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Preliminary Investigation on Battery Sizing Investigation for 
Thrust Vector Control on Ares I and Ares V Launch Vehicles 

 

Thomas B. Miller 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust 
Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was 
conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to 
determine the preferred choice of an energy storage system chemistry that provides high power discharge 
capability for a relatively short duration. 

Introduction 

Historically, missiles and launch vehicles have employed hydrazine (N2H4) to feed into an auxiliary 
power unit which provides turbine power to operate hydraulic pumps for the TVC servo actuators. The 
actuators mechanically position the solid rocket nozzle to steer the vehicle to the correct trajectory. While 
this approach has been used successfully with a high reliability, NASA is interested in pursuing a less 
toxic, electric power approach that offers lower cost and improved operability. 

Figure 1 depicts the overall architecture associated with the EHA system and the interfaces with a 
launch vehicle. The Flight Control Computer (FCC) communicates via the 1553 data bus to the Booster 
Control Unit (BCU) to command the Motor Control Unit (MCU). The MCU provides the necessary 
position and torque values to the electric motor to drive the hydraulic pump and ultimately drive the 
actuator which directs the thrust from the launch vehicle to obtain the proper yaw and pitch trajectory. 
The electrical energy necessary to power the EHA is derived from the high voltage battery system. The 
selection of the appropriate 270 V battery Line Replaceable Unit (LRU) is the focus of this paper. Ground 
Support Equipment (GSE) interfaces to the battery to provide state-of-health monitoring, proper 
temperature control, and power to recharge the batteries. 

The current TVC architecture was based upon the following assumptions:  
 

 4 battery channels in parallel 
 4 Motor Control Units  
 2 TVC actuators each with a dual redundant internal design  
 The 4 batteries are each tied to a single motor control unit. Each motor control unit provides input 

power to one channel of each actuator.  
Battery requirements:  

 

 The maximum power output of the actuators is expected to be 57 horsepower (hp). This 
corresponds to a 92 hp maximum output of the electric motors. Using a 70 percent efficiency of 
all components back to the battery, this is equates to a 100 kW output requirement at the batteries. 
Two batteries summed together must supply this power.  

 Each battery should be designed for 270 +80/–30 VDC nominal operating range. 
 Total energy requirement is 5110 hp-sec (1058 Wh) at the electric motor for two batteries based 

on mission duty cycle. 
 5110 hp-sec energy with a 70 percent power management and distribution efficiency yields 

7300 hp-sec (1512 Whr). 
 Two fault tolerant battery systems imply two batteries must supply the total energy demand. 
 Each battery is therefore required to deliver 3650 hp-sec or 756 Whr. 
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Figure 1.—Electro-hydrostatic actuator block diagram. 
 

           Ares I                      Ares V 
  Crew launch vehicle            Cargo launch vehicle 
 

Figure 2.—Constellation launch vehicles. 
 

A key driver in the selection of both battery and TVC hardware dealt with the Technology Readiness 
Level (TRL) and the ability to support development motor static firing tests in August 2010. Due to the 
tight schedule, existing heritage hardware was to be used to avoid extensive development time and to 
reduce overall risk to the program. A TRL of six “system/subsystem model or prototype demonstration in 
a relevant environment” was the minimum TRL to evaluate various concepts. EHA designs based upon 
the Space Shuttle Solid Rocket Booster (SRB) TVC were evaluated for the integration into the Ares I 
Crew Launch Vehicle and the Ares V Cargo Launch Vehicle first stage as depicted in Figure 2. 
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The trade study assessed the overall sizing of the TVC actuators and battery subsystems to meet the 
performance requirements of the vehicle. The selection of battery chemistry to power the EHA was based 
upon near-term cell level and battery level packaging concepts that would require minimal development 
resources. Factors of merit that were evaluated as part of the trade included mass of the packaged battery, 
system level impacts to the vehicle, and complexity of integration. 

Mission Profile 

Since the two Constellation launch vehicles are planned to replace the existing Space Shuttle system, 
a commonality assessment was evaluated to reduce the overall development cost of a TVC system. For 
the purpose of this evaluation it was assumed that the EHA system would be developed for the higher 
power worst case design. Figure 3 depicts the estimated duty cycle for the TVC system which bounds 
both launch vehicles.  

Based upon previous NASA studies, electrically powered TVC system performance is predicated 
upon the selection of operating voltage. Systems with voltages of 28 VDC, 56 VDC, 118 VAC, and 
270 VDC were evaluated with various architectures to evaluate overall electrical power system mass and 
battery performance. The major driver to decrease overall electrical power system mass was the selection 
of the highest bus voltage to assist in reducing electrical conductor mass to carry electrical current to meet 
the mission power demand (Ref. 1). Here the higher bus voltage equates to a minimum electrical power 
system mass. Figure 4 provides a summary of power system mass versus operating voltage at key 
voltages from 28 to 270 VDC. Specifically, a higher bus voltage reduced power management and 
distribution component mass, actuator mass and actuator mounting structures mass. 

 
 
 

 
Figure 3.—Estimated TVC mission cycle bounds both Ares I and Ares V 1st stage. 
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Figure 4.—TVC power system mass versus operating voltage. 

Battery Chemistry Comparison 

Lithium-ion and thermal battery systems were considered as potential energy storage candidates for 
this application. Table 1 compares the overall battery attributes between lithium-ion and thermal battery 
systems.  

Thermal Batteries 

There are three major aerospace thermal battery vendors: Eagle-Picher, ENSER, and Saft. Thermal 
battery technology is quite mature. ENSER fabricated and demonstrated a very large thermal battery for 
NASA’s Solid Rocket Booster Thrust Vector Control System (Ref. 2). The logistics associated with a 
launch scrub is still a problem. Thermal batteries are inert and harmless until activated. Thermal batteries 
can be activated only once, whether they are used or not. After they cool down, they cannot be reutilized 
again. 

Thermal batteries are primary, single use, reserve type devices often used for military applications. 
They are entirely inert until activated. Activation occurs when the electrolyte which is solid at room 
temperature, is heated to the molten state. They have a historically proven storage life of over 20 years 
and contain no liquids to spill or leak. When activated they can deliver full power in less than a second. 
Thermal batteries typically produce 1.85 V/cell, 65 Whr/kg, 150 Whr/L, and 2.5 kW/kg. Thermal 
batteries can operate over a temperature range of –55 to 75 °C. Thermal batteries can operate at any 
altitude, in any attitude, under conditions of extreme shock, acceleration, vibration or spin. Expended 
thermal batteries contain no lead, mercury, or cadmium and can be disposed of without lasting 
environmental impact. Thermal batteries have a low cost of ownership and require no maintenance. 
Thermal batteries have a 50+ year history of safety with no field injuries ever reported (Ref. 3). On the 
negative side, thermal batteries do get hot once activated with a skin temperature between about 50 to 
135 C, and once started, the reaction cannot be stopped. 
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TABLE 1.—LITHIUM-ION VERSUS THERMAL BATTERY ATTRIBUTES FOR 1st STAGE TVC 
  Lithium ion Thermal 

Operational considerations Secondary battery can be recharged multiple 
times  

Primary battery can only be used once. 
Thermal battery is inert prior to activation 
and can only be activated once. Once the 
thermal battery is activated, operation cannot 
be interrupted. 

Safety     
Pre-flight Can be designed incorporating dead-facing 

switching or “keys” for safe handling of the 
fully charged 270 V battery 

Inactive, no voltage on fully charged battery 
prior to activation of the battery. 

Recovery Continue to operate hydraulic pump off 
battery after separation. This will discharge 
the battery prior to recovery. 

When battery temperature falls below 
operating temperature, after salt water 
immersion, battery is inactive/safe 

Corona mitigation A combination of coatings or immersion in 
high dielectric fluids has been successfully 
demonstrated. 

Immersion in high dielectric fluids within a 
sealed battery box. 
High operating battery temperature may limit 
selection of dielectric material 

High rate discharge Capable, High rate cells have been developed 
for F-35 aircraft 

Capable   

270 V development Space qualified design available 
Vendors include ABSL, Saft  

Under development 
Venders include Enser, and Eagle-Picher 

Pad operation     
Extended stand time Battery recharging may be necessary 

Battery self-discharge rate will need to be 
assessed. 

Possible prior to activation of the battery 

Pre-flight check of battery/Electrical system Feasible Not-feasible prior to battery activation 

Readiness for flight after abort Quick turn-around after an abort situation.  
Lithium battery may require recharge prior to 
reinitiation of countdown 

Thermal battery must be replaced after 
activation. Longer turn-around time before 
reinitiation of countdown. 

Exercise of TVC Pre-flight Feasible. Battery can be designed with 
additional capacity or recharged prior to 
flight 

Feasible. However, flight battery must be 
replaced prior to flight or external ground 
batteries/equipment used. 

Reliability Proven—Commercial, Military, Space 
applications 

Proven—Low voltage missile systems 

Mass (lbs) (Estimated) 114 126 
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Lithium-ion Batteries 

Li-ion batteries are much lighter than thermal batteries and in recent years have demonstrated 
excellent high power capability. Li-ion batteries can produce high power for short “pulses”. Li-ion 
batteries are secondary batteries, can be recharged and used over and over. Lithium-ion batteries typically 
produce 3.6 V/cell, 90 Whr/kg, 250 Whr/L, and 700 W/kg. The organic electrolyte in the lithium-ion 
battery provides a –20 to 40 °C operating temperature. The lithium-ion battery cells are hermetically 
sealed and can operate in any orientation. While lithium-ion batteries have a higher initial cost, they have 
lower operational costs due to the ability to recharge and reuse the battery after multiple scrubs. 

Based upon the benefits and drawback comparisons between the thermal and lithium-ion battery 
chemistries, it was determined that the thermal battery option would be dropped from the trade space and 
the focus would be solely on lithium-ion batteries. This was mainly based on the single use only 
associated with the thermal battery along with launch abort logistics associated with the costs for 
replacing the thermal battery and impacts on the schedule to remove and install a new set of thermal 
batteries. 

Battery Sizing Approach 

The battery sizing for this study was based on the voltage, current and power from the mission power 
profile from Figure 3. By using the total integrated energy from the mission profile, the duration of the 
mission, and factors such as electrical distribution efficiency and the desired depth-of-discharge for the 
battery to maintain the necessary design margin, the required watt-hours can be calculated. Next, the total 
ampere-hour capacity of the battery was determined by dividing the watt-hours by the average system 
voltage. The computed value for the total ampere-hour capacity of the battery provides a basis for the 
individual cell capacity required and allows a selection of possible cell candidates. Ampere-hour capacity 
of the battery can be achieved by paralleling strings. The number of cells required in series is determined 
by the required 270 V system voltage. In the case of thrust vector control missions, the high power 
application drives the selection of the lithium-ion cell that can meet both the peak and continuous 
discharge current. The mass estimate for the packaged battery was based on a mass packing factor (MPF) 
to scale-up from the lithium-ion cell level mass to the battery level mass. The MPF includes peripheral 
items of wiring, connectors and other related structural hardware associated with the battery design. 
Conservative packing factors of 1.8 for cylindrical cells were used based upon flight heritage battery 
designs.  

Lithium-ion Battery Sizing 

In order to minimize development risk and utilize flight heritage lithium-ion battery technology, the 
Saft high power lithium-ion battery cell developed for the Joint Strike Fighter F-35 was selected due to its 
high TRL 8 development, its high power discharge capability, and human-rated qualification for aircraft. 
Strict safety and abuse testing criteria are imposed on the batteries to ensure adequate performance 
margins are maintained under worst case conditions including two fault tolerant designs at the battery 
level. Saft’s model VL4V lithium-ion cell was selected to size the Ares I/V TVC common design point. 
Although 270 V was specified as the system voltage, a higher operating bus voltage was advantageous to 
reduce peak discharge currents. 84 lithium-ion cells in a single series configuration were baselined to 
meet the energy and power demands for the TVC system. 

 
 84 cells in series @ 4.1 V/cell = 344 V fully charged 
 84 cells in series @ 3.0 V/cell = 252 V under peak load 
 50 kW peak/battery @ 252 V end-of-mission equates to 198 A for the worst case discharge rate 
 The F-35 JSF lithium-ion cell VL4V nameplate is rated at 4.4 A-h 

  



NASA/TM—2011-216899 7 

 198 A/4.4 A-h = 45C discharge rate which is within the performance capability of the cell.  
 Based upon 270 V average discharge voltage for mission estimated at 3.2 V/cell therefore 

756 Whr/270 V = 2.8 A-h 
 At the constant discharge 45C rate, the Saft VL4V cell provides 85 percent of its room 

temperature capacity which is equivalent to a 75 percent depth-of-discharge and provides little 
power margin for the mission. 

Conclusions 

Based upon the mission profile for the battery supported Thrust Vector Control system for Ares I/V, 
the lithium-ion battery selection is recommended. This was due to the rechargeable feature of lithium-ion 
chemistry which is advantageous for launch pad delays and scrubs. In addition, the lithium-ion cell design 
is at a higher Technology Readiness Level than the thermal battery/cell design which provides greater risk 
reduction. Finally, the lithium-ion battery system provides a slightly lower mass for the energy storage 
system. The actual mission profile for the TVC may increase in both duration and peak power demand 
which could skew the selection of specific lithium-ion cell and battery designs. The conservative 
electrical power management and distribution efficiencies of 70 percent from the output of the battery to 
the input of the electric motor are truly worst case. Improvements in motor design, electrical cable harness 
size, and the motor controller itself would greatly improve the inherent design margin of the battery by 
eliminating power losses. Recent developments at Saft have increased the performance of the VL4V cell 
design by increasing ampere-hour capacity within the existing cell dimensions to upwards of 6 A-h. It 
should be noted that the induced environments of the launch vehicle such as shock, vibration, and 
especially the thermal interface have not been factored into the analysis since they are ill-defined at this 
time. Additional refinement of the energy storage design can be made to quantify performance margins 
and will be performed once the mission profile, natural and induced environments, and available lithium-
ion cell designs mature. 
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