 

was used to ultrasonically scan targets. After the panels were scanned, the images were imported 

into image processing software to determine a percentage of damage within the panel. Percent 

delamination was determined through edge enhancement of the image and highlighting the 

damage region. A calculation could then be done, which compared the highlighted damaged 

portion to the whole image, providing a percent delamination. 

3.4 Results. 

3.4.1 V&I Testing and Data Nornm&ation. Tables 3 and 4 show the results of the V~O 

testing for the SC-4 and polyester 7-psf targets. It is understood that this limited number of shots 

does not provide an accurate VSO ballistic limit for these material systems. It does, however, 

provide a good indication of what reduced velocity across all the panels should be used for a 

“constant velocity” to assess the effects of material variations such as through-thickness stitching 

and resin system Based on these 4-shot VSO results, a velocity of 1,550 fps was chosen as the 

impact velocity for the remainder of the 7-psf targets. 
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Table 3. SC-4 Panels, Nonstitched, SO-Cal. FSP 

Panel No. 

SC-43 
SC-42 
SC-44 
SC-41 

Areal Density 
(Pm 

7.0 
6.9 
6.9 
6.9 

Velocity 
IfWS) . A  r  

1,749 
1,536 
1,685 
1,729 

Comments 

Complete 
Incomplete 
Incomplete 
Incomplete 

Table 4. CYCOM Panels, Nonstitched, SO-Cal. FSP 

Panel No. 

CYCC)M-1 

Areal Density 

7-f-l 

Velocity 

1 730 

Comments 

---.- -  

CYCOM-2 
rVrnhA-2 

’ - - 7.0 
7n 

II 

Y L “v+.A-J , 

CYCOM4 1 ;:tl 

-,r-# 

1,776 
1.808 

Partial, Hit Witness 
Complete I 

J 1,663 Incomplete 
n: 1,770 fns I 

While it is desirable to test at a common impact velocity, it is not possible to accurately 

obtain equivalent velocities using charged projectiles. Figure 6 shows the maximum extent of 

delamination data vs. penetrator velocity for the 20-mm vinyl-ester stitched and unstitched 

panels as an example of the method of normalization of extent of damage measurements against 

a common impact velocity. Here, the desired impact velocity was 2,700 fps and the average 

maximum delamination was 30% of the planar area of the target. Normally, one might 

normalize data above and below 2,700 fps back to 2,700 fps by following the heavy solid line 

back to zero. However, since the expected relationship between damage and velocity (below 

V,,-J) generally looks more like the curved dashed line, it is more reasonable to attempt to 

normalize damage data along an expected slope within the region of the neighboring data. Since 

the V50 for these targets was determined to be around 3,000 fps and a maximum circular 

delamination zone of 72% is assumed at VSO, a line was constructed from this point back through 

the data. This line was used for normalizing the damage zone data to a common velocity of 

2,700 fps. A similar procedure was used for the 7-psf target data normalized to 1,550 fps. 

10 
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Figure 
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Plot of 20-mm Vinyl-Ester Panel Delamination Data Showing Normalization 
Procedure. 

Figure 7 shows a cross section of one of the nonstitched 7-psf targets after ballistic impact. 

Figure 8 shows the ultrasonic scan images for the panel of Figure 7 for each of the four gates, 

with the fkst gate being near the top surface of the target. 
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Figure 8. Ultrasonic Scan Plots for the 7-psf Panel Shown in Figure 7. 

3.4.2 7-psf Target Data. Figure 9 shows the outer surface (impact side) of one of the 7-psf 

panels after ballistic impact. The extent of damage near the first gate is clearly visible. Table 5 

provides the delamination data for all the 7-psf targets. 

Figure 10 depicts the average delamination sizes at each gate for the data of Table 5, showing 

the conical shape of damage through the thickness of the laminates. The areas under the curves 

in Figure 10 are approximate estimates of the volume of damage and, since the delamination data 

is normalized to a common velocity, the volume of damage is a useful comparison of damage 

density between panels. The shape of the curves in Figure 10 is important to consider. A convex 
curve indicates an armor that delaminates primarily near the back surface and does not absorb 

energy uniformly through its thickness. A concave curve is indicative of an armor that more 

evenly distributes its damage through the thickness. A superior damage-tolerant armor is one 

that uniformly absorbs energy through the thickness and that offers the potential for high residual 

12 



Figure 9. Front Surface of a 7-psf Panel After Ballistic Impact. Gate 1 Delamination Zone 
Is Visible. 

Table 5. Delamination Data for the 7-psf Targets 

VI? unstitched 7-psf vinyl-ester VARTM CompoSite. 
CYCOM: unstitched 7-psf polyester prepreg composite. 
SC-4-s: stitched 7-psf SC-4 epoxy VARTM composite. 
YE-s: stitched 7-psf vinylester VARTM composite. 
SC-4-t: unstitched 20-psf SC-4 epoxy VARTM composite with alumina tile. 
VE-t: unstitched 20-psf vinyl-ester VARTM composite with alumina tile. 
CYCOM-t: unstitched 20-psf polyester prepreg composite with alumina tile. 
SC&-s: 
V&t-s: 

stitched 20-psf SC-4 epoxy VARTM composite with alumina tile. 
stitched 20-psf vinyl-ester VARTM composite with alumina tile. 

13 
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Figure 10. Averaged Gate Delamination Data for 7-psf Panels Normalized to 1,550 fps. 

strength. Based on these materials, VE-S outperforms VE, SC-4, and CYCOM. The benefits of 

stitching are shown in the figure for vinyl-ester panels (lower extent of damage) but most 

dramatically in the case of SC-4 panels. Thus, while the SC-4 toughened epoxy does not appear 

to outperform the lower-toughness vinyl ester, stitching does appear to provide a greater damage 

tolerance and, in the ‘case of SC-4, provides for a beneficial transition from a convex to a 

concave damage zone shape through the thickness. 

Figure 11 compares damage volumes (calculated as the average of the four gates} and 

maximum delaminations. A lower maximum delamination is preferable for damage tolerance 

and multihit performance. It is also preferential to minimize the damage volume for the same 

reasons; however, for a given maximum delamination size, a higher damage volume may be 

indicative of more efficient energy dissipation in the panel. 

14 
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Figure 11. Average and Maximum Delamination Data for 7-psf Panels. 

Another way of comparing panels is to compare the ratio of the average delamination to the 

maximum delamination. Figure 12 shows this ratio (hatched bars), and, for ease of comparison, 

the solid bars indicate the average-to-maximum ratios normalized to the SC-4 panel. A ratio of 

unity would be the ideal situation since it represents the case where damage is uniform through 

the thickness and the entire thickness has contributed to the dissipation of energy providing a 

more damage tolerant postballistic structure and, possibly, increasing the ballistic performance of 

the armor through more efficient dissipation of energy. However, since it is important to 

consider both the desire to minimize the maximum extent of delamination (Figures 10 and 11) 

and the desire to optimize the uniformity of damage through the thickness (Figure 12), the ratio 

of these two (AV13MAXz) is insightful for comparison of armors. AVFJMAX’ is simply the 

ratio of the normalized average (AVEMAX) to the maximum (MAX). Consider two panels in 

which one has a conical delamination pattern through the thickness and one has a uniform 

(cylindrical) delamination pattern through the thickness. If both have an average delamination 

diameter (AVE) of 2 in, then the conical pattern has a maximum delamination diameter (MAX) 

of 4 in and the cylindrical pattern has a maximum delamination of 2 in. The MAX value is 

15 
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Figure 12. AVEIMAX Delamination Data for 7-psf Panels. 

indicative of an armor’s damage tolerance. The AVE value is indicative of the energy 

absorbtion. However, to distinguish between armors with different delamination patterns, the 

ratio of AVEIMAX can be used to indicate the relative uniformities of energy absorption 

between different armors. For example, the conical delamination pattern results in an 

AVIYMAX value of 0.5, while the cylindrical pattern obviously results in an AVE/MAX value 

of unity. Values closer to unity are desirable. Now, consider a third armor that results in a 

desirable cylindrical delamination pattern but with a 4-m maximum delamination. For this 

armor, the apparent energy absorption indicator (AVE) is 4 in. However, the AVEIMAX 

uniformity indicator is still unity. To quantitatively compare these two armors, it is useful to use 

a third performance indicator by taking the ratio of uniformity to the maximum value 

AVE/MAX2. Maximizing this value maximizes the efficiency of the armor at absorbing energy 

while maintaining high structural and multihit damage tolerance. For the 4-m conical example, 

the “efficiency” parameter is 0.125. For the 4iu cylindrical delamination, the efficiency is 0.25, 



t 

and, for the 2-in cylindrical delamination, the efficiency is maximized at OS. In terms of these 

definitions, delamination patterns closer to cylindrical (e.g*, concave vs. convex conical 

curvatures) are more efficient. Stitching tends to limit delamination in latter plies through the 

thickness and energy is absorbed through delamination of plies nearer the front of the armor 

backing plate, resulting in a transition from convex conical patterns to concave conical patterns. 

As shown in Figure 13, this comparison brings out the value of stitching for both the VE and 

SC-4 panels. 

3*5* 

SC4 VE CYCOM sc4-s VE-S 

Figure 13. AVEMAX2 Delamination Data for 7-psf Panels. 

. 

3.4.3 2U-psf Target Data. Figure 14 shows the front surface of a stitched vinyl-ester 20-psf 

panel prior to ballistic testing. The stitching pattern and the placement of the tile is apparent in 

the photograph. Table 6 shows the delamination data at each of the four’gates for each 20-psf 

test panel. 
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Figure 14. Front Surface of a Stitched Vinyl-Ester 20-psf Panel Prior to Ballistic Impact. 

Table 6. Delamination Data for the 20-psf Ballistic Panels 

lr- Pan- - -- 
l 

II 
1 ‘VI \ ‘U) \ ‘“I 

SC-44 2715-5 47 49 46 50 2,680 
c1#- * c 2715-6 30 47 47 45 2,683 

*-. * - n-l r).K QL ST -#-in 
It-e ’ ‘I I ‘T- I ’ / I , ,n ’ J” ’ ’ ‘.-““1 

Figures 15-18 for the 20-psf panel delamination results follow the same logic presented in 

Figures 10 through 13 for the 7-psf panels. Note that, for the 20-psf panels, that are tested with a 

heavier projectile at a higher velocity (20 mm at 2,700 fps for the 20-psf panels 

18 
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Figure 15. Averaged Gate Delamination Data for 20-psf Panels Normalized to 2,700 fps. 

60 
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VE CYCOM sc4-s VE-S 

Figure 16. Average and Maximum Delamination Data for 20-psf Panels. 
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Figure 17. AVEMAX Delamination Data for 20-psf Panels. 
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Figure 18. AVE/MAX2 Delamination Data for 20-psf Panels. 
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I vs. .50 cal. at 1,550 fps for the 7-psf panels), the ceramic tile absorbs most of the impact energy 

and changes the characteristics of damage through the thickness of the composite panel. 

Minimal penetration into the backing plate occurs during the tests, and delamination occurs due . 
I to stress-wave propagations during impact. As in the 7-psf targets, vinyl-ester appears to 

outperform both SC-4 epoxy and polyester prepreg panels in terms of armor efficiency, as 

defined previously. In the case of VE, the benefits of stitching will become significant at high 

velocities where penetration and arrest of the projectile will occur, leading to a higher V50 per 

area1 density. For SC-4, stitching provides a more damage-tolerant armor resulting in a smaller 

damaged region. 

4. Conclusions 

VARTM techniques were demonstrated to be viable low-cost methods for producing 

structural laminates with integrated armor for ground combat vehicles by UDLP. Damage 

tolerance and multihit performance of the integral armor system over conventionally fabricated 

targets were significantly improved by stitching. CIRTM was the enabling technology that 

provided the capability to manufacture a single composite article in a single step, with discrete 

resin layers optimizing the structural, ballistic, and FST performance of the integral armor 

system. 

, 

A methodology was developed to evaluate lightweight armor for ballistic- and 

damage-tolerance performance. Metrics for efficiency were defined for superior 

damage-tolerant armors that uniformly distribute damage through the thickness, while 

minimizing the extent of in-plane damage. Hybrid composite integral armors offering this 

balance of energy dissipation offer potential for improving V50 for a given area1 density or 

significantly improving damage tolerance measured through improved residual strength after 

ballistic impact. 

The VARTM-manufactured panels demonstrated equivalent ballistic performance to that of 

the prepreg material system at reduced cost. The through-thickness stitching reduced the extent 

21 



of damage to the composite targets in both direct impact from a projectile and when the 

composite is used as a backing plate for ceramic armor. In the case where damage tolerance 

drives the design of the structure, the use of through-thickness stitching may permit the designer 

to reduce the area1 density of the laminate while maintaining the same effective damage size for 

the composite. 

Future work will focus on the stitching density to optimized apparent toughness of the 

system, while limiting the reduction of in-plane properties. 
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2179 12TH ST RM 122 
WRIGHT PATTERSON AFB OH 
45433-7718 

F ABRAMS 
J BROWN 
BLDG 653 
2977 P ST STE 6 
WRIGHT PATTERSON AFB OH 
45433-7739 

AFRLMLSOL 
L COULTER 
7278 4TH ST 
BLDG 100 BAY D 
HILL AFB UT 84056-5205 

OSD 
JOINT CCD TEST FORCE 
OSD JCCD 
RWJLLIAMS 
3909HALLs FERRY RD 
VICKSBURG MS 29180-6199 

DEFENSE NUCLEAR AGENCY 
INNOVATIVE CONCEPTS DIV 
6801 TELEGRAPH RD 
ALEXANDRIA VA 223 lo-3398 

WATERWAYS EXPERIMENT 
D SCOTT 
3909 HALLS FERRY RD SC c 
VICKSBURG MS 39180 

DARPA 
M VANFOSSEN 
SWAX 
L CHRJSTODOULOU 
3701 N FAJRFAX DR 
ARLINGTON VA 22203-1714 

c 
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NO. OF 
COPIES 

2 

1 

1 

5 

I 

ORGANIZATION 

SERDP PROGRAM OFC 
PM P2 
.C PELLERIN 
B SMITH 
901 N STUART ST STE 303 
ARLINGTON VA 22203 

F&i 
MIL HDBK 17 CHAIR 
LILCEWICZ 
1601 LIND AVE SW 
ANM 115N 
RENTON VA 98055 

FAA 
TECH CENTER 
D OPLINGER AAR 431 
P SHYPRYKEVICH AAR 431 
ATLANTIC CITY NJ 08405 

US DEPT OF ENERGY 
OFC OF ENVIRONMENTAL 
MANAGEMENT 
P RITZCOVAN 
19901 GERMANTOWN RD 
GERMANTOWN MD 208741928 

DIRECTOR 
LLNL 
F ADDESSI MS B216 
PO BOX 1633 
LOS ALAMOS NM 87545 

DIRECTOR 
LLNL 
R CHRISTENSEN 
S DETERESA 
F MAGNESS 
MFINGER MS 313 
MMURPHYL282 
PO BOX 808 
LIVERMORE CA 94550 

OAK RIDGE NATIONAL 
LABORATORY 
R M DAVIS 
PO BOX 2008 
OAK RIDGE TN 378314195 

NO. OF 
COPIES ORGANIZATION 

7 NIST 
R PARNAS 
J DUNKERS 
M VANLANDINGHAM MS 8621 
J CHIN MS 8621 
D HUNSTON MS 8543 
J MARTIN MS 8621 
DDUTHINHMS 8611 
100 BUREAU DR 
GAITHERSBURG MD 20899 

1 OAK RIDGE NATIONAL 
LABORATORY 
C EBERLE MS 8048 
PO BOX 2009 
OAK RIDGE TN 3783 1 

1 OAK RIDGE NATIONAL 
LABORATORY 
C D WARREN MS 8039 
PO BOX 2009 
OAK RIDGE TN 37922 

1 LOCKHEED MARTIN MISSILES 
& FIRE CONTROL 
R TAYLOR 
PO BOX 650003 M S WT 93 
DALLAS TX 752650003 

1 HYDROGEOLOGIC INC 
SERDP ESTCP SPT OFC 
S WALSH 
1155 HERNDON PKWY STE 900 
HERNDON VA 20170 

4 DIRECTOR 
SANDIA NATIONAL LABS 
APPLIED MECHANICS DEPT 
DIV 8241 
WKAWAHARA 
K PERANO 
D DAWSON 
P NmLAN 
PO BOX 969 
LIVERMORE CA 94550-0096 
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NO. OF 
COPIES 

3 

1 

1 

1 

ORGANIZATION 

NASA LANGLEY RSCH CTR 
AMSRL vs 
W ELBER MS 266 
F BARTLETT JR MS 266 
G FARLEY MS 266 
HAMPTON VA 23681-0001 

NASA LANGLEY RSCH Cl-R 
T GATES MS 188E 
HAMPTON VA 23661-3400 

USDOT FEDERAL R4lLRD 
MFATEHRDV31 
WASHINGTON DC 20590 

DOT FHWA 
J SCALZI 
400 SEVENTH ST SW 
3203 HNG 32 
WASHINGTON DC 20590 

FHWA 
E MUNLEY 
6300 GEORGETOWN PIKE 
MCLEAN VA 22101 

CENT&U, INTLLGNC AGNCY 
OTI WDAG GT 
w L WALTMAN 
PO BOX 1925 
WASHINGTON DC 20505 

Mm CORPS INTLLGNC ACTVTY 
D KOSITZKE 
3300 RUSSELL RD STE 250 
QUANTICO VA 221345011 

DIRECTOR 
NATIONAL GRND INTLLxiNC CTR 
IANGTMT 
220 SEVENTH ST NE 
CHARLOTTESVILLE VA 
22902-5396 

DIRECTOR 
DEFENSE INTLLGNC AGNCY 
TA5 
K CRELLING 
WASHINGTON DC 203 10 

NO. OF 
COPIES 

1 

ORGANIZATION 

GRAPHITE MASTERS INC 
J WILLIS 
3815 MEDFORD ST I 
LOS ANGELES CA 90063-1900 

ADVANCED GLASS FIBER YARNS 
T COLLINS 
281 SPRING RUN LANE STE A 
DOWNINGTON PA 19335 

F 

COMPOSITE MATERIALS INC 
D SHORTT 
19105 63 AVE NE 
PO BOX 25 
ARLINGTON WA 98223 

COMPOSITE MATERIALS INC 
R HOLLAND 
11JEWELC-r 
ORLNDA CA 94563 

COMPOSrrE MATERIALS INC 
CREEY 
14530 S ANSON AVE 
SANTA FE SPRINGS CA 90670 

coMPosIx 
DBLAKE 
L DIXON 
12OONElLLDR 
HEBRUN OHIO 43025 

CYTECFIBERITE 
RDUNNE 
D KOHL1 
M GILL10 
R MAYHEW 
1300 REVOLUTION ST 
HAVRE DE GRACE MD 21078 

SIMULA 
J COLTMAN 
RHUYETT 
10016 S 51ST ST 
PHOENIX AZ 85044 

SIOUX MFG 
BKRIEL 
PO BOX 400 
FT TOTTEN ND 58335 
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NO. OF 
COPIES 

2 

3 

I 

2 

1 

I 

2 

1 

ORGANIZATION 

PROTECTION MATERIALS INC 
M MILLER 
F CRILLEY 
144KmNW58 CT 
MIAMI LAKES FL 33014 

FOSTER MILLER 
J J GASSNER 
M ROYLANCE 
W ZUKAS 
195BEARHILLRD 
WALTHAM MA 02354-l 196 

ROM DEVELOPMENT CORP 
ROMEARA 
136 SWINEBURNE ROW 
BRICK MARKET PLACE 
NEWPORT RI 02840 

TEXTRON SYSTEMS 
T FOLTZ 
MTREASURE 
201 LOWELL ST 
WILMINGTON MA 08870-2941 

JPS GLASS 
L CARTER 
PO BOX 260 
SLATER RD 
SLATER SC 29683 

0 GARA HESS & EISENHARDT 
M GILLESPIE 
9113 LESAINT DR 
FAIRFIELD OH 45014 

MILLIKEN RSCH CORP 
HKUHN 
M MACLEOD 
PO BOX 1926 
SPARTANBURG SC 29303 

CONNEAUGHT INDUSTRIES INC 
J SANTOS 
PO BOX 1425 
COVENTRY RI 02816 

NO. OF 
COPIES 

1 

3 

1 

2 

ORGANIZATION 

BATIELLE 
CR HARGREAVES 
505 KING AVE 
COLUMBUS OH 43201-2681 

BATTELLE NATICK OPNS 
J CONNORS 
BHALPKN 
209 W CENTRAL ST STE 302 
NATICK MA 01760 

BATIELLE NW DOE PNNL 
THALLMSK231 
BATIELLE BLVD 
RICHLAND WA 99352 

PACIFIC NORTHWEST LAB 
MSMITH 
G VAN ARSDALE 
R SHIPPELL 
PO BOX 999 
RICHLAND WA 99352 

ARMTEC DEFENSE PRODUCTS 
S DYER 
85 901 AVE 53 
PO BOX 848 
COACHELLA CA 92236 

ADVANCED COMPOSITE 
MATERIALS CORP 
P HOOD 
J RHODES 
1525 S BUNCOMBE RD 
GREER SC 2965 l-9208 

GLCC INC 
JRAY 
M BRADLEY 
103 TRADE ZONE DR STE 26C 
WEST COLUMBIA SC 29170 

AMOCO PERFORMANCE 
PRODUCTS 
M MICHNO JR 
J BANISAUKAS 
4500 MCGINNIS FERRY RD 
ALPHARETTA GA 30202-3944 
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NO. OF 
COPIES 

1 

1 

1 

1 

1 

12 

3 

ORGANIZATION 

SAIC 
M PALMER 
2109AIRPARKRDSE 
ALBUQUERQUE NM 87 104 

SAIC 
G CHRYSSOMALLIS 
3800 W 80TH ST STE 1090 
BLOOMINGTON MN 5543 I 

AAI CORPORATION 
T G STASTNY 
PO BOX 126 
HUNT VALLEY MD 21030-0126 

JOHN HEBERT 
PO BOX 1072 
HUNT VALLEY MD 21030-0126 

AFPLIED COMPOSITES 
w GRISCH 
333 NORTH SIXTH ST 
ST CHARLES JL 60174 

ALLIANT TECHSYSTEMS INC 
CCANDLAND 
CAAKHUS 
R BECKER 
B SEE 
NVLAHAKUS 
R DOHRN 
S HAGLUND 
D FISHBR 
w WORRELL 
RCOPENHAFER 
M HISSONG 
DKAMDAR 
600 SECOND ST NE 
HOPKINS MN 55343-8367 

ALLIANT TECHSYSTEMS INC 
J CONDON 
E LYNAM 
J GERHARD 
WV01 16 STATE RT 956 
PO BOX 210 
ROCKET CENTER WV 
26726-0210 

NO. OF 
COPIES 

1 

1 

2 

5 

3 

I 

ORGANITATlON 

PROJECTILE TECHNOLOGY INC 
515 GILES ST 
HAVRE DE GRACE MD 21078 

CUSTOM ANALYTICAL 
ENG SYS INC 
A ALEXANDER 
13000 TENSOR LANE NE 
FLINTSTONE MD 21530 

LORAL VOUGHT SYSTEMS 
G JACKSON 
K COOK 
1701 W MARSHALL DR 
GRAND PRAllUE TX 7505 1 

AEROJBT GEN CORF 
D PJLLASCH 
T COULTER 
CFLYNN 
D RUBAREZUL 
M GREINER 
1100 WEST H0LLYVAJ.B ST 
AZUSA CA 9 1702-0296 

HEXCEL INC 
RBOE 
F POLICELLI 
J POESCH 
PO BOX 98 
MAGNA UT 84044 

HERCULES INC 
HERCULES PLAZA 
WILMINGTON DE 19894 

BRIGS COMPANY 
J BACKOFEN 
2668 PETERBOROUGH ST 
HERNDON VA 22071-2443 

ZERNOW TECHNICAL SERVICES 
L ZERNOW 
425 W BONITA AVE STE 208 
SAN DIMAS CA 91773 
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NO. OF 
ORGANIZATION COPIES 

2 OLIN CORPORATION 
FLINCHBAUGH DIV 
E STEINER 
B STEWART 
PO BOX 127 
RED LION PA 17356 

1 OLIN CORPORATION 
L WHITMORE 
10101 NINTH ST NORTH 
ST PETERSBURG FL 33702 

5 SIKORSKY AIRCRAFT 
G JACARUSO 
T CARSTENSAN 
BKAY 
S GARBO MS S33OA 
J ADELMANN 
6900 MAIN ST 
PO BOX 9729 
STRATFORD CT 06497-9729 

1 GKN AEROSPACE 
D OLDS 
15 STERLING DR 
WALLINGFORD CT 06492 

1 PRATT&WHITNEY 
D HAMBRICK 
4OOMAlNSTMS 11437 
EAST HARTFORD CT 06108 

1 AEROSPACE CORF 
G HAWKINS M4 945 
2350 E EL SEGUNDO BLVD 
EL SEGUNDO CA 90245 

2 CYTEC FIBERITE 
MLIN 
WWEB 
1440 N KRAEMER BLVD 
ANAHEIM CA 92806 

1 HEXCEL 
T BITZER 
11711 DUBLINBLVD 
DUBLIN CA 94568 

NO. OF 
COPIES 

1 

ORGANIZATION 

BOEING 
R BOHLMANN 
PO BOX 516 MC 5021322 
ST LOUIS MO 63166-0516 

BOEING DFNSE & SPACE GP 
W HAMMOND 
J RUSSELL S 4X55 
PO BOX 3707 
SEATTLE WA 98 1242207 

BOEING ROTORCRAFT 
P MINGURT 
P HANDEL 
800 B PUTNAM BLVD 
WALLINGFORD PA 19086 

BOEING 
DOUGLAS PRODUCTS DIV 
LJHARTSMJTH 
3855 LAKEWOOD BLVD 
ID80019 
LONG BEACH CA 90846-0001 

LOCKHEED MARTIN 
SREEVE 
8650 COBB DR 
D 73 62 MZ 0648 
MARIETTA GA 30063-0648 

LOCKHEED MARTIN 
SKUNK WORKS 
D FORTNEY 
1011 LOCKHEED WAY 
PALMDALE CA 93599-2502 

LOCKHEED MARTIN 
R FIELDS 
1195 IRWIN CT 
WINTER SPRINGS FL 32708 

MATERIALS SCIENCES CORP 
B W ROSEN 
500 OFC CENTER DR STE 250 
FT WASHINGTON PA 19034 
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NO. OF 
COPrES 

1 NORTHRUP GRUMMAN CORF 
ELECTRONIC SENSORS 
& SYSTEMS DIV 
E SCHOCH MS V 16 
1745A W NURSERY RD 
LINTHJCUM MD 21090 

2 NORTHROP GRUMMAN 
ENVIRONMENTAL PROGRAMS 
R OSTERMAN 
AYEN 
8900 E WASHINGTON BLVD 
PICO RIVERA CA 90660 

UDLP 
D MARTIN 
PO BOX 359 
SANTA CLARA CA 95052 

UDLP 
G THOMAS 
PO BOX 5X 123 
SANTA CLARA CA 95052 

UDLP 
R BARRETT MAIL DROP MS3 
V HORVATICH MAIL DROP M53 
328 W BROKAW RD 
SANTA CLARA CA 95052-0359 

3 TJDLP 
GROUND SYSTEMS DIVISION 
M PEDRAZZl MAIL DROP NO9 
ALEEMAJLDROPNll 
M MACLEAN MAIL DROP NO6 
1205 COLEMAN AVE 
SANTA CLARA CA 95052 

3 UDLP 
R BRYNSVOLD 
PJANKEMS 170 
T GIOVANETTI MS 236 
BVANWYKMS389 
4800 EAST RIVER RD 
MINNEAPOLIS MN 55421-1498 

NO. OF 
COPIES 

2 

1 

ORGWATION 

GDLS 
D REES 
M PASM 
PO BOX 2074 
WARREN MI 48090-2074 

GDLS DIVISION 
D BARTLE 
PO BOX 1901 
WARREN MI 48090 

1 GDLS 
MUSKEGON OPERATIONS 
W SOMMERS JR 
76 GETTY ST 
MUSKEGON MI 49442 

1 

5 

GENERAL DYNAMICS 
AMPHIBIOUS SYS 
suRvIvABILITYLEAD 
G WALKER 
991 ANNAPOLIS WAY 
WOODBRIDGE VA 2219 1 

INST FOR ADVANCED 
TECH 
TKJEHNE 
HFAJR 
P SULLIVAN 
WREINECKE 
I MCNAB 
4030 2 W BRiKER LN 
AUSTIN TX 78759 

2 CIVIL ENGR RSCH FOUNDATION 
PRESIDENT 
H BERNSTEIN 
R BELLE 
1015 15TH S,T NW STE 600 
WASHINGTON DC 20005 

1 ARROW TECH ASS0 
1233 SHELBURNE RD STE D 8 
SOUTH BURLINGTON VT 
05403-7700 

1 R EICHELBERGER 
CONSULTANT 
409 W CATHERINE ST 
BEL AIR MD 21014-3613 
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NO. OF 
COPIES 

2 

1 

ORGANIZATION 

UCLA MANE DEPT ENGR IV 
HTHAHN 
LOS ANGELES CA 900241597 

U-NIV OF DAYTON 
RESEARCH INST 
RYKIM 
AKROY 
300 COLLEGE PARK AVE 
DAYTON OH 45469-0168 

P LAGACE 
‘77 MASS AVE 
CAMBRIDGE MA 01887 

IIT RESEARCH CENTER 
D ROSE 
201 MJLLST 
ROME NY 13440-6916 

GA TECH RSCH JNST 
GA INST OF TCHNLGY 
P FRIEDERICH 
ATLANTA GA 30392 

MICHIGANSTUNIV 
MSM DEPT 
R AVERILL 
3515 EB 
EAST LANSING MI 488241226 

UNIV OF KENTUCKY 
L PENN 
763 ANDERSON HALL 
LEXINGTON KY 40506-0046 

UMV OF WYOMING 
D ADAMS 
PO BOX 329s 
LARAMIE WY 82071 

UNIVOFUTAH 
DEPT OF MECH & 
INDUSTRIAL ENGR 
S SWANSON 
SALT LAKE CITY UT 84112 

NO. OF 
COPIES 

2 

I 

1 

1 

7 

ORGANIZATION 

PENN STATE UNIV 
R MCN-ITT 
C BAKIS 
212 EARTH ENGR SCIENCES BLDG 
UNIVERSITY PARK PA 16802 

PENN STATE UNIV 
R S ENGEL 
245 HAMMOND BLDG 
UNIVERSITY PARK PA 16801 

PURDUEUNLV 
SCHOOL OF AERO & ASTRO 
CTSUN 
W LAFAYETTE IN 47907-1282 

STANFORD UNJV 
DEPT OF AERONAUTICS 
& AEROBALLISTICS 
S TSAI 
DURANT BLDG 
STANFORD CA 94305 

UN-IV OF DAYTON 
JMWHITNEY 
COLLEGE PARK AVE 
DAYTON OH 45469-0240 

UNIV OF DELAWARE 
CTR FOR COMPOSITE MTRLS 
J GILLESPIE 
M SANTARE 
G PALMESE 
S YARLAGADDA 
s ADVANI 
D HEIDER 
DKUKICH 
201 SPENCER LABORATORY 
NEWARK DE 19716 

UNIV OF ILLINOIS AT 
URBANA CHAMPAIGN 
NATIONAL CENTER 
FOR COMPOSITE 
MATERIALS RESEARCH 
J ECONOMY 
216 TALBOT LABORATORY 
104SWlUGHTST 
URBANA IL 61801 
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NO. OF 
COPIES ORGANIZATION 

3 THEUNIVOF 
TEXAS AT AUSTIN 
CTR FOR ELECTROMECHANICS 
J PRICE 
A WALLS 
J KITZMILLER 
10100 BURNET RD 
AUSTIN TX 7875X-4497 

3 VA POLYTECHNICAL 
mST & STATE TJNIV 
DEFT OF ESM 
MWHYER 
K REIFSNIDER 
R JONES 
BLACKSBURG VA 24061-0219 

1 NORTH CAROLINA STATE LJNIV 
CIVIL ENGINEERING DEPT 
W RASDORF 
PO BOX 7908 
RALEIGH NC 27696-7908 

1 UNIV OF MARYLAND 
DEPT OF AEROSPACE ENGNRNG 
AJVIZZlNI 
COLLEGE PARR MD 20742 

1 DREXELUNIV 
ASDWANG 
32ND & CHESTNUT ST 
PHJLADELF’HIA PA 19104 

1 SOUTHWEST RSCH INST 
ENGR & MATL SCIENCES DLV 
J RIEGEL 
6220 CULEBRA RD 
PO DRAWER 285 10 
SAN ANTONIO TX 78228-05 10 

Nn t-G 
LTV. V I  

COPIES ORG- ATION 

1 us ARMY MATERIEL 
SYSTEMS ANALYSIS 
P DIETZ 
392 HOPKINS RD 
AMXSY BTD 
APG MD 21005-5071 

1 DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLOPAPL 
APG MD 21005-5066 

108 DIR USARL 
AMSRL CI 
AMSRL CI H 

w STUREK 
AMSRL CI s 

AMARK 
AMSRL cs IO FI 

M ADAMSON 
AMSRL SL B 

J SMITH 
AMSRL SL BA 
AMSRL SL BL 

D BELY 
RHENRY 

AMSRL SL BG 
A YOUNG 

AMSRL SL I 
AMSRLWMB 

A HORST 
E SCHMIDT 

AMSRL WM BA 
W D AMICO 
F BRANDON 

AMSRL W-M BC 
P PLOSTINS 
D LYON 
J NEWILL 
S WILKERSON 
A ZIELINSKI 

AMSRL WM BD 
B FORCH 
RFIFER 
R PESCE RODRIGUEZ 
BRICE 
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NO. OF 
ORGANIZATION COPIES 

ABERDEEN PROVING GROUND (CONT1 

AMSRL WM BE 
C LEVERITT 
D KOOKER 

AMSRL WM BR 
C SHOEMAKER 
J BORNSTEIN 

AMSRLWMM 
D VIECHNICKI 
G HAGNAUER 
J MCCAULEY 
B TANNER 

AMSRL WM MA 
R SHUFORD 
P TOUCHET 
N BECK TAN 
D FLANAGAN 
L GHtORSE 
DHARRIS 
S MCKNIGHT 
P MOY 
S NGYUEN 
P PATTERSON 
G RODRIGUEZ 
A TEETS 
RYIN 

AMSRLWMMB 
BFINK 
J BENDER 
T BLANAS 
T BOGETTI 
R BOSSOLI 
L BURTON 
K BOYD 
S CORNELISON 
P DEHMER 
R DOOLEY 
W DRYSDALE 
G GAZONAS 
S GHIORSE 
D GRANVILLE 
D HOPKINS 
C HOPPEL 
D HENRY 
R KASTE 
M KLUSEWTTZ 
M LEADORE 
R LIEB 

NO. OF 
COPIES ORGANIZATION 

AMSRLWMMB 
E RIGAS 
J SANDS 
D SPAGNUOLO 
W SPURGEON 
J TZENG 
EWET’ZEL 
AABRAHAMXN 
M BERMAN 
AFRYDMAN 
T LI 
W MCINTOSH 
E SZYMANSKI 

AMRSL WM MC 
J BEAT-L-Y 
J SWAB 
ECHIN 
J MONTGOMERY 
A WERECZCAK 
J LASALVIA 
J WELLS 

AMSRLWMMD 
W ROY 
S WALSH 

AMSRLWMT 
B BURNS 

AMSRL WM TA 
W GILLICH 
T HAVEL 
J RUNYEON 
M BURKINS 
E HORWATH 
B GOOCH 
W BRUCHEY 

AMSRL WM TC 
R COATES 

AMSRLWMTD 
A DAS GUPTA 
T HADUCH 
T MOYNIHAN 
F GREGORY 
ARAJENDRAN 
M RAFI’ENBERG 
M BOTELER 
T WEERASOOFUYA 
DDANDEKAR 
A DIETRICH 
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NO. OF 
ORGANIZATION COPIES 

ABERDEEN PROVING GROUND (CONTj 

flMsRLwMTE 
A NIILER 
J POWELL 

AMSRL SS SD 
H WALLACE 

AMSRL SS SE R 
R CHASE 

AMSRL SS SE DS 
R REYZER 
R ATKINSON 

AMSRL SE L 
RWEINRAUB 
J DESMOND 
D WOODBURY 
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NO. OF 
iTcaL! 

1 

- 

1 

1 

1 

1 

ORGANIZATION 

LTD 
R MARTIN 
MERL 
TAMWORTH RD 
HERTFORD SG13 7DG 
UK 

PW LAY 
SMC SCOTLAND 
DER4 ROSYTH 
ROSYTH ROYAL DOCKYARD 
DUNFERMLINEFIFEKY 112XR 
UK 

CIVIL AVIATION 
ADMINSTRATION 
T GOTTESMAN 
PO BOX 8 
BEN GURION INTERNL AIRFORT 
LOD 70150 ISRAEL 

AEROSPAT’IALE 
SAN-DIE 
A BTE CC RTE MD132 
316 ROUTE DE BAYONNE 
TOULOUSE 3 1060 
FRANCE 

DAIMLER BENZ AEROSPACE 
J BAUER 
D 81663 MUNCHEN 
MUNICH 
GERMANY 

DRA FORT HALSTEAD 
P N JONES 
D SCOTT 
M HINTON 
SEVEN OAKS KENT TN 147BP 
UK 

DEFENSE RESEARCH ESTAB 
VALCARTIER 
F LESAGE 
COURCELE’TTE QUEBEC COA 
lR0 CANADA 

NO. OF 
GQg&j 

2 ROYAL MILITARY COLLEGE OF 
SCIENCE SHRIVENHAM 
D BULMAN 
B LAWTON 
SWINDON WLLTS SN6 8LA 
UK 

1 

1 

1 

1 

1 

1 

SWISS FEDERAL ARMAMENTS 
WKS 
w LANZ 
ALLMENDSTRASSE 86 
3602 THUN 
SWITZERLAND 

ISRAEL INST OF 
TECHNOLOGY 
S BODNER 
FACULTY OF MECHANICAL ENGR 
HAIFA 3200 ISRAEL 

DSTO MATERIALS RESEARCH LAB 
NAVAL PLATFORM VULNERABILITY 
SHIP STRUCT’URES & MTRLS DIV 
NBURMAN 
PO BOX 50 
ASCOT VALE VICTORIA 
AUSTRALIA 3032 

ECOLE ROYAL MILITALRE 
E CELENS 
AVE DE LA RENAISSANCE 30 
1040 BRUXELLE 
BELGIQUE 

DEF RES ESTABLISHMENT 
VALCARTIER 
A DUPUIS 
2459 BOULEVARD PIE XI NORTH 
VALCARTIER QUEBEC 
CANADA 
PO BOX 8800 COURCELETTE 
GOA IRO QUEBEC CANADA 

INSTITUT FRANC0 ALLEMAND 
DE RECHERCHES DE SAN-IT LOUIS 
DE M GIRAUD 
5 RUE DU GENERAL CASSAGNOU 
BOITE POSTALE 34 
F 68301 SAINT LOUTS CEDEX 
FRANCE 
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NO. OF 
COPIES 

1 

1 

2 

2 

1 

ORGANJZATION 

ECOLE POLYTECH 
J MANSON 
DMX LTC 
CH 1015 LAUSANNE 
SWlTZERLAND 

TN0 PRJNS MAURJTS 
LABORATORY 
R IJSSELSTEJN 
LANGE KLEIWEG 137 
PO BOX 45 
2280 AA RIJSWIJK 
THENETHERLANDS 

FOA NAT L DEFENSE RESEARCH 
ESTAB 
DIR DEFT OF WEAPONS & 
PROTECTION 
B JANZON 
R HOLMLIN 
S 172 90 STOCKHOLM 
SWEDEN 

DEFENSE TECH & PROC AGENCY 
GROUND 
ICREWTHER 
GENERAL HERZOG HAUS 
3602 THUN 
SWITZERLAND 

MINISTRY OF DEFENCE 
RAFAEL 
ARMAMENT DEVELOPMENT 
AUTH 
M MAYSELESS 
PO BOX 2250 
HAIFA 31021 ISRAEL 

DYNAMEC RESEARCH AB 
A PERSSON 
BOX 201 
S 15123 SODERTALJE 
SWEDEN 

ERNST MACH INSTITUT EMI 
DIRECTOR 
HAUPTSTk4SSE 18 
79576 WHL AM RHEIN 
GERMANY 

NO. OF 
COPIES ORGANIZATION 

1 ERNST MACH JNSTITUT EM1 
ASTJLF’ 
ECKERSTRASSE 4 
7800 FREIBURG 
GERMANY 

1 TN0 DEFENSE RESEARCH 
I H PASMAN 
POSTBUS 6006 
2600 JA DELFT 
THENETHERLl4Nl3s 

1 B HIRSCH 
TACHKEMONY ST 6 
NETAMUA 426 11 
ISRAEL 

1 DEUTSCHE AEROSPACE AG 
DYNAMICS SYSTEMS 
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