Consolidation and Advertising Prices in Local Radio Markets

By Keith Brown and George Williams

September 2002
Consolidation and Advertising Price in Local Radio Markets

Keith Brown and George Williams*1

Executive Summary: We combine data on the price charged to national and regional advertising agencies for local radio advertising with data on concentration in local radio markets, creating a panel data set relating the price of advertising to concentration. We employ fixed-effects regression and find that changes in local concentration from 1996-2001 explain 3-4% out of the 68% increase in real advertising rates during this period. Economic growth explains much of the other 65%. National concentration does not appear to drive the increase in advertising prices. A greater presence of large national owners in a local market appears to decrease the advertising rates paid by national and regional advertising agencies.

Acknowledgements: We would like to thank all the participants at the Media Bureau Brown Bag lunch for helpful comments, and we’re especially grateful to Ken Lynch for his valuable and helpful expertise. All errors are our own.

* Following convention, we list authors in alphabetical order of surname.
1 Media Bureau, Federal Communications Commission. The views expressed in this paper are those of the authors alone and do not necessarily reflect the views of the Federal Communications Commission, any Commissioners, or other staff.
I. Introduction

With the wave of radio mergers following the 1996 Telecommunications Act, the radio market has captured more attention from observers and policymakers. Specifically, observers and policymakers wish to understand the causes and consequences of consolidation in radio markets. Combining data on the price of local radio advertising\(^2\) with data on radio market characteristics and economic growth from BIA and the Bureau of Economic Analysis, we analyze the effect of consolidation on the price of radio advertising. We find that increases in local concentration following the Act modestly increased local radio advertising prices, while increases in national concentration had no apparent effect. When we examined markets where the local share of national conglomerate owners grew more quickly over time, we found that these markets actually charged lower prices for local radio advertising to national and regional advertising agencies.

The 1996 Act made two major regulatory changes in radio. First, the 1996 Act increased the number of radio stations that a single radio owner could possess in any given locality. Under the 1996 Act, a single owner can own up to 8 radio stations in a market with 45 or more commercial radio stations, 7 radio stations in a market with 30-44

\(^{2}\) Provided by Service Quality Analytics Data (SQAD). Because our radio advertising price data derives exclusively from the records of national and regional advertising agencies, it only includes the local radio advertising purchases made through these advertising agencies, and does not include data on local radio advertising purchases made by actual local businesses.
radio stations, 6 radio stations in a market with 15-29 radio stations, and five stations in markets with less than 15 radio stations. Second, the 1996 Act eliminated all caps on national ownership, replacing the old cap of 20 FM stations and 20 AM stations. This paper specifically addresses and estimates the effects of these changes on the prices paid by national and regional advertising agencies for advertising time in local radio markets.

Even if we could fully apprehend the effects of radio consolidation on the prices paid by all types of advertisers for all types of radio advertising, the economic welfare implications of consolidation in radio markets would still be unclear, because advertisers are not the only customers in radio markets. Listeners also consume radio, and listeners may not like advertising. To the extent that listeners dislike advertising, and to the extent radio stations use market power to charge advertisers higher prices by restricting the amount of advertising time, then listeners may in fact benefit from the radio stations’ exercise of market power over advertisers.

II. Literature Review

Consolidation in media markets effects economic welfare in many disparate ways. Berry and Waldfogel (2001) studied the effects of consolidation on format diversity in

3 Becker and Murphy (1993) infer that media consumers in any advertiser-supported media market dislike the advertising carried by that media from the fact that the advertiser must compensate the media consumer with free programming in order to get the media consumer to view or listen to the advertising. Therefore, under that theory, if market power by radio owners leads to higher advertising prices paid by radio advertisers, then radio listeners could in fact benefit from the resulting decline in the quantity of advertising.
radio markets, finding that consolidation increased the number of formats available to listeners. Romeo and Dick (2001) contend that a radio station’s chosen format represents a significant sunk cost, indicating that concentration within a local radio market’s format may be meaningful for antitrust analysis.

Radio consolidation may also impact the advertising market. The Department of Justice has expressed specific interest in understanding the effects of recent radio mergers on advertising rates. From a theoretical perspective, the impact of consolidation on radio markets allows us to explore the implications of recent theory. Anderson and Coate (2000) contend that firms in advertiser-supported media markets have two potential sources of market power; market power over listeners/viewers and market power over advertisers. In fact, Anderson and Coate point out, these two different sources of market power counteract each other when determining the amount of advertising in the market. To the extent a media firm has market power over listeners/viewers (and if listeners/viewers dislike advertising), then the firm will air more ads, because listeners/viewers do not have close media substitutes and therefore cannot avoid advertising. On the other hand, to the extent a media firm has market power over advertisers, then the firm will air less advertising in order to extract higher prices from advertisers.

Past empirical work on radio advertising includes Ekelund, Ford, and Jackson (1999), who estimate the own-price elasticity of radio advertising in order to determine whether radio advertising constitutes a distinct local market for antitrust analysis. EFJ
find that radio advertising does indeed constitute an antitrust market. Ekelund, Ford, and Koutsky (2000) estimate the sale price of radio stations as a function of concentration. If local concentration raises market power for radio stations, then it should raise the expected profits of each radio station, which should raise the equilibrium sale price of each radio station. EFK find no strong relationship between the sale price of radio stations and local concentration.

In other work on media advertising substitutability, Silk, Klein, and Berndt (2002) employ simultaneous equations to analyze the cross-price elasticity for national advertising on eight different types of media. SKB mainly find that national advertising on different media are weak substitutes for each other. Seldon, Jewell, and O’Brien (2000) analyze the cross-substitutability of print media, television, and radio for beer advertisers, finding a very high degree of substitutability. McCullogh and Waldon (1998) estimate the substitutability between national spot and network television advertising, finding weak substitutability between the two.

III. Data and Methodology

Thus far, no researcher has, to our knowledge, yet performed a solid and comprehensive panel estimation of the relationship between consolidation and the local radio advertising price following the 1996 Act. In addition, no researcher has, to our knowledge, yet examined the direct effect of national consolidation on local radio advertising price. We fill this gap with a panel data set which tracks real-dollar
advertising rates, the number of stations, local concentration measures (including the local Herfindahl Index and the number of owners), population, real income, and national concentration for 214 different markets from the 1st Quarter of 1996 (when Congress passed the Telecommunications Act) to the 1st Quarter of 2001. This panel allows us to track consolidation’s effect on advertising rates.

We create our data set by combining Service Quality Analytics Data (SQAD) data with BIA data and data from the Bureau of Economic Analysis. The SQAD data derives from participating national and regional advertisers, who report the price of their local advertising buys for a given radio market. The prices for each local buy for each local market are then averaged together, giving a single advertising price for each radio market. One primary virtue of SQAD data is that SQAD advertising rates are actual rates paid by advertisers for spots on local radio stations in each market, and are not derived from rate cards. We take the SQAD CPMs (cost of reaching 1,000 listeners aged 18-49) and merge these data with data on local market concentration, national market concentration, population, and per capita personal income within each market. This generates a panel covering 214 local radio markets over a five year period, from 1995-2000. We match our 1st Quarter SQAD advertising rates in a given year to the BIA and BEA data from the year before, because SQAD rates are determined by contract negotiations during previous quarters. For example, contracts negotiated by the final quarter of 1995 determine the SQAD advertising rates paid for the 1st Quarter of 1996. Therefore, in our specification, the 1st Quarter 1996 SQAD advertising price is a function
of market concentration and demographic variables during 1995. Because our first
SQAD rates are determined by 1995 pre-Act market conditions, the 1996 Act itself
provides exogenous variation.

We recognize the limits of our data. Our advertising prices are aggregated by
market and they only reflect the prices reported by national and regional advertising
agencies for purchases of local radio advertising time. The rates paid by local advertisers
likely differ from the rates paid by national and regional advertisers. However, the
SQAD data are, to our knowledge, the only data on radio advertising prices that do not
rely on rate cards, but instead reflect the actual prices paid for advertising.

We employ both two-way market fixed-effects and one-way market fixed-effects.
Using panel data confers serious benefits in any empirical analysis. Thanks to panel data
methodology, we can use so-called fixed effects to adjust for many things that cannot be
observed. Market fixed-effects adjust for unseen idiosyncrasies in a given market (a
popular DJ whose commercial testimonials are unusually effective, for instance) that
affects the local radio advertising price. Including time fixed-effects adjusts for any
idiosyncratic event that happens to all local radio markets simultaneously at a given point
in time. Because the 1996 Act was exactly such an event, we employ econometric
specifications that include time fixed-effects in order to evaluate the effect of the Act
itself, and we employ specifications that do NOT include time fixed-effects in order to
evaluate the effect the Act’s new regulatory regime had on radio advertising rates. We
use population-weighted least squares as our regression methodology.
IV. The Variables and Descriptive Statistics

Because we want to analyze the effects of both national and local consolidation on advertising prices, we include both local and national Herfindahl indices (hereafter referred to “HHI”). We derive local HHIs for each market in each year by summing the squares of each owner’s revenue market share in a market during a given year. This gives us a measure of concentration in the local market. This allows us to partially evaluate the effects of local consolidation stemming from the 1996 Act’s changes to the local ownership rules. We derive national HHIs by summing the squares of each owner’s national revenue market share. This gives the level of concentration across all stations in all markets. Including the national HHI allows us to test whether eliminating the national ownership cap had any effect on the prices paid by national and regional advertisers for local radio advertising. Note that the national HHIs are the same for all markets during each year.

The measures of local and national radio market concentration, as measured by HHIs, grew significantly from 1995 to 2000, reflecting the consolidation in the radio industry during this period. In addition, we also include the raw number of owners in each local market, in order to see whether price collusion became easier to coordinate as local markets become consolidated among fewer owners. Including the number of owners with the local HHI may allow us to distinguish the market-power effects of local consolidation (local HHI) from the collusive effects of local consolidation (number of
owners in a local market). We also create a new variable, called \(\text{local-national} \), which reflects the degree to which a local market contains large national radio firms. We create this variable by multiplying each owner’s local market share by that owner’s national market share and summing across all owners within each market in each time period. For example, if a market has 10 local owners each with 10% local market share and 1% national market share in 1999, the value of \(\text{local-national} \) in that market would be .01 in the year 1999. If that same local market then has 10 owners each with 10% local market share and 10% national market share in 2000, then the value of \(\text{local-national} \) would be .1 in the year 2000, a 1000% percent increase from 1999. Using \(\text{local-national} \), we can see whether changes in presence of national conglomerates have any effect on the price of local radio advertising. Absent this variable, we would have no way of distinguishing the behavior of a locally owned station from the behavior of, say, a Clear Channel or Viacom-owned station in a local market.

Finally, we adjust for important demographic factors by including the per capita income and population for each market in each year covered by our study and including the National Real GDP to adjust for overall nationwide economic growth. Other demographic factors, such as age or racial composition, most likely do not vary over time and thus may not have significance in a fixed-effects panel approach.

The data lends itself to a good birds-eye description of radio trends over the last five years. The simple chart below lists the Local HHI, national HHI, number of owners, CPI, and average Cost-per-thousand (CPM) listeners aged 18-49.
Table One

The Radio Market 1995-2000

<table>
<thead>
<tr>
<th></th>
<th>Local HHI</th>
<th>National HHI</th>
<th>Owners</th>
<th>Consumer Price Index</th>
<th>Average Population – weighted CPM (1st Quarter of following year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>2102.64</td>
<td>125.46</td>
<td>17.2</td>
<td>152.4</td>
<td>First Quarter 1996 - 6.2</td>
</tr>
<tr>
<td>1996</td>
<td>2151.24</td>
<td>191.38</td>
<td>16.5</td>
<td>156.9</td>
<td>First Quarter 1997 - 6.9</td>
</tr>
<tr>
<td>1997</td>
<td>2666.07</td>
<td>286.73</td>
<td>14.9</td>
<td>160.5</td>
<td>First Quarter 1998 - 7.8</td>
</tr>
<tr>
<td>1998</td>
<td>2860.73</td>
<td>621.39</td>
<td>14.0</td>
<td>163.0</td>
<td>First Quarter 1999 - 8.8</td>
</tr>
<tr>
<td>1999</td>
<td>2965.35</td>
<td>780.68</td>
<td>13.3</td>
<td>166.6</td>
<td>First Quarter 2000 - 10.1</td>
</tr>
<tr>
<td>2000</td>
<td>3084.03</td>
<td>1052.67</td>
<td>12.7</td>
<td>172.2</td>
<td>First Quarter 2001 - 11.2</td>
</tr>
<tr>
<td>Total % Change 1996 - 2001</td>
<td>47%</td>
<td>739%</td>
<td>-26%</td>
<td>13%</td>
<td>81%</td>
</tr>
</tbody>
</table>

As these descriptive statistics show, the radio market consolidated considerably during the 1995-2000 period. The local HHI rose by an average of 47% for the 214 local markets we measured, and the national HHI rose by 739%. In addition, the price charged by radio stations to advertisers increased by 81% (68% in inflation-adjusted dollars), which indicates that the increased consolidation may have led to an increase in advertising prices. The charts below illustrate this point.
V. Econometric Specification and Estimation

We estimate a panel of 214 radio markets over 5 years, using fixed-effects panel regression. This gives 6 observations for each market (1995, 1996, 1997, 1998, 1999, and 2000), for a total of 1284 observations. Since there may be unobserved heterogeneity
across markets, we use fixed-effects panel regression. (Hausman tests between the fixed-effects and random-effects panel regression estimates confirm our expectation of unobserved heterogeneity across radio markets.) Advertising prices for the 1st Quarter of 1996 were negotiated in the final quarter of 1995, before the passage of the 1996 Telecommunications Act. Therefore, the 1996 Telecommunications Act provides us with a source of exogenous variation, so that changes in the advertising price and changes in the market structure coincide with our first observation. We divide the CPM by the Consumer Price Index to obtain the inflation-adjusted advertising price.

We wish to examine the effects of national concentration on the price of advertising. However, national concentration is the same across all markets at any given point in time. Therefore, we cannot estimate the effects of national concentration in a two-way fixed-effects panel setting, because controlling for any and all changes that impact all markets simultaneously automatically eliminates national concentration, because national concentration is precisely such a change. Therefore, we estimate two models. The first model is a one-way fixed effects model that controls for unobserved heterogeneity across markets and includes national concentration. The second is a two-way fixed-effects model that controls for heterogeneity across markets and across time periods and excludes national concentration and National Real GDP. We estimate both models log-linearly\(^4\).
Model 1: For market i during time-period j, where $i=1\ldots214$, and $j=1\ldots6$.

\[
\ln(\text{AdpricefoMorningDriveTime})_{ij} = \beta_0 + \beta_1 (\ln \text{realincome})_{ij} + \beta_2 (\ln \text{population})_{ij} \\
+ \beta_3 (\ln \text{localHHI})_{ij} + \beta_4 (\ln \text{nationalHHI})_{ij} + \beta_5 (\ln \text{numberofowners})_{ij} \\
+ \beta_6 (\ln \text{local - national})_{ij} + \beta_7 (\ln \text{nationalRGDP}) + \Lambda_i + \varepsilon_{ij}
\]

Model 2: For market i during time-period j, where $i=1\ldots214$, and $j=1\ldots6$.

\[
\ln(\text{AdpricefoMorningDriveTime})_{ij} = \beta_0 + \beta_1 (\ln \text{realincome})_{ij} + \beta_2 (\ln \text{population})_{ij} \\
+ \beta_3 (\ln \text{localHHI})_{ij} + \beta_4 (\ln \text{numberofowners})_{ij} + \beta_5 (\ln \text{local - national})_{ij} + \Lambda_i + \Gamma_j + \varepsilon_{ij}
\]

\[4\text{ When we examined two-sided Box-Cox transformations, the log-log model could not be rejected at even a}\]
\[10\% \text{ significance level.}\]
Table 2 below displays the estimation results, not including the estimates for each of the 214 market dummy variables.

<table>
<thead>
<tr>
<th></th>
<th>Model 1 – One-way fixed-effects</th>
<th>Model 2 – Two-way fixed-effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ln(Price of Radio Advertising during Morning Drive-time)</td>
<td>Ln(Price of Radio Advertising during Morning Drive-time)</td>
</tr>
<tr>
<td>Ln(Population)</td>
<td>-.19** (2.28)</td>
<td>-.17** (1.96)</td>
</tr>
<tr>
<td>Ln(Real Income)</td>
<td>.47*** (6.94)</td>
<td>.55*** (8.02)</td>
</tr>
<tr>
<td>Ln(Local HHI)</td>
<td>.03** (2.35)</td>
<td>.04*** (3.84)</td>
</tr>
<tr>
<td>Ln(National HHI)</td>
<td>-.01 (0.67)</td>
<td>-</td>
</tr>
<tr>
<td>Ln(# of Owners)</td>
<td>-.04 (1.58)</td>
<td>-.03 (1.15)</td>
</tr>
<tr>
<td>Ln(Local-National)</td>
<td>-.02*** (6.40)</td>
<td>-.02*** (5.29)</td>
</tr>
<tr>
<td>Ln(RealGDP)</td>
<td>2.74*** (12.78)</td>
<td>-</td>
</tr>
<tr>
<td>Constant</td>
<td>-13.90*** (10.19)</td>
<td>-4.06*** (3.79)</td>
</tr>
<tr>
<td>F-statistic</td>
<td>173.19***</td>
<td>171.38***</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>.97</td>
<td>.97</td>
</tr>
</tbody>
</table>

Table 2: The Effects of Consolidation on Local Radio Advertising Prices
(T-statistics in Parentheses)
VI. Interpretation of the Results

The coefficient on population is significantly negative in both models, indicating that increases in population lower the value of reaching an individual listener. This may indicate that part of the value of local radio advertising may be the ability to reach all the listeners in a given market (achieving “saturation”), so that increases in the number of potential listeners decreases the value of reaching an individual listener. Silk, Klein, and Berndt discuss the role that advertising agencies play in coordinating advertising across media. To the extent radio advertising does not reach an entire market, then the advertising agency may have to employ other media. To the extent these other media also reach viewers otherwise reached by radio, the advertising agency’s demand for radio time may decline. Not surprisingly, the coefficient on real income is positive and significant, indicating that advertisers prefer markets with wealthier listeners.

The results indicate that increases in local concentration modestly increase the price paid for local advertising by national and regional advertising agencies. In both models, an increase in the local HHI causes a small but statistically significant increase in the price of local radio advertising. A doubling of the HHI in a given market would raise the local advertising price by 3% according to the first model and 4% according to the second model. This indicates that local concentration increases the market power of
radio stations over national and regional advertisers in the local radio advertising market. The effect of the number of owners is negative but statistically insignificant in both models.

Example: Assume that the Hypothesisville local radio market has four owners, each with 25% market share. This yields a local HHI of 2500. Two of these owners wish to merge. If the merger is permitted, Hypothesisville’s local radio market would have three owners, one owner with a 50% market share and two other owners each with a 25% market share. This would increase local HHI from 2500 to 3750, an 50% increase, and would decrease the number of local owners from 4 to 3, a 25% decrease. According to model one, this 50% increase in local HHI would increase the price of advertising by 1.5%, while the 25 percent decrease in the number of owners would increase the price of advertising by 1%, for a total increase of 2.5%. According to model two, the 50% increase in local HHI would increase the advertising price by 2%, while the 25% decline in the number of owners would increase the advertising price by approximately .75%, for a total of approximately 2.75%. Thus, both models would predict a similar increase in advertising price from the merger in this particular case.

In model one, National HHI is statistically insignificant, with much of the increase in advertising prices over time driven by economic growth as proxied by the Real GDP. In model two, there is no coefficient on National HHI or Real GDP because National HHI and Real GDP cannot be included in a two-way fixed-effects model. In both models, however, the coefficient on local-national is negative and significant,
indicating that the local radio advertising prices charged to national and regional advertising agencies declines when a larger share of a local market belongs to owners with larger national market shares. The latter finding implies that national radio companies may sell more local radio advertising time to national and regional advertising agencies, which may also mean that these national companies sell less local radio advertising time to local businesses.

Using our model, we can generate the predicted values for advertising prices for each market. The mathematical forms of the models we have estimated are:

Model One: \[Adprice = e^{-13.90 \times \text{MarketDummy} - 0.19 \times \text{realIncome}^{1.97} \times \text{LocalHHI}^{0.03} \times \text{NationalHHI}^{-0.01} \times \text{NationalRGGD}^{2.74} \times \text{Owners}^{-0.04} \times \text{LocalNational}^{-0.92} \]

Model Two: \[Adprice = e^{-4.06 + \text{MarketDummy} + \text{TimeDummy} - 0.17 \times \text{realIncome}^{1.55} \times \text{LocalHHI}^{0.04} \times \text{Owners}^{-0.03} \times \text{LocalNational}^{-0.92} \]

Let us use the Phoenix, Arizona radio market in the year 2000 as an example. In 2000 Phoenix, Arizona had a population of 1,414,000, a per capita income of 27,564.115, a local HHI of 1,412.84, a National HHI of 1052.676, a GDP of 9.8 billion, 28 owners, and a local-national measure of .06. Phoenix’s market dummy coefficient in model one is .009. Plugging these into model one gives a predicted advertising price of 8.99 per CPM for Phoenix in the year 2000. For model two, all values stay the same except Phoenix’s market dummy is now -.04, the constant is -4.06, and the time dummy for the

5 With a CPI of 172.2, this gives a real income of 160.07.
6 The National HHI is .105267 in the data set. I adjust for this in calculation.
7 Dividing this by the CPI of 172.2 gives a Real GDP of 57.05.
year 2000 is .40. Plugging these into model two gives a predicted price of 8.00. The actual price of a CPM in Phoenix during the year 2000 was 8.7. Thus the models perform reasonably well in predicting advertising prices. We could also use the models to predict the effects of a radio merger on prices charged to national and regional advertising agencies for local radio advertising.

Conclusion

We have estimated the effects of consolidation on local radio advertising prices charged to national and regional advertising agencies. The 1996 Telecommunications Act provided a source of exogenous variation that allowed us to estimate the effect of concentration on local advertising rates. This study represents a unique attempt to estimate the effect of concentration on the price of local radio advertising. We also incorporate the effects of national consolidation, another first. Overall, we find that local consolidation appears to increase the prices paid by national and regional advertising agencies for local radio advertising. At the local level, the explanation appears to be that consolidation does create more market power, by allowing the exercise of increased unilateral market power. From 1996 to 2001, population-weighted HHI increased by 73%, while the population-weighted number of owners fell by 26%. When we plug these numbers into either model, we find that local concentration accounted for approximately
3-4% out of the 68% increase in real advertising rates\(^8\). At the local level, greater
ownership by large national radio firms led to lower local radio advertising prices for
regional and national advertising agencies. Thus, national consolidation may have been
advantageous from the perspective of national and regional advertisers.

Again, the advertising market is not the only market in radio. Radio listeners also
comprise an important group of consumers, whose interests may not be the same as those
of advertisers. In fact, if listeners dislike advertising, then the reduced quantity of
advertising resulting from radio firms’ exercise of market power may actually benefit
listeners. Future studies should examine listener data in these 214 markets during this
time period, to see if higher prices charged to advertisers led to greater listenership. This
would give researchers and policymakers a more complete explanation regarding the
effects of local and national consolidation in the radio industry.

\(^8\) This would imply that changes in local concentration explain approximately 4-5% of the 68% increase.
Bibliography

Romeo, Charles and Dick, Andrew, 2001, ‘The Effect of Format Changes and Ownership Consolidation on Radio Station Outcomes,’ Manuscript

Service Quality Analytics Data, 1995-2000, *SQAD Spot Radio Database*
