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/Whr I'IVC CUNTROL OF LARGE SPACE STRUL I LIKES

USING RECURSIVE LATTICE FILTERS

By

Gene L. Gogl i a*

SUMMARY

This report summarizes the research activities performed under grant

NAG-1-429. The objective of the research has been to study the use of re-

cursive lattice filters for identification and adaptive control of large

space structures. Lattice filters are Used widely in the areas of speech

and signal processing. Herein, they are used to identify the structural

dynamics model of tree flexible structures,. This identified model is then

used for adaptive control. Before the identified model and control laws are

integrated, the identified model is passed through a series of validation

procedures and only when the model passes these validation procedures con-

trol is engaged. This type of validation scheme prevents instability when
i

the overall loop is closed.

One of the main aims of the research has been to compare the results i
obtained from simulation to those obtained from experiments. In this re-

gard, the flexible beam and grid apparatus at the Aerospace Control Research

Lab (ACRL) of NASA Langley Research Center were used as the principal candi-

dates for carrying out the above tasks. Another important area of research

namely that of robust controller synthesis was investigated using frequency

domain multivariable controller synthesis methods. The method uses the

fi

r
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Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) approach to en-

sure stability against unmodeled higher frequency modes and achieves the
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desired performance. Such a controller was designed for the 122 mr. Hoop-

Column antenna using a single 3-axis torque actuator and attitude sensors.

References 1 and 2 present the detailed analysis of identification

results for the flexible grid apparatus using lattice filters. The scheme

provides on-line identification of number of modes, mode shapes, modal damp-

ing and natures frequencies. The results indicate that the lattice identi

fication scheme is a viable scheme for identifying the structural dynamics

of flexible structures. The experimental results also indicate differences

between those predicted by finite element analysIF and obtained by experi-

ments. The difficulties are not as such in finite element analysis but in

modeling the apparatus for finite element analysis. This fact empnasises

the need for on-orbit identification of large space structures before con-

trol is attempted. A summary of the experimental results obtained using

lattice filters is described in reference 3.

An adaptive control scheme using lattice filter identification and

modal description has been developed in reference 4. Alternate schemes of

using input-output models instead of modal form from lattice filters is 	
i

described therein. The problem in this approach is to obtain efficient
	

^i
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control schemes as the identified model of the system becomes coupled and to
	 f

calculate the pole placement control law on-line is computationally complex.

Presently, the identification scheme using lattice filters for obtaining the

input-output model is under development in the Charles River Data Systers in

the ACRL.

A new approach of v•'signing robust controller for a large flexible

space antenna using the LQGOLTR approach was developed in reference 5. The

method was used in designing robust controller for the 122 mr. Hoop-Column

antenna using only a 3 axis torque actuator and attitude sensor. The objec-

2
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tive is to design the controller based on a lower order model to achieve the

desired bandwidth and at the same time ensuring stability against unmodeled

higher frequency modes. The results in reference 5 indicated that if one

uses only a rigid body model for design stability against unmodeled modes

can be obtained but not the performance. Based on detailed studies in ref-

erences 6 and 7 it was concluded that with the fiat three flexible modes

(corresponding to the 3 axes) included in the design model both stability

and performance can be ensured.
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Identification of the Dynamics of a
Two-Dimensional Grid Structure using

Least wares Lattice f=ilters'
1

R, C. Montgomery' and N. Sundatrarajana

Abstract

The basic theory of least squares lattice filters and their use in identification of structural
dynamics systems is summarized. Thereafter, this theory is applied to a two ,diimensional grid
structure made of overlapping bars. Previously, this theory has been applied to an integral beam.
System identification results are presented for both simulated and experimental tests and they are
compared with those predicted by means of finite clen% at modeling. The lattice filtering ap-
proach works well for simulated data based on finite element modeling. However. considerable
discrepancy exists between estimates obtained from experimental data and the finite element
analysis. It is believed that this discrepancy is the result of inadequacies in the finite element
modeling to represent the damped motion of the laboratory apparatus,

Introduction
The ability to predict the dynamic behavior of large space structures (LSS) ade-

quately for control system design is doubtful because of their expected size, appreciable
flexibility, and on-orbit assembly anomalies, Hence, dynamical modeling from on-
orbit measurements, followed by modifying the control system as dictated by the
identified control system design model (adaptive control), is of interest, The goal of this
paper is to determine, using a generic grid structure, whether a priori modeling of the
structure is adequate for a high authority control system design oe whether on-orbit
identification is needed.

An approach for identifying the dynamic behavior of LSS that estimates model order
in addition to model parameters is presented in [ 11. It uses lattice filters which provide
an order as well as a time recursive algorithm for linear least squares signal estimation.
[2) provides a tutorhil on lattice filter theory and applications. The outputs of the theory
of [I) are the least `square estimate of the measurement sequence, the model order
required to fit the measurements, the associated lattice model (this includes mode shape
'This paper was originally presented at the American Control Conference. San Diego, California, June 6.8.
1984.

'NASA Langley Research Center. ,Hampton, VA 23665.
'Old Dominioth University Research Foundation. Hampton, VA 23666.

35

1

44

5	 11



U
t

36	 Montgomery and Sundoraralon

estimates that arc orthonormal in the measurement +pare), and the us,ociated auto.
regressive moving average (ARMAX) model of the measurement sequence.

Some distributed adaptise control strategies require identification of the natural
modes of a structure 13. 41. l nfortunattl). the lattice filter provides mode shapes that
are orthonormal in the measurement Spare and, hence, are not the natural modes.
Natural modes can be obtained, however, either through an eigenvector anal) sis of the
identified ARMAX model or through a transformation that provides spectral decom-
position of the lattice filter modal amplitudes 151, The latter.method is used herein to
obtain the natural modes. Using spectral decoupling to determine mode Shapes. one can
obtain mode frequency and damping using an equation error parameter identification
method (3) that employs a second-order ARMAX model to represent the natural mode
amplitudes, T)te procedure of 131 tracks frequency and damping coefficients required
for the modal amplitude input sequence to tit the second order ARMAX model.
Because the input sequence may have an unfavorable signal to noise ratio, the parame-
ters so derived must be tested for validity before use in control system design. This
parameter testing is treated in detail in (6[ but is not employed herein.

The foregoing procedure has been used to identify the dynamic characteristics of an
integral free-free beam in [1. 71. 151 describes the test apparatus used in those studies.
In this paper, the'theory is applied to a more complex, two-dimensional grid structure
made of overlapping bars. First, a brief overview of the theory used is presented, Next,
system identification results are presented using both simulated and experimental
data, Finally, the experimental results are compared. with those predicted using finite
element modeling,

Summary of the Method Used to Identify Structural Dynamics Systems

For the application considered here v,e assume that the kth measurement sample is
of the form

where NS represents the number of sensors. It is assumed that Y is generated from a
model system such that

►•k.	 chew + n t	 (2)

Here, (P is a made shape matrix, `)'k is the modal amplitude vector. and n k is a Gaussian
random variable with a zero mean and a covariance matrix R. Typically, for structural
dynamics applications, each component of 111k is the output of an uncoupled second-
order process, The task here is to estimate the order and obtain the least square estimate
of IPk. from N + I measurement samples ?b through y, . [ I ► presents a derivation of the
equations that relate order n, and time i. recursions for the normalized forward and
backward residuals (e and r, respectively) as well as the least squares estimate of the
measurement vector y. These equations are listed below;

e,.,,.i = (I — k ,-i)-1:(e,.,, — k,.,.ir,-j,) 	 (3)
rj.,,- i — (I — k2^.^)-i:(r^-i.^ — k,.,-ie,.,)	 (4)

N-1

w	 Z E ( e.v.,, I rx-1,J	 (S)
n-o

it
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with

k,,OQ	 (e, n, t',>1 „)	 (6)

acid tr'(.rjy) is the orthogonal projection operator of the vector .Y onto the vector y. The
symmetry of the recursion ;formulae is apparent. The equations are coupled by the term
All ",, which is customarilycalled the "reflection coefficient."

Clearly, in this approach one may "`fit the noise" by continually increasing the order
of the system; however, once the order of the estimator has increased sufficiently, the
residual errors should lie within a noise band which can tae predicted based on assumed
noise characteristics. A threshold value can be selected based on this predicted noise
band and order determined by a test of whether or not the residuals have been reduced
to lie within the noise band. Also, the test can be made considering several samples of
data; that is, using a data window. (1) documents experience in order determination
based on this threshold test,

Having defined the order required to fit the data using a linear model, we seek a fixed
set of basis functions that are spectrally decoupled for modal control, Therefore, u fixed
orthonormal basis is used during intervals when the order estimate is constant. (How-
ever, the order estimate is checked at each measurement sample based on the threshold
test.) The lattice filter uses the current measurement as the first mode shape and, using
a modified Cram-Schmidt orthonormalization procedure, generates additional basis
functions from estimation residuals. Consequently, the output of the lattice filter pro-
duces coupled mode shapes and corresponding modal amplitudes wherein the first
coupled modal amplitude will contain all significant natural moues. Since the order
estimate it 	 been determined. the first coupled mode digital Fourier transform (DFT)
amplitude spectrum is searched for the it significant peaks and corresponding
frequencies, Because the spectrum contains rt peaks for the it separate modes, a
transformation matrix can be obtained that decouples the spectrum. This transformation
matrix is the inverse of the matrix whose elements are the real part of the transform of
the it coupled modal amplitude channels (rows) evaluated at the it peak frequencies
(columns), It effectively transforms the lattice filter modes into spectrally decoupled
natural. modes. These decoupled modes are not orthogonal. This procedure is described
in (5).

Thus, the decoupled modal amplitude time series, w(k), is obtained by applying the
transformation to the direct output of the lattice filter. ) his time series is then analyzed,
for each mode, to identify the parameters of its autoregressive moving average
ARMAX model. The inputs to each ARMAX modal model are the generalized forces
and hence, each model takes on the form

w(k) = A i x'(k — 1) + Azw(k — 2) + B l f(A — 1) + B: f(k — 2)	 (7)

wheref represents generalized forces. The parametersp' _ (A i , A , , B,) are the ones
which are identified and which are required for the control law design process. Thus,
the ARMAX model output error is

e(k — 1) = w(k — 1)	 (A,(k — I)w(k — 2) Ir A 2 (k — Ihj"(k — 2)

+ B# — i)f(k — 2) + Ba(k — 1)f(k — 3)}	 (g)

The method of [3] is used to identify the parameters (p) using the iteration sequence

R
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p(k) - p(k — 1) + e(f. — 1)
[Wl w(k — 2),W2w(k — 3), Wif(k — 2),W41(k — 3)]	 (9)

As Indicated in [3], the weights W, Y - 1, . , , , 4) must be selected so that they are
consistent with the relation

Wt w 2(k — 2) + Wiw 2(k — 3) + W2 f2(k — 2) + W,.f 2(k — 3) 6 2 (10)

and the inputs to the algorithm (w and f) must be sufficiently varying and large if the
parameters are to converge to their correct value.

Damping ratios and natural frequencies of the movies can be obtained from A i and
A2 of equation (7). However, the solution is not unique, due to the foldover phenome•
non of sampling. By finding the roots, s„ of the characteristic equation (7) and using

	

the relation z, - e" in the primary strip, where r is the sampling period, the following 	 I
equations for damping ratio and natural frequency are obtained for a typical root,,
say xt
	 MA

w ¢/(21rr)	 01)

c(c 2 + 02) 112	 (fir
,^ herein

d - tan"(b/a)	 (13)

c - — I In(a2 .+. b = )	 (14)

and a = Re(z) and b - lm(:). The behavior of this overall system identifica-
tion methodology with both simulated and experimental data is discussed in the sub-
sequent sections.

Description of the Flexible Grid Facility

Figure I shows the flexible grid experimental appartus currently being built at the
NASA Langley Research Center. The grid is a 7 ft by 10 ft planar structure made by
overlaying aluminum bars of rectangular cross section. The bars are centered every foot
so that there are 8 vertical and 11 horizontal bars, As shown in Fig. 1, the grid is
suspended by a cable at two locations on the top horizontal bar. The motions of the grid
perpendicular to the plane of Fig. 2 are the ones of interest in this study. There are nine
noncontacting deflection sensors mounted on a back frame which give a 9 x I
measurement vector. The sensor data are linked to the main CYBER 175 Real-Time
Computer System at NASA Langley Research tenter so that the identification can be
carried out in real time. For the experimental tests, the locations of the sensors are
indicated in Fig. 2.

Simulation Studies

A Finite element anaiysis of the grid was performed which included the suspension
cables. Nodes were place1 at each overlapping joint on the grid. the ceiling attachment
points of the cable, and every one-half foot along the cable. The grid elements con-
necting the nodes were modeled as bending elements, whereas the cable elements were

rrIf

8
^	
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FIG. 2. A Schematic of the Grid Apparatus Indicating Locations Referred to in the Text and
Subsequent Figures

modeled as two-force members. Thus, a total of 165 elements were included in thel
model, Four degrees of freedom zppropriate for motion normal to the plane of the grid
were considered. No damping was included in the model. Thirty modes were obtained
from this analysis. The frequencies of the first ten modes are listed in Table 1. The first
three modes are the pendulum modes, the fourth is the first bending mode and the fifth
is the first torsional mode, The finite element analysis uses an iterative method to
calculate mode frequencies. The frequencies used in simulation are believed to be
numerically accurate since the change in eigenvalue iterate of the highest frequency
mode used in the simulation is l0" ' on the final iteration, The corresponding eigen-
value iterate was 1565, which corresponds to the mode 8 frequency in Table I -

A simulation was developed that accommodates the first 15 modes of the analysis,
but only four mod°s were used herein. Modes 4, 6. 7, and 8 were used. A sampling
rate of 32 Hz was simulated with a standard deviation for the measurement noise of
0.005 in, which was, based on actual sensor characteristics, Modes were simulated with
modal amplitude initial conditions of CIA. The data window for order determination
included eight samples. In this work, the sensor locations were chosen based on several
simulations. These (locations differ from those of the experimental apparatus in that they
were selected to maximize the ; Yect of simulated modes on the sensors. This was
accomplished by visual examination of the simulated sensor outputs. The selected
locations are indicated in Fig, 2, An asterisk is used to distinguish simulation sensors
locations from experimental ones. One may expect that location 5 would be preferablej

• 10
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TABLE 1. Modal Frequencles Obtained
from the Finite Element Analysis or
the Grid

Mode Number Frequency iNz ►

1 0 364

2 0.625
3 1.398

4 2.29
3.07

6 4.791

7 5.933

8 6.297

9 7.337

10 10.352

to location P; but, since some simulated modes had little input to a sensor at loca-
tion 5, location 5* proved to be better location.

Based on the entire measurement vector, the lattice filter o;rdcr estimate is shown in
Fig. 3. Also, sensor 5* data, typical of those of the other sensors, is shown in Fig. 3.
After estimating the order, we carried out a transformation based on the discrete Fourier

.^	 2 ,Irl	 1	 ► ^'	 '	 '
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FIG. 3. Simulation Time Histories of Sensor 5", Lattice Filter Order Estimate, and the rorrn of the

Estimation Error for the Entire Measurement Vector.

. 
11

4

I



cl

-	 l

A	 "

42
	 Montgomory and Sundararslan

1
y l , in,0 	 ^ ^^	 4	 1^4

-1

Y4 0

 in. 1

0

4

Order

A

I	 I	 l	 I	 I	 I

0	 1	 2	 3	 4	 5

Time, see,

FIG, 4. Sensors I and 4 from Experimental Tape 5 and the Estimate of Signal Order Obtained by the
Lattice Filter.

transform (DFr) using 128 samples in order to obtain the natural modes, and used the
equation error method to identify associated modal frequencies and damping. The
resulting modal frequencies, damping and mode shapes are compared with those
predicted by finite element analysis in Table 2. The identification of frequencies and
damping are close for all four simulated modes, However, the mode shape estimates
agree with simulation for only three modes, One possible explanation for this is the
limitation imposed by sampling rate and the number of samples used to decouple the
lattice filter modes. Sampling at 32 Hz and including 128 data points in the DFC, a

TABLE 2. Camp2rison Between Simulated and Identified Results )

^. Mode 4 Mode 6 Mode 7 Mode 8
e

j Simu-	 Identi- Simu- Identi• Simu- Identi• Simu- Identi•
lated	 fled lated fled lated tied lated tied

Frequency

{`'-% ! (Hz) 2.29	 2.4 4.79 4.8 5.93 6,0 6.3 6.4

Sensor I

1 • 0.29	 0.30 -0.16 -0.17 0.31 0,32 0.59 0.45
2" -0.40	 -0,41 -0,12 -0.08 -0.43 -0.43 0 -0.43
3' 0,29	 0,30 -0,16 -0.18 0.31 0.32 -0.16 0.21
4 0, 0.30	 0.31 0.38 0.37 -0.06 -0,06 0.01 -0,09
5' -0.39	 -036 -0,72 -0,74 0.49 0.49 0,01 0,49
6 0 0,30	 0.30 0.37 0,36 -0.06 -0,06 -0.01 -0.06
7 0 0.31	 0.31 -0.20 -0.15 -0,32 -0.31 0.39 -0,19
8' -0.39	 -0,38 -0.26 -0.29 0.41 0.41 0 0.37

K ' .	I 9' 0,31	 0.31 -0.20 -0,14 -0,32 -0.31 -0,39 -0.38

a

I
4

{
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frequency resolution of only 0 . 25 Hz is obtained. Since the expected frequency sepa-
ration between modes 7 and 8 is only 0,4 Hz, good decoupling cannot be achieved.

To summarize the lessons learned from the simulation studies:
1. The least squares lattice filter gives good identification of simulated modal

frequencies, damping ratios, and mode shapes in the presence of sensor noise
expected in the experimental apparatus.

2. The DFT method of obtaining natural modes from the lattice modes is inaccurate
if the modes are closely spaced in frequency. This may be improved by adding
more samples to the DFT,

3. Sensor locations should be properly selected to insure good identification of
simulated mode shapes.

The next section will discuss results obtained from the experimental apparatus.

Experimental Results

Experiments were conducted using the grid apparatus previously described, The grid
was excited using an air shaker which periodically exhausted a jet of air that impinged

'	 on the grid at sensor location 1. The frequency of the jet was adjustable from 0 to
P 50 Hz. Although the resulting grid excitation was periodic, it was not purely sinusoidal

but was rich in harmonics. Because of the range limits of the deflection sensors - 0 to
approximately 2 in. - the maximum peak-to-peak deflections of the grid wei-e limited
to about I in, When the peak-to-peak deflection neared this limit, the air shaker was
turned off and the grid was allowed to vibrate freely with only air and material damping.

w'	 A CYBER 175 Real-Time Computer System sampled the deflection sensor data at
r ;' 32 Hz for 5 seconds. The data were stored on a system data file for further analysis.

Since only free-decay response data were recorded, the B, and B 2 parameters of
equation (7) were not identifiable, Figure 4 presents data from file 5. Here, the order
estimate is seen to converge to an oscillation between 2 and 3 at about 0,5 s. At about
0.8 s, the order estimate was fixed at 3 and data collection (at 32 Hz) for the 64 time
samples required for the DFT was started. The DFT was accomplished at about 2.8 s
and the decoupling transformation matrix was calculated. The modal amplitudes after
this time should contain a single frequency and the transformed mode shapes should
correspond to the excited natural modes of the structure. Thus, three modes were
extracted from the experimental data tape. These have frequencies near 0,5 Hz.
2,5 Hz, and 5 Hz. Table 3 presents the mode shape estimates obtained from the
experiment, Also presented are selected mode shape predictions taken from finite
element analyses. The modes selected were those whose frequencies bracket the experi-
mentally derived ones. The following discussion deals with the Table 3 data in order4	
of increasing frequency.

A good comparison does not exist between the first or third experimental modes and
either of their bracketing finite element analysis modes. Additionally, there is some
bending in the first experimental mode as evidenr..ed by sensors 4, 5, and 6. The
amplitude of this mode is shown in figure 5 along with its ARMAX parameters A, and
A 2 and their primary strip equivalents of damping and frequency. Figures 6 and 7 show
the same information for the second and third modes. respectively. For the second

Y °" t

	

	 mode, a good comparison does exist between it and the 3.07 Hz finite element analysis
mode. Note that, however, the output of sensor 4 is opposite in sign and reduced in
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TABLE 3, Comparlson Dowten the finite Element Predictlons (P) and Fxperimentol
Identification (E)

Mode I Mode 2 %lade 3
Cumpansons Compansons Comparisons

Origin P E P P E P P E P

Frequency

tliz) 0.364 0.5 0 635 3 29 ZJ 3 07 4.79 5 5.93

Sensor

1 -0.51 0.26 0.45 0.35 -0.45 -0.47 -0.36 -0.04 0.43
2 -0.51 0.46 0 -0.25 0.11 0 -0.34 -0.38 -0.35
3 -11151 0.66 -0.45 0.35 0.44 0.48 -0,36 - 0.14 0.43
4 -0-16 0.24 0.41 0 38 -0.08 0.13 0.22 O.Is -0,07

5 -U.:IV -011 0 -0.25 0,05 0 0.34 0.10 0.07
6 -0.36 0.41 -0.41 0.38 -0.03 -0.13 0.22 -001 -007
7 -0,08 0.10 0.36 0.38 0.54 0.51 -0.38 -0,65 -0.45
8 -0.08 0.20 0 -0.24 -0.07 O -0.43 0.39 0,32
9 -0.08 0.10 -0.36 038 -0.54 -0.51 -0.38 -0.54 -0.44

^	 1

1
0

-1 P
3.

Al

0

0

A2	
----

-2

1.

w, Hz.

0

.z
0

.2

I	 L	 i	 I	 I	 I
0	 1	 2	 3	 4	 5

Time, sec.

FIG. S. Characteristics of the First Mode Identified from Experimental Tape 5,
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FIG. 6. Characteristics of the Second Mode Identified from Experimental Tape 5,

amplitude from the finite element prediction. This means that a feedback on that sensor 	 t'

based on the finite element analysts will be destabilizing near the 2,5 Hz frequency.
The validity of this deduction can be established by examining the outputs of sensors 1
and 4 (4). According to the finite element analysis, the 2.5 Hz content of the sensors

	
^E

!f

should be opposite in sign. However, they are in please in agreement with the identi-
fication results.

Conclusion
The application of the least squares lattice filter in system identification has been

extended to a non-integral, two-dimensional grid structure made of overlapping bars.
Previous experience has been limited to an integral free-free beam. Both simulation and
experimental data were used to evaluate the system identification capabilities of the
method, In the simulations, the least squares lattice filter gave good identification of 	 {
simulated modal frequencies, damping, and mode shapes in the presence of sensor
noise expected in the experimental apparatus. However. the spectral decoupling method
of obtaining natural modes from lattice filter triodes required a large number of data
points in the discrete Fourier transform to get adequate ;requency resolution when the
modal frequencies were closely spaced. This problem can be overcome by an eigen-
vector analysis of the lattice filter's associated Al2MAX model. When the lattice filter'.
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FIG. 7. Characteristics of the Third Mode identified from Expcnmentai Tape 5.

was used for system identification with experimental data, the mode shapes identified
t differed significantly from those of the finite element analysis. This has been corrobo-

rated by examination of the sensor data and indicates that on-line identification of large
structural dynamic systems may be absolutely necessary to get acceptable performance

f

in a high gain system that requires knowledge of mode shapes. t ,,
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EXPERIMENTAL EVALUATION OF FLEXIALB STRUCTURE IDENTIFICATION USING LATTICE FILTERS

N. Sundararejan

old Dominion University Research Foundation, NASA Lsngltiy Research Center, Hampton, VA

Abstract. This paper presents the use of least square lattice filters in
idescation of the dynamics of highly flexible structures. Lattice filters have
been used extensively in the areas of adaptive signal procesing and speech synthesis.
Herein, they are used for on -line identification of the number of codes, made shapes
and modal amplitude time series from the measurement data. The theory is illustrated

using experimental data for a simple free-free base and a sore complex, flexible,

two-dimensional grid apparatus. Results presented Indicate that t1W lattice filter
approach produces effective identification of structural dynamics for the class of

structures studied to this time.

Keywordat	 Identification, Lattice Filters,	 Space Vehicles,	 Least	 Squares

Approximation, Vibration Maasurements.
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INTRODUCTION

With the site of the structures currently
contemplated for building in space Mcoming
larger, identification of the dynamic characteris-

tics of these structures is an important area of

research. Accurate on-orbit identification
becomes anecessity as these structuraa cannot be
assembled fully on the ground because of its size,

and also it is difficult to predict an accurate

model on the ground. An the "rfore--nct rcquira=
ments for these structures in space become

stringent, however, it becomes imperative to
identify their characteristics on<.orbit and modify
the control system as dictated by the identified
control system design model (adaptive cont rol).
This paper highlights the model determination
phase of the adaptive control problem. This phase

involves not only determination of parameter
estimates for an assumed linear form, but also the
order of the linear model form.

An approach for identifying the dynamics of Large

Space Structures (LSS) thdt estimates model order
In addition to model parameters is presented in
Sundararajan and Montgomery (1983). It uses
lattice filters which provide an order as well as

time recursive algorithm for linear least square

signal estimation.	 A comprehensive tutorial on
the theory and applications of lattice filters has
been given by Freidlander ( 1980). The main
resulte from the paper of Sundnrarajan and

Montgomery (1983) arcs the least square estimate
of the measurement sequence; the model order

required to fit the measurements; the associated
lattice model ( this includes mode shape estimates
that are orthonormol in the measurement space) and
the associated auta-regressive moving average
(ARMA) model of the measurement sequence. The

mode shapes obtained by the lattice, filter are not
the "natural" modes but a linear combination of
them. In order to compare the identified mode
shapes to those predicted by finite element analy-
sis, a decoupling method to obtain natural mode
shapes from the lattice mode shapes have been
developed in Sundararajan and Montgomery (1982).
Using the above spectral decoupling method to
obtain natural mode shapes, mode frequency and
damping can be obtained using an equation error

parameter identification method (Johmaon and

Montgomery (1979)) that employs a second order
ARMA model to represent the natural mode ampli-
tudes. This procedure is followed herein.

The objectf.ve of this paper is to present the
experience in using lattic.- filter theory for

Identification of structural dynamics of two flex-
ible structures. They cons.st of a one-dimen-

sional free-free beam and a two-dimensional
flexible grid apparatus. The structures are part

of an experimental facility at the Aerospace

Control Laboratory at NASA Langley Research Center
for studying advanced control concepts for large
space structures. The beam apparatus provides a

simple structure to test the basic concapte first,
and the grid apparatus provides a more complex

structure close to the real spacecraft. Before

presenting the results of lattice filter identifi-

cation for these structures, a brief outline of

the basic theory is given. Results are presented

for the identification of the dynamics of the beam

using experimental data.	 Next, the same is

repeated for the grid apparatuu. Conclusions

based on the above study results are then

summarized.

Summary of Lattice Filter
Identificarion Theory

For the application considered here, we assume
that the kth measurement sample is of the form

Yk ° 
l
y l (k), y2 (k), . . ., YNS(k) I

where NS represents the number of sensors. It is
assumed that y is generated from a model system

wherein

y k - aq k + n 	 (1)

Here, 4 is an NSxNM mode shape matrix, q k is the

NMx1 mortal amplitude vector, and nk is a NSxI
gauseian random variable with zero mean and b

covariance matrix R. Typically, for structural
dynamite applications, each component of q k fa

the output of an uncoupled second order process.

The task here is to estimate the order (NM) and
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obtain the least squats estimate of qk free the

N+I measurement oamples yo through yN.

SundararaJan and Montgomery (198'•) present a deri-
vation of the equations that re.ste order, n, and
time, i, recursions for the normal!;ad forward and
backward residuals as well so the least square
estimate of the measurement rector. These equa-
tions are listed belowt

2	 -1/1
-i,n+l	

(1 ` ki,n+1 )	 ( 4 ,n	 kl,n+l-i-1,n)

r	 - (I - k
2	 )

-1/2(c	 k	 e	 )
—t,n+l	 i0n+ 1	 ^i-1 ,n "' l , n+i^t,n

N-I
yN - I E(4,n JE1- i ' n )	 (2)

n-0

wherein

k i,n+l - <.,i ^ n , T-i-1 ^n>

and k(x1y) is the othogonal proje.tion operator of
the vector x onto the vector y. The symmetry of

the recursion formulae are apparent. The equa-
tions are coupled by the tens ki,n+1 which is

custowarily called the "reflection coefftctenc.'
The dtructure of this equatton is depicted In

Fig . I where we have used the symbol t' i to
reprosent the time shift operator, i.e.

- 1
Z 

ri,n - ri-I,n

it should be noted at this point that the lattice
fitter is a modified Gram-Schmidt procedure
involving both forward and backward residuals
wherein the backward residuals form an orthogonal
basis for the entire observation sequence. Hence,
any least square estimate 0 the orthogonal
projection onto this basis. Assuming at this
point the order NN has been obtained (vhich is
explained below), the lattice filter has
decomposed the estimation of y into the form of
equation (1),

wherein

4-Irl1,rl,,.)

and

1
i.NM - q(1)

i.e., the backward residuals r i, n form the

orthonormal basis, or the mode shape matrix 0 and
the forward residual Ei,n represents the modal

amplitude time series.

The lattice filter has the following advantageci

1. Given a basis for order N, a basis for
order N+l caei be abtained using the
recursion formulae.

2. Because of the modified Cram-Schmidt
procedure, the baste for all orders n
between 0 and N are the first n elements
of the basis of order N.

3. The estimate assuming any order n
etween 0 and N+I can be computed using

e.:atiorl (2).

Tl^	 tat, ice filter provides the information
nee.:ea	 letermine the residual sequence for any

model order between 0 rnd N+1 Inclusive, This

information provide$ the basis for the model order
dttermtwtan method described next,

Clearly, in this approach one MAY "fit the noise"
by continually Increasing the order of the system;
however, once the order of the estimator has
Increased beyond the correct order, then the
residual errors should its withi p a noise band
which can be predicted based on assumed noise
characteristics. A threshold value can be
selected based on this predicted noise band, and
order can be determined by a test of whether or
not the residual# have been reduced to lie within
the noise band. Also, the test can be made
considering several data samples when using a data
window. SundararaJan and Montgomery (1983) docu-
ment the experience in choosing the data window
site Nw and the threshold level based on # imula-
tions. Having defined the order required to fit
the data using a linear model, for comparison with
finite element analysis predictions, we seek a
fixed set of bads functions that are spectrally
decoupled. A method to obtain the decoupled modes
from the lattice filter modes using digital
Fourier transform ( OFT) has been presented in
SundararaJan and Montgomery (1982). Essentially,
at this point we have estimates for order NM, mode
shapes 0 and modal amplitude time series q(k) from
the lattice filter.

Since the ultimate objective of identification is
for control system design, an ARMA model is
identified using the modal amplitude time series

q(k). The method is b--:: an art equation error
method described In Johnson and Montgomery

(1979). For each mode, the model to described by
the equations

q(k-l) n A l q(k-2) + A2 q(k-3) + B I u(k-2) + B2u(k-3)'

(3)
The equation error is given byi

e(k-I) - q(k- U - q(k-1)

- q(k-1) - ( AI q( k-2 ) + A2q(k-3)

+ e I u(k-l) + 12u(k-3)1

where q is the model amplitude estimated by the
lattice filter, u is the modal control force, k is

the sample number and Al, A2 , B11 82 are

the ARMA coefficient,.	 The term in brackets is
the model equation.	 The ARMA coefficients are
then updated byt

A I (k)	 AI(k-1)	 q(k-2)

A 2 (k)	 - A2(k-1)	
+ o(k-00

q(k-3)

s I (k)	 BI(k-l)`	 q(k-2)

^2 (k)	 82(k-Id	 P(k-3)

The weight a assures stability if

0 < u < 2/(q
2
 N-2) + q2 (k-3) + U2 (k-2) + u2(k-3)(

C3

s

i	 F

This Identifier performs well to a low noise
environment, but when the information content of

the signal is small, it attempts to fit the noise
(Thou, et. al. (1982). Also, the ideal ARNA model
for the beam has input parameters (B's) which are
three orders of magnitude smaller than the (A's).
This causes a very high sensitivity to noise in
the identification of the B's, and when the input

force Is applied, it tends to cause the identifier 	 {	 `
gain on the A's to decrease significantly.
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AIM igh these effects are evident in the results
prescoced here, they did not prevent successful

Identification.

It one to Interested In determining the damping
ratios and natural frequencies of the modes, they

can be obtained in a straightforward nannor from

the equation (7), However, It should be noted
that this is not unique due to the foldover

phenomenon due to sampling. by finding the toots

at the equation (9) and using that relation

z n sat In the primary strip, where Y is the

asapling period, the damping ratio and natural
frequency can be obtained.

The behavior of this overall system identification
methodology with experimental data as discussed in
the subsequent sections.

uparimental Studies for the
Identification of a Free-free Dean

In this section, the lattice filter theory

developed earlier is illustrated for the idencifi-
cation of a one-dimensional tree-free beam. The

identitication scheme yields the strdctural
dynamic characteristics of the basis. The experi-

mental. apparatus for the frae-free beam is shown

in Fig , 2.	 It consists of a 12-foot beam of
rectangular e .̂oas-section which is suspended from

the ceiling 'ay two cables and to attached to tour
electromagnetic (area actuators, There are nine

noneontact.ng deflection sensors that measure the

translational deflection of the beam. The actua-

tors are compensated to eliminate the effects of

friction as much as possible. This cumpancation

Is nonlinear. producing a force in the direction
of the beam motion at the actuator attachment

points which is designed to equslite the effect of
frictions Testing Liao done ^,, manually exciting
the beam approximately in its first flexible mode

and sampling the nine sensors at 64 samples per

second. A total of 5 seconds of data ties stored
on a tape which was post processed with the
algorithm. Figure 7 shows a time history of some

of the maoourdment data processed by the algo-
rithm. The innovations sequence for sensor 4,

INOV 40 Is shown dust below its time history,
Also shown to the norm of the forward estimation
residual, ENORM, which includes all components of

the measurement vector. Below the norm is the
estimate of model order. This was obtained using

a data window of eight samples. Initially, the
urdur estimator fills the data window, and hence,

the Indicated order estimate increases to 6.

After this the order estimator settles to 2
indicating that, even though we attempted to

excite only one mode, there were, in fact, two

significant modes excited. Note also that the
norm of the forward estimation error is small

compared with the value at the start of the

process when the order estimate was settling.

The modal amplitudes obtained from the lattice

filter are spectrally decoupled, tieing the proce-
dure discussed earlier, after enough data are

taken to accurately take the OFT (64 time samplei,

about t second).	 This occurs at about 1.75
seconds, the first .75 seconds being used for the
identification of mode shapes and model order (see

Fig. 4). Figure 4 shows the modal amplitudes for

both of the identified modes. These are the

signals that are inputs to the parameter identifi-

cation scheme used to identify the parameters of

the ARMA model of the modes. The identified ARMA

parameters are ohown on Fig. 4 for each of the two

modes identified. The a priori parameter esti-

mates are initially offset from the values

predicted by a finite element analysis which are
also Indicated in Fig. 4. These parameters track

the instantaneous value required to mintease the
output error. one possible smtplanstion of the
oscillatory behavior of the Mods 2 parameter
estimates is the nonlinearity of the actuator
compensation.	 Nonlinearity is apparent in the
sensor 6 dsta an Fig. ), Note that lattice filter

produces o linear least square fit of the data to
the msssurestnts, and in so doing, produces a
predominantly linear first made estimate and lumps

the nonlinear dynamics into the higher modes,

Thus, the parameter tracking Is more stable in
Mode I and produces estimates of an undamped
(A2­1) oscillation at neatly 2.7 Nt. It the
algorithm is constrained to an order estimate of
one, the predominant response to linear, however,
the fit error to Increased by an order of
magnitude.

The node shapes estimates obtained from the
lattice filter are shown in Fig, $. In this
figure we compare the estimates obtained by three
methods, one analytic, and two experimental.The

4n+0ytic result Is the primary mode oHpa of the
btam using Euler-Darnoulli theory. 	 The two

experimental results which are in substantial
agreement	 are	 the nonlinear	 least	 squares
algonthe of Thou. at al. (1962) and the lattice
filter algorithm of this paper. Agsin note that
there is apparently an effect of th. four attached
actuators on the dynamics of the test article.

The lattice filter products two modes, one near
the mode of Thou at al. (1982) and another that is
shown on Fig. 5. This other estimated made does

not resemble any mode analytically predicted using

linear Fuler-Bernoulli theory, rather, is required
to modal the effect of nonllnearities in the

apparatus,

Experimental Studies for the

Identification of a Flexible and

iVaxt, the lattice filter identification scheme is
tested in a more complex structure compared to

that of the boom. The candidate structure

considered is that of a two-dimensional tlaxible

grid. Identification results are given using Ow

experimental data obtained from the laboratory

apparatus.

Figure 6 shows the flexible grid experimental
apparatus in the Aerospace Control Laboratory, at

NASA Langley Research Center, 	 The grid to a
y it x 10 ft planar structure made by overlaying
aluminum bare of rectangular cross section.	 The
bars are centered every foot to that there are

7 vertical and 11 horizontal bare. An shown in
Fig. 6, the grid is suspended by a cable at two
locations on the top horizontal bar. The motion#

of the grid perpendicular to the plane of Fig. 6

are the once of interest in this study, There are
nine noncontaeting deflection sensors mounted on a

back frarme which give a 9x1 measurement vector.
The sensor data is linked to the main Cyber 174

Real Tint Computer System at NASA Langley Research

Center so that the identification can be carried
out in real time.

In order to compare the experimental results of
lattice filter Identification of the flexible grid

facility with predicted values, a finite element

anaaysis of the grid was made which included the
suspension cables. Four degrees of freedom appro-

priate for motion normal co the plane of the grid
were considered. No damping was included in the
model.

Experiments were	 conducted	 using	 the	 grid
apparatus descrihed above.	 The procedure for
conducting the experiments was to excite the grid

using an air shaker.	 The shaker was capable of
periodicall y exhausting a jet of air that impinged
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I'M Cho grid at ucRt,er loaatlom I which wee be the
bet tam loft hand corner of the grid.	 The

frequency of the jot was d)uotabio from U to
NI me.	 Tile ro*wltlng geld •xeltatlall Woo Mt
p.to 1  slauseldal but was 11th In he rmoa lc*.
got &.00 of the tango limit* of the deflection

•*-onto - 0 to ppro.tlmrely 2 In. - tho mmstmwe
peek to pea. defloclt*ee of the grid were limited
to about I lo.	 when ten pedal to peak deflection
moored this limit, (fix air shaker wee turned off
and the grid was allowed to vibrate freely with

only air ad material damping. A Cyber 171 Foal

film computer system .ampiod the deflectiom "wear

data o . 12 • Na. fee 5 soc. The data was stored on
a arotoo date file for further analys is. 	This

toot peateduro was repealed for ooveral shaker

frequencies In the rfRge of 1 to IU 48. 	 This
range hem an uspot limit because of the asepling

frequency M w.) The lower limit to "lotted to
Include	 the predicted	 lowest	 vibration node
(2.2 Mr.)	 tight 4494 sets cerrseponding to
different	 Shaker	 eacttation	 froquencloo	 were
c f a a 9*4 and Stored on tape$. The following
discuseion pertains to result• •.trotted from dots

met five.

Flgute f presents data from "Moore I and . as
veil me the lattice filter order estimate. •.r

this ca" the order oettmato was based on a 4894

.1ndow, of 4 sample• and spectral decoupllng wee
done With 64 ties samples.	 From the figure, the
older estimate 1s seen to convergo to an oocllls-
tlom between 2 and 1 at about .$ sec. at about .4
see, the order estimate was Vnmd at ) and data
collectlnn of the " Claw samples revulred for the

uR was started at )2 Na.	 The DR as accor
pushed at 41out 2.4 "c and then the Jwcoupling
transformation motrta was calculated. The modal

amplitude• after t41s Claw should contain a single

frequency and Cho transformed mode *hopes should

:urre.pond to the natural modes of the structure
which Were excited.	 In that mannot, three modes
Wore extracted from seporlawnial data tape 5.
These hew* frog onctea no 4f .5Nr, 2.5 me., and 5
No.	 Table 1 presents the mode •hope estimates

ont41ned from the exporlment.	 Also presented ere
selected •ode shape predictions taken from finite
olaMnt anal y ses.	 The xo-" "lotted were those
Whose	 frequencies	 bracket	 the experimentally
dwrtced ono@. The followtntg discussion deals with

the	 Table	 I	 data	 In	 order	 of	 intrees l ng
frequency. A good comparison doeo not exist with

wit her 6racketlng finite element anal y sts mode and
the first esperlmental mode.	 Additionally, there
is sees bonding In the o.p*ttmental mode as to
evidenced by sensors 4, 5, a" 6.	 The medal
amplitude for this mode to shown In Fig. a along

.9th the AAf1A parsawtefe A, and AZ  for ten

mods and their primary strip counerparts of
d4mptng : and frequency m. For the second mode, a
mood comparison does •miff betwen It and the 1.07
Na finite element analysis mode. 	 Note that,
however, the output of the sensor 4 to opposite in
sign and reduced In amplitude from the ftnito

element predict/ , .,.	 This mean* that a feedback on
that soneor based on the finite element analysis

will be daatabillsing neat the 2.5 Na frequency.
The validity of this deduction can be setabllshed

by sustaining the outputs of " nsora I and 4

(Fig. 7).	 According to the finite oleduat analy-
st•, the 2.5 Na content of the "nsure should be
opposite In sign.	 However, they are In phase In
agrrement With the identification results.

CONCLUSION

The application of least square lattice filter* In

Identifying the dynamic characteristics of highly
flevlble structures has boon presented. The
theory has been used to identify the structural

characteristics of tom experimental hardware,

Mammly that of a fro*-fee* Mee and a limitable

grid structure. The results indicate that the
lactic* filter con be elfe.ctively weed for on-tine
I dent I I a c at ton of the ',..must of modes, code
shapes, medal looping and wool frequencies from
the meaeurelmnt data. The ospmrlM ntal reawlte

also Indicate that there to considerable disagree-

sent between them and 410141vtical predictions.
Dash M thee* osporteental studies, the main
conclusion :hat can be drawn to that for large
apace structures, em-erblt testing and Identifies-
ties 	 ss"ntlal before central to attempted.
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Table 1.- Comparison Eotwoon the Finite tloawnt
r* ctTOtl^ aT 'IF

Mnr tom ----
Id entification

Node	 I Mode 2 Mad* )
Caparisons Comparisons Comparison./

origin P E p t E F P t p

q.
) .625 2.2i 2.5 1.07 6.79 5 5.91

Na

sur

1 6 .45 .)5 -.45 -.4) -.3n -.04 .43

2

r

6 0 -.25 .11 -.00 -.3 1. -.34 -.)5

3 16 -.45 .35 .44 .44 -,3h -.14 .43

4 14 .41 .3R -.O4 .1) .22 .14 -.07

5 .1 0 -.25 .05 0 .2 1. .10 .07
6 1 -.41 .)4 -.03 -.1) .2! -.01 -.07
7 10 .)6 .34 .54 .51 -.31 -.65 -.45
4 20 0 -.24 -.07 0 -.4) .24 .32
9 1010 -.]6 .36 -.54 -.51 -.l4 -.54 -.44

F - Prediction based on finite element analysis
4 - Wculatlon based on Identification from

experimental data
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ABSTRACT

This paper reviews the use of the least square

lattice filter in adaptive control systems.

Lattice filters have been used primarily in speech

and signal processing, but they have utility in

adaptive control because of their order-recursive

nature. They are especially useful in dealing with

structural dynamics systems wherein the order of a

controller required to damp a vibration is variable

depending on the number of modes significantly

excited.	 Applications art presented for adaptive

control of a flexible beam.	 Also, difficulties in
the practical implementation of the lattice filter

In adoptive cc.ntrol are discussed.

1 N'rRODIICTl ON

V- or large flexible spacecraft, design models will
probably not be adequate. 	 Wence, an adaptive

control s y stems is highly desirable. 	 Earl) research
into adaptive vibration control of large flexible
structures is reported in reference I. 	 Therein,

adaptive control of a spinning annular most ntun

control device (AMCD) was studied.	 That scheme

consisted	 of	 simultaneous	 Identification	 and

control with the objective of regulating the out-
of-plane deflections of the spinning A140). Some of

the disadvantages of the method were the require-
ment of selecting t he number of modes to be used
for controller design, the use of aualytI ally
predicted mode shapes, and the coupling between

modes due to ir.homogenities In the system. Lattice

filter adaptive control is a new method which

attempts to overcome these problems.	 It Is, hence,

well suited for t;.e adaptivr ccntrol of flex'.ble
spacecraft.

The least square lattice filter has been used
extensively in the field of speech and signal

processing (reference 2). In there applications

the filter is desig:,ed based on a predetermined

estimate of system order. Reference 3 1s a compre-

hensive tutorial on this su bject.	 Concerning
adaptive control, reference 4 proposes a self-
tuning	 controller	 configuration	 using	 lattice

ftlter4. This scheme requires cumputing the poly-
nomial coefficients for the plant end controller at

each Iteration and enforcing a known feedback
structure for the controller. Reference 5 proposes
inverting the transfer function of the plant for

general adaptive control. 	 This idea, with the
least mean squares ( LMS) algorithm, was utilized In

reference	 A	 to	 obtain	 adaptive	 control.
Reference 7 proposes a similar approach using
lattice forms instead of the LMS algorithm.
Reference R takes this approach but uses a lattice
model instead of an autogressive, moving average
with exogenous variables (ARMAX) model where

familiar controller techniques could be used. 	 All

of these scheate attempt simultaneous tdentifica-
tlon and control or direct adaptive control. For
each cost stability questions are not resolved
analytically;	 neither	 are	 simulation	 results

available in the open literature.

As opposed to simultaneous identification and
control, the scheme discussed herein consists of
conducting tests to obtain A design model, vall-
dating the model, designing a controller based on
the validated model, and finally, engaging the

control system. This approach is Ideally suited to
the control of large flexible spacecraft because of
the passive environment of outer space and the
potential of relaxation to a controller that is

known to be stable - that of collocated rate feed-
back. It was originally presented in reference 9
and represented the first use of a recursive vari-
able order struc-,rs for adaptive control.
Therein, the lattice filter was used to provide an
on-line estimate of the system order, mode shapes,
and modal amplitudes to provide a validated medal
control design model. After the identified model
parameters are validated through a series of test
pr.)cedures, they are used In a modal pole-placement
ontrol law design.	 Figure I shove the adaptive
control scheme using lattice filters.

P ,I
Js

a^

a^ r .^...^	 aawea•^	 ^ a,..^

Figure 1.- Adaptive Control with Lattice Filters.
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The purpose of this paper is to assess progress in
using lattice filtera in adaptive control of

flexible spacecraft and to highlight problem areas
for further researeh. First, lattice filter theory
and order determination is summarized following the
original development of reference 10. Then, their
use in adaptive control is discussed along with
applications to the vibration control of a bees„
Finally, difficulties arising in the practical
implementation are discussed.

SUMMARY OF LATTICE FILTER THEORY
AND ORDER DMOM MATION

For application considered herein, we assume that
the 1th measurement sample is of the form

YTi n (y 1 (i), y2 (i), " " YNS(i))

.here NS represents the number of sensors. It is
assumed that y is generated from a model syste+a
wherein

yi - ^. T i + v i	(1)

Here, I is an NS x NM mode shape matrix, ^i is
the NM x i modal amplitude vector, v i is a
Gaussian-random variable with zero mean and
covariance matrix R. NM represents the number of
modes in the system or order of the system.

Reference 10 presents a derivation of the equations
that relate any order. n, and time, i, recursions
for the normalized forward and backward residuals
as well as the least square estimate of the
measurement vector. These equations are listed

below:

e	 - (1 —k2	)-1/2 (e	 —k	 r	 )
—1,n+1	 i,n+l	 —i,n i,n+l—i— 1 ,n

Z	 - (1 —k2	)-1/2(r	 —k	 e	 )—i,n+l	 i'n+l	 —i-1 ,n i,n+1—i,n

wherein

ki,n+i - Cei,n' ri—1,nl

and C ? represents an inner product. The symmetry
of the recursion formulae is apparent. The equa -

tions are coupled by the term ki,n+l which Is

customarily called the "reflection ccefficient."
The estimate of the measurement (reference 10) at
sample 1 for a model of order n is

n-1.
'^04 (e i,iI ri—i,j)

where	 represents an orthogonal projection
operator. Hence,

k

yi,n - (r n-1,0' rn-1,1' ** " rn—l,n-11	
i,l

k1,2

k'
i ,n

so that

2

yi - 4L' Yi + ei,n	 (2)

where 1L is an orthonormal NS x n matrix

Irn-1 ,0' " ', %—l,n-1I generated from the

lattice filter, and i'i is the n dimensional
vector of reflection coefficients and ei,n is the
NS dimensional estimation error vector.

Clearly, in this approach one may "fit the noise"
by continually increasing the order of the system;
however, once the order of the estimator has
increased beyond the correct order, then the
residual errors should lie within a noise band
which can be predicted a rp^ior i based on assumed
noine characteristics. A threshold value can be
selected based on this predicted noise band and
order determined by a test of whether or not the
residuals have been reduced to lie within the noise
band. The residuals will generally consist of
signal and noise parts — the signal part being
reduced as the correct order is reached until the
residuals essentially consist only of noise. This
teat is carried out based on a data window of NW
saspL^ts. Thus, assuming that the data can fit a
linear model and that the noise process is
Gaussian, for i large enough,

E(

NW

 ei, ci n )	 NW E(vivT
n

i-1	 '

NS
- NW tr E(v ivi)  - NW a2	 (3)

n 1

where E in the expectation operator. This can be
used as the one sigma threshold for the order
determination test. In the last equation a j is

the sta0dard deviation of the noise process
for the nth sensor. Reference 10 documents experi-
ence in choosing the data window size NW and the
threshold level based on simulations.

ADAPTIVE CONTROL USING LATTICE FILTERS

Independent Modal Space Control (IMSC)
(reference 11) is a control scheme specifically
designed to deal with flexible spacecraft in a.
modal form amenable to control law design.
Unfortunately, it requires natural modes and not

the orrhonormal basis provided by the lattice
filter. Consequently, in order to interface the
lattice filter outputs with the target adaptive
control scheme (figure 1) and to make comparisons
with finite element analysis predictions of natural
modes, a method is needed to obtain natural mode
shape estimates from the lattice filter basis. The
filter updates tha NM basis vectors at every sampl::
instant. While the order estimate NM remains
constant, the updated basis vectors are related by
a mere rotational transformation. The assumption
of the target adaptive control scheme is that the
system motions can be modelled by a constant and
finite set of natural modes and their associated

modal amplitudes over a reasonably long time
interval. Hence, when the estimated system order
Is constant, the basis elements used to derive the
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model amplitude time series required by the target

`	 adaptive control scheme are not changed.

The transformation from the lattice filter to a
natural made basis should satisfy

y - # L Y 
L - # N 

Y 
N

wherein the subscript L refers to the lattice
filter and N refers to the natural modes. A non-
singular matrix T, will satisfy this condition
provided

i,
	 # L T - IN TN - TYL	(4)

Since the order estimate is assumed constant, this
matrix can be approximately determined on-line
using the digital Fourier transform OFT). Herein,
this is accomplished as follows, Since the lattice
filter uses the current measurement sample as its
first basis element, the corresponding modal ampli-
tude time series contains NM frequencies. Hence,
the DFT spect um of this series will contain NN
peaks care" ponding to these frequencies. 	 The
frequencies (w l , w2 , ..., wNM) can thus be

identified by searching this spectrum for these
peaks. Assuming that the motion is comprised of
undamped structural vibrations, the matrix T, which
pro4tAces the desired transformation can be calcu-
lated as

[Re(Yl(w l )j . . . . . . .	 RefY'L(wNN))

T -

Re[YNM(w1)) . . . . . . . Re(YNM(wNM)^I

wherein, (*L(w), .., (w)) is an NM dimen-

sional vector of •the modal amplitude transform.
Using this matrix, the digits! Fourier rranafo m of
each component of *N wit, be zero at the discrete

frequencies, w i , jsi.	 ,;a item which degrades

this approximation is cite error in using DFT
Instead of the true Fourier transform. 	 still

another is the assumption that the motion is made
up of undamped structural oecillati^ns. In spite
of these items, reference 12 shows that this
approach produces good estimates of the natural
modes for the beam used herein.

The decoupled modal amplitude time series, N(i),
as obtained above in equation (4), is then ana-
lyzed, for each mode, to identify the parameters of
its autoregressive, moving average (ARMA) model.
The inputs to each ARMA modal model are the
generalized forces and hence, each model takes on

the form:

7 N (i) - AI TN(1-1) + A2YN(1-2)

+ B l f(i-1) + B2 f(i-2)	 (5)

where the f represents the generalized forces.
Given the ^N and f I a, the parameters A and B

above are identified and used in the control law
design process. Thus, the ARMA model output error

is

e(i-1)	 :N(i-1) - JA I (i-1)YN(1-2) + A 2 (1-01 N(1-3)

+ B l (i-1)f(i-2) + 62(i-1)f(i-3))	 (6)

The gradient technique of reference 1 1s used to
identify the parameters p - (A i , Bi) using the
iteration sequence

PM - P(i-1) + e(i-1) [W I YN(1-2), W2 TN(1-3),

W3 0i-2), W4 f(i-3))	 (7)

As indicated in reference 1, the weights W must be
selected consistent with the relation

W
1 '1

2
N
(1-2)+ W2YN(1-3) + W3f2(i-2)

+ W4f2 (1-3) < 2

and the inputs to the algorithm, *N and f, must
be sufficiently varying and large if the parameters
are to converge to their correct value.

For the identification and control scheme explained
above to work satisfactorily in a closed loop
environment, it is necessary to validate the design
model.	 Three teats are suggested herein which
check the following;	 1) model fit error; 	 2)
parameter convergence;	 and, 3) signal informa-
tion. These tests have been used successfully in
simulation and experimental work. The fit error
test uses a fixed parameter set to calculate an
estimated modal displacement for the past NT
samples.

NT

°fit ;
	 ;rN(1=n) - tn1 WN(i-n-1) + YN(i-n-2)
n-0

+ B 1 fN(i-n-1) + B2f(i-n-2)), k 5 NT

If the absolute sum of the error between the
modelled displacement and the displacement calcu-
lated by the lattice filter exceeds a given thresh-
old, the fixed parameter set is updated with the
present identified parameter set. This process is
repeated until the parameter set fits the data.
The convergence test runs concurrently with the fit
test. It simply checks the magnitude of the
changes in successive estimated parameters.

ogonv )n

UT
-O IPin

 - pn-lI for pT - [1 1	2, 91 0 B2]

If the absolute sum of ten successive parameter
estimates changes is above a specified level, a
logical switch is set to indicate failure. The
third and final test is on information content of
the estimated modal amplitude signals from the
lattice filters. The purpose of this test is to

check whether enough information is present in the
signal	 for	 proper	 identification	 of	 the

parameters.	 If this test fails, the controller
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gains are not updated based on the identified

parameters, but are frozen at the last values
before the test failed. Here, the estimated modal
amplitudes and velocities from the lattice filter
are checked for sufficient excitation by summing
over can samples.

NT

oinf 
<n 7 oN) 

+ I ON - *N-1I

The second term in the above equation represents a
measure of velocity estimates. If the sum is below

a threshold, o inf , the updating of the control

gains based on the identified parameters is
stopped. The information and fit error taste
constitute one test for each mode and the conver-
gence and reasonability tests constitute four tests
for each mode.	 Thus, six tests must be passed
beforecontrol is applied to a given mode. The
actual stability and performance of the controller
is directly affected by the criteria chosen for

passing a test.	 If the test criteria are too
stringent, system noise and nonlinearities may
preclude initiation of control. However, if the
tests are not adequate, it Is possible that an
error in the estimated parameters could result in
gain calculations which produce an unstable
system.

Now, consider the philosophy to be used when the
tests described above pass or fail. When all the
nests for parameters of a given mode have passed,
control gains are calculated according to a
previously devoloped pole placement scheme
(reference 1). The control force commands are then
calculated using these control gains. Considering
the philosophy used when the tests fail, two cases
were studied. In the first case, Then the taws
failed, control was turned off and the control
forces were made zero. In the second case, when
the tests failed, updating of the control gains was
stopped and they were frozen at their values prior
to the test failure. In this case, the control
forces were not made zero and were computed using
the frozen control gains. From a detailed study of
both cases ; it was found that the performance of
the adaptive control system in the first case was
superior to that of the second case.

APPLICATION TO A V=1BL6 WEAN

The closed-loop adaptive control scheme of figure 1
has been tested in the digital simulation for the
12-foot, flexible free-free beam located at NASA
Langley Research Center. The simulation contains

the mathematical model of the beam apparatus in
modal form. For this study, the simulation
contains one rigid-body mode, the first three
flexible modes, nine deflection sensors, and four
actuators for control purposes. 	 The initial
conditions on the modal displacements were set to
.05 in. and the modal velocities were set to zero.
The modal damping was also set to zero. A digital
sampling rate of 32 Hz was selected for the simula-
tion, and the standard deviation for all measure-
ment noise was assumed to be .005 based on observed
noise in the available hardware. The lattice
filter estimates were based otz a data window size 4

(reference 10). The testing procedures were all
carried out based on data window (NT) of ten
samples. Initial parameters estimates were offset
from the mathematically correct values to test and
verity the rapid convergence of the identification
algorithm, An arbitrary delay of 2 seconds was
added between the time identification starts and
when the control would be applied to show the
behavior of the identification scheme.

At the start of the simulation, the lattice filter
determines the number of modes in the simulation
along With the mode shapes. Modal amplitude time
histories are then generated. From the lattice
filter mode shapes and modal amplitudes, natural
modes and modal amplitudes are obtained through a
linear transformation explained in the earlier
section. The application of the transformation is
delayed for 2 seconds because the online
transformation technique of reference 12 requires
2 seconds of data for a digital Fourier transform
data base to obtain the required transformation.
The natural modal amplitudes are input to the
equation-error parameter identifier which
identifies the ARHA parameters. The identification
results are then tested using the test procedures
described above. When the tests are passed, the
control is turned on. Results of the simulations
are presented in figures 2-4.

Figure 2 shows the estimated modal displacement for
the ftrst lattice filter mode. The order estimate
plot shows that the correct order of 4 is obtained
in .3 seconds. After the parameter identification,
when all the testa are passed, th6 control is
turned on at 5.5 seconds and the modes are damped.
The result of the adaptive control or the natural
modes is shown in figure 3. It is evident that
when the identification is validated by passing the
tests and control turned on, the vibration
suppression is achieved. When the modes are damped
out the lattice filter order estimate drops from 4
to l indicating the flexible modes are damped out.
Although the lattice filter order decreased, the
control design order was maintained at 4 throughout
the time interval when control was on. Allowing
the order to vary in real time and updating the
control order is a topic for further studies.
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Figure 2.- Typical time history of an adaptive
control run using identification,
testing, and control design.
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The main results of the Identification and the test

procedures are summarized in figure 4. for the

first flexible mode, the fig to shows the time
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figure 4.- Time histories of the test variables for

one mode with the test thresholds and

logic sum of the tests Indicated.

convergence,	 and	 a	 parameter	 that	 Indlestes

Information content of the measurements. 	 When all
the tests are passed,	 the corresponding pass

parameter (plotted as a binary logical varalble) is
set to one. The various thresholds for the testa

are /Iso marked to indicate when the tests pass.

Theca thresholds were determined based on detailed

sensitivity studies of the modal control schema for

the been (reference 1]). An error was intentionlly

put on the Initial estimate of A I so that the

convergence of the estimates to the correct value

could be observed. When the Identifier to turned

on, the •attest• converges to the true value of 1.8

from 7. The thresholds indicate that the fit error

test to passed first and than the convergence

test.	 With enough signal In the messur@menre the

Information test Is always passed.	 When all the

tests are passed of 5.5 sec, the control Is turned
on. When control is fully effective, that is when

the modal are damped out, the measurement date will

contain only the noise and the information test

will fall.	 This to immediately seen from the

history of A t
 as it starts oscillating with large

amplitude	 Indicatint;	 that	 the nodal	 amplitude

signal contain/ mainly note@. Also, If the

parameter excursions are large, the convergence

tests will also fail indicating a failure for the

binary variable pass. Once this happens, the

control gain updating is stopped, and control

forcer jar@ made :.aro.

PRO g mts IM PRACTICAL IMPIJJI/NTATIOM

The adaptive control scheme of figure 1 is good

from the engineering point of view since only vali-

dated models are used for control oysters desi gn. A

natural Question arises as to the course of action

when validation tests fail. The operat17 ,g environ-
went for large flexible spacecraft is, fortunately,

benign and a ayetme designed to suppress vibrations
can be shut down at the expense of having to

conduct relatively lor.g tern maneuvers. Another

saving feature of large flexible spacecraft is that

collocated rate feedback Is stable and relaxation
of the system to this mode of operatlon is also

possible, again, with corresponding degradation in

performance. Therefore, two options that can be

evoked are; one, to shut down the control system

and the other, to revert to a robust control system

design which Insures stability.

At first glance one say wish to use the ARMA model
generated by the lattice filter directly in the

design process rather then using IMSC with its

requirement of generating natural modes. Ilnfortu-

nately , the current online design ca pability for
controllers of vector ARMA processes is not ade-

quate.	 Having selected IMSC, one must obtain

natural modes from the vector ARMA model or from
the measurement time series. Here the same problem

arises,	 that	 to,	 the	 current	 capability	 of

eigenvalue / vector	 analysis	 for	 vector	 ARMA
processes is :.adequate for online implementation.
Hence, a time aeries analysis using a DFT has been

selected.	 The accuracy of	 the	 process of

extracting natural modes is directly affected by
the number of data points processed. 	 Hence, there

is a tradeoff to be made between the higher

t 1.
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complexity in control computations versus the error

in the natural modes using the OFT approach. Also,
significant computational saving results if the
approximation of zero damping can be evoked. If
this approximation cannot be made, then one must

work with complex modes.

Since several approximations are required by the
system, a method of validating the models used In
the online controller design is essential.
Analytic methods of validating models based on
statistical error analysis (e.g. Cramer-Rao bounds)
are not adequate. Currently, tests on fit error,
algorithm convergence, information content of the

measurements, and reasonability have 'seen u"d.
The thresholds and design constants for these tests

can be determined only by exhaustive simulation
and/or hardware testa and is not an online
procedure.

CONCLUSION

This paper reviews the use of the least square
lattice filter in adaptive control systems.
Emphasis is placed on the integration of the

lattice filter into a practical parameter adaptive
control system. One novel feature of the
recommended system is the inclusion of a design
model validation scheme based on model fit error,
algorithm convergence, and signal information
content. An application is presented for adaptive
control of a flexible beam. These results indicate

that the lattice filter adaptive scheme 49
practical for vibration control of large ft:-ible
spacecraft. Difficulties in the practical
implementation of the lattice filter in adaptive
control are also discussed. These centered around
the computational burden of transforming lattice
filter modes into natural modes and the selection
of the thresholds for online validation tests.
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ROBUST COWROLLER SYNTHESIS FOR A LARGE

FMIRLE SPACE ANTENNA

`.	 N. Sundarara an*p S. M. Joshi, and E. S. Armstrong
NASA-Langley Research Center

Hampton, Virginia 23665

SUMMARY

w

This paper investigates the application of the linear-quadratic-

Gaussian (LQG)/ loop transfer recovery (LTR) method to the problem of

synthesizing a fine-pointing control system for a large flexible space

antenna. The LQG /LTR approach of synthesizing a multivariable controller

in the frequency domain is selected because large flexible structures can

be mod.41led with elastic mode transfer functions as additive perturbations

on the rigid body model and the LQG/LTR approach uses this formulation

naturally for robust control design. The study is based on a finite

element model of the 122 m Hoop/Column antenna, which consists of three

rigid-body rotational modes and the first ten elastic modes. A robust

compensator design for achieving the required pointing performance in the

presence of modeling uncertainties is obtained using the LQG/LTR method.

For the Hoop/Column antenna, a satisfactory controller design meeting the

desired bandwith of .1 rad/sec and ensuring stability with unmodelled high

frequency modes was obtained using only a colocated pair of 3-axis

attitude sensors and torque actuators. This study also indicates that to

achieve the desired performance bandwidth of 0.1 rad/sec. and to ensure

stability against higher frequency elastic modes, the design model should

include the first three flexible modes together with the rigid body modes.

* Old Dominion University Research Foundation, Norfolk, VA

,j

j:.

35

w



1

IWMODUCTION

One of the planned activities of the NASA's Space Transportation

System is the placement in earth orbit of a variety of large space

antennas. Potential space missions will require antennas and structures

ranging from 30m to 20km in size. Applications include communications

(mobile), remote sensing (soil moisture, salinity, etc.), deep space

network (orbital relays), astronomy (x-ray, observatory, optical array,

radio telescope, very long baseline interferometry, etc.), energy and

space platforms. Specific missions have been pinpointed and future

requirements have been identified for urge space antennas for

communications, earth sensing and radio astronomy (1). Particular emphasis

is placed on mesh-deployable antennas in the 50-120 meter diameter

category. One such antenna is the Maypole (Hoop/Column) antenna, shown

schematically in Figure 1, basically consisting of a deployable central

mast attached to a deployable hoop by cables held in tension (2). The

deployable mast consists of a number of telescoping sections, and the hoop

consists of 48 rigid segments. The reflective mesh, which is made of knit

gold-plated molybdenum wire, is attached to the hoop by graphite fibers.

The mesh is shaped using a network of stringers and ties to form the radio

frequency (RF) reflective surface. In order to achieve required RF

performance, the antenna must be controlled to specified precision in

attitude and shape.	 For example, for missions such as land mobile

satellite system (LMSS), which is a communication concept for providing

mobile telephone service to users in the continental United States, it is

necessary to achieve a pointing accuracy of 0.03 degree RMS (root mean

square) and a surface accuracy of 6 mm RMS.	 It is also necessary to

x

I
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have stringent control on the motion of the feed (located near one and of

r;
the masi) relative to the mesh. 	 Because of its large size and relatively

light	 weight,	 the	 antenna	 is	 highly	 flexible,	 with	 a	 large	 number	 of

significant	 elastic	 modes.	 Its	 dynamics	 can	 be	 represented	 by	 partial

R differential equations, or by very large systems of ordinary differential

equations.	 The	 resulting equations have many resonant 	 frequencies,	 some

of	 which	 may	 be	 very	 law,	 and	 possibly	 closely	 spaced.	 The	 natural

damping is usually very small.	 For these reasons,	 control of large space 	 #
i

structures is a challenging	 task	 (3).	 Since	 the system is inherently of
}

high	 order,	 a	 practical	 controller	 has	 to	 be	 based	 on	 a	 reduced—order

"design"	 model.	 Furt%ermore,	 the	 parameters	 (i.e.,	 frequencies,	 mode	 t

shapes,	 and	 damping	 ratios)	 of	 the" system	 are	 known	 imprecisely.	 This

introduces additional modeling errors. 	 Typically, the modeling errors for
t

finite	 element	 models	 increase	 substantially	 with	 increasing	 modal

jfrequency.

Reduced—order control synthesis for the Hoop/Column antenna using the

» standard LQG theory was investigated in (4,5). 	 The standard LQG procedure 	 {

yielded	 satisfactory	 control,	 i.e.,	 rigid—body	 bandwidth	 of	 up	 to	 0.25	 jJ'$

;i
rad/sec, satisfactory time constants for the elastic modes, and acceptable

- root mean square (RMS)	 pointing errors	 in	 the	 presence	 of sensor noise.

'w It	 should	 be	 noted	 that	 the	 LQG	 approach	 in	 reference	 4	 used	 a	 large

&. number	 of	 actuators	 and	 sensors	 ( four	 3—axis	 torque	 actuators	 and	 four

3—axis	 attitude	 and rate sensors).	 It	 was	 found	 in	 (4)	 that	 the	 first

three flexible modes had to be included in the "design" model (in addition
^ R
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to the three rigid modes) to obtain satisfactory performance. The main

problem with the LQG method was that a large number of weighting

parameters had to be simultaneously adjusted to obtain a good design. In

addition, the stability robustness property with respect to inaccuracies

in the modal parameters could not be properly evaluated because it was

difficult to effectively characterize the bounds c:n modeling errors in a

time-domair. setting. In order to reduce these difficulties, normally one

checks the control design for robustness after the control design is

completed using LQG or	 any	 other method. Such	 an	 approach	 in	 the

frequency domain using singular value measures was	 presented in	 (6)	 for a

large space structure using different control design

integ
	 ftedback, I,rn uenn nhnnnvi I AG etc' 	Unlikeral ace aiu ^.n,	 a+^	 uww....^ 	 -P	 . 4 f

the LQG/LTR approach provides a means of including

uncertainities, in the control design process itself*

frequency domain, it extends the basic frequency domai

methods like LQC,

the above methods]

the robustness-to-

Since it is in the

n design guidelines

like bandwith, cross-over frequency, etc. from a scalar system to a

multivariable system.

The newly emerging robust control synthesis methodology which uses

frequency domain matrix norm bounds (i.e., singular values) has received

considerable attention in the recent literature [7-9). The basic

framework for frequency domain synthesis using the LQG/LTR methodology was

developed in (7-9). It has been applied to diverse oystems such as power

systems [10) and aircraft engine control (11). 	 The LQG/LTR design

philosophy uses a low-frequency "design model" of the plant and a
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high—frequency characterization of the modeling errors. 	 This method,

which characterizes unstructured uncertainty with singular value bounds,
	 C,

appears to be particularly well suited for the control of large flexible

spacecraft due to the considerable uncertainty that inherently exists in

the mathematical models.

The purpose of this paper is to investigate the use of LQG/LTR

multivariable frequency domain methodology in the design of an attitude

control system for the Hoop/Column antenna. A low order compensator is

obtained by treating a sequence of finite element design models ordered

with increasing modal frequency and choo;iing the final design model as the

first one which allows the performance/robustness objectives to be met.

In this sequence of design models, the first one consists of the rigid

body modes only. Subsequent design models are obtained by the successive
t

addition of flexible modes. 	 The designs use 3—axis torque actuators,

colocated attitude sensors, and attitude feedback.

The organization of this paper is as follows: The mathematical model

of the system is described in section 2. The control objective is briefly

discussed in section 3, followed by a brief description of the LQG/1,TR

technique in section, 4. The reduced order (low frequency) design model

and the high frequency model uncertainty barrier are also discussed in

this section.	 Section 5 presents the results of synthesizing the

controller based on the above procedure using only attitude feedback.
I'll

Some of the problems and limitations observed are also highlighted. Based	 r

on the study results, the conclusions are summarized in section 6.

x

r
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Z. MATEOKMATIQL MDEL

As a consequence of its large size and light weight, the Hoop/Column 	 <^

antenna is a highly flexible system having a Large number of significant

structural modes. A finite element model of the antenna [Ref. 2] is used

in this paper. The mathematical model considered consists of rotational

rigid-body dynamics (about the three axes) and the elastic motion. We

assume that the control will be accomplished by using n T three-taxis

torque actuators. The linearized equations of motion are:

n

TI s

	

	T^	 (1)
j=1

q+Dq+Aq	 t u	 (2)

where	 Is is	 the	 3	 x	 3	 inertia	 matrix,	 T^	 is	 the	 3-axis	 torque	 applied

by	 the nth	 actuator,	 a s	=(^s,	 860	 ^s) T	denotes	 the	 rigid-body ;E

attitude, q	 is	 the	 nq	x	 1	 modal	 amplitude	 vector	 (for	 nq	structural

modes), D	 2	 diag(p lw l ,	 P 2w2 ,	 •••+	 pn wn)	 is	 the	 inherent :?	 {
r^

t F

damping matrix,	 (where p i is the damping ratio for the ith mode).	 0 is

F	 the	 m	 x nq	mode-slope"	 matrix	 (where	 m	 =	 3n T),	 u	 -	 (T1,	 T2,	 ...,'.
t

y

TT )T	 isT the	 m	 x	 1	 vector	 of	 actuator	 torques,	 and	 A	 =	 diag(wi )

w2 ...,, wn	 where	 wi	is	 the	 frequency	 of	 the	 ith	 elastic	 mode.q)

The rigid-body parameters and the first ten elastic frequencies are given

in Table 1.	 Each value of p i is assumed to be 0.01	 for i=1,2,	 ...,n .
7

i

R^

f1

tL

R^
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Normally, the sensors used include attitude and rate sensors.	 A

3-axis attitude ya at a sensor (e.g.	 a star tracker) output is given

by:

y
a 

- as +*q+w	 (3)

where * is the 3 x n q mode-slope matrix at the sensor location, and w

is the sensor noise. If an attitude rate sensor (e.g. a rate gyro) is

used, the sensor output yr is , given by an equation similar to (3),

except that a s and q are replaced by a s and q, respectively.	 Torque

actuators and attitude sensors are assumed to be located near the top of

the mast at the antenna feed ( Fig. 1.)TT
Defining x = (a s , a s , qT^ qT )T an n x 1 vector, the state

space model can be written in the form:

11 AF X + BF u	 (4)

Y = CF x + w	 (5)

The sensor noise w is not used in the design process in this paper;

however, it will have to be included when computing the RMS pointing

errors. Ignoring the noise, the transfer matrix between the input ( 3-axis

torque) and the output (3-axis attitude) is given by:

G(s) - G 1 (s) + G 2 (s)	 (6)

<1'1^I

Ir

{	 i
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where

G1 (s) - Ig1 /s 2	(7)

n

G2 (s) - I (V►i ^TMs
2 + 2pi wi s + wi )	 (8)

iml

(* i and ^i represent the mode-slope matrices at the sensor and

actuator locations corresponding to the ith mode).

3. DESIGN OBJECTIVES

<,

f,

The basic design objectives for the control systems are: (1) To

obtain sufficiently high bandwidth ( i.e. closed loop frequencies

corresponding to the rigid body modes) and satisfactory closed loop

damping ratios for the rigid body and structural modes; and (2) To obtain

satisfactor=y RMS pointing errors, feed motion errors and surface errors.

The first design objective arises from the need to obtain sufficiently

fast error delay when a step disturbanct(such as sudden thermal distortion

caused by entering or leaving Earth's shadow) occurs. The second design

objective arises from the RF performance requirements. 	 These two

objectives may not necessarily be compatible, and may even be

conflicting For example, the use of increased feedback gains for

obtaining higher bandwith and damping ratios will, in general, result in

higher r.m.s errors (because of the amplified effect of sensor noise)

beyond a certain point. Therefore, it is necessary to carefully consider

the trade-offs between the speed of response and lower RMS error. In this

study, the main control system specification is that a minimum bandwith of

42
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0.1 rad/sec for the closed loop system is to be ensured. The upper limit

on the low frequency gain is not specified, but it is desired that it

should be as high as possible. Also, for this r.4udy no specification on

RMS errors was made and this aspect along with measurement noise will be

considered in the future.

Zr

h. THE DESIGN PROCEDURE

The LQG/LTR method has been described in detail in (7-9). Here, the

main steps are summarized first and then each step is discussed in detail.

(1) Define a "design" model of the nominal plant which is an acceptable

low frequency representation. Define the high frequency uncertainty

(robustness) barrier, and the low frequency performance barrier.

(2) Design a full state feedback compensator based on the steady state

Kalman-Busy filter (KDF)b This assumes that the * loop is broken at

the output. Adjust the weighting , matrices in the KBF design until

it;,, :Frequency response meets the robustness specifications at high

frequencies and bandwidth specification at low frequencies.

(3) Design a LQ regulator to asymptotically "recover" the frequency

response obtained in step 2.

(4) Verify stability, robustness, and performance for the entire

closed-loop system.

The first step, which consists of the definition of the plant and the

uncertainty (robustness) barrier, is often the most important one. The

basic problem in controlling a flexible structure is the presence of a
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large	 number	 of	 lightly damped	 structural modes.	 Practical	 limitations

` necessitate	 the	 use	 of	 reduced-order	 controllers.	 Therefore,	 the

uncontrolled	 modes,	 as	 well	 as	 the	 error	 in	 the	 knowledge	 of	 the

f controlled modes,	 represent uncertainty.	 Since	 the number of	 structural

modes	 is	 usually	 large	 and	 finite	 element	 modeling	 accuracy	 typically
3

decreases with increasing model frequency, the design model should consist

of	 the	 rigid-body	 plus	 the	 first	 few	 elastic	 nodes.	 The	 remaining

structural modes then (partly) constitute the plant uncertainty. 	 In order
l

to	 obtain	 an	 acceptable	 low-frequency	 representation,	 the	 design	 model
,r

must include at least the three rigid 	 body modes.	 The uncertainty

barrier	 is	 a measure	 of	 the	 plant	 uncertainty at high frequencies. 	 Tne

plant uncertainty can be represented as either multiplicative or additive'

uncertainty (Fig. 2). Additive uncertainties are of the form

^.• 1 i	 ^^

` G' a G + AG

3

while multiplicative uncertainties are of the form 	 +^k

I}

G' ,• (I+A) G

r^

Multiplicative uncertainty form is the preferred form in the literature on

robustness studies as the compensated transfer function has the same

uncertainty representation as the raw model. 	 However, since flexible

structure models exhibit naturally the additive uncertainty form of the

transfer function matrix, this will be used in the following studies. The

LQG/LTR approach requires the characterization of the uncertainty in terms	 r'

i
t
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of a frequency-dependent upper bound. 	 Frequency domain sufficient

	

conditions are used to test the robustness in the presence of 	
Cl

uncertainties within that bound.

For the case of multiplicative uncertainty LP(s) of figure 2a, the

closed-loop system is stable if

i	 ;[I,p00-1] < o [I + ( Gp (J W )GCOW)) -1 ]	 (9)

where Gp(s) and Gc(s) are the design model (plant) and compensator

transfer matrices, and a and o denote the largest and the smallest

singular values of the argument matrix, respectively. At high

frequencies, assuming I[Lp( j w)]l » 1 and 1[Gp(Jw)Gc(jw)]M << 1, (9)

approximately yields

( GpGc )	 <	 1	 (10)

o (L p)

The	 "uncertainty	 (or	 robustness)	 barrier"	 is	 an	 upper	 bound Im(w)	 on
;r

a(Lp ).	 The	 system	 is	 stable	 in	 the	 presence	 of	 such	 unstructured i

uncertainties if v[GpGc I < lml (w) at high frequencies.x,
G

NI

When	 the	 additive	 uncertainty	 formulation	 (Fig.	 2b)	 is used,	 a

sufficient condition for stability robustness is given by [12] b

v	 (I+GG )
w p c	 7	 v (AG)

(11)

f1.

_

Q(Gc)

l
t

i

Sri
1 "
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At high frequencies, assuming IGpGcl << 1, ( 11) (approximately) yields

c(Gc)	 <	 1/3wo	 (12)

That is, the compensator must roll off sufficiently rapidly at high

k	 frequencies.	 The main objective of the LQG /LTR approach is to first
I	 ^`

design a full state compensator ( based on KBp) which has the behavior of

the desired loop transfer matrix (i.e., the loop gain GpGc).

Therefore,	 (from step 2) any loop shaping should involve the product

G G	 rather than G C 	as in ( 11) and ( 12).	 Assuming that Gp c	 c	 p

is a square matrix,

	

GC = Gp l (GP Gc )	 (13)

v (G) < v (G1) o (G GC	 p	 n c)

or

v (G c )	 <	 v (Gpl) v (GpGc )	 (14)

Using (12) and (11), the following sufficient condition for stability

robustness is obtained:

v (I + G G c) a (G p)	
v (AG)
	

(1S)
v (GpGc)

The second step in the design procedure is to design a full state	 s,^

feedback compensator having desirable singular value properties. 	 The
Y.

I

is

z

! YJ
Q
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performance of the closed-loop system depends on the low frequency gain

and the crossover frequency of the loop transfer matrix G pGc; that is,

on the behavior of c [GpGc] • Larger low frequency gain and crossover

frequency indicates better tracking performance. 	 Thus, o[GpGc] should

lie above the performance specification as shown in Fig. 3a. The other

requirement is the stability robustness in the presence of model

uncertainties.	 If the multiplicative uncertainty formulation is used,

according to (10), the a [G pGc ] plot should pass under the robustness

barrier o -1(Lp) at high frequencies (Fig. 3a). On the other hand, if

the additive formulation is used, the robustness condition ( 15) should be

satisfied ( Fig. 3b). The advantage of an LQG-based full state design is

that it has excellent classical properties, and its frequency response can

be shaped in the desired manner by varying the weighting matrices [8].

As discussed in [7], this design can be accomplished using the LQR

Riccati equation if the loop is broken at the plant input, or the KBF

Riccati equation if it is broken at the point where the residual signal

enters the KBF. Herein we select the latter because the objective is to

control the attitude output.	 This selection is also consistent with

(9-11]. The KBF equations are:

12

AE + EAT + LL  - u EC C 
T 
E	 0

H = 1 ECT
P

(16)

(17)

j	 a^
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where L and u are the design parameters, L being an u x m matrix, and u a

scalar. The matrix H is the KBF gain and E is the corresponding Riecati

matrix. The KBF loop transfer matrix is given by:

C,I

G
KF

(s) - C (SI - A) -1 H	 (18)

Generally, the trequency response o(G KF(jw)) would shift higher as u

decreases, and the crossover frequency can be adjusted by changing L (6).

Having obtained satisfactory singular value behavior of KBF, the next

step is to design a LQR to "recover" the desired frequency response. This

is accomplished by solving the algebraic Riccati•equation

ATP + PAT- PBBTP + q CTC - 0	 .	 (19)

where P is the Riecati matrix and q is a positive scalar. The control

gain matrix G is given by

G - R-1BTP

It has been proven in references 7 and 8 that the loop transfer matrix

GpGc for the overall system (consisting of the plant, the KBF and the

LQR) tends to GICF(s) as q+co, provided that the open-loop plant has no

transmission zeros in the right half plane. The compensator G c(s) after

recovery is given by:

Gc (s) - G (sI - A + BG + HC)-1H

a'
i€

E

.fi

I	 I

s,

F ,
s

t
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Since the compensation obtained has no guaranteed robustness

properties, the last step will consist of testing the eigenvalues of the

entire closed-loop system to ensure stability and robustness. If

instability is discovered, it will be necessary to return to step 2 and

redesign the KBF for lower bandwidth and the LQR for robustness recovery.

If this does not produce satisfactory results, it would then be necessary

to return to step 1 and include more elastic modes in the design model.

Application of the foregoing LQG/LTR procedure for the Hoop/Column antenna

is described in the following, section.

5. CONTROLLER DESIGN BY LQG/LTR MMOD USING ATTITUDE FEEDBACK

The foregoing procedure has been'applled to the Hoop /Column antenna

model. The computations of singular values of various matrices (e.g.

loop transfer, return difference, inverse return difference matrices) were

carried out using a recently developed multivarable frequency domain

analysis software package (FREQ), and the LQG designs were carried out

using ORACLS [ 13]. The nominal plant includes three rotational rigid-body

modes and the first ten elastic modes. We assume three torque actuators;

hence, the order of B matrix is 260. Assuming three attitude sensors

(one for each axis) at the same location as the actuators, C is a 3 x 26

matrix. The plant, input, and output matrices were obtained from a finite

element analysis of the antenna.
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Before starting the controller design, the maximum and minimum

singular ve,lues (F and a) of the full, nominal, open-loop plant transfer

matrix were obtained and are shown in figure 4. The g plot clearly shows

the peaks at the elastic mode frequencies (i.e. the poles), the most

prominent being the first mode near .75 rad/sec. The dips in a indicate

the presence of transmission zeros for the multivariable plant at those

frequencies.	 The controller synthesis studies are performed using the

design model consisting of:

a) rigid-body model (n . 6, nq - 0)

b) rigid-body and the first flexible mode (n - 8, nq R 1)

c) rigid-body and the first three f1vible modes (n	 12, nq =3)

The measurements available are the three attitude angles at the feed

location. One 3-axis torque actuator is used at the same location. The

compensator is designed based on these sensors and actuators.

5.1 Rigid Body Model:

► :

i.

W ,t

g1 I

i^

In this section the controller design is carried out based only on

the rigid body design model. The largest and the smallest singular values

of the rigid-body transfer matrix (n - 6) are of the form 11s 2 . The

corresponding additive uncertainty AG, which consists of the (20th order)

flexible dynamics, is plotted in figure 5. Figure 5 indicates the

presence of poles at the undamped flexible mode frequencies of 0.75

rad/sec, 1.35 rad/sec, etc. Also, the pole of the first mode frequency of

0.75 rad/sec produces the highest peak since it is most lightly damped.
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(The importance of this fact will be seen later when the stability

condition is violated at this point).

For this sixth order design model, a compensator design was carried

out using the Kalman ,filter design methodology to achieve satisfactory

performance (i.e., large gain and bandwidth) at low frequencies, and

robustness at high frequencies. This design was carried out using the

Kalman filter Riccati equation ( 16).	 The Kalman-Bucy filter (KBF)

transfer matrix GKF ( s) is given in equation (18). 	 Appropriate

loop-shaping can be accomplished by proper choice of the weights u and L

in equation ( 16).	 Since the controller design model is of the form

1/s 2 , one can	 analytically evaluate the singular values of I+Gvv

using equations (16) and (17). 	 Assuming u - 1 and L - (L 1 ,L2 ) 'r the

left hand side of (15) can be solved. 	 For L1 - 0 and L2 - k2 I, it

can be whown that equation (15) is satisfied by:

k2 < 10-7

This implies that the Kalman filter gain computed using (17) will be very

low. Figure 5 shows plots for condition (15) with two L matrices, with

L 1 - 0 and k2 - 10-6 and 10-7 .	 The right hand side of (15) is

also plotted in figure 5. It is evident; that condition (15) is satisfied

for k2-10-7 .	 As k2 is	 decreased further, the curve shifts upward

thus increasing the margin.
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The next step consists of LQ regulator design. Having obtained an

acceptable compensator through Kalman —Bucy filter equations, the LQ

regulator is realized via the loop transfer recovery method 18). Figure 6

presents the aingular value plots of the complete loop transfer matrix

GpGc(s) (which consists of the plant, the KBF and the LQR) for

different wetighting parameter q (Eq. 19). The q selected was q-10 6 and

1.07 . It is easy to check condition (11) in this case. As q is

increased, the plots approach those of the compensator obtained from the

Kalman filter design approach. The LQ design for q • 106 was considered

to be satisfactory.

'The standard LQ^/ LTD procedure requires the definition of the

"desired" loop transfer characteristics (see step two in section three.)

That	 is,	 Q,(GKF)	 must	 satisfy	 the	 low—frequency	 performance

specifications, and v (G KF ) must satisfy the high—frequency robustness

specifications.	 Thus, in the presence of additive uncertainty AG, the

procedure states that the robustness condition

Q (I + GKF ) o (Gp)
>	 v (AG)

v (GKF)

should be satisfied. However, in the case described above, it was found

that the above condition makes the "desired" design (G KF ) extremely

conservative. From Ue,F we 6, it is seen that the closed loop bandwith is

quite low and nowhere near the desired value of .1 rad/sec. Therefore,

t

M"
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recovering this conservative loop gain yields a compensator with poor

performance. This fact led to a modification of the LQG/LTR procedure.

In particular, the above robustness test on % is omitted in the

modified procedure. Instead, the recovz , is carried out first, and then

the (lens conservative) stability test (11) is applied directly for the

compensator Gc .	 The Kalman filter transfer matrix GKF is based only

on the desired performance and not on satisfying the stability test of

equation (15).

With the revised Qest on Cc , the following choices on L and u

matrices were made.

0
L	 ; ^^ R 1	 -

10-2I

Using the recovery procedure, the compensator is obtained for this

case wth q - 104 . The resulting stability test (Eq. 11) is shown in

figure 7. It is seen that the stability margin is lowest at the first

mode frequency (0.75 rad/sec). Any increase in the gain (obtained by

q > 104 ) resulted in violation of stability condition at that point.

The overall loop bandwidth 'is obtained from the singular values of the

loop transfer function GpG. shown in figure 8. It is seen that the

bandwidth (i.e;., the frequency at which o(G p
C
c) = 1) is far short of

the required 0.1 rad/sec.	 In order to increase the bandwidth, the gain
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has to be increased by increasing q. 	 However, this results in the

violation of the stability condition (11). Thus it is evident that, with

a rigid—body design model, it is not possible to meet the performance

specifications.

5.2 1 Flexible Mode Design Model:

To overcome the above problems, the next alternative that was

considered was whether the inclusion of the first flexible mode (0.75

rad/sec) in the design model would improve the performance. The inclusion

of the first flexible mode, which is predominantly a torsion mode, results

in a design model of order 8. The singular values of AG shown in figure 9

are an order of magnitude lower` than those in figure 5 (wherein AG

consistEd of all the flexible modes). The first peak of a(AG) occurs at

1.35 rad/sec, which is the frequency of the: second mode. This is the

critical point in the stability test (Eq. 11). After a number of trials,

the following choice of L and u was made to obtain the desired performance

GKF•

0

L	 10-113	 u	 1

10 -1 1 2	0

The recovery is obtained for q = 10 5 and the stability test is shown in

figure 9.	 Fig. 9 indicates the critical point to be at about 0.28
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rad/sec. There ib a good margin at the peaks of AG due to upward sloping

of the upper curve. 	 The resulting loop transfer function (GpGc) plots

are shown in figure 10. The plots indicate that the required 0.1 rad/sec

bandwidth is not obtained (although it is much higher than. the rigid—model

case).	 Any increase in the gain (for q > 10 5 ) was found to result in

the violation of the stability condition (11). 	 Figure 10 indicates the

presence of an open—loop invariant zero near 0.082 rad/sec, which was also

confirmed by independent computations. 	 This zero is almost on the

imaginary axis (i.e., the transfer matrix is close to being nonminimum I

phase). Therefore, (as would be expected) the recovery procedure is not

very effective for making GpGc approximate GK.

5.3 3 Flexible Mode Model:

In order to improve the performance further, the next step was to

include the first three flexible modes in the design model. It is logical

to do this because they represent the first modes about each axis, i.e.,

the first torsion mode, and the first h nding modes in the XZ and YZ

planes. Thus, the order of the design model was 12. The singular value

plots for G  and AG are shown in figures 11 and 12, respectively. It is

seen from figure 11 that Gp has zeros near 0.082 and 0.22 rad/sec, and

poles near 0.75, 1.35, and 1.7 rad/sec. It is seen from the AG plot

(Fig. 12) that v is considerably lower than that in figures 7 and 9.

After numerous trials, the following choice of the L matrix and the scalar

V was made for a suitable Gam,:

Ej
al
¢I

I

i

55

D:A



21

f

	

4	 •

0

10-113

-10-412 i 0 -

1

	

10-4 1 2 	0

	

10-4 1 2 	0

; V 0 1

<-^ I

0 12M

F

t

I

C

s

t

L

The recovery was accomplished with q - 10 10 .	 The stability test is

shown in figure 12. It can be seen that condition (11) is satisfied with

a wide margin. Also, at the peak for AG (at 8 rad/sec) the upper curve

slopes upward, indicating good toletrance of high-frequency uncertainty.

The limit for increasing the gain (indicated by the lowest point in the

upper curve in figure (12) occurs at about, 0.3 rad/sec.	 The resulting

icompensator Gc s shown in f:tgure 13.	 The gain of c	 higheri	 G is much hi 

than that obtained in the previous cases. 	 Generally, the LQG/LTR

technique attempts to choose Gc in such a way that the product GpGc

is replaced by GKF (i.e. Gc is attempting to invert G 	 in the

frequency range of interest). The 3-mode design plant shown in figure 11

has elastic mode eigenvalues at -.0075 ± 3.75, -.0135 ± J1.35, and -.0170

i 31.70. Figure 13 shows that Gc has zeros with frequencies near these

locations. The design plant also has transmission zeros at -.9 x 10 -4 ±

3.082, -.37 x 10-3 ± 3.22, and -.29 x 10-3 t 3.22.	 Ideally, Gc

should have poles with frequencies near .082 and .22. However, the design

i

J
^i
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I plant	 zeros	 are	 too	 near the JW-axis	 and	 tend	 to numerically behave as
!

f?

r

nonminimum phase.	 Some	 attenuation is	 obtained by the compensator pole {='

near	 94	 rad/sec.	 The	 plots	 for	 the	 loop	 transfer	 matrix	 GpGc	 are

given	 in	 figure	 14.	 It	 is	 seen	 that	 a	 bandwidth	 of	 0.1	 rad/sec.	 is

v
j

obtained	 except	 for	 the	 presence	 of	 the	 invariant	 zero	 near	 0.082

' rad/sec.	 which causes some deterioration of performance. 	 At	 frequencies

past	 .4	 rad/sec.,	 GpGc	 behaves	 like	 G	 and	 eventually	 rolls	 off	 at 1

i
60db/decade.	 Also,	 v	 and	 a are	 closely spaced,	 indicating good	 system

' behavior.	 Thus it is seen that	 the inclusion of the first three modes in

the	 design	 model	 yields	 a	 robust	 compensator	 which	 also	 meets	 the

bandwidth specifications.'

1 The	 final	 step	 is	 to	 check -the	 suability	 of	 the	 complete	 nominal

system	 when	 the	 compensator	 Gc(s)	 designed	 above	 is	 used.	 The	 overall l'}

closed-loop system is:

x	 AF	 -B
F
G 	 x

X	 HCF A-BG-HC	 x

}

where the subscript F is used to denote the full-order nominal plant, and
v!!;

x denotes the state estimate for the design model.	 The eigenvalues of the 8

overall closed-loop system using the 3-mode controller are given in Table

II.	 It	 can be seen from Table II that the overall closed-loop syste-i is

stable.
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6. CONCLUDING REKAM

The LQG/LTR multivariable frequency domain technique was employed in

the design of an attitude control system for a large flexible space

antenna. The LQG/LTR method was noted to be especially attractive for

overcoming spillover effects common to large space structures control

problem modelled from finite element data. The design objective of

avoiding excitation of higher order modes while satisfying performance

criteria was met by including these modes in the robustness uncertainity

barrier.

Design was based on a reduced order model chosen as the rigid body

dynamics plus the fewest number of low frequency vibrational modes

necessary to meet a desired closed loop bandwith. Inclusion of the first

three vibrational modes (corresponding to the three axes) was found to be

necssary to meet a 0.1 rad/sec bandwith.	 For wider bandwidths, design

models width greater than three modes may be needed. A satisfactory

control design was obtained using only a colocated single pair of 3—axis

attitude sensor and torque actuator for the Hoop/Column antenna problem.

Performance degradation was observed due to the presence of invariant

zeros within, the design bandwith. These zeros were unavo,dable given the

prescribed sensor/actuator locations and emphasized the fact that

consideration should be given to control aspects when building large space

structures.

A modification of the standard LQG/LTR procedure was introduced in

which the robustness test was performed with the full LQG compensator
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b

instead of. the intermediate Kalman filter design. This approach was found

to produce higher gain compensators and helped overcome the basic

conservativeness shortcoming of the LQG/LTR approach.
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!able I. Antenna Paraa►etera

Rigid-body parameters

Mass-4544.3 Kg.

lertia about axes through center of mass (Kg-m2)

Ixx M 5.724 x 106

I zz M 
4.383 x 106

I yy • 5.747 x 106

27

Iyz	 IXz	 Ixy	 0

Structural Mode Frequencies (rad/aec)

1.35, 1.7, 3.18, 4.53, 5.59, 5.78, 6.84, 7.4 0 8.78

, 6

4	 1	 A

r

;-	
62



:X. Eigenvalues of the Full Closed-Loop system

Real part	 Imaginaryaginary Part

-8.535 (103 )	 8.054 (102)
-8.535 (10-3 )	 -8.054 (10-2)

-7.557 (10-2 )	 1.250 (10-1)

-7.557 (10 2 )	 -1.250 (101)
-7.604 (10-2 )	 1.248 (10-1)

-7.604 (10-2 )	 -1.248 (10-1)

-2.237 (10 1 )	 2.236 (10-1)

-2.237 (10 -1 )	 -2.236 (10-1)

-2.330 (10-1 )	 2.154 (10-1)

-2.330 (10-1 )	 -2.154 (10-1)

-2.379 (10 -1 )	 2.113 (10-1)

-'t.379 (10-1 )	 -2.113 (10-1)
-7.466 (10-3 )	 7.466 (10-1)

-•7.466 (10 -3 )	 -7.466 (10-1)
-1.346 (10 -2 )	 1.346

-1.346 (102 )	 -1.346

-3.076 (10 -1 )	 1.373

-3.076 (10 -1 )	 -1.373

-1.016	 1.267

-1.016	 -1.267

-1.702 (10 -2 )	 1.702

-1.702 (10-2 )	 -1.702

-4.028 (10 1 )	 1.737

	

=4.028 (10-1 )	 -1.737

-3.181 (10 -2 )	 3.181

-3.181 (10
-2

)	 -3.181

-4.422 (10 -2 )	 4.529

-4.422 (10 -2 )	 -4.529

	

-5.579 (10-2 )	 5.590

	

-5.579 (10-2 )	 -5.590

-5.731 (10-2 ) 5.776

-5.731 (10-2 -5.776

-6.685 (102 ) 6.841

f. l -6.685 (10-2 -6.841
 -6.390 (10-2 ) 7.401
l

-6.390 (10
-2

) -7.401

-8.326 (10-2 ) 8.782

-8.326 (102 ) -8.782 63 ^5
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