Technical Report

CVS Exhaust Connecting Hose Upgrade

June 1985 - September 1985

Carl Paulina

NOTICE

Technical reports do not necessarily represent final EPA decisions or positions. Their publication or distribution does not constitute any endorsement of equipment or instrumentation that may have been evaluated. They are intended to present technical analysis of issues using data which are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments which may form the basis for improvements in emissions measurement.

Facility Support Branch
Engineering Operations Division
Mobile Source Air Pollution Control
Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Michigan 48105
Summary

Between June 4 and September 12, 1985, the Environmental Protection Agency (EPA) Motor Vehicle Emission Laboratory (MVEL) upgraded the exhaust connecting hose assemblies which connect vehicle tail pipes to the Constant Volume Samplers (CVSs) used for vehicle emissions and fuel economy testing. This report details the upgrade and examines fuel economy aspects of the upgrade.

Red silicone gaskets were added to the Marman flange connections on the flexible stainless steel hose which connects the test vehicle to the CVS. In addition, the single, six foot long section of 4-1/2 inch diameter hose was divided into four sections, two sections three feet long and two end caps. The sections are connected by silicone boots (See Attachment 1, Drawing T0492A). All flange and tubing diameters and interior and exterior surfaces remain unchanged. Gasketed flanges provide better seals, reducing the potential for erroneous data due to exhaust leaks. The large flexible hose was divided into four sections to make it easier to connect the exhaust connecting hose to the wide variety of vehicle and tail pipe configurations that are tested by EPA. These upgrades were made to help ensure measurement of the "true mass of gaseous emissions" as required in CFR 86.109-82.

Four independent data sources were reviewed to estimate the new connecting hose influence on gasoline vehicle fuel economy results. They are as follows:

1. Weekly diagnostic propane injections
2. General Motors correlation program
3. Volvo REPCA weekly hot LA-4 tests
4. Manufacturer-EPA certification paired data

The indicated shifts in EPA measured fuel economy values from each of the four data sources are:

<table>
<thead>
<tr>
<th>Data Source (Driving Schedule)</th>
<th>Shift in Dyno Group Average</th>
<th>Dynos Included</th>
<th>No. of Tests (Old/New)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propane Injection</td>
<td>None (None expected)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Motors Correlation</td>
<td>0.6 - 0.8% lower F.E.</td>
<td>Dynos 1,2,5,6</td>
<td>(12/12)</td>
</tr>
<tr>
<td>(Hot LA-4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volvo REPCA (Hot LA-4)</td>
<td>1.9% lower F.E.</td>
<td>Dynos 1,2,3,4,5,6</td>
<td>(114/138)</td>
</tr>
<tr>
<td>Paired Data (FTP)</td>
<td>0.7% lower F.E.</td>
<td>Dynos 1,2,5,6</td>
<td>(266/236)</td>
</tr>
<tr>
<td>(HWFET)</td>
<td>0.9% lower F.E.</td>
<td>Dynos 1,2,5,6</td>
<td>(286/284)</td>
</tr>
</tbody>
</table>
Background
Vehicle tail pipes are connected to Constant Volume Samplers (CVS) during a Federal Test Procedure (FTP) emission test and Highway Fuel Economy Test (HWFET). A flexible connecting hose is used to carry the entire vehicle exhaust flow into the CVS where it is diluted, proportionally sampled, and the sample accumulated throughout the driving schedule. The sample is then analyzed for hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO₂), and oxides of nitrogen (NOx) composition. Leakage resulting in the loss of a portion of the "raw exhaust" stream (before dilution) will lower final emission values and raise fuel economy values.

Pulsing and resonance due to the vehicle engine and CVS blower may become great enough to actually drive sample out of the CVS connecting hose if leak points exist. Our routine diagnostic test, the Federal Register (FR) CVS verification by propane injection, will not detect a "leaky" flexible connecting hose assembly. Without the pulsing and resonance present during a vehicle test, there is no driving force to push the propane out through leak points of the connecting hose assembly.

Since propane injections will not show this type of leakage, a technique was needed to quantify the effect this leakage might have on emission test results. The most "repeatable" vehicle (emission grams/mile or miles per gallon) could exhibit too much variation to allow it to be used to gauge an effect of this low a magnitude.

To overcome this, a comparison technique was used which minimizes variations from the vehicle and dynamometer. We call this comparison FE% (Equation One).

\[
FE\% = \frac{(\text{Carbon balance MPG} - \text{Volumetrically Metered MPG}) * 100}{\text{Volumetrically Metered MPG}} \quad (\text{Equation One})
\]

The control measurement of this comparison is volumetrically metered fuel economy from an independent flow transducer. The percent difference between vehicle carbon balance fuel economy and volumetrically metered fuel economy (FE% Equation One) fits the requirements for a method to gauge the possible shift in carbon balance (40 CFR Sec. 600113-78) vehicle fuel economy. Variations resulting from changes in the vehicle and dynamometer will be reflected in both meter and carbon balance fuel economy, while changes due to the elimination of exhaust leaks will be reflected only in carbon balance fuel economy. Sample leakage is not the only possible influence on FE% (Equation One). The major ones are:

1. Fuel meter variation
2. Facility fuel changeover
3. CVS air flow calculation variation
4. Carbon dioxide analyzer variations
5. Sample leakage (New Exhaust Implementation)
We have reviewed data on all the above influences for the time period considered in this report. Of the above influences, the only influence corresponding to shifts in FE%, both by date and direction, is a possible sample leakage decrease due to the introduction of new exhaust connecting hoses.

Physical Modifications

Leak testing showed that the primary points of leakage were the metal-to-metal Marman flange interfaces. The Marman flanges were modified to allow the installation of a silicone gasket between the stainless steel flange faces. The next most likely points of leakage were through the walls of the 4-1/2 inch metal-flex or convoluted hose which connects the vehicle tail pipe to the CVS. The new 4-1/2 inch metal-flex hose contains stainless steel wire as packing in the interlocking sections of the hose to minimize leakage through the walls. The 4-1/2 inch connecting hose was divided into two three-foot sections which could be connected with 4-1/2 inch ID silicone boots (See Attachment 1). The boots are used with band clamps to insure a positive seal on the 4-1/2 inch connecting hose ends. Each CVS test site was equipped with the set of connectors shown in Attachment 2.

Actual Implementation

The new exhaust connecting hose was implemented on each of the six gasoline test sites on the following dates:

<table>
<thead>
<tr>
<th>Dynamometers (CVS)</th>
<th>Implementation Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>D006 (25c)</td>
<td>6/5/85</td>
</tr>
<tr>
<td>D005 (29c)</td>
<td>7/17/85</td>
</tr>
<tr>
<td>D001 (21c)</td>
<td>7/20/85</td>
</tr>
<tr>
<td>D002 (22c)</td>
<td>8/6/85</td>
</tr>
<tr>
<td>D003 (23c)</td>
<td>8/30/85</td>
</tr>
<tr>
<td>D004 (24c)</td>
<td>9/12/85</td>
</tr>
</tbody>
</table>

Before implementation on each CVS site, a complete set of connecting hoses was manufactured, assembled, and tested for leaks. The leak check procedure and apparatus are outlined in Attachment 3. A leak rate for each assembly of connecting hoses was recorded before they were placed on-site. Once the new hoses were on-site, propane injections were performed. Normal Volvo REPCA two-bag hot LA-4s were run using each site's old exhaust connecting hose and then a new connecting hose. To establish that no static pressure difference was introduced with the new exhaust connecting hose assemblies, strip chart recordings were run of vehicle tail pipe depression during the REPCA LA-4s. The tail pipe depressions were within the \pm 1 inch of water which the Federal Register allows manufacturers to request [Sec. 86.109-82(c)(1)].
The connecting hose assembly leak checks will be performed periodically to establish a diagnostic leak check frequency for maintenance.

An Equipment/Procedure Change Notice (EPCN) was written (EPCN #64, Attachment 1) to diagram and document the changes made. Finally, a complete set of assembly and component drawings were generated showing all individual components used in the system, part numbers, and manufacturers (Attachment 3).

Effect on Test Results

Four independent data sources were reviewed to estimate the new connecting hose influence on gasoline vehicle fuel economy results. They are as follows:

1. Weekly diagnostic propane injections
2. General Motors correlation program
3. Volvo REPCA weekly hot LA-4 tests
4. Manufacturer-EPA certification paired data

1. Propane Injections:

Propane injections are run on a weekly basis to verify CVS operation. No shift was apparent on any of the six CVS sites equipped with a new connecting hose assembly. No effect was expected. A Critical Flow Venturi (CFV) CVS operating by itself, does not seem to create the pulsations which appear responsible for forcing sample out of the connecting hoses.

2. GM Correlation:

A General Motors correlation program was run between August 16 and August 21, 1985. The testing took place on Dynamometers 1, 2, 5, and 6 (CVSs 21C, 22C, 29C, and 25C, respectively). One connecting hose assembly was used as the "old" connecting hose on all sites. Each CVS site had three hot LA-4 tests with the "old" connecting hose and three tests with the "new" connecting hose. The individual new/old tests were alternated on each site (A-B sequence). Two sites began their test series with "new" connecting hoses and two began their test series with the "old" connecting hoses. The program results are summarized in Technical Report EPA-AA-EOD/TPB-85-2, "Assessment of the Hot Start Fuel Economy Effects of a New CVS Exhaust Connector Pipe Design". It states that the overall difference in carbon balance fuel economy mean values, using an overall total of twelve tests in each new and old configuration on 4 sites, was estimated as 0.6 percent lower fuel economy with the new exhaust connecting hose. Using FE% (equation one) as an indicator, GM estimated 0.8 percent lower fuel economy with the new exhaust connecting hose.

3. Volvo REPCA:

Volvo REPCA is a repeatable vehicle which has a two bag hot LA-4 test run weekly on each CVS site. These weekly tests were used as a data source. The date range of this data set is from March through December 31, 1985.
Absolute emission values, from even the most repeatable vehicle, may exhibit trends with time. These trends can prevent using emission values as a tool to gauge an effect as subtle as the suspected sample leakage. Specifically, the linear trends of REPCA's HC, CO, NOx, carbon balance fuel economy, and volumetrically metered fuel economy over this period are of the same order of magnitude as the influence of the suspected leaks. For example, despite an expected increase in measured emissions due to a decrease in leakage, Volvo REPCA NOx emission values actually decreased from "old" to "new" connecting hose tests. This is probably due to a change in vehicle parameters (Air/fuel ratio, O2 sensor decay, spark plug condition, etc.)

The percent difference between carbon balance and volumetrically metered fuel economy (FE% Equation One) was the most sensitive indicator examined. Graphs of Volvo REPCA FE% for Bags 1 and 2 versus CVS sites are contained, along with graphs of individual sites FE% for bags 1 and 2 versus calendar date, in Attachment 4.

Fuel economy percent (FE%) Bag 1 was arithmetically averaged with FE% Bag 2 for each Volvo REPCA test and labeled Fuel Economy Percent Weighted (FE% WGT). The mean values of FE% WGT were then calculated for both "new" and "old" connecting hose tests. The overall mean FE% WGT was approximately 1.8% lower with the "new" connecting hose than with the "old", based on 114 "old" connecting hose tests and 138 "new" connecting hose tests.

Since the CVS sites were converted one at a time from June 4 through September 12, 1985, the number of REPCA tests on each CVS site (old/new) was different. We wanted to insure that our comparison was not influenced by one CVS site. We calculated an average of the six CVS site means for both "new" and "old" tests. This analysis showed FE% WT was approximately 1.9% lower with the "new" connecting hoses (Attachment 5). Both comparisons used all the Volvo REPCA tests run from March through December 31, 1985.

4. Paired Data

Finally, manufacturer-EPA certification FTP and HWFET paired data for mile per gallon percent difference (Equation Two) versus dynamometer site, along with individual sites MPG % differences versus calendar date, is contained in Attachment 6.

\[
\text{MPG} \% = \left[\frac{\text{manufacturer MPG} - \text{EPA MPG}}{\text{EPA MPG}} \right] \times 100 \quad \text{(Equation Two)}
\]

The graphs in Attachment 6 display the data points used to generate the statistics in Attachment 7. The time span for these graphs is March 1 through December 31, 1985. One assumption upon which this analysis is based is that no change has taken place at manufacturers' facilities that could account for the shifts.

The vast majority of certification tests for this period occurred on Dynamometer sites 1, 2, 5 and 6. An average of the four individual site means was taken to equally weight each CVS when generating the before and after overall facility MPG% Difference. The change in the four site average value
for FTP MPG % Difference (Equation Two) when examined this way is 0.7% lower fuel economy with the "new" connecting hose using 266 pairs "old" and 236 pairs "new." The change in the four-site average value for HWFET MPG % Difference (Equation Two) is 0.9% lower fuel economy with "new" connectors using 286 pairs with "old" connectors and 284 pairs with "new" connectors (see Attachment 7).

Conclusions and Recommendations

1. The "new" exhaust connectors result in lower carbon balance fuel economy when compared to tests with "old" connectors.

2. The primary points of leakage are the metal-to-metal Marman flange interfaces. Silicone gaskets will eliminate this leakage.

3. FE% (Equation One) is the most sensitive indicator for this change.

4. The graphs of FE% and MPG% Difference versus Site (Attachments 4&5) indicate the new exhaust connecting hose tends to make fuel economy values more repeatable CVS to CVS than the old connecting hose.

5. Certification test vehicles have an inherent variability which lessens the statistical confidence of discernable effect.

6. Exhaust connectors should be leak tested periodically to ensure that they do not contribute to sample leakage. Propane injections will not reveal this phenomenon.

7. FE% on Volvo REPCA tests should be monitored weekly to further guarantee collection hose integrity.
Attachments

1. Equipment/Procedure Change Notice #64
2. New System Assembly Drawings and bill of materials
3. Leak Check Procedure
4. Fuel Economy Percent (FE%) Change Graphs - Volvo REPCA
5. Volvo REPCA "New"/"Old" Statistics
6. Paired Data Change Graphs
7. Paired Data "New"/"Old" Statistics

0436e
This change consists of the addition of gaskets to the Marmon flange connections in the flexible pipe which connects the vehicle tailpipe to the constant volume sampler. See Drawing 1. In addition, the single, six foot long section of 4 1/2 inch diameter pipe is being divided into two sections, each three feet long. The sections will be connected by a silicone boot. See Drawings 2 and 3. All flange and tubing diameters, interiors and exteriors remain the same before and after this change.

Gasketed flanges provide better seals reducing the potential for erroneous data due to untested exhaust leaks. The large flexible pipe is being divided into two sections to make it easier to connect the exhaust collection tubing to the wide variety of vehicle and tailpipe configurations that are tested by EPA.

PURPOSE OF CHANGE (Why is this change being proposed?)

9. PROPOSED EFFECTIVITY

| Date, MY, etc. | JULY 1985 |

10. DURATION OR EXTENT OF USE

| TYPE | PERMANENT | TEMPORARY |

11. AREAS OF MSAPC AFFECTED BY THIS CHANGE

<table>
<thead>
<tr>
<th>Area</th>
<th>LOT</th>
<th>E & D</th>
<th>INST. SERV.</th>
<th>CHEM LAB.</th>
<th>QC/QA</th>
<th>ECTD</th>
<th>HDT</th>
<th>C & M</th>
<th>RTS HDWR.</th>
<th>TEST VALID.</th>
<th>DATA BR.</th>
<th>CSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

12. REVIEWS AND APPROVALS

<table>
<thead>
<tr>
<th>Reviewed By</th>
<th>Init.</th>
<th>Date</th>
<th>Concurrency</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. John T. White, Chief Testing Programs Branch</td>
<td>XW</td>
<td>7/14/85</td>
<td>□ YES □ NO</td>
<td></td>
</tr>
<tr>
<td>B. James D. Carpenter, Chief Facility Support Branch</td>
<td>CDP</td>
<td>7/17/85</td>
<td>□ YES □ NO</td>
<td></td>
</tr>
<tr>
<td>C. Don Paulsell, Chief Engineering Staff</td>
<td>CDP</td>
<td>7/17/85</td>
<td>□ YES □ NO</td>
<td></td>
</tr>
</tbody>
</table>

13. DIVISION RESPONSE

<table>
<thead>
<tr>
<th>Signature</th>
<th>Date</th>
<th>APPROVE □ DISAPPROVE □ CONDITIONAL APPROVAL □ (Comments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Z. White</td>
<td>7/19/85</td>
<td>REQUEST TO REVIEW REDRAFTS □ REDRAFT REQUIRED □ RELEASED FOR IMPLEMENTATION □</td>
</tr>
</tbody>
</table>

THE REVIEWS AND RESPONSES NOTED HAVE BEEN RECEIVED AND DOCUMENTED.

THE PROVISIONS OF THIS EPCHN ARE HEREBY AUTHORIZED FOR IMPLEMENTATION.

MSAPC FORM 7.5 DISTRIBUTION: ORIGINAL (White) - EPCHN LOG COPY 2 (Blue) - EPCHN INTERIM LOG

REvised: 7/1/78 COPY 1 (Yellow) - DIVISION LOG COPY 3 (Pink) - RETAINED BY ORIGINATOR

DATE: 7/1/85

John Z. White, Chief
OLD 2½" AND 4½" FLANGE

NEW 2½" AND 4½" GASKETED FLANGE

MALE END

FEMALE END

PILOT TUBE - EXTENDS BEYOND FLANGE FACE .1875"

GASKET THICKNESS = ¼"""

GASKET MATERIAL = SILICON (RED)
BOOT (SEE DETAIL)

NEW SETUP

OLD SETUP

BOOT DETAIL

BOOT MATERIAL: SILICONE
BOOT THICKNESS: \(\frac{1}{8} \)"

BAND CLAMP

EPA

DATE 5-15-85
LAST REVISION

DRAWN A. MCCARTHY
SCALE

TITLE EXHAUST COLLECTION HOSE DRWS. #2
EXHAUST COLLECTION HOSE SECTION

≈36.0"

4½" I.D.

4½" O.D. PLAIN TUBE ENDS

DATE 5-22-85
DRAWN A. MCCARTHY
TITLE EXHAUST COLLECTION HOSE DRWG. 3
LAST REVISION
SCALE
TO493A
Large Convoluted Exhaust Flex-pipe Specification

<table>
<thead>
<tr>
<th></th>
<th>Old Hose</th>
<th>New Hose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>4-1/2" I.D.</td>
<td>4-1/2" I.D.</td>
</tr>
<tr>
<td>Material</td>
<td>Stainless Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Packing</td>
<td>Unknown</td>
<td>Stainless Steel Wire</td>
</tr>
<tr>
<td>Part #</td>
<td>P360S</td>
<td>P360S</td>
</tr>
<tr>
<td>Description</td>
<td>Unlined interlocking medium duty unlined flexible stainless steel hose</td>
<td>Unlined interlocking medium duty stainless steel hose with plain tube ends and stainless steel wire packing</td>
</tr>
</tbody>
</table>

#0155e
PARTS LIST PER DYN.

<table>
<thead>
<tr>
<th>QTY</th>
<th>DRAWING #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>TO4888-1</td>
</tr>
<tr>
<td>2</td>
<td>TO4888-2A,2B</td>
</tr>
<tr>
<td>3</td>
<td>TO4888-3</td>
</tr>
<tr>
<td>3</td>
<td>TO4888-4</td>
</tr>
<tr>
<td>1</td>
<td>TO4888-6</td>
</tr>
<tr>
<td>2</td>
<td>TO4888-6</td>
</tr>
<tr>
<td>1</td>
<td>TO4888-7</td>
</tr>
<tr>
<td>1</td>
<td>TO4888-8</td>
</tr>
<tr>
<td>1</td>
<td>TO4888-9</td>
</tr>
<tr>
<td>1</td>
<td>TO4888-10</td>
</tr>
<tr>
<td>2+10 RES.P.</td>
<td>TO4888-11</td>
</tr>
<tr>
<td>10</td>
<td>TO4888-12</td>
</tr>
<tr>
<td>8</td>
<td>TO4888-13</td>
</tr>
</tbody>
</table>

1) 4½" x 36" CONVOLUTED TUBE
2) 4½" END ADAPTER
3) 4½" I.D. SILICONE BOOT
4) 2½" TUBE - 45° ELBOW
5) 2½" TUBE - "WYE"
6) 2½" TUBE - 90° ELBOW
7) 2½" x 36" FLEX-PIPE
8) 2½" x 24" FLEX-PIPE
9) 4½" END CAP
10) 2½" TUBE - FEMALE TO FEMALE ADAPTER
11) 4½" x 2½" SILICONE GASKETS
12) 2½" STAINLESS STEEL G.A. CLIP
13) BAND CLAMP

NOTE: NOT INCLUDED ON NEW SYSTEM PARTS INVENTORY ARE THE MARATHON FLANGE CLAMPS REUSED FROM PREVIOUS SYSTEM.
MOTOR VEHICLE EMISSION LABORATORY
2685 PLYMOUTH ROAD
ANN ARBOR, MI, 48109

TITLE
EXHAUST COLLECTION SYSTEM - 19" FLEX TUBE (RETURN)

REFERENCE

DATE 7-1-95
DRAWN A. MCGARVY
SCALE 1" = 1'

REFERENCE INFO

PART
A 2.50" O.D. (TUBE)
14.GA. - ZINC PLTD. STEEL
MANF. - FELKER BROS. CORP.

B ANNUAL, CORRUGATED METAL HOSE-TYPE ZEI
FLANGE-2ID. 3.17" O.D.
MANF. - FLEXWELD
THRU. - F.B. WRIGHT

FOOTNOTES

- MARMON FLANGE
- TUBE END
- TUBE END
- FILLET WELD (2 TYPE)
- FILLET WELD (2 TYPE)

- 2.50"
- 14.0"
- 2.50"
- .1875"
304L STAINLESS 1/8" THICK PLATE
MANF. - FELKER BROS.

4¼" MARCON FLANGE (SOAL 5-5)
MANF. - SEE DRAWING RTOABB 8-6

NOTE: 1) HOLE TO BE DRILLED & TAPPED
 FOR INSTALLATION OF THERMOCOUPLE
 FITTING, USED AS ACCESS POINT
 FOR RAW GAS SAMPLE PROBE.

1/8" DRILL THRU
TAP 3/8"-16 NPS RH
(SEE NOTE 1)
MOTOR VEHICLE EMISSION LABORATORY
2585 PLYMOUTH ROAD
ANN ARBOR, MI. 48105

EXHAUST COLLECTION SYSTEM - NON-COMMITTED ADAPTER

DATE 10-21-85
DRAWN A. M. MCCARTHY
SCALE FULL

NOTE: Part should be constructed 3.00" - 6.00" long.

RE-ORDER INFORMATION
PART
A 2.50" OD (TUBE)
16 GA. - 304L ST. STEEL
MANF. - FELKER BROS. CORP
NOTE: BOTH GASKETS CONSTRUCTED FROM 1/16" SILICONE SHEET
Implementation Plan - System Leak Check

1. Assemble a complete dyno exhaust collection hose (all adapters).

2. Leak check with all adapters connected and all outlet ports capped.

Test schematic:

The leak check procedure will consist of pressurizing the assembly with a shop air source which has a rotometer in line. Pressurize the exhaust collection hose to 2"H₂O positive pressure (negative pressure leakage will only be additional dilution air). The approximate flow (measured by a rotometer) needed to maintain 2"H₂O will then be defined as system leakage.

a. New exhaust hose will be leak checked before installation and flow recorded.

b. Old exhaust collector hose will be leak checked, immediately following removal, and flow recorded.
VOLVO REPCA FE% VS TEST SITE (EXHAUST TYPE)

FE% = [(CARB. BAL. FE - METERED FE)/(METERED FE)]*100

HOT START BAG #1 VALUES

EXHAUST TYPE & TEST PHASE
- FE% BAG #1 OLD EXH.
- OLD EXH. BAG #1 MEANS
- FE% BAG #1 NEW EXH.
- NEW EXH. BAG #1 MEANS

FUEL ECONOMY PERCENT DIFFERENCE (FE%)

Attachment 4
VOLVO REPCA FE% VS TEST SITE (EXHAUST TYPE)

FE% = \[(\text{CARB. BAL. FE} - \text{METERED FE}) / \text{METERED FE}] \times 100

HOT START BAG #2 VALUES

EXHAUST TYPE & TEST PHASE

FE% BAG #2 OLD EXH.
OLD EXH BAG #2 MEANS
FE% BAG #2 NEW EXH.
NEW EXH BAG #2 MEANS

FUEL ECONOMY PERCENT DIFFERENCE (FE%)
VOLVO REPCA FE% CHRONOLOGICALLY
FE%=[(CARB. BAL. FE - METERED FE)/(METERED FE)]*100
CVS 21C, DYN0 D001

EXHAUST TYPE & TEST PHASE

FEB BAG 01
OLD EXH. BAG 01 MEAN = 2.0931%
NEW EXH. BAG 01 MEAN = 1.8201%

FEB BAG 02
OLD EXH. BAG 02 MEAN = 3.8774%
NEW EXH. BAG 02 MEAN = 1.8849%

FUEL ECONOMY PERCENT DIFFERENCE (FE%)

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1985
VOLVO REPCA FE% CHRONOLOGICALLY

FE% = \dfrac{(CARB. BAL. FE - METERED FE)}{(METERED FE)}\times 100

CVS 22C, DYN0 D002

EXHAUST TYPE & TEST PHASE

- **PER BAG #1**
 - OLD EXH. BAG #1 MEAN = 3.8782 %
 - NEW EXH. BAG #1 MEAN = 1.4088 %

- **PER BAG #2**
 - OLD EXH. BAG #2 MEAN = 4.7218 %
 - NEW EXH. BAG #2 MEAN = 1.0076 %

FUEL ECONOMY PERCENT DIFFERENCE (FE%)
VOLVO REPCA FE% CHRONOLOGICALLY
FE% = [(CARB. BAL. FE - METERED FE) / (METERED FE)] * 100
CVS 23C, DYNOD003

EXHAUST TYPE & TEST PHASE

FE% BAG #1
OLD EXH. BAG #1 MEAN = 2.4460 %
NEW EXH. BAG #1 MEAN = 0.1582 %

FE% BAG #2
OLD EXH. BAG #2 MEAN = 5.4719 %
NEW EXH. BAG #2 MEAN = 1.4947 %
VOLVO REPCA FE% CHRONOLOGICALLY

FE% = [(CARB. BAL. FE - METERED FE)/(METERED FE)] * 100

CVS 24C, DYNO D004

EXHAUST TYPE & TEST PHASE

- FUEL ECONOMY PERCENT DIFFERENCE (FE%)

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1985

OLD EXH. BAG #1 MEAN = 1.8370 %
NEW EXH. BAG #1 MEAN = 1.0484 %

OLD EXH. BAG #2 MEAN = 2.6171 %
NEW EXH. BAG #2 MEAN = 1.8602 %
VOLVO REPCA FE% CHRONOLOGICALLY
FE% = ((CARB. BAL. FE - METERED FE)/(METERED FE)) * 100
CVS 29C, DYNO D005

EXHAUST TYPE & TEST PHASE

- FEX BAG # 1
 - OLD EXH. BAG #1 MEAN = 1.9276 %
 - NEW EXH. BAG #1 MEAN = 1.8121 %
- FEX BAG # 2
 - OLD EXH. BAG #2 MEAN = 4.2698 %
 - NEW EXH. BAG #2 MEAN = 3.0798 %

FUEL ECONOMY PERCENT DIFFERENCE (FE%)

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1985
VOLVO REPCA FE% CHRONOLOGICALLY

FE% = [(CARB. BAL. FE - METERED FE)/(METERED FE)] * 100

CVS 25C, DYNQ D006
Volvo REPCA FEZ Dynos 1-6
FEZ = \[\frac{((\text{Carb. Bal. FE} - \text{Metered FE})}{\text{Metered FE}}) \times 100\]
March 1, 1985 THRU December 31, 1985

HOT START LA-4'S
Two Bag Weighted Values

<table>
<thead>
<tr>
<th>CVS/DYNO</th>
<th>Old</th>
<th>New</th>
<th>Shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>21C/D001</td>
<td>+2.44%</td>
<td>+1.68%</td>
<td>-0.76%</td>
</tr>
<tr>
<td>22C/D002</td>
<td>+4.31%</td>
<td>+1.56%</td>
<td>-2.65%</td>
</tr>
<tr>
<td>23C/D003</td>
<td>+4.06%</td>
<td>+0.58%</td>
<td>-3.48%</td>
</tr>
<tr>
<td>24C/D004</td>
<td>+2.65%</td>
<td>+1.48%</td>
<td>-1.17%</td>
</tr>
<tr>
<td>29C/D005</td>
<td>+3.09%</td>
<td>+2.31%</td>
<td>-0.78%</td>
</tr>
<tr>
<td>25C/D006</td>
<td>+3.69%</td>
<td>+1.13%</td>
<td>-2.52%</td>
</tr>
</tbody>
</table>

Six Dyno Average | +3.35% | +1.46% | -1.89%
PAIRED DATA MPG % DIFF VS TEST SITE (EXHAUST TYPE)

MPG % DIFF = \((\text{MFR MPG - EPA MPG}) / \text{EPA MPG}) \times 100\)

FTP VALUES

EXHAUST TYPE & TEST TYPE
- + MPG % DIFF ON FTPS OLD EXH.
- ○ OLD EXH. FTP MEAN % DIFF
- x MPG % DIFF ON FTPS NEW EXH.
- ★ NEW EXH. FTP MEAN % DIFF

MILE PER GALLON PERCENT DIFFERENCE (MPG % DIFF)

CVS21C/D001(OLD)
CVS21C/D001(NEW)
CVS22C/D002(OLD)
CVS22C/D002(NEW)
CVS23C/D003(OLD)
CVS23C/D003(NEW)
CVS24C/D004(OLD)
CVS24C/D004(NEW)
CVS29C/D005(OLD)
CVS29C/D005(NEW)
CVS26C/D006(OLD)
CVS26C/D006(NEW)
FTP PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = [(MFR MPG - EPA MPG)/(EPA MPG)] * 100

CVS 21C, DYN0 D001

EXHAUST & TEST TYPE

△ FTP MPG % DIFF
OLD EXH, FTP MEAN = -1.8888 %
NEW EXH, FTP MEAN = -0.4222 %

MILE PER GALLON PERCENT DIFFERENCE (MPG % DIFF)

MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

1985
HWFET PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = \frac{[(MFR MPG - EPA MPG)/(EPA MPG)]}{100}

CVS 21C, DYN0 D001

EXHAUST & TEST TYPE

\begin{itemize}
 \item HWY MPG % DIFF
 \item OLD EXH. HWY MEAN = 0.971 %
 \item NEW EXH. HWY MEAN = -1.147 %
\end{itemize}
FTP PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = [(MFR MPG - EPA MPG)/(EPA MPG)]*100

CVS 22C, DYNO D002

EXHAUST & TEST TYPE

△ FTP MPG % DIFF

OLD EXH. FTP MEAN = -1.0180 %
NEW EXH. FTP MEAN = 0.2281 %
HWFET PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = [(MFR MPG - EPA MPG) / (EPA MPG)] * 100

CVS 22C, DYN0 D002

EXHAUST & TEST TYPE

- HWY MPG % DIFF
- OLD EXH. HWY MEAN = -0.0723 %
- NEW EXH. HWY MEAN = -1.0876 %

MILE PER GALLON PERCENT DIFFERENCE (MPG % DIFF)

MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1985
FTP PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = \[\frac{(MFR \ MPG - EPA \ MPG)}{(EPA \ MPG)} \times 100 \]

CVS 29C, DYN0 D005

EXHAUST & TEST TYPE

FTP MPG % DIFF

OLD EXH. FTP MEAN = -1.3898 %
NEW EXH. FTP MEAN = -0.2988 %

MILE PER GALLON PERCENT DIFFERENCE (MPG % DIFF)

MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER 1985
HWFET PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = [(MFR MPG - EPA MPG)/(EPA MPG)]*100

CVS 29C, DYN0 D005

EXHAUST & TEST TYPE

- HWY MPG % DIFF
- OLD EXH. HWY MEAN = 0.3956 %
- NEW EXH. HWY MEAN = 1.4138 %
FTP PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = [(MFR MPG - EPA MPG)/(EPA MPG)] * 100

CVS 25C, DYN0 D006

EXHAUST & TEST TYPE

FTP MPG % DIFF
OLD EXH. FTP MEAN = 1.1147 %
NEW EXH. FTP MEAN = 0.1728 %
HWFET PAIRED DATA MPG % DIFF CHRONOLOGICALLY

MPG % DIFF = \(\frac{(MFR \ MPG - EPA \ MPG)}{(EPA \ MPG)} \times 100 \)

CVS 25C, DYN2 D006

EXHAUST & TEST TYPE

- HWY MPG % DIFF
- OLD EXH: HWY MEAN = 0.0017 %
- NEW EXH: HWY MEAN = 0.0044 %
Paired Data Mean MPG % DIFF

MPG % DIFF =

\[
\frac{(\text{MFR MPG} - \text{EPA MPG})}{\text{EPA MPG}} \times 100
\]

March 1, 1985 Thru December 31, 1985

<table>
<thead>
<tr>
<th>CVS/DYNQ</th>
<th>FTP</th>
<th></th>
<th></th>
<th>HWY</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Old</td>
<td>New</td>
<td>Shift</td>
<td>Old</td>
<td>New</td>
<td>Shift</td>
</tr>
<tr>
<td>21C/D001</td>
<td>-1.66%</td>
<td>-0.42%</td>
<td>+1.24%</td>
<td>+0.60%</td>
<td>+1.14%</td>
<td>+0.54%</td>
</tr>
<tr>
<td>22C/D002</td>
<td>-1.02%</td>
<td>+0.34%</td>
<td>+1.36%</td>
<td>-0.97%</td>
<td>+1.10%</td>
<td>+2.07%</td>
</tr>
<tr>
<td>29C/D003</td>
<td>-1.24%</td>
<td>-0.30%</td>
<td>+0.94%</td>
<td>+0.40%</td>
<td>+1.41%</td>
<td>+1.02%</td>
</tr>
<tr>
<td>25C/D006</td>
<td>+1.11%</td>
<td>+0.18%</td>
<td>-0.94%</td>
<td>+0.86%</td>
<td>+0.86%</td>
<td>+0.00%</td>
</tr>
</tbody>
</table>

Four Dyno Average
-0.70% -0.06% +0.65% +0.22% +1.13% +0.91%

-48-