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ABSTRACT 

These proceedings repon the rerPltr of a w9rkshop on identification and control of 
flexible space structures held in San Mego, CA, July 4-6, 1984. The workshop was 
co-sponsortd by the j e t  Propulsion Labor4tory and t h e  NASA Langley Research Center, 
and preceded the 1984 American Control Conference held a t  the same location. The 
main objectives of the wortrb;op were to provide a forum to exchange ideas in erplorinJ 
the most advanced m d e b ,  estimation, identification and control methodologies to 
flexible space structures. The workshop nrponded to the rapidly &rowing interest 
within NASA in large space systems (space station, platforms, antennas, flight 
experiments) currently m e r  design. The workshop contitted of m e y s ,  tutorials, 
contributed papers, and discussion sessions in the fo'llouiq general 8TC.l: missions of 
current interest - spclce platforms, antennas, and wt erptrimmts; controYrtrpctan 
interactions - modeling, integrated design aod optimization, control .pd stabilization, 
a d  shape control; uncertainty nunaltement - parameter identification, model error 
estimation/comptaution, a d  adaptive control; end experimental evrhmtion - gro- 
laboratory demonstrations .pd wt experiment des-. P4pert .ad lectures on them 
topics were presented a t  a total of fotuteen S C s s i o n s r  hchdirrg three panel dircumions. 
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A STUDY ON THE CONTROL OF 
THIRD GENERATION SPACECRAFP 

E. J. Ravbon and W. a 
University of Toronto 

Toronto, Ontnrio, Canada MSS iA4 

ABSTRACT 

An overview of some studies which have recently been carried out in El]-[33 
on the control of third-generation spacecraft, as modelled.by the M J T  space 
vehicle configuration, is made. 
has appendages which cannot in general be assumed to be rigid. In particular, it 
is desired to design a controller for MSAT which stabilizes the system and satis- 
fies certain attitude control, shepe control, -and possibly station-keeping re- 
quirements; in addition, it is desired that the resultant controller should be 
robust and avoid any undesirable "spill-over effects". 
ler obtained should have minimum complexity. 

late the problem as a robust servomechanism problem [SI- [7] ,  and thence to obtain 
existence conditions and a controller characterization to solve the problem. 

tion and appears to be quite satisfactory. 

This spacecraft is highly non-symmetrical and 

In addition, the control- 

The method of solution adopted to solve this class of problems is to formu- 

The final controller obtained for MSAT has a distributed control configura- 

INTRODUCTION 

This paper summarizes studies carried out in [l]-[3] on control system 

(1) Large mass 
(2) High power 
( 5 )  Large non-symmetric flexible appendages 
(4) 

structures known as third-generation spacecraft. Such spacecraft have: 

Precise communication RF bean control requircments. 
In particular, the class of spacecraft represented by the Mobile Conmrunicatioiis 
Satellite (MSAT) is used as a reference for these studies. "his spacecraft has 
non-symetric appendages which cannot be assmed to be rigid (see Figure 1). 

shape-control ani possibly station-keeping control for such third eeneration 
spacecraft (referred to as LFSS',, which may be listed as follows: 

Tlicre are a number of control problems Rssociated with the attitude-control, 

A .  TLe LFSS Control Problem 
Problem 1: 

long the imaginary axis, 
complish in this case is to stabilize. the rigid body modes of the LFSS, and at 
the same tine to stabilize the elastic modes of the LFSS. 
LFSS stabilization problem. 
*This work was supported by the.Department of Communicatioiv, Ottawa, Canada under 

-- - -1_- 

Lightly Lamped, Oscillatory Plan9 
A LFSS has eigenvalues either at the origin or approximately disrributed n- 

One of the basic objectives that a controller must ac- 

This is called the 

- .------. ---- -.__I_ _I_ 

contracts DOC-CR-SP-82-007, DOC-CR-SP-83-002, DOC-CR-SD-84-002. 
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Problem 2 : Modelling 

framework for the model!ing of the low frequency elastic modes of  the LFSS in a 
reasonably accurate way, but that the high frequency elastic modes cannot be ex- 
pected to be determined accurately, i.e. there will always be errors present in 
nodelling the high frequency elastic modes of the LFSS. In addition, the calcul- 
ation of dampening effects on the LFSS can only be done with great uncertainty. 

In modelling a LFSS,expcrience has shown that dynamic analysis may provide a 

Problem 3 :  

known "infinite dimensional" system reprl jntation of a LFSS. 
adopts this infinite dimensionality representation seriously from an engineering 
standpoint, there is no question that the number of system elastic modes present 
in a LFSS is always larger than the number which any design model of a LFSS can 
accommodate. In trying to control the modelled rigid and elastic modes, it is 
essential that the controller should not cause-these mmdelled high frequency 
clastic modes to become unstable. 

The Infinite Dimensional Plant - The "Spill-Over Problem" 
'l'iie classical modelling of elastic structures as continua results in the well 

Whether or not one 

This is called the "Spill-Over Problem". 

l)robl,m 4 :  The Sensor/Actuator Placement Problem 

ware is not in gzneral specified. 
part of the LFSS control problem is in determining the number and location of 
sensor/actuators on the LFSS. 

The LFSS is intrinsically distributed, and the configuration of control hard- 
Thus, unlike many conventional control pr..blems, 

Problem 5: 

second generation spacecraft, p-ecludes single-input, single-output contr31 design. 
Some type of multivariable control design method is mandatory to deal with the 
severe intcraction occurring in the system. 

Requirement for Multivariable Control Theory 
The concept of "third generation" spacecraft, unlike the first and some 

Problem 6 :  

Th, 2 is a practical limiation on the quantity of hardware that can be dis- 
tributed over the LFSS vehicle, 
full state feedback is available, and that the number of actuators/sensors used 
must be limited, i.e. one must minimize any unnecessary sensor/actuators required 
for LFSS control. 

Minimization of Number of Sensors/Actuators 

This implies in particular that one cannot assume 

The following problem definition is now given: 

B. The LFSS Robust Servoinechanism Problem 

sional linear time invariant model: 
Assxme that a LFSS can be exactly described by the following finite dimen- 

. 
x = AX + BU + Ew 
y = Cx + Fw 

Ym m = C x t Fmum 

2 



r n where xcR is the state, ucRm is the control (actuator inputs), ymcR are the 

are assume3 to be constant unmeasurable disturbances applied to the structure, 

error in the system where yref is a constant set-point. 
(1) may include an arbitrarily large number of elastic modes (but not infinite). 

is given by:  

measured (sensor) outputs, and ycR r are the outputs to be regulated. Here w R  n 

A are assumed to be constant unknown measurement errors and e = y-yref is the 

Thus, it is assumed that 

Assume now thct an approximate model of (l), called the design model for (l), 

-- x = Ax + Ell + Elk1 

y = tx + Tu 

where xrRn is the state of the design model, and where %<n. 
to find a controller based on the design model ( 2 j ,  such that when it is applied 
to (l), the system is asymptotically stable, i.e. no spill-over occurs, and such 
that: 

I? is desired now 

h 

hi! lim e(t) = 0 , Vx(O)eRn, V w R  s2 , Vu ER 
m t- 

This is called the LFSS Robust Servomechanism Problem, which includes the follow- 
ing subproblems: 

- (lj Stabilization 
(2) Station-keeping 
(3) Attitude control 
(4) Shape control. 

THE MSAT CONTROL PROBLEM 

The MSAT spacecraft is illustrated in Figure 1. It consists of four compon- 
ents, one of wich is rigid (the bus) and three of which are flexible (the solar 
array, the tower, and the reflector). The tower-reflector-hub hinge point is 
assumed to have a gimbal (see Figure 2 ) .  

The coordinates assumed for each of these substructures are as follows: 
(1) Bus - three rigid rotations (e ,e , e Z ) ’  

X Y  
(2)  Tower - relative displacement of tower tip to tower root 

(f - 16 1, f -16 * , f - 16 3) 

- relative angular displaceeent of reflectcr with respect to 
frame fiyed at tower root (with zero gimbal angles) 
(a1 ,ac2 ,a3) 

(3) Reflector - zwo gimbal angles at tower-reflector-hub hinge point (61,f3,)’ & 

The actuators which are assumed to be available are as follaws: 
Eight thrusters fi, i=1,2,. . . ,8, four from thrusters on the bus and four 
from thrusters at the reflector hinge point, aligned as shown in Figure 2 .  

(1) 
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(2)  'i'wo torquers at the reflector hub, one about each gimbal axis (g 
Figure 2). 

In this case, a design model and an evaluation model was developed in [4], 
in which the design model has 18 states consisting of S rigid body modes (corre- 
sponding to the three rigid rotations of the bus and two gimbal angles of the 
reflector) together with 4 elastic modes, and the evaluation model has 32 states 
consisting of 5 rigid body modes and 11 elastic modes. Table 1 gives the eigen- 
values of the open loop system for the two models. 
included the effect of dampening terms D, DE (see Table 1). 

The models used in this study 

With Damping 

TABLE 1: @pen Loop Eigenvalues of MSAT Vehicle 

With Damping 

Okj0.124 -0.0009232j0.124 
Okj0.239 -0.00170 2j0.240 
02 jO.556 -0.00856 2 j0.556 
02 jO.780 I -0.0211 f jO.779 Elastic 

Body I 
Modes 

-_ -- 

10 times) 10 times) Modes 

Evaluation Model 1 
Jith Damping 
Term DE 

' Excluded 
1 (repeated 

10 times) 

02 jO.124 
0% j 0.151 
02 j0.239 
02j0.556 
02 jO.690 
02 jO.780 
02 j 1.55 
02j3.14 
02j 3.96 
02 j9.95 
02 j 14.0 

Included 

10 times) 

-0.000923+ j 0.124 
-0.0008532 j 0.151 
-0.00171 2j0.239 
-0.00856 2 j 0.556 
-0.00553 2j0.690 
-0.0211 2j0.780 
-0.0751 2jl.SS 
-0.0280 2j3.14 
-0.0528 2j3.96 
-0.524 2j10.1 

It may be noted that the elastic modes of the evaluation d e 1  interweave with 
the elastic modes of the design model. 

A .  

for the MSAT vehicle. 
controller to be designed for the MSAf vehicle: 
Ikqu i remen t I 

problems : 

Description of Problem to be Salved 
11, this case it is desired to solve the LFSS Robust Servomechanism Problem 

In particular, there are two separate requirements for the 

bind a controller, based on the MSAT design model, which solves the following 

Stability: stabilize the 5 rigid body modes and the 4 elastic modes of thc 

Attitude control: regulate ex, 8 BZ to desired constant set points ex , 
system. ref 

ref respectiveiy, in the presence of unknown constant disturb- eref 

ances 

Y' 
Y ' OZ 

4 



the presence of unknown constant disturbances. 

above requirerents, and not cause any instability to occur with respect 
to any of the vehicle's elastic d e s  which are not included in the 
design model. 

Controller complexity: 
actuators which are required to solve the problem. 

Discrete controller implementation: it is desired that the controller, when 
implemented digitally, should nct require an excessively large sampling 
rate to maiitain stability. 

Spill-over problem: it is desired that the controller should satisfy the 

it is desired to minimize the nuniber of sensors and 

Requirement I 1  

evaluation model, and verify that all objectives above are satisfied. 
Apply the controller obtained, based on the MSAT design model, to the H U T  

The outputs to be regulated in this case are given by: 

U. Assumptions Made in Problem Formulation 
In this problem, it is assumed that there is no requirement for controlling 

the w w w rigid body d e s .  (Note: this assumption is not essential, e.g. 
(21 ,  131 also deals with the case of station-keeping.) It is also assumed that 
there is no need to include any gyroscgpic teras in the design and evaluation 
nodels. 

x' y' z 

UETHOD OF SOLUI'IW AD@PTED To OBTAlN 
A CONTROLLER To SOLVE PROBLEM 

The method of approach adopted to solve this problem was based on using the 
results of the "robust servomechanism problem" [5]-[7], in conjunctim with a 
parameter optimization method [8] to determine the controller's Tarameters. e.?. 
see [9]  which solves a special case of the above problem when the sens3r.c slnd 
actuators are collocated, using a decentralized control configuratim. In this 
case, existence conditions for a solution to the problem were obrained, and a 
necessary controller structure developed. In particular, it was found that any 
coxitroller which solves the PIAT problem specifications nust consist of a "servo- 
corpensator" 151 (unique) , together with a stabilizing conqensator (non-unique) . 
In this study, the simplest possible stabilizing compensator, i.e. a stabilizing 
compensator consisting of only proportional and rate feedback terms, was used. 

In this case, in order to satisfy the existence conditions obtained for a 
solution t o  exist tu the problem, it wzs necessary to choose the following inputs 
(actuators) and measurable outputs [sensors) for the controller : 

Outputs (sensors) : 
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Inputs (actuators) : 

* * t * t  

where g 

f l , f2 ,  ..., f ,f 

, fl’ f2,  fs, f correspond t o  various combinations of the thrusters  
c ,  6 
3 (see Figure 2) ,  as described i n  Appendix I .  7 8  

I n  t h i s  case, t I I e  following distributed control ler  was obtained as a solu- 
t i cn  to  the NSAT robust servomechanis8 problem, based on the MSAT design model: 

- K2s 

Y 
0 

z e 

B2j 

’8 -6 ’ 
e -G 

Kg - - 
5 ez-er 

x x  

Y Y  

where s denotes the Laplace Trabsfoxm operator, where 

and where K1, K 2 ,  Kg, K4, R5, y are given as follows: 

- 
K1 - 

- 

-0.000439 1 0.500 24.7 1.34 -0.0460 1.43 
0.0255 4.64 1.12 15.6 . 

0.00326 38.0 -0.231 14.5 
-6.81 -0.000957 0.00981 -0.000483 18.6 

59.0 -0.00916 0.0216 0.0127 

( 7 )  
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K, = 
3 

- 
-3.00877 1 28.5 10.0 494 26.7 -0.920 

0.510 92.8 22.3 312 

0.0653 760 -4.63 290 -0.191 
-136 -0.0191 0.1% -0.00965 372.2 

1180 -0.183 0.432 0.254 -48.1 - 

?.14x10-~ 2.50~10-~ 1 - 24X10-2 6.68~ -2.30~ 1 O-' 
1. ~ S X ~ O - ~  2. 32x1ci3 5.58~ 7.80~10-~ -2.19~10-~ 
.3.41~10-~ -4.79~10-~ 4.90~10-~ -2.41~10-~ 9.31~10-~ 
1.63~10-~ 1.90~10-~ -1.16~10-~ 7.26~10-~ -4.78~10-~ 
2.95~10-~ -4.58~10-~ 1.08~10-~ 6.34X10+ -1.20Xio-~ 

- 
-0.464 
-0.0144 
-0.00438 0.201 
0.136 
-0.000753 1.13 
0.0268 0.225 

- C.0273 -0.226 

-3 y = 2.0x10 

This controller is just a multivariable generalization of the classical 
three term controller used in classical control. The controller has minimal com- 
plexity , the sense that it has minimum order feedback dynamics and has the 
ninimum number of actuators/sensors required in order to solve the problem. 
is to be noted that no a priori assumption On the distributed structure of (7) 
was made - the distributed structure of the controller (7) arose f r o m  the 
analysis automatically. 

It 

PROPERTIES OF PROPOSED CONlROLLER 

The main features of the proposed controller when applied to the MSAT design 
illrodel .a evaluation model will now be described. The main features of interest 
are : 

(1) 
(2) 
The fgllowing results are obtained: 

The stabilization properties c,f the proposed controller. 
The steady state regulation pioperties of the proposed controller. 

A .  

cofit;-aller (7) to the H A T  design model and evaluation models. 

Eigenvdues of Closed Loop System Using Proposed Controller 
Table 2 gives a listing of all eigenvalues obtained by applying the proposed 
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TABLE 2: Listing of Closed Loop Eigenvalues Using Proposed Controller ( 7 )  When 
App?ied to MSAT Design and Evaluation Models 
-- 

Standard Design Model 

-0.00047: j 0.0085 t 
-0.00242 j0.016 1 
-0. 00512 jO.022 rigid body 

d e s  
-0.0097+j0.030 t 
-0. (:lo+ j0 -031 1 
-0.OO014+ j 0.124 + 
-0.0172 j 0.557 I 

elastic body 
modes 

-0.00612 jO.24G 

-0.029+J0.780 I 

-5 .oxlo-k 
-5.0x10-4 T 
-5.ox10-' I 
-5. o ~ i o - ~  
-5.0~10-" I 

servo-compensator 
modes 

-5.0x10-k 
-5 .Oxlo-' 1 
-2 .oxlo- 

I 
f eedforward 
controller 
modes 

-2. OX 10- 
-2.0~10- 
-2 o ~ i o - ~  
-2.0~10-) I 

-2.0~10-~ 1 

Evaluation Model 

t -0.00047-+ j 0.0085 
-0.0024ij0.016 I 
-3.0051+j0.023 rigid body 

d e s  
-0.00972 j 0.030 I 

-0.010+ jO.031 1 
-0.00014+j0.124 
-0.00020+j0.151 
-0.00612 j 0.240 
-0.0172 j 0.557 
-0.00791j0.690 elastic I body 

d e s  -O.O029+jO. 780 
-0.129ki1.35 I 

-0.0672j3.16 
-0.0692 j3.95 
-2 -5.j 8.88 
-0.512 j 11.3 

-1.7X10-' 
-5 .Oxlo" t 
-5.0~10-~ I 

-5.OXl Oe4 1 

servo-compensator 
modes -5.0~10-~ 

-5. 0X10-4 
-5.0~10-~ 1 
-2.0~10-~ t 
-9 0x10'3 I 
-2.0~10- 
-2.0~10-~ 
-2.0~10'~ I 

f eedforward 
controller 
modes 

-. 

-2. OX 10- J 

It is obseriied that the resultant closed loop system is asymptotically stable 
for both the design and evaluation models, i.e. no undesirable spill-over effects 
occur. 
mainly associated with the servo-compensator modes. 
expect for the case of tracking, that the dominant time response of the system 
would be associated with the feedforward controller modes, i.e. TCdornt500 sec 
f 8 pin., and for the case of disturbance rejection, that the dominant time of 
the system would be associated with the servo-compensator modes, i.e. 
2000 seci0.6 hrs. This result is verified in the simulation studies to follow. 

It is also observed that the dominant time constant of the system is 
This implies that one would 

- 
TCdom ' 
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B. Steady-State Values of Outputs Using Proposed Controller: Tracking Case 

tion tracking, when the proposed coniroller (7) is applied to the MSAT design and 
evaluation model. 
tically regulated to their correct values as desired. 

Table 3 gives a summary of results obtained for the case of unit step func- 

It is observed that all 9 outputs of the system are asympto- 

TABLE 3: Steady-State Values of Outputs Using Proposed Controller (7) When 
Applied to Design and Evaluation Model - Tracking Case 

1 0 0 

0 1 0 

0 0 .  1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Note: Any Inumber/<10-16 is assumed to be zero. 

C. Steady-State Values of Outputs Using Proposed Controller: Disturbance 
Reject ion Case 
Tables 4 and 5 give a summary of all results obtained for the case of dis- 

turbance rejection, when the proposed controller is applied to the MSAT design 
and evaluation models respectively. 
function change occurs for different disturbances corresponding to ic ,& , . . . , 
Zo,r9 defined inTable 6. 
are asymptotically regulated to zero, and that the remaining two outputs are 
approximately equal to zero in all cases, as is Jesired. 

D. Sampling Rate Requirements for Digital Implementation of Proposed Controller 
If it is assumed that the proposed controller (7) is to be implemented 

digitally, then it is necessary that the sensor outputs and actuator signals be 
updated at a fast enough rate so as to guarantee closed loop stability, when the 
the controller is applied to the evaluation model. In this case, on assuming 
that the sensor and actuator signals are updated at the same rate, it. was found 
that a sampling rate of at least 0.1 Hz must be used to implement the proposed 
controller. 

In this case, it is assumed that a unit step 

It is observed that the first 7 outputs of the system 
1 2  

. 

This requirement is not demanding. 
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TABLE 4: Steady-State Values of Outputs Usinn Proposed Controller (7) When 
Applied to MSAT Design Model - Disturbance Rejection Case 

s, .=I 
1 

0 ! % I  O I O l o  
i,;l €p E2-l $4 t,.l fo=l f0=l 

0 0 . o  0 0 0 .  0 

0 

0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0  1 4 . l O l  0 

o l o l o i o l o l o l o l o  
0 

0 

0 

Note: Any )number1<10-16 is assumed to be zero. 

0 0 0 0 0 

' 0  0 0 1  0 0 0 .: 0 

-c 'I'AB1.E 5: Steady-State Values of Outputs Using Proposed Controller (7) Uhen 
Applied to MSAT Evaluation Model - Disturbance Rejection Case 

- - - - - €,-1 P2=1 €,=l f,=l fo=l ffl 
-1 8 q 1  8 q l  

b gcl'l gc2-1 

1 ex 
0 I o  I 

1 

5,. I 0 0 

0 0 

0 0 

0 0 

, 9L 

f-'6,  0 0 

%+"1 

52*52 

0 I -1 

' f - Ib3  1 4x lO- j  -3XlC-8 

f 5 ,  0 
L 

0,  -3x10-' S X ~ O - '  
3 

Note: Any Inumber1<10-16 is assumed to be zero. 

gc3 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 o 4x10-' -4x10-' 0' 0 -3x10-6 -8x10-' 

0 0 0 -7x10'8 7x10-8 0 0 1 ~ 1 0 - ~  3 ~ 1 0 - ~  
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SIMlLATIONS OBTAINED USING PROPOSED CONTROLLER 
TO SOLVE USAT PROBLEM 

This section gives some typical simulations of the closed loop system ob- 
tained by using the proposed controller (7) applied to the MSAT design and evalu- 
ation models. Additional simulation studies are given in [3]. 

A. 

that there are no disturbances present, and that a unit step function change of 
+1 occurs in the set point for 8 at t=O, i.e. 8 

troller is applied to both the design and evaluation model in this case. 
observed that the system's response is almost decoupled, i.e. the output Ox is 
approximately equal to its desired value of +l.at t+50 min, and that all other S 
outputs are barely excited. 

example. 

Example No. 1 (Attitude Control: 8rf=1) 
In this example, it is assumed that the system has zero initial conditions, 

ref- ref- -1, By -0, 8 X X Z 
Figure 3 gives a plot of all 9 output variables y given by (4) when the con- 

It is 

Figure 4 gives a plot of the 7 control variables u given by (5) for this 

D. Example No. 2 (Disturbance Rejection: f,=1) 

In this example, it is assumed that the system has zero initial conditions, 
that all set points are identically equal to zero, and that a unit step function 
change of +1 occurs at t=O corresponding to a disturbance thrust ?,=1, where f5 
i s  defined in Table 6 .  This example would correspond to a misaligned thruster 
associated with the proposed controller. 

applied to both the design and evaluation model in this case. 
that the elastic modes of the vehicle are now excited, and that the output vari- 
ables are asymptotically regulated to zero in approximately 2 .7  hours, which is 
consistent with the closed loop eigenvalues of the system given in Table 2 .  

Figure 6 gives a plot of the 7 control variables u for this example. 

Figure 5 gives a plot of all 9 output variables y when the controller is 
It is observed 

c. Exanple No. 3 (Disturbance Rejection: $=l) 
This example is similar to Example No. 2 except that it is assumed that 5 

unit step function of +1 occurs at t=O corresponding to a disturbance thrust f9=l, 
where f9 is defined in Table 6 .  
trary constant disturbance which may affect the system. 

applied to both the design and evaluation models in this case. It is observed 
that the elastic modes of the vehicle are now also excited as they were in 
Example No. 2,  and that the output variables are satisfactorily asymptotically 
regulated with the same time constant as in Example No. 2. 

Figure 8 gives a plot of the 7 control variables u for this example. 

This disturbance is representative of an arbi- 

Figure 7 gives a plot of all 9 output variables y when the controller is 
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TABLE 6 :  Definition of Disturbances Assumed -- 

Fl"~sz~'F6''O''9 

gsl %* 

gcl 'gc2,gc3 

- - 

.- 
- -  - 

- 

Disturbance forces corresponding to the thrusters 
f ,f ,f ,f ,f ,f respectively of Figure 2 

respectively about the gimbal axis 8,,f3; 

axis respectively 

1 2 5 6 0 9  
Disturbance torques corresponding to gfi ,gg 

Disturbance torques in the bus about the x,y,z 

ROBUST PROPERTIES OF CONTROLLER DESIGN METHOD 

A study of the robustness properties of the proposed controller design method 
was carried out 131. 
using the proposed method to different design models of MSAT. 
that the proposed design method appears to be quite insensitive to the type of 
design model used, e.g. all controllers obtained, when based on MSAT design models 
which had at least two dominant elastic body modes included, produced stable 
closed loop systems and give satisfactory tracking/regulation, when applied to 
the MSAT evaluation model. Other studies showed that the controller is robust 
with respect to evaluation models of arbitrary complexity. 

This was done by comparing the controller designs obtained 
It was concluded 

CONCLUSIONS 

'This paper gives a brief summary of the work performed in [1]-[3]. In these 
studies, the control system design of a third-generation spacecraft, as modelled 
by the hSAT space configuration is studied. This spacecraft is highly non- 
symmetrical and has appendages which cannot, in gensral, be assumed to be rigid; 
the elasticity of these appendages makes the control system design particularly 
demanding. 
stabilizes the system and satisfies certain attitude control, shape control ard 
possibly station-keeping requirements. 
tant controller should be robust and avoid any "spill-over effects", i.e. it 
should satisfy the problems' specifications based on only an approximate design 
model for biSAT being available. In addition, the controller obtained should have 
minimum - complexity, i.e. a minimum number of sensors/actuators should be used. 

The method of solution adopted to solve this class of problems was tc formu- 
late the problem as a robust servomechanism problem and thence to obtain existence 
conditions and a controller characterization to solve the problem. In this case, 
the contraller obtained must contain a servo-compensator together with a stabiliz- 
ing compensator. 

The final controller obtained for MSAT has a distributed control configura- 
tion, and appears to be quite satisfactory, i.e. extensive testing of the con- 
troller shows that the controller is indeed robust with respect to the choice of 
the design model, and that it satisfies all specifications of the problem state- 
ment. 

In particular, it is desired to design a controller for MSAT which 

In addition, it is desired that the resul- 
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APPENDIX I 

Definitions of gf ,f;,f;,f;,€i 
7 

* 
i s  defined jn terms of thrusters  f l ,  f,, fg, f4 as  follows: 

gc3 L 

8.66 * 
i f g  rO 

= [ 8. 6 i  "3 c3  

* *  
f 5 ,  f are  deiined in  terms of thrusters f5, f6, f,, f 8  as follows: 6 

* *  
f q r  f j ,  f 4  as follows: 1' f l ,  f a re  definea i n  terms of thrusters f 2 

* * 
i f  f l rO  and f220 

* * 
i f  f l  2 0 and f2 < 0 

* * 
i f  f l  5 0 and f2Z 0 

* * 
ii  f l  < 0 and f2 < 0 
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::ip,urc 1: The MSAT configuration - a tyF?cal third generation spacecraft. 
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-Thrusters (4) 

Figure 2 :  Assumed control inputs for M A T  spacecraft (taken from [SI). 
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Figure 3:  Plot of 9 regulated outputs j r  for exanple no. 1. 

, sec) 
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Figurn 5 :  Plot of 9 regulated outputs y for exaaple no. 2. 

! 

: t (sec) 

Figure 6 :  Plot of 7 control inputs u for example no. 2 .  
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Figure ?: Plot of 9 regulated outputs y for exanple no. 3. 
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Figure 8:  Plot of 7 control inputs u for example no. 3. 

19 



SENSOR/ACTUATOR SELECTION FOR TEE 
CONSTRAINED VARIANCE CONTROL PROBLEM 

M. L. DtlRccI13D 
Air Force Acldwly, coloedospiags,CO~1 

RESdQI 
sctrodofAcronwtKs - dAstnnrautics 

purdut university 
west Lafkyere. IN 47907 

This paper considers the problem o f  designing a 1 : r m -  controllc- *x sys- 
tem subject to inequality variance constraints. P. quadratic penalty function 
z,,pmach is used to yield a l i w a r  controller. Both the weights i n  the quadratic 
penalty function and the locations of sensors .and actuators are selected by 
successive approximations to obtain an ootimal design which satisfies the input /  
mtput variance constraints. The method is applied to  l!&A's 64 mter Hoop- 
Column Space Antenna for satel l i te  comunications. In addition the solution for 
tbe control law, the min feature of these results is the systemtic deternin- 
ation of actuator design requirements which a l l w  the given input /output  perfor- 
Fance constraints to be satisfied. 

I. INRODUCTIOY 

Consider the task of controlling the linear, stochastic systc: 

W = diag I... W i i  ...], V = diag I... Vi i  .... 1, 
such t h a t  these four control desian goals are net: 

e. 2 L 
A 

( I )  E$i2(t) = lir E yi (t)  - < ai , i = 1, ..., k 
t- 

- 2 2 A -  2 E u. (t) = lir E ut (t)  5 pi , i = 1, ..., n 
t- 0 1  

L1 PRECEDING PAGE BLANK NOT FILMED 



(11) ~ n t y  ‘i < sensors are used 

fm the acbnissibte set of sensors described f k m  (IC) 

. (111) ~ n t y  rr! m actuators a r ~  used 
- m 

(3)  

(4 )  

.. 

b ( i  + w) = 1 bi(ui + w.) 1 
i = l  

frm the admissibte 8et of n actuators described fra ( l a )  

R 
B(u + W) = 1 bi(ui + w.) 1 

i = l  

( IV) *e contmt ii( t) i s  a tinear ptuzction of  the p s e n t  and 
past measurements F(T), T - < t. 

Hany engineering control design problems can be stated with performance 
constraints of the form (I). For example, large space telescopes are feasible 
only i f  the IUS pointing errors ( ~ j ~ ~ ) ~ ’ ~  are wi th in  certain bounds 
( E J ~ ~ ) ~ ’ ~  5 ai) so as t o  achieve di f f ract ion- l imi ted performance (ui) o f  the 
optics. The designer may also have the freedom t o  choose from a number o f  
d i f ferent  types o f  sensors and actuators a t  a number o f  d i f fe ren t  locations. The 
locations and the types o f  actuators (sensors) determine the vectors bi (mi) i n  
(4) and ( IC).  

P. straight-forward approach t o  acconrodate the bounded input/output problem 
(I) yields nonl inear control lers 1-21, v io lat ing goal (IV). A straight-forward 
approach t o  accarmodate gcals ( I V  and (I) i s  t o  use a penalty function method 
[3-53, minimizing 
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r h i l e  adjusting Q and R u n t i l  ( I )  i s  satisfied. These successive approximation 
schemes [3-51 presume a f i x e d  measurement/control structure, and hence do not 
sat is fy  goals (XI) and (III). It i s  important t o  un i fy  the treatment o f  a l l  
four goals ( I - I V )  since i t  has been shown [6-73 they are inherently interdepen- 
dent problem. I n  particular, f o r  the isotated problems; [6] has shown the 
optimal sensor and actuator selection f o r  LQG problems (5) with fhed (Q,R), and 
[3-5] have adjusted Q and 9 t o  sa t i s f y  the constrained-variance problem ( I )  with 
fixed sensors and actuators (i.e. f ixed B, A). 

Unfortunately, the optimal answer for the -sinul taneous solut ion o f  both 
groblems turns out not t o  be the juxtaposit ion of results [6] and [3-51, due t o  
the interdependence o f  the two problems. 

problem (I-IV) , rhich we c a l l  the Constrained Variance Sensor/Actuator Selection 
(CVSAS) problem. Section11 describes the approach. Section I11 gives the formu- 
las f o r  sensor and actuator effectiveness t o  deal with goals (11) and (111). 
Section I V  presents the numerical algorithm f o r  i te ra t i ve ly  dealing with goal (I). 
Section V gives the algorithm f o r  solving the ent i re  problem (1-IV). Section V I  
i l l us t ra tes  ths application t o  the Hoop-Column Antenna. 

The purpose of t h i s  paper i s  t o  present a un i f ied treatment o f  the ent i re  

11. APPROACH 

The solution o f  the ?roblem with inequali ty constraints ( I )  i s  generally 
not unique. To be a b i t  m r e  speci f ic  than statement (I)  we define two variations 
o f  the problem. The f i r s t  i s  cal led the "Constrained-Input Variance" option o f  
the CVSAS. I n  th is  option the input constraints i n  (I) are binding and the 
output constraints i n  ( I )  are : SZGed. 

CIVSAS: The Constrained-Input Vartance, Sensor/Actuator Selection Problem 

Satisfy (XI), (XII ) ,  and with aZZ input-constraints binding, 

T minimize (recat2 yi = ci XI, 

If however, there i s  no i for  which ai *EJi2 > 1 then minimize 

23 



with aZZ input constmints binding ( 6 ) .  

Definit ion: 
wilt mean the m i n h  constraint violation i n  the s m e  of the minimum value of 
V i n  (7) with input constmints binding (6). 

The CIVSAS problem i s  useful when one wishes t o  determine the best perfor- 
rance achievable f o r  a given power l i m i t a t i o n  on the input devices (actuators). 
That is,  f o r  a given set  of pi the CIVSAS finds the minimum achievable output 
performance. 

!l'he p h w e  %tinhat achievabte output perfomwncetr for  the CIVSAS 

Y 

The second var ia t ion o f  the CVSAS problem i s  cal led the Constrained Output 
variance Sensor/Act!ator Selection (COVSAS). . 

COVSAS: The Constrained-Output Variance, Sensor/Actuator Selection Problem 

S a t i s f y  ( I  I), ( I 1  I ) , and with a l l  output constnainte binding 

i = 1, ..., k , -2 2 u E l i  = 1 , (8) i 

minimize 

If however, there is no i for which pi-2Ewui2 > 1 then minimiae 
- m 
i=l 

Vu = 1 pi-*E m i  u 

with a l l  output c m t r a i n t s  binding, (8). 

Def in i t ion 2: The phrase %tinimwn achievable input performance" for the COVSAS 
wiZZ mean the  minimum constraint hota t ion  i n  the sense of (9) ,  with a l l  output 
constraints binding (8). 

The COVSAS i s  useful when one wishes t o  determine the necessary capabi l i t ies  
(design requirements) o f  the actuators i n  order t o  achieve the specified output 
performance. That i s ,  f o r  a given set of ui the COVSAS finds the minimum 
achievable input performance. 
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I I I. SENSOR/ACTUATOR EFFECTIVENESS 

I n  t h i s  Section we tem o r a r i l y  assume tha t  Q and R i n  (5) are specified 
diagonal matrices Q = diag p... qi ...I, R = diag [... ri ....I, and we wish t o  
determine a ranking of the effectiveness o f  the admissible set  o f  sensors and 
actuators f o r  the LQG problem described by (1) and (5). To help wi th t h i s  task 
a p r i ce  o r  "cost" i s  assigned t o  each input and output by decomposing the t o t a l  
system cost function (5) i n t o  contr ibutions from each i n  t and output. This 
task i s  ca l led '' input o r  output cost analysis" and from I? 61 we have the resul ts  

m k 11 

i = l  i = l  ' i-1 i = l  

w v  th where viu, viY, vi , vi i s  the contr ibut ion i n  v of, respectively, the i 
control ui, output yi, noise wi, o r  noise vi, and 

where P, K, i and L s a t i s f y  

(12a) T -1 .A T -1 o = PAT t AP - PR v r v  t B C ~ B ~ ,  [fl, .;., f , ~  = F = PF v 
T 1 T  T 

(12b) o = KA t A K - KBR- B K t c QC, [g,, ..., g,] = G~ = -KBR-~ 

The effectiveness o f  t h e  ith sensor i s  measured by 
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and the effectiveness o f  the ith actuator i s  measured by 

act = * U  vi - vi W 
vi 

These terms Vi 

output costs Viu, Viw, Viv which are involved i n  the performance o f  each sensor 
and actuator. 
calculated by Viw, but the effect o f  an actuator involves both Viu and Viw since 
the actuator i s  noisy, and t h i s  dependence i s  accounted f o r  i n  (14)). To see 
tha t '  V. and ViaCt gives the appropriate measure o f  the e f f e c t  o f  deleting 
the iti sensor o r  the ith sensor o r  the ith sensor or the ith actuator, re fe r  
t o  the numerical work i n  [7]. 

and ViaCt represent the pa r t i cu la r  combinations o f  the input/ 

(The d i s t i n c t i o n  here i s  t ha t  the e f f e c t  o f  the input wi can be 

Two resul ts  from [6! add ins igh t  i n t o  the use o f  (13), (14). 

Theorem 1, [6,7]: 

For a specified !Q,R) ,  the optimal value of the LQG; p e r f o m c e  metric ( 5 )  
cannot be reduced by the deletion of any of the admissibte s m o r s  Zi, ...) E. 
Theorem 2, [6,7]: 

For a specified (0 ,R)  the optimal value of the LQG p s r f o m c e  metric ( 5 )  - can possib2y be reduced by the deletion of sane of the admissibZe actuators 
ui, i = 1, ..., n?. 

These theorems p a r t i a l l y  explain why the sensor effectiveness Vi i s  a 
t h  much simpler calculat ion than ViaCt. Since the magnitude o f  the gain on the i 

-2 -t o as vii + -, an extremely noisy sensor sensor signal 1 Ifi 1 l 2  = 1 Imil lpp vii 
simply w i l l  not affect the optimal LQG control ler .  Hence, the effectiveness o f  
the ith sensor can be calculated by the input cost VIv. Section V w i l l  show how 
t o  use (13) and (14) i n  the solut ion o f  the COVSAS problem. 

2 
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I V .  THE COVLQG ALGORITHM 

Now we c i t e  an a lgor i thm (COVLQG) t o  solve the COVSAS problem under the  
temporary assumption t h a t  
actuators are used (8 = B and 19 = b!). The COVLQG algor i thm w i l l  f i r s t  be stated 
and then i t s  theore t ica l  proper t ies w i l l  be discussed. 

= a and fi = m. That i s ,  a l l  admissible sensors and 

- The COVLQG algor i thm (i.e. the COVSAS w i th  a = a, 6 = ml: 
Step A: Compute P from (12a). I f  ai-21 1ci I 1; > 1 STOP. NO sotution t o  

the COVLQG problem d s t s .  Otherwise i n i t i a l i z e  

-2 -2 qi(o) = ai , ri(o) = vi . 
Discussion of Step A: The lower bound on Eji '2 i n  an LQG problem i s  
E j i 2 . ?  I lei! 1, (from the wel l  known lower bound tr CPC on V i n  (5) ) ,  and t h i s  
r e s u l t  i s  indebendent o f  the choice o f  C - > 0, R > 0. 

2 T 

Step 0: Compute 

-l YiY Y i: qi > 0 
2 E y .  = Qi 

- 1  

-1 u 
~ - u ~ ~  = ri 'i 

-2 2 
Using ( 1 1 ) s  (12). I f  E g i  = 1 U i: q i  > O and if 

-2 E u .* > 1 V i = 1 , . . m, STOP. 

I n  the  COVLQG opt ion a l l  necessary contro l  e f f o r t  i s  

!The COVLQG solution has been found. "i - 1  - 
Discussion of Step B: 
applied t o  force the const ra in ts  E d i  
the stopping c r i t e r i o n  o f  Step B ind icates a so lu t ion  o f  the COVLQG problem i s  
given by Theorem 5 of [7]. 

t o  be binding. A f o m l  proof t h a t  2 
5 ai 

Step C: Q and R update equations: Let the i t e ra t ion  index be j unri s e t  
-2 

< qi(j+l) < cui , q i ( j+ l )  = cui -2 ~ j ~ ~ ~ q ~ ( j ~  i = I, ..., k. If (fai 2)-1 

( E  < 3 smaZZ specified comt;ant) then s o t  qi(j+l) = 0 .  
-2 E j i 2  = 1 U ii qi > 0, then s e t  ri(j+l) = [ i i 2 E  m i  ~ ~ ] " ~ r ~ ( j ) ,  U i: 

ui E-ui < 1. For a22 other 1, s a t  ri(J+l) = ri(j). Retwn t o  Step B. 

If 

ai -2 2 

Discussion o f  Step C: The ri(j+l) of Step C are c l e a r l y  adjusted toward the 
stopping condi t ion o f  Step B (pi 

€-ut2 t o  increase. The j u s t i f i c a t i o n  f o r  se t t i ng  qi = 0 when e i ther  qi(j+l) -+ 0 

-2 €=ui2 - > l), since a reduction i n  ri causes 
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or when q i ( j + l )  + m i s  as follows: The tendency of qi toward zero indicates a 
lack of output controllability due t o  a degenerate rank of C (rank C k) .  In 
this case, the algorithn ceases t o  attempt the impossible (i.e. t o  force two 
dependent outputs t o  arbitrary values) by removing this particular yi (the least 
critical one as indicated by the smallest qi + 0) frm the cost function by 
setting i t s  coefficient qi  = 0. Now l e t  rank C k. The tendency of qi  toward 
m can result only when a stabflitable, detectable system i s  not output  controll- 
able, (even though C = k )  and an uncontrollable o u t p u t  converges ta  a value which 
violates i t s  constraint i oi2 ) .  The constraint is violated the smallest 
alnount possible since t n  this case the corresponding qi -t m on successive 
iterations o f  the update equations. When this condition is determined, such 
y i ' s  are removed from the cost function on futu-re iterations (by setting qi = 0) 
since i t  now has been established t h a t  they cmmt be brought w i t h i n  specifica- 

2 
t i o n . E j i 2  - < 0 i '  

A sipilar algorithm exists for  the Constrained Inpu t  Variance LQG problem 
(CIVLQG) and details are given i n  [7]. 

V .  THE COVSAS ALGORITHK 

The sensor/actuator effectiveness formulas (13), (14) derived i n  Section 111 
and the COVLQG alsorithm~ of Section IV are now integrated t o  solve the COVSAS 
problem posed i n  Section 11. 

COVSAS A1 qori thm: 

Step 1. Specify CA,B,C,!.I,V,~,~,U ,u I .  Run COVLQG algorithm using k 2 2  
actuators, m sensors. 

Step 2. Compute Vi , Vi act from (13), (14) rmd rank sensors and 
actuators according t o  their effectiveness: 

. s e ~ s  ... le sens , 
VIsens L "2 - 

act , act ... 2 Vm "1 L vp - a c t  

Delete the Remor and actuator w i th  the l m e s t  effectivensss values 
Visens, Viact, provided such d e t e t i m  does not came loss of 
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controZlabiZity or observabi1ity.j Unless R c 

lntess m < 6 + 1, reset m t o  m-1. 
+ 1, reset 1-0 E-1. 

€ g i  = 1 V i = 1, ..., k -2 2 If ai 
II 

< 2 1 "  -2 2 
v i  E-ui I (  j t 1 ) i t e r a t i o n  and Y i: vio2 E u. > 1, i f  [T 1 

i = l  - 1  

return to Step 1. Otherwise STOP. A 
1 "  -2  2 [e 1=1 .I p i  E-ui j ( j t 1 ) i t e r a t i o n  

soZution t o  the COVSAS has been found. 

Piscussion of Step 2: HunericaI experience wi;h t h i s  a lgor i thm suggests t h a t  
more than one sensor and m r e  than one actuator may be deleted on each i t e r a t i o n .  
I n  fact ,  t d r  many cases the same r e s b l t  can be obtained by reducing E t o  'i and 
m t o  1 on the f i r s t  i t e r a t i o n .  However, t h i s  quicker convergence can sornetimes 
converge only  t o  suboptimal answers, and the a lgor i thm above i s  w r i t t e n  i n  i t s  
most conservative form (delet ing on ly  one sensor and/or actuator per i t e r a t i o n )  
where convergence t o  optimal values i s  more r e l i a b l e  [7). 

V I .  CONTROL OF A SPACE ANTENNA 

Fig. 1 depicts the  Hoop-Column Antenna arrangwient f o r  a proposed NASA 
comnunications s a t e l l i t e .  Stat ioned i n  a geosynchronous o r b i t ,  the ob jec t ive  o f  
the antenna control system i s  t o  regulate the o r ien ta t i on  and focus o f  t he  
s a t e l l i t e  antenna r e l a t i v e  t o  i t s  m u i t i p l e  feed horns ( a t  node 10). Table 1 
1 i s t s  the 24 1 inear and angular displ{:,ements which make up the  outputs yi , 
i = 1, ..., k, where k = 24. Table 2 l i s t s  the 39 admissible sensors and Table 
3 l i s t s  the 12 admissible actuators. Note tha t  ARX2 stands f o r  angular r a t e  
about the x ax is  a t  node 2. AX2 stands for atigular displacement about ax is  x a t  
node 2. 110-22 stands fo r  a r e c t i l i n e a r  displacement between nodes 10 and 2 i n  
the z d i rec t ion ,  The speci f icat ions f o r  the  outputs are ui = 22.8 are seconds 
f o r  i = 1, ..., 6, and ai = .158 mn f o r  i = 7, ..., 24. The specif icat ions f o r  
the inputs ui are pi = 10 dn-em, i = 1, ..., 12. The actuator noise i s  described 
by rJ = diag [ . . Wii . . .], Wii = .l (dy-cm) , Y i = 1, . . . 12. The sensor noise 
i s  V = diag [... Vii ...I, Vi., = 7 . 6 1 5 ~ 1 0 ~ ~  rad2, i = 1,2,3,13,14,15, Vii = 
2 . 5 m 7  m2, i = 4, ..., I?, 16, ..., 27, Vli = 4 . 7 6 x N 5  (rad/sec) , i = 28, 
, , . , 39. 
o f  sensors t o  12 = 1. The dynarics o f  the antenna s t ruc tu re  were described by 
10 e l a s t i c  modes and 3 r i g i d  body modes. The square o f  the frequencies 

2 

2 

I t  i s  des', ,sed t o  1 hit the number o f  actuators t o  6 -- 6 and the  number 

+Observabil i ty ,  c o n t r o l l a b i l i t y  checks are p a r t i c u l a r l y  simple f o r  f l e x i b l e  
space s t ructures using the tes ts  i n  [8]. That i s ,  rank tes ts  o f  matrices 
[B; AB, ... An%], [C T , A T T  C , ... ATn-'CT] can be amided .  
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2 
w , i = 1, ..., 10 o f  the e l a s t i c  nodes are i 

9 2 2  “) = (.40579, 7.2090, 7.2362, 13.27/, 9 0  (wl , W2 9 * e * ,  

44.834, 132.14, 147.66, 445.01, 448.69, 775.86;) (raJ/sec) 2 . 

Pore complete in format ion f o r  the antenna model pay be found i n  [7]. 

The r e s u l t s  of the COVSRS algor i thm appl ied t o  the Hoop-Column Antenna are 
m m r i z e d  i n  Table 4. The 6 actuators deleted from the  admissible s e t  o f  
Table 3 are ( l i s t e d  i n  order o f  de le t ion) :  y12, u9, u6, ul0, u7, u4. The 27 
sensors deleted ( i n  order of i e l e t i o n )  are: z15, z3, 26, tI2, z, zI3, z2, zl, 
224s 227, 249 25, 218, 221s 2309 2399 2339 27, 28, 231, 223, ‘209 2359 225, 222, 

‘1.6’ . 
cont ro l  e f f o r t  i s  less using on ly  6 actuators, (6x5.C21 = 30.12) than using 12 
actuators (12~3.275 = 39.30 
fewer actuatcrs,  s ince fo r  several actuators the  noise effec; Vib i s  greater  
than the signal  e f fec t  Viu i n  (14) (note th; negat’ve valhes o f  Viact i n  Table 

Not ice t h a t  even though the output  const ra in ts  a re  s t i l l  b inding the  t o t a l  

Thus, betber perfo-mance i s  poss ib le  w i t h  30.12). 

4) 

Perhaps the lpost important in format ion from t h e  Cn‘:”4S i s  the detemina+ f -  

o f  the minimum achievable a c t u a t w  spec i f i ca t i on  ?ram Table 5 b a t  a l l  
o f  the 24 outputs are he ld  w i t h i n  t h e i r  design consctdiriLd (cI = 22.8 are secs. 
f o r  angles and ui = .158 mn f o r  r e c t i l i n e a r  displacements) hy ac t i9 to rs  which 
must be d e s i g n L 1  f o r  the c a p a b i l i t i e s  o f  TABLE 5. That i s ,  the gi.den nutput  
spec i f icat ions,  ai are Vossible t o  meet i f  ui i s  changed I=> actuators are 
redesigned) (from Table 5) t o  u1 = 73, p2 = 26, p3 = 105, u4 = 26, p5 = 32, 
p6 = 39. 

VII. CONCLUSI~r!S 

Presented i s  an a lgor i thm COVSAS which in tegrates the fo l low ing  tasks: 

Selects sensors and actuators from an admissible set .  

Designs a l i n e a r  feedback c o n t r o l l e r  which s a t i s f i e s  output variance 
cons t r a i  n ts  . 
Determines a3tuator d e s i g n  requirements  which a1 low the output variance 
const ra in ts  t o  be sa t i s f i ed .  
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Numerical yoper t i es  o f  the convergence o f  t h i s  algori thm are given for NASA's 
Hoop-Column Antenna. Additional theoret ical  properties o f  convergence of t h i s  
algorithm are given i n  [7]. 
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Figure 1: Hoop Column Antenna 
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Table 1: Hoop Column Output Description 

Output # 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Sensor 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

TY ne 

I n e r t i a l  Angle 
II 

II 

Relative A n g l  e Between 

I n e r t i a l  Angle 
Relative Linear Disp. BeGeen 

11 

I! 

II 

I1 

I1 

0 

II 

II 

I 1  

II 

I 1  

0 

I1 

I1 

I1 

I* 

II 

Nodal Location 

2 
2 
2 

10 and 2 

10 
6 and ll 2 

9 and 2 

10 and 2 

I 0 1  and 10 

107 and 10 

113 and 11 1C 

119 and 10 

n 

n 

I( 

H 

II 

I1 

I 1  

n 

II 

II 

Table 2: Hoop-Cclumn Sensor Labels 

Sensor Sensor 
Label Number Label Number 

Ax2 
AY 2 
AZ2 
X6-X2 
Y 6-Y 2 
26-22 
X9-X2 
Y9-Y2 
29-22 
XlO-x2 
Y l O - Y Z  
210-22 
AX10 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

AY 10 
AZlO 
X l O l  -x10 
Y 101 -Y 10 
ZlOl-210 
X107-X10 
Y107-Y10 
2107-210 
Xll3-X10 
Y 113-Y 10 
2113-210 
x119-x10 
Y 119 -Y10 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
35 
39 

Direction 

X 
Y 
Z 
X 
Y 
Z 
X 
Y 
X 
Y 
X 
Y 
X 
Y 
Z 
X 
Y 
Z 
X 
Y 
Z 
x 
Y 
2 

L a h i  

2119-210 
ARX2 
ARY 2 
ARZ2 
ARX6 
ARY 6 
AR26 
ARX9 
ARY9 
ARZ9 
ARXlO 
A R Y l O  
A R Z l O  
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Table 3: Hoop Column Actuator Description 

Actuator torque a k t  
axis a t  

M e  location 

= T X 2  

= T Y 2  

= T Z 2  

= T X 6  

u1 

u2 

u3 

"4 
US = T Y 6  

= T Z 6  

= T X 9  

= T Y 9  '8 
u = T Z 9  9 

'6 

u7 

UIO = T 1! 10 

ull = T Y 10 

u12 = T Z 10 
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Table 4: Hoop Column Output Constrained COVSAS Results 

Ident i f ied  Ave Input 
I t e ra t i on  Ident i f ied  Actuators Value Number of 
knber (7.6) Sensors /Actua tors  sensors @e") (Vy) 

1 A Z l O i  .OW41 16) TZ10( -1.362) 3.2?5 39/12 
AZ2( .000297) lZ9 ( -1.369) 
Z6-Z2( 0) 
Z9-Z2( @} 
z10-22 ( 0 )  

2 kY 1 ( .063362) lZ6(-2.1605) 3.592 34/ 10 
AxIO( .003358) 
AY 2 ( .oO226) 
AX2(. 0[)226) 
Z113-Z10( .OO1942) 
Z119-Z10( .001884) 

3 X6-X2( .01457) TX10( -1.2055) 3.699 28/9 
Y6-Y2( -01455) 

ZlC7-Z10( .0108) 
Z101-Z10( .0110) 

4 ARZZ ( .02844 TX3(-1.2917) 3.997 24/8 
ARZlO ( .02232) 
ARZ6(. 02238) 

5 X9-X2 ( .0986) TX6(-1.4793) 4.377 21/7 

6 ARX6(. 07648) ---- <, .829 19/6 

Y9-Y2( .0839) 

ARX2( .07648) 

7 Y 107-Y lo(.  13395) ---- 4.857 17/6 

8 X119-X10(. 1557) ---- 4.905 1516 

XRY9 ( .1098) 

X113-X10(. 1555) 
X:Ol-XIO(. 1551) 

9 -e-- ---- 5.021 1216 



Output Y 

1 (AX2) 
Z(AY2) 
3 (AZ2) 
4( AXlO-AX2) 
5( AY10-AY2) 

7( X6-XZ) 
8( Y6-YZ) 
9 (X9-X2) 

10( Y9-Y2) 

S(AZ10) 

11( x10-X2) 
12( Y10-Y2) 

14( ~ l o l - Y l o j  
13 (X101-X10) 

15fZlOl-ZlO) 
16( X107-X10) 
17( Y107-Y10) 
18( 2107-210) 
19 (X113-X10) 
20( Y 113-Y 10) 
21( 2113-210) 
22 (X119-X 10) 
23 ( Y  119-Y 10) 
24 ( Z 1 19 -Z 10) 

Tab1 e 5 : Ou tpir t -cons t r a i  ned Speci fi cations 

2 
‘2i 

.015 sec 
,015 sec 

11.588 sec 
.001 sec 
.001 sec 

12.000 sec 
.Of0 m 
.010 m 
.om m 
.om mn 
.158 mn 
.158 mn 
. lo4 m 
.158 mn 
.007 m 
.158 m 
.156 m 
.m m 
.122 mn 
.158 m 
.001 m 
.158 m 
.391 m 
.001 m 

2 
i 

Actuator # (minimm achievable) 

1 TX2 72.91 dn-cm 
2 TY2 26.145 dn-cm 
3 TZ2 105.47 dn-m 
4 TY6 26.138 dn-cm 
5 TY9 31.750 dn-cm 
6 TYlO 38.812 dn-an 
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ABSTRACT 

A pole placement algorithm is proposed which uses constrained non-linear 
optimization techniques on a finite dimension4 model of a linear n degree of 
freedom system. 
assigned; r being the rank of the sensor coefficient ma+,rix. 
combining feedback control theory methods with optimization techniques, one can 
ensure the stability characteristics of a system, and can alter its transient 
response. 

Low order feedback control is assumed where r poles may be 
It is shown that by 

One common method of approaching the problems of controlling the vibration 
cf a structure is ' 3  employ eigenvallie (pole) placement methods. 
have attracted the attention of numerous authors over the past twenty-five years, 
including W. M. Wonham [6], E. J. Davison [31, S. Srimthkumar [SI, A. Y. Andry 
et a1 [ 11, [ 21 and many others. 

Such solutions 

In exploring pole placement in dynamical systems, an inadequacy of stabilitx 
considerations in contemporary algorithms was noted and thus motivated this work. 
It appears that the problem has not been solved or even addressed in many 
approaches. 

If a system is controllable, one has the ability to place a predetermined 
number of poles. 
limit on the number of poles that may be assigned. As is well known, the rank of 
the sensor coefficient matrix determines how maw poles may be placed exactly. 
These poles may be noted as the contrcllable eigenvalues of the system, while the 
remaining may be labelied uncontrollable. 

Thus, when pole placement techniques are  employed, there is a 

*Present Address: Member Technical Staff 
AT&T Bell Laboratories 
Whippany Road Rcom 3C-249 
Whippany, New Jersey 07981 

**Research supported by AFOSR Grant Number AFOSR 82-0242 
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Thus, due to restrictions inherent to every system, every pole may not be 
Therefore, one does not have control over tine full order of 

Wnen moving the ailowable eigenvalues, those which are not placed 
desirably placed. 
the system. 
will also be affected, with the possibility of generating an unstable state. 

Since an urstable system is undesirable, the ability to place a pre- 
determined number of poles, while forcing the system to remain stable would be 
quite desirable to the designer. 
tory assignment of the desired modes, but unfortunately can drive the remaining 
eigenvalues unstable. Thus, requiring iteration of the algorithms, campromising 
the desired choice of eigenvalues or eigenvectors, until a stable response 
results. With the large number of modes reqaired in modelling flexible struc- 
tures ,  these methods become costly and time consuming. 

Many pole placement methods yield sa.cisfac- 

Hence, a pole placement method is proposed which constrains the ,unspecified 
modes to be stable by taking advantage of constrained optimization techniqucs. 
It appears that no previous work has gusranteed stable unplaced poles or has 
assured the magnitude of relative stability. 

Several numerical examples will be presented, and results will be compared 
with those of Srimthkumar 151. 

PROPOSED SOLUTION 

The systems studied in this paper are of the mechanical type, which are 
second order by nature, incorporating mass, stiffness and damping parameters, 
where only the class of discrete systems shall be investigated. 

Assuming small motions aboclt the equillibrium point implies linearization 
of the equations of motion, which become 

The forcing function vector, F(t), may then be described as 

where [V] and [PI are the velocity and position feedback matrices, respectively. 
- q(t) is the coordinate vector, while i(t) and - i(t) are the first an& second time 
derivatives of this vector. 

[MI is known as the mass or inertia matrix, [D] 1.s called the damping natrix, 
and [SI is the stiffness matrix. 
scopic cr Coriolos matrix, and [HI is the circulatory matrix. 

The matrix [GI may be referred to as the gyro- 

The [MI, [D], [SI, [GI and [HI matrices are assume6 to be time-invariant, 
and therefore are represented by constant values, all be;ng of nth order, where 
n represents the number of degrees of freedom of the system. 

Using normal sttrte space methods by letting 
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the n-dimensional system becomes the following &-dimensional model : 

- * j  
- 

E ) '  

r(t) = [ C l j  CZ1&(t) (2) 

where [MI is assumed to have an inverse and [ 21 g(t) is a representatioc of 

the system's forcing f'unctior!, F(t). 

- 
. A  

More simply, equation (2) may be expressed as follows: 

where 

~ ( t )  is ',he output vector, [Cj is a constmt sensor coefficient matrix, and [K] 
is the feedback gain xatrix. 
cient matrix of actuator dynamics, and u(t) is the control vector. 
conditions hold : 

[B' m y  now be described as the constan2 coeffi- 
The following 
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And a more revealing representation is shown in Figure 2. 

FIGURE 2 

Equation (2) may be zewritten as follows: 

If we define 
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and describe equation ( 4 )  as follows: 

where 

and 

Then, the set of equations must satisfy the eigenvalue problem, i.e., 

2n 
Z the 2n eigenvalues 

2n 
E the corresponding eigenvectors. {q) i=l 

v. may then be defined to correspond to the above partitioning ss follows: 
1 

yielding 

] k]+ 
which implies 

- 
- %  

substituting, 

[ *lKCl -;-- I 1 B1KC2 ----- 
I o  I 

'7 

1 kl 
2 -1 -1 ti% = -M (D+G)ciq - M (S+H)q + B KC t w ' +  B KC w 1 1 i - i  1 2 Y i  

If we define { A 3 , )  i = 1,2,...,r as the r eigenvalues to be placed, 
equation (6) may be expreosed as 

W A ~  = -M'~(D*G)wA - M-'(s+H)w + B ~ K C ~ W A  + B ~ K C ~ W  
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w = w w I . . . . e  I I w 1 
[-1 I -2 1 I - -  

where 

and A = diag(A X ..., X ) 1’ 2’ r 

By taking adl*an’ nge of the generalized left in-rerse theorem, 

[K] = [BTB1] -1 [B1][WA T 2 +M -1 (D+G)WA + M-1(S+H)W][C1WA+C2W]-1, 

which is the equation describing the gain matrix needed to obtain thoso eigen- 
values desired. 

A single objective function was then determined from the set of equations 
described by equLtion (71, where the values of [K] were determined by minimi-dng 
that abjective function. 
real part of the eigenvalues of the closed loop system were all negative, These 
constraints were also modified, as was desired, to inc:ease the stability argin. 

The constraints impoqed on t h e  system were that the 

Exarcple 1: 

FIGURE 3 

Specifications: 5 = m2 = 1 

s1 = 4 
s* = 1 
dl = 2 
d2 = 1 
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Eigenvalues of unforced system: 

-1.666207 t 1.41334i 
- .333783 i: -.83265i 

[ c ]  = [ o  -' * o ]  
l J 0 0  

Desired eigenvalues: 

Resulting eigenvalues using t h e  propos,sd method with no additional factor for 
relative stability: 

-4.00000G + Oi 
-1.335420 + Oi - .249608 + Oi 
-',000000 + oi 

Resulting eigenvalues using the proposed method w i t h  &dJed fdctor of relative 
stability : 

Resulting eigenvalues using Sririathkumar method: 

9.1256 + o i  - .8141 + Oi 
-4.0000 4. oi 
-3.0000 + C'i 

Note t5at the method proposed here yields the desired .eigenvalue.; xnd t h a t  
the unspecified eigenvalues remain stable, wkereaa .LD the* S r i n a t h k m r  method 
an unspecified eigenvalue ie moved i n t o  the right half plane. 

4 3  



FIGURE 4 

Speci f ica t ims:  y = 4 
m =y=rah=l  2 
s l = s  = s  = s 4 = 1  

2 3  
d = a  = . 5  1 2  

Eigenvalues of unforced system: 

-.004055 i: 1.647953i 
-.17C649 t 1.131418i 
-.062364 t .355674i 
-.075432 t .730441i 

1 1 0 0 3 0 3 0 0  
0 0 0 1 0 0 0 0  [c l  = [ 

Desired eigenvalues:  x = -.4 t .5 
1 9 2  
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R e s u l t i r g  eigenvalues using the proposed method, where a factor for relative 
stability was added: 

-. 289342 2 1.378583 
-.14545; +, l . l n 3 4 5 i  
-.400907 2 .500003i 
-.197840 2 .425944i 

Example 3: 

Specifications: g = m2 = 1 

SI = 3 

Eigenvalues of unforced system: 
22.074313i 
-+ .8350001 

[cl = [l 1 0 03 

Desired eigenvalue: .5 + Oi 

Resulting ' igenvdues using the propoeed method, where factor for relative 
stability was added: 

- ,170373 2 1.809Og?i 
-1.617157 + Oi - .5OOOOC + Oi 

CONCLUSION 

A pole placement ilgorithm has been proposed which used constrained non- 
linear programming techniques for a flnite dimensional model of a l inear  n degree 
of freedom systexc. It has been shcwn that by constrsini.lg the eigenvalues of the 
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full order system while simultaneously placing those allowable, one can ensure 
the stability characteristics of a systen?, and can alter its transient response. 

Results of the Srinathkumar met'nod were presented for &ample 1, and shoved 
how this metiiod yielded the desired eigenvalues q.fte accurately, yet unfortu- 
nately forced the originally stable system unstable, therefore resulting in an 
undesirable response. 

Xo previous work has guaranteed stable unplaced poles or has assured the 
magnitxde or' relative stability. 

11 [I] Andry, A.N.. Shapiro, E. Y.,andChung, J. C., Eigenstructure Assignment 
for Lineer Systems," IEEE Wansactions on Aeyospace and Electronic Systems, 
V a l .  19, No. 5, Septenber 1983, pp. 711-729. 

[ 2 ]  Andry, A. N., Shapiro, E. Y., and Chung, J. C., "Modal Control of Vibrating 
Systems," F'roceedings of the First International Xodal  Analysis Conference 
and hkibit, Orlaneo. 

[3] Lavison, E. J., "On Pole Assigment in Linear Systems with Incomplete State 
Feedback," IEXE Transactions on Automatic Control, June 1970, p ~ .  348-351. 

[ 4 ]  Meirovitch, L., Computational hiethods ,& Structurd Dynamics, Sijthoff and 
NoorcUhof f , Rockville , Maryland, 1980. 

[ 5 ]  Srinathkumar, S., "Eigenvalue/Eigenvector Assignment Using htput Feedback," 
IEEE Transactions on Automatic Control, Vol. AC-23, Bo. 1, February 1978, 
pp. 79-81. 

[ 6 ]  Wortau, W. M., *'On Pole Assignment in Multi-InpQt Controllable Linear 
Syctems," IiEE Transactions on Automatic Control, Vol. AC-12, Ne. 6 
December 1967, pp. 660-665. 
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ABSTRACT 

The application of utrix transfer fuaction desiga techniques to the 
prchlem of di8turbaaca rejection on a flexibl" space structure in dmartrated. 

The design approach is based on paraeteritiag a class of stabiliriag 

compensators for the plant and forrulating the design specification. as a 

con8traiaed miniriation problem ia tema of theac patautera. 

yield8 a matrix transfer fuaction representatioa of the colpensator. 
space realization of the capeasator is coastructed to iavestigate performance 

and stability on the nominal md perturbed rodel.. The application is u d e  to 

the ACOSS (Active Control of Space Struttures) optical mtructure. 

The rolution 
A state 

I. INTRODUCTION 

The problem of flexible space structure coatrol has motivated a great 

deal of re8earch for theoreticians aad practitioaers of rultivariable coatrol 

design. 

significant gap betueea the ultivariable theory and the coatrol derign 
implementation. 

of problem specification. 

constraint8 into the specific mathematical cost functionals required by moot 
design methods may be impossible in many carer. 
design methodology may not be traceable to the parameters which describe the 

In spite of the effort. directed ia thio area there still reuiar a 

This gap stew from tuo aources. The first difficultv io one 
Translatioa of corrplcx spater'requircwnts aad 

Free parameters in the chosen 
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system in terns of desired performance, plant uncertainty, hardware 

limitations, etc. 

design techniques is the lack of reliable clgnrithms and software to perform 

the sophisticated mathematical manipulations required hy these techniques. 

Recent years have shown very considerable advances in this field (see [ l ] )  but 

m c h  remains t o  be done. 

A second roadblock to the implementation of modern control 

Most of the XIXO (aulti-input/iauu?ti-output) compensators which have 

actually iefL the textbook and been calculated in computers are based on state 

space methods, and, in particular, LQG (LinearQuadratic-Guassian) design 

theory. 

design techniques ae well as the availability of reliabie algorithms to solve 

matrix Riccati equations and the ease of performing m s t  state space 

manipulations. 

systems have been avoided. The extensions of classical frequency domain 

concepts to flIflO systems have not been totally satisfying and calculation3 

involving matrices of transfer functions present an entirely new set of 

problems. Nonetheless, Erequency domain design is still appealing and certain 

feedback notions cannot be adequately expressed without reference to transfer 

functions. 

This is due i n  part to the long hiatory of development of these 

Frequency domain techniques for calculating HIM0 feedback 

We have carried through a compensator design for a flexible structure 

based on transfer function parameterization techniques. General theories of 

feedback control system parameterization have been developed by several 

authors (121,  [31 ,  and 141). 

selection of a set of numerical quantities, along with an acceptable range of 
v a l u e s ,  which span a class of possibly acceptable compensators and, w i  7 

which, one is able to adequately express the system requirements in tenus of 

costs and constraints. A particularly simple parameterization for stable 

plants was introduced by Zames, [4], and exploited for the unity feedback 
configuration of Figure 1 bv Deroer and Chen [Sl. 
parameterization we will implement here. The details are i n  section IV. 
Previous examples of this design approach can be found in (61  and [ 7 ] .  

The goal of a parametric approach is tne 

This is the  
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11. ACOSS STRUCTURE 

The ACOSS optical structure was developed by the Charles Stark Draper 

Laboratcries as a control design test specimen to evaluate the design 

approaches devzloped for the DARPA ACOSS program, (81. 

exhibit the closely gpaced, lov frequency mode distribution expected on some 

future space systems. 

having 84 dynamic degrees of freedom (see Figure 2). 

nominal structure, two perturbed structures were defined to represent plant 

uncertainty. 

It was designed to 

Thz structure is provided as a finite element model 

In addition to the 

The perturbed Pbdels represent mass and atiffness variation8 of 

approximately 10%. The nominal model is denoted PO, the perturbed models are 
P2 and P4. 

The performance goal is expressed in terms of a line of sie5t error on a 

The error focal plane on the lower section of the truss as shown in Figure 2. 

has two angular components and a defocus component resulting from deviations 

in the optical path due to structural vibrations. 

determine the optical path. 

structure. Two disturbances are defined au 'he structure as shown in the 

figure. 

propagating from the equipment panel and we assume it ha, a flat PSD out to 

5 Ht. 
system. 

into the line of aight is still unacceptably high. The control problem is to 

further reduce this residual with active scructural control. 

Three rigid airrots 

Theae are aarumed to be rigidly mounted to the 

For our design problem ue are only considering the disturbance 

The equipment panel is isolated from the structure by a spring-damper 
The residual disturbance propagation through this isolation system 

IIX. HODEL SELECTION AND ACTUATOR PLACEMENT 

For the current design problem we chose a 5 modo model of the structure, 
selecting those modes having mort eignificant influence between disturbance 

and line of sight. 

internally balanced coordinates. 

The modal influence was determined based on ideas from 

For a description of internally balanced 
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c o o r d i n a t e s  see 191 and for a n  a p p l i c a t i o n  to  modal c o o r d i n a t e s  see [ l O l .  

Given a second o r d e r  model d e s c r i p t i o n ,  

Mode 7 

I 

Frequency (Hz) .15 

.. 
+ 2 s.u.i. + wi2qi = g; 3 i 1,. . . ,n  qi 1 1 1  

8 12 13 21  

.26 .58 .58 2.3 - 

i t h  n a t u r a l  damping 5 f requency  w , i n p u t s  E, and o u t p u t s  yB a n  index  
i i Y O  t 

r ank ing  t h e  modes c a n  be  c a l c u l a t e d  as t h e  approximate  “second 

o r d e r  modes,” ( [ 101 by 

Using t h e  modal d i s t u r b a n c e  i n f l u e n c e  m a t r i x  for t h e  &.‘a and t h e  l i n e  
1 

of s i g h t  measurement m a t r i x  f o r  t h e  h . ’ s  t h e  5 h i g h e s t  r ank  modes are 

t a b u l a t e d  i n  Table  1. Agreeing w i t h  o u r  i n t u i t i o n ,  t h e s e  t u r n  o u t  t o  be  t w o  

i so la tor  r o t a t i o n s ,  two i s o l a t o r  t r a n s l a t i o n s ,  and t h e  f i r s t  bending mode of 

t h e  upper  t r u s s .  

-1 

A d e s c r i p t i o n  o f  t h e  modes o f  t h e  s t r u c t u r e  can  be found i n  

[ S I .  

Tab le  1. Design Modes 

The l i n e  o f  s i g h t  measurement m a t r i x  i e  a f u n c t i o n  of 2 1  noda l  d e g r e e s  

of  freedon.  Prom among t h e s e  2 1  deg rees  o f  freedom w e  c%ose t o  l o c a t e  th ree  

f o r c e  a c t u a t o r s  (assumed to  be of t h e  mornenture excharige or proof  mass t y p e )  t o  

c o n t r o l  t h e  t h r e e  l i n e  o f  s i g h t  measurements. 

appea l  i s  a g a i n  made t o  t h e  approximate second o r d e r  modes of equ9t ior .  ( 3 ) .  

To make t h i s  s e l e c t i o n  a n  
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I f  t h e  forc ing  func t ion  on t h e  r i g h t  of  (1) is g .u where 8.. i s  t h e  

inf luence  of t h e  jth a c t u a t o r ,  .i = 1,...,21 on t h e  ith amde, i 

then w e  denote  t h e  corresponding second o r d e r  mode by U..  and d e f i n e  

i l  13 
I1...,5, 

1J 

2 5 2  a = 1 aij i=l j 
(4) 

Here, a. is a measure o f  t h e  inf luence  o f  t h e  jth actuator on t h e  
1 

l i n e  of s i g h t  for t h e  selected 5 mode model. 

f o r c e  d i r e c t i o n s  span t h e  t h r e e  s p a t i a l  d i r e c t i o n s  and have l a r g e  a. w i t h  

r e s p e c t  t o  t h e  to ta l  21  p o s s i b l e  actuators . -  Two of  t h e  a c t u a t o r s  s e l e c t e d  are 

loca ted  on t h e  cornera  of t h e  primary mirror and t h e  t h i r d  is on t h e  lower 

t r u s s .  

We chose t h r e e  a c t u a t o r s  whose 

J 

To complete t h e  d e s c r i p t i o n  of  t h e  des ign  p l a n t  we assumed t h e  

a v a i l a b i l i t y  of d i r e c t  measuremmta of t h e  l i n e  of  s i g h t .  

were used for t h e  c o n t r o l  design. 

t h e  design p l a n t  i n  modal coordinates ,  

No o t h e r  sensors 

We now have a s ta te  space d e s c r i p t i o n  of  

2 = Fx + Gu + Dd (5) 

y = Hx ( 6 )  

whece 0 it :he a c t u a t o r  comrrmnd and d i s  t h e  d is turbance  input .  

Fcr c a l c u l a t i o n  of t h e  compensator we need a t r a n s f e r  func t ion  

r e p r e s e n t a . i a n  of  t h e  design plant .  

c o n s t r u c t i i q  state opace r e a l i z a t i o n s  of  t h e  compensator is  a polynomial 

matr ix  coprime f a c t o r i z a t i o n  [11,12', t h a t  is, P 
coprimc polynomial matrices. 

f a c t o r i z a t i o n  from a s t a t e  apace d e s c r i p t i o n  can be  found in [131. 

The convenient r e p r e s e n t a t i o n  f o r  

ND-' where N and D are 

An algori thm to  c o n s t r u c t  a coprime 
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IV. DESIGN PROBLEM 

The feedhack  c o n f i g u r a t i o n  used f o r  t h e  d e s i g n  is shown i n  F i g u r e  1. 

The c l o s e d  loop  systein is r e f e r r e d  t o  as d .  
p l a n t ,  a 3x3 t r a n s f e r  f u n c t i o n  g i v e n  from t h e  s ta te  s p a c e  e q u a t i o n s  by 

H(sI-F)- lG.  The i n p u t s  are  u and u2 w i t h  t h e  r e f e r e n c e  i n p u t ,  

i d e n t i c a l l y  zero .  

r e p r e s e n t e d  by y 

th rough t h e  t r a n s f e r  f u n c t i o n  P = H(s1-F) 

an a d d i t i v e  d i s t u r b a n c e ,  Pd, a t  t h e  p l a n t  out.put. 

P is t h e  open loop  d e s i g n  

1 
The o u t p u t s  are y1 and y2 w i t h  t h e  l i n e  o f  s i g h t  

The d i s t u r b a n c e  p ropaga te s  i n t o  t h e  l i n e  o f  s i g h t  
c1 -1 2' 

D and may t h u s  b e  r e p r e s e n t e d  as 
cy 

The c l o s e d  l o o p  sys tem t r a n s f e r  f u n c t i o n  is d e f i n e d  t o  b e  

S t a b i l i t y  o f  H c a n  be  t aken  to be c l o s e d  loop  s t a b i l i t y .  H may b e  

expres sed  i n  a s imple  pa rame te r i zed  form as 
YU YU 

where Q is r e f e r r e d  t o  as the Zamee p a r a m e t e r i z a t i o n ,  (41, w i t h  

Q C(I + PC)-' . ( 9 )  

We s ta te  h e r e  t h e  fundamental  r e s u l t  from [ 5 ]  which is  t h e  b a s i s  o f  t h i s  d e s i g n  

approach.  

- F a c t :  For P e x p o n e n t i a l l y  s t a b l e  and s t r i c t l y  p r o p e r ,  Q i s  e x p o n e n t i a l l y  

s t a b l e  and p rope r  i f  and on ly  i f  
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(i) C is proper and 

(ii) H is exponentially stable and proper. 
YU 

When this is the case the cornpeneator ir given by 

In other vords designing stabilizing compensators for in equivalent to 
specifying exponentially stable, proper Q. 

From (8 )  we see that the 1/0 map, that. is, the transfer function from 

uI to y2 is 

Given an invertible plant transfer function, P, one can see from the 
relation (1L) that a parametrization of the closed loop system by Q is 
equivalent to a parameterization by H. Moreover, for P exponentially ntable, 
Q exponentially stable implies the same for H. But since 

it becomes cleat that exponential stability of H only implies exponential 
stability of Q when P has no watable zeros. 
additional condition on H, namely that H ha8 the same right half plane zero 
structure as P, then parameterization by such H is equivalent to parameteriza- 
tion by exponentially stable Q. 

additional constraint of properness of Q is required and.will result in an 
excess pole over zero constraint on H which depends on P. 

However, by imposing an 

If a proper compensator is desired the 

Parameterization by the I / O  map, 11, may rimplify the deuign problem and 

allow the designer to more directly specify his design obiective. 

example, for 3 dirturbance attenuation problem, the cloned loop disturbance to 

output map, or sensitivity map, ir simply given as (I - H). In addition, in 
some applications, a decoupled 1/0 map is desirable and one ie directly able 

For 
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to parameterize a uiagonal H. This is the approach we take for this design. 

Calculating the transmission zeros of cur design plant using the QZ algoritba 
114) we find that there are no zeros in the right half plane so we may freely 

specify H as diag(hi, i=1,2,3) with each h. of the fom 
1 

where g is a gain and 

2 p n W  = tJ2 + 25; w 8 + wn n n  (14 1 

This parameterization has 21 parameters consisting of the gains, and 

second order damping and frequency terms. 

We set for ourselves a deeign goal of minimizing clo8ed loop response to 

the disturbance over a low frequency band of 5 Hz. 
a constrained optimizLtion problem as follows: 

To achieve this we define 

Minimize 

subject to 

:Stability 

0.04 < wn, tod < w :9andwidth b 
j 

hi(0) 1 :Low frequency r o i a e  rejection 
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The ma t r ix  under t h e  norm of J i s  d iagona l  so w e  aimp'v t a k e  t h e  

Eucl idean v e c t o r  norm of t h e  diagonal .  The minimizat ion a& .ne  cost a t  5 Hz 
and t h e  DC u n i t y  g a i n  c o n s t r a i n t  w i l l  r e s u l t  i n  d i s tu rbance  r e j e c t i o n  across 

t h e  5 Hz band. The P term i n  t h e  c o s t  weights  t h e  diagonal  terms i n  (I - H) 
according to t h e  way t h e  d i s tu rbance  propagates  through t h e  s t r u c t u r e .  

k 

I n  gene ra l  (I - H )  is t h e  r a t i o  of  t h e  relative u n c e r t z h t y  i n  t h e  1/0 

map t o  t h e  r e l a t i v e  u n c e r t a i n t y  i n  t h e  open loop p lan t .  More q r e c i s e l v  

where 

f o r  a "perturbed" p l a n t  $ r h i c h  r e e u l t r  in a perturbed 1/0 map 6.  
minimization of J reduces t h e  impact of p l a n t  u n c e r t a i n t i e s  on c l o s e d  loop 

s y e t e m  performance. 

In e f f e c t ,  

Having s p e c i f i e d  t h e  op i imiza t ion  problem one can  use  numerical  or  
a n a l y t i c a l  means to  s o l v e  it. 

minimum t o  t h i s  problem a n a l y t i c a l l y .  

dependent on t h e  bandwidth, Ob, 

s a t i s f  Lea 

Omitting t h e  d e t a i l s ,  we c a l c u l a t e d  a local 
The ach ievab le  performance is c l c a r l v  

For A given U,, the local minimum 
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4 
W d = i  

2 R 
W n 

Given t h i s  s o l u t i o n  w e  c a n  a d j u s t  t h e  bandwid,h of each  of t h e  t h r e e  

loops  t o  a c h i e v e  a d e s i r e d  performance l e v e l .  

each  channe l  we have t h e  fo l lowing  parameter  v a l u e s :  

To a c h i e v e  0.04 r e d u c t i o n  i n  

(23 1 

V, COMPENSArdR REALIZATICN 

Having a r r i v e d  a t  parameter  v a l u e e  w e  have s p e c i f i e d  r h e  d e r i r e d  I!O 

map, H. The compenaator which w i l l  produce t h i s  I!n is  

Sines t h e  I / O  map is g iven  by d iag (h i  1 w i t h  each  hi  of t h e  form 

i 

'i di 

n 
I -  ( 2 6 )  

56 



the compensator becomes 

C = P-ldiag (5) d.- . (27) 

We have already expressed P as a polynomial matrix coprime factorization, 
-1 

P = ND . Thus (27) becomes 

Since the degree of d. - n. is 4, w can factor this polynomial into two 

quadratics as 
1 1 

di - n. * d. d. , i = 1,2,3. 
l1 l2 1 

Hence ( 2 9 )  can be rewritten a8 

( 2 9 )  

- 
By inspection, diag(d. IN i r  column-rtductd [121, a d  has column Lagtees 

ll - 
eqc,ling those of D. Consequently I) {diag(di )N}-' ir proper and has a rtate 

1 - 
space realization [12 ,  

space realization, the 

for c* 

- 

See. 6.41. NOW, since diag(n./d. alro har a state 

two realization. can be carcaded to yield a realization 
1 12. 
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VI. RESULTS 

Having computed a state space description of th; compensator we are now 

able to determine closed loop stability for various versions of the plant 

simply by extracting the eigenvalues from the closed loop state equations 

derived from Figure 1. 

P2, and P4) the five mode description remains stable under feedback by our 

compensator. 

We find tnat for el1 three versions of the plant (PO, 

To investigate the robustness of the design with respect to unmodeled 

dynamics we appended additional modes to the plant rnodel and found that the 

closed loop system became unstable in almost all cases. 

this problem we discovered that though the 5 mode design plant was minimum 
phase, the addition of almost any other mode or set of modes resulted in a 

nonminimum phese plant. Information about these unscible zeros was not 

available in the design plant so the resulting compensato- tended to place 

closed loop poles at these zeros. 

one of modeling or model redxtion. 

must hrve information about the righL h.mlf plane zeros of the plant. 

Upon investigation of 

Thus the stability problem experienced is 

In general, any control de8ign approach 

The performance of the closed loop system remained very consistent with 

the predic&ions made during the design stage. 

at 5 hz of the two angular components of the line of sight is given as a 

fraction of open loop response for the three models by: 

The steady state RSS response 

The broadbaad dirturbance attenuation is illustrated on the Bode plots 

of Figures 3 and 4 which compare open and closed loop response. 
sipnificant portion of th- 5 He band the performance improvement is 3 to L 

orders of magnitude. 

Across a 
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VII. CONCLUSIONE 

We have demonstrated the applicability of a transfer fmction parameteri- 

zation design approach for problems of broadband disturbance attenuation on 

flexible space structuren. 

with a great deal of flexibility to meet system requirements by the choice of 

parameter set and selection of cost function and constraints. 

implementation of this technique requires difficult numerical calculations 

involving matrix transfer functions, algorithms and software for these types 

of problems are already elserging. The success of this approach is dependent 

This methodology provides the control designer 

Although the 

on an appropriate parameter selection in which to express the problem 

specifications. This suggests research, probably application specific, which 

addresses the issues of problem description and requireaents interpretation in 

the control design process. 
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INTRODUCTION 

-, !ne c o n t r o l  design probleix f o r  t h e  class of f u t u r e  spacecraft referred t o  as 

l w g e  space structures (US) is Sy n3w well known [ l -31.  The i s s u e  is t h e  re- 

duced order c o n t r o l  of a v e r y  high-order, l i g h t l y  damped syPtem wi th  u n c e r t a i n  

s y s t e -  parameters, p a r t i c u l a r l y  i n  t h e  h igh  f requency  modes. T h i s  paper pre- 

s e n t s  a d e s i g n  methodology which i n c o r p o r a t e s  robust?iess c o n s i d e r a t i o n s  as 

part of t h e  d e s i g n  process .  Canbin ing  p e r t i n e n t  results f r a  m u l t i v a r i a b l e  

system theory  and op t ima l  c o n t r o l  and e s t i m a t i o n ,  LQG e i g e n s t r u c t u r e  a s s ign -  

ment [4] and LQG frequency-shaping,  C5-73 were used  t o  improve singulai- v a l u e  

r o b u s t n e s s  measures i n  t h e  p r e s e n c e  of c o n t r o l  and o b s e r v a t i o n  s p i l l o v e r .  

The des ign  t echn ique  is summarized as follows. A low order LQG compensator is  

s y n t h e s i z e d  u s i n g  t h e  t e c h n i q u e  of r e c u r s i v e  e i g e n s t r u c t u r e  a a a i g m e n t  t o  

p l a c e  c losed - loop  e igenva lues  where desired. 

s i n g u l a r  v a l u e  performance margin and for  s i n g u l a r  v a l u e  g a i n  margin w i t h  

r e s p e c t  t o  p l a n t  u n c e r t a i n t i e s  (e.g., modeled dynamics). The compensator is 

t h e n  r e s y n t h e s i z e d  u s i n g  f requency-shaping  concep t s  t o  improve the  s i n g u l a r  

v a l u e  r o b u s t n e s s  measures. The r e c u r s i v e  e i g e n s t r u c t u r e  assignment  t echn ique  

allows r e g u l a t o r  close-loop e i g e n v a l u e  placement a t  t h e  desired l o c a t i o n s  fo r  

t h e  p l a n t  and as r e q u i r e d  for  f requency-shaping .  Forthermore, t h e  f requency-  

T h i s  d e s i g n  is e v a l u a t e d  for 
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shaped compensator e igenva lues  can also be assigned, thus a s s u r i n g  LQG com- 

pensa to r  s t a b i l i t y ,  as well as estimator s t a b i l i t y .  

T h i s  procedure u s i n g  r o b u s t  freyuency-shaped compensation was a p p l i e d  t o  t h e  

des ign  of t h e  c o n t r o l l e r  for a r e p r e s e n t a t i v e  l a r g e  space s t r u c t u r e .  Results 

are presented as s i n g u l a r  va lue  &de L?ots. Canparisons are made t o  a r e c e n t  

s t u d y 8  u t i l i z i n g  t h e  sam large  space structure model. 

LQC CONTROL DESIGN FOB LSS 

Control  des ign  p l a n t  modelling fo r  LSS u t i l i z e s  a high-order s t r u c t u r a l  model, 

t y p i c a l l y  obtair ied by f inite-element programs such as NASTRAN. 

t i o n s  of c m p u t e r  implementation r e q u i r e  tha t  t h e  f i n i t e - e l emen t  model be 

reduced t o  a design model. 

i n t o  prilcary and r e s i d u a l  modes, where t h e  primary modes are t o  be used f o r  

control design.  The modal t r u n c a t i o n  can be baseJ on eng inee r ing  judgement or 

on a s e l e c t i o n  c r i t e r i o n  such as modal cost a n a l y s i s  [ 9 ] .  

The limita- 

One approach is t o  t r u n c a t e  t h e  high-order model 

The s y s t e m  model has t h e  form 

64 



where xp are t h e  primary modes and XR are t h e  revidual modes. An ob- 

se rve r -based  c o n t r o l  d e s i g n  for +he primary modes t h e n  has t he  form 

A 
'P = AP ';p + Bpu + G ( y  - Cp qp)  

Using LQC d e s i g n ,  the  g a i n s  (h,  G) are selected t o  minimize q u a d r a t i c  perform- 

s p i l l o v e r  and o b s e r v a t i o n  s p i l l o v e r  r e s p e c t i v e l y .  These  terms have  the  poten-  

t i a l  fur i n t e r a c t i n g  th rough  t h e  o b s e r v e r  ( 2 )  t o  produce i n s t a b i l i t y .  

LQG theory g u a r a n t e e s  t h a t  t he  reduced-order  closed loop sys t em is stable with 

Of ('P-BpK) and  (Ap-CCp). However, no  s u c h  g u a r a n t e e  holds for 

t h e  compensator ,  

u = Hy (3)  

which has the Of (Ap-BpK"CCp). This  fact  can  be fa ta l  f o r  LSS 

reduced-order  c e n t r o l ,  u n l e s s  measures are taken t o  emure sys tem r o b u s t n e s s .  

ROBUSTNESS MEASURES FOR LSS 

For m u l t i v a r i a b l e  fesdback sys t ems  the  emerging s i n g u l a r  v a l ~ -  r o b u s t n s s s  

theory can  be used t o  develop  measures f o r  s t a b i l i t y  and performance.  Kosut, 

e t  a l ,a  a p p l i e d  this theory t o  t h e  large space s t r u c t u r e  c o n t r o l  des ign  prob- 

l e m ,  t r e a t i n g  t h e  r e s i d u a l  dynamics as a p e r t u r b a t i o n .  For a system w i t h  a 
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s t a b l e  nominal  feedback s y s t e m  (based  o n  t h e  r e d u c e d  model) a n d  s t a b l e  p e r t u r -  

S c t i o n s  ( d u e  t o  t h e  res idual  d y n a m i c s ) ,  s u f f i c i e n t  c o n d i t i o n s  f o r  s t a b i l i t y  

a re  o b t a i n e d  when t h e  s i n g u l a r  v a l d e  s t a b i l i t y  measures e x c e e d  t h e  maximum 

p e r , d r b a t i o n  d u e  t o  model u n c e r t a i n t y .  F i g .  1 d e f i n e s  t h e  t e r m i n o l o g y  fo r  a 

large s p a c e  s t r u c t u r e  c o n t r o l  sys tem.  For a n  a d d i t i v e  p e r t u r b a t i o n ,  r i g .  2a, 

t h e  S u f f i c i e n t  c o n d i t i o n s  f o r  s t a b i l i t y  are 

\;here 7 ( 0 )  i n d i c a t e s  t h e  maximum s i n g u l a r  v a l u e  and  - o ( 0 )  i n d i c a t e s  t h e  mini -  

mum s i n g u l a r  v a l u e .  ( S i n g u l a r  v a l u e s  of t h e  c m p l e x  rnaL-ix i. are t h e  p o s i t i v e  

s q u a r e  roo ts  of t h e  e i g e n v a l u e s  of A * A ,  where ( e ) *  i n d i c i t ? s  c o n j u g a t e  

t r a n - s p o s e . )  If C c ( s )  is minimum p h a s e  a n d  i n v e r t i b l e ,  a m u l t i p l i c a t i v e  per -  

t u r b a t i o n  c a n  be  formed, F i g .  2b, a n d  t h e  s u f f i c i e n t  c o n d i t i o n s  fo r  s t a b i l i t y  

a r e  t h e n  
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where the j w  arguments have been suyressed. 

ating frequency region ( i . e . ,  the ftcontrol bandwidth") is provided when the 

per forraance measure 

Good performance w i t h i n  the oper- 

P'4 = - 0 CI + CCH] 

i s  large. 

plot analysis; t h e  measures ( 5 )  a r e  ge~!eralizations of Nyqu i s t  inverse polar 

The s t a b i l i t y  measures (4) are  generalizations of N y q u i s t  polar 

plot analysis. The need for  large performance measure (6) i s  a generalization 

of t h e  desirability of large loop gains. 

ROBUST COMPENSATION DESIGN 

The s t a b i l i t y  and performance measures presented above require staL l i t y  of 

tqe nominal feedback s y s t e m .  I n  a previous work C41, the authors presented a 

recmsive design procedure which assigns the closed-loop eigenstructure i n  

l inear quadratic regulators. A t  each stage, the requi-ad solution for  the 

steady s t a t e  tticcati matrix which s h i f t s  3 pole or pCIe pair t@ specified 

values is obtained. Far pole pair placement, a f r e e  parameter i n  the solution 

Fermi ts selection of closed-loop eigenvectors. 

ioarized i n  Arpendix 1 .  

This design procedure is sum- 

i ls ing duali ty,  the procedure also applies t o  estiinator design. Ely extension, 

t h e  procedure can be used t o  design s table  compensators by considering the 

closed-loop rzgulator dynamics matrix (A-BK) as the open-loop system and pick- 

i n g  the estimator gain t o  place the comperisator eigemtructure of (A-BK-CC).  
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Crnpensator robustness can be enhanced through the use of frequency-skaped 

control and estimatim [5,6]. I n  frequency-siiaped estimation, a fre- 

quency-domain performance index is  comidered, 

where w is  the disturbance and v is the sensor noise. Sensor r.3ise fre- 

quency-shaping is re?lized by t reat ing v as an.auta cerrc:ate;i m i s e  53urce of 

the form 

uhere v l ( j w )  is  a white noise process. I n  the approach used here, Q ( j w )  is 

determined by pcle placement, equivalent t o  iAjecting f i c t i  tiou: process 

nois:. 

weighting over the entizd spectrum. 

R 1 / 2 ( j w )  must  be proper (not s t r i c t l y  proper) t o  maintain sensor noise 

Then define a pseudo-measurement 

68 



T h i s  dynanic mdel is  appended t o  the system dynamics t o  form the frequency- 

shaped estimator, 

where z’ is obtained frm (10 ) .  The gains fi.and Cv  in be Jicked t o  pla.:. t h e  

eigenvalues of ( 1 1 )  a t  those of t h e  frequency-shaping f i l t e r  (IO) and the oth- 

ers as required f o r  performance. A dual resul t  can be used t o  develop fre- 

quency-shaped gains fo r  the regulator. 

Because frequency-shaping ada., .states t o  the compensato:, an eff ic ient  choice 

of the loops t o  be shaoed is desirable. 

l o o p  selection based on the singular vectors or the return r a t i c  mairices CcH 

or HG,. 

singular vector corresponding t o  F(A) w i l l  get the largest  amplificaLion by A .  

Similarly, a vector i n  the direction of On, the singular vector correvpcnding 

t o  - o ( A )  w i l l  get smallest amplification, Therefore, i f  the component of y i n  

t k  direction which is  closest  t o  q1, la reduced by a fi! ter before i t  enters 

A ,  ;(A) is effectively reduced. - o ( A )  

of y closet t c  qn befora i t  enters A. 

introduces transmission zeros in to  the cmpennater t ransfer  function, 

K i m  [7] has developed a procedure for  

!le 2onjeectured that  ar. i n p u t  vector y i n  t h e  d:rection OF 91, the 

increased by increasing t h e  cornpoi... 

I t  , A  be shown that  frequencv-sha9ing 
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D E S I G N  KETHODGLOGY 

The r i i s cuas ion  which  nc; been p r e s e n t e d  above  s u g g e s t s  t h e  f 9 l l o w i n g  d e s i g n  

methodoi 3g: : 

;. C m p s n z a t o r  a e s i g n  f o r  per formance  of t h e  reuced order sys tem.  

2. EVL . sc ion  of t h e  s t a b i l i t y  marg ins  (4,5) a g a i n s t  t h e  p e r t u r b a t i o n  due  t o  

t h e  res idua :  dynamics.  

3 .  Se lec t i . cn  of f r equency- shsp ing  f i l t e rs  t o  enhance s t a b i l i t y  r o b u s t n e s s .  

4. S y n t h e s i s  c: . c q u e ~ c y - s h a p s d  ccmpensator  t o  i n c o r p o r a t e  performance and 

s t a b  i 1 i t y marg; n s  . 

The r e c u r s i v e  e i g e a s t r u c t u r e  d e s i g n  a l g o r i t h m  can  tz used  fo r  t h e  Gesirpls. 

EXAMPLE. 

Tne d e s i g n  methodology was app1iP.i t o  a c o n t r c l  d e s i g n  f o r  t h e  ACOSS-1 model, 

h l k ~  ur.ed i n  t h e  comparis?n s t u d y  C91. 

s t a t e - s p a c e  data are l i s t e d  i c  Appendix 2. As i n  t he  comparison s t u d y  +.he 

f i r s t  e i g h t  s t r u c t u r a :  modes were retaiaed. A r e g u l a t o r  was des igned  w i t h  

c iosed- loop  p o l e s  c?t, 20% danpifig; a compensator  was des igned  w i t h  poles a t  

The model is i l l u s t r a t e d  and  the  

r i t i c d  darnpini;. Fig. 3 i l l u s t r a t e s  s t a b i l i t y  measure ( 5 )  for t h e  l o o p  

broKen a t  t h e  7uLDut . .  Per fc rmance  s adequa te  a t  iow f r e q u e n c i e s  b u t  s t a b i l -  

i t y  robustrrc.: .'s i n a d e q u a t e  above 1 Hz. 
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To improve s t a b i l i t y  r o b u s t n e s s ,  frequency-shapea estimation was inco rpora t ed  

i n  a l l  three ou tpu t  l oops  using second-order low-pass filters. Fig. 4 i l l u s -  

t ra tes  t h e  recovery of s t a b i l i t y  r o b u s t n e s s  while still r e t a i n i n g  good low 

frequency perfornance,  F ig .  5. 

DISCUSSION 

I n  the comparative s tudy  by Kosut, e t  a1 C81, both LQG modal c o n t r o l  and a 

frequency-shaped c o n t r o l  were i n v e s t i g a t e d  (along w i t h  others). 

was found t o  have pcor perzormance as well as poor s t a b i l i t y  r J b u s t n e s s .  

quency-shaped c o n t r o l  was found t o  have adequate  s t a b i l i t y  robus tness ,  b u t  

poor low f reqbeilcy performance. 

LQG c o n t r o l  

Fre- 

T h e  methodology presented here addresses both of these i s s u e s .  Performance is 

achieved by po le  placemenL des ign  of the  compensator, ach iev ing  good loop  

ga ins  a t  low frequency. S t a b i l i t y  robus tness  is achieved by adding fre- 

quency-shasing without s a c r i f i c i n g  low ftequency performance, s i n c e  the  g a i n  

of t h e  frequency-shaping f i l t e rs  is one a t  low f r equenc ie s .  

CONCLUSIONS 

A design meth dology f o r  c o n t r o l  systms for l a r g e  space s t r u c t u r e s  has been 

proposed w h i c h  i n c o r p o r a t e s  both performance and s t a b i l i t y  robus tness  concerns 



as  an i n t e g r a l  part of t h e  d e s i g n  process. 

i n g  t h e  p o l e s  of t h e  compensator .  

quency-s!,aping t h e  compensator  t o  s a t i s f y  a f r equency  domain s t a b i l i t y  

r o b u s t n e s s  tes t .  

Performance was ach ieved  by p lac-  

S t a b i l i t y  r o b u s t n e s s  was ach ieved  by fre- 

An ex.mple #as F: s e n t e d  which a p p l i e d  t h e  r n e t h o d ~ l g y  t o  a system with t h e  

l o o p  broker. a t  t h e  o u t p u t .  A f u l l  d e s i g n  s t u d y  wcu!d also r e q u i r e  examinat ion  

of t h e  system wi:h t h e  loop broker. a t  t h e  i n p u t ,  u s i n g  regdlator fre- 

quency-shaping t o  enhance  r o b u s t n e s s .  
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APPENDIX 1 

Recurs i ve E i gens  t r u c  t UT e Des i gn 

The s t e a d y - s t a t e  op t ima l  C o n t r o l  law for  t h e  l i n e a r ,  t i m e - i n v a r i a n t ,  

con t  ro l l  ab1  e system : 

= AX + BU 

which minimizes  t h e  q u a d r a t i c  performance index ,  

J = 112 je- L X T  QX + UT Ru] d t  

is l i n e a r  s t a t e  feedback 

u = K x  = - R-1 BT sx 

(A. 1 )  

( A . 2 )  

( A .  3) 

where S is t h e  s o l u t i o n  of the s t e a d y - s t a t e  Riccati e q u a t i o n ,  

I n  t h i s  aFpendix we s m m a r i z e  a n  i n t e r a c i i v e  d e s i g n  t e c h n i q u e  bihich s o l v n s  

( A . 4 )  t o  p rov ide  s p e c i f i e d  e i g e n v a l u e s  of the c losed- loop  system dynamics 

m a t r i x  A+BK and which a l s o  p e r m i t s  s a n e  freedom i n  s e l e c t i n g  c losed- loop  
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e i g e n v e c t o r s .  The method is r e p o r t e d  elsewhere [4] i n  detail .  It  e x t e n d s  t he  

p rocedure  of Soiheim C l G j  in which, for f i x e d  R ,  t h e  e l emen t s  of Q p r o v i d i n g  

t h e  r e q u i r e d  p o l e  placement  are c a l c u l a t e d  d i r e c t l y .  

The desigr.  t e c h n i q u e  is r e c u r s i v e ;  a t  each stage, t h e  sys tem dynamics m a t r i x  A 

in ( A . 1 )  i n c o r p o r a t e s  p rev ious  state feedback. 

i ng e i g e n s  t r u c t u r e  c a l c u l a t i o n :  

We t h e n  implement t h e  follow- 

rfhere A = T-l AT is block d i a g o n a l ,  T is t he  real e i g e n v e c t o r  m a t r i x  of A ,  and 

ii = T'lBH-1BTT-T is symmetric and p o s i t i v e  s e m i - d e f i n i t e .  is i d e n t i c a l  t o  A 

except fo r  a block of s h i f t e d  p o l e s ,  

e i g e n v e c t o r s  t,o c losed- loop  e i g e n v e c t o r s ;  i t  is d e f i n e d  as the  "stage" 

e i g e n v e c t o r  ma t r ix .  ,C is t h e  Riccati m a t r i x  i n  t h e  open-loop d iapra l ized  

c o o r d i n a t e  system; 3 is chaeen t o  s h i f t  a s i n g l e  poie or a pair of poles. 

co r re spond ing  gain matrices, K, de .ermined for  each stage are s u b s e q u e n t l y  

added t o  o b t a i n  a f i n a l  g a i n  which a c h i e v e s  the  same closed-loop p o l e  loca- 

t i o n s .  

X is t h e  t r a n s f o r m a t i o n  f rm open-loop 

.- 

The 

To p rov ide  t h e  r e q u i r e d  p o l e  s h i f t ,  t h e  only non-zero e l emen t s  of S cor re spond  

t o  t h e  e n t r i e s  of A which are t o  be s h i f t e d .  With this oho ice  of S, t h e  char- 

ac te r i s t ic  e q u a t i o n  factors i n t o  the  product  sf terms f o r  the  u n s h i f t e d  p o l e s  

and a term for t h e  desired s h i f t e d  p o l e s .  Thu-, 



where I is t h e  indox set  for t h e  u n s h i f t e d  p o l e s ,  and D(s) c o n t a i n s  e x p l i c i t  

e l emen t s  of S ,  H ,  and t h e  block of A which is t o  be s h i f t e d .  Matching t h e  

c o e f f i c i e n t s  of powers of s i n  D(s) t o  tile e q u i v a l e n t  terms i n  the  clcsed-loop 

c h a r a c t e r i s t i c  e q u a t i o n  p r o v i d e s  a set of e q u a t i o n s  i n  t h e  r e q u i r e d  e l emen t s  

of 5. 
sa t i s f i e s  

For t.he s i n g l e  p o l e  s h i f t  A j j  = X t o  K ,  t h e  o n l y  non-zero element  of 

For double  pole placement i t  can  be shown t h a t  t h e  three r e q u i r e d  e l emen t s  of 

l i e  on t h e  i n t e r s e c t i o n  of two q u a d r i c  s u r f a c e  i n  a mathematical s p a c e  hav- 

ing  t h e  three 2 e lements  as c o o r d i n a t e s .  

s o l a t i o n  fo r  Q has b similar geometric i n t e r p r e t a t i o n . )  

submatr ix  of H is p o s i t i v e  d e f i n i t e ,  t h e  surfaces are a p l a n e  and a hyper- 

b o l o i d  of one  o r  two sheets; t h e  i;lters%slm, i f  i t  e x i s t s ,  is always an el- 

l i p s e .  If the r e l e v a n t  submat r ix  of :; is s i n g u l a r ,  t h e  surfaces are p l a n e s ,  

and t h e  i n t e r s e c t i o n  is a l i n e .  The d i f f e r e n t  p o i n t s  compr is ing  t h e  s o l u t i o n  

a l l  provide t h e  desired eigenvaly-. placement ,  b u t  w i t h  d i f f e r e n t  e i g e n v e c t o r s .  

( I t  can a lso shown tha t  a direct  

If t h e  co r re spond ing  

I n  ref.  4 a s o l u t i o n  f o r  5 is p r e s e n t e d  which takes advan tage  of t h e  quadriG 

s u r f a c e  geometry LO d e f i n e  a free pa ra i i e t e r  tha t  a l l ow des ign  freedom I n  t h e  

choice of c losed- loop  e i g e n v e c t o r s .  The s o l u t i o n  f o r  the stage e i g e n v e c t o r  X 

p a r t i t i o n s  i n t o  two sets of e q u a t i o n s .  The first i s  a homogeneous Lyapunov 

e q u a t i o n  f o r  t h e  submat r ix  c o r r e s p m d i n g  t o  t h e  s h i f t e d  p o l e  b lock  i n  A .  For 

5. r ? l e  p a i r  s h i f t ,  t h e  submat r ix  is 2x2. Hence, depending upon t h e  n a t u r e  of 
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t h e  closed-loop pole3 (real or complex), one or two elemedts of t h e  submatr ix  

mhy be chosen arbi t rar i ly;  the remaining elements then depend :.TL the  choice  of 

e l m e n t s  of g. The other equat ion  is a non-homogeneous Lyapunov equat ion  i n  

t h e  remaining elements of the columns of X conta in ing  the  2x2 submatrix;  its 

s o l u t i o n  depends upon the 2x2 submatr ix ,  the elements of 5 and n, and c e r t a i n  

elements of H. 

The closed-loop sys t em eigenvector  mat r ix  is then  TCL - TX, 

depends upon 5, which v a r i e s  wi th  the  choice  of t h e  free parameter. 

The s G l u t i o n  of x 
There- 

f o r e ,  by r e c u r s i v e l y  s h i f t i n g  pole pairs, design freedom e x i s t s  t o  select 

closed-loop eigenvectors  while providing r e q u i r e d  pole  placements. 

The procedure o u t l i n e d  above l e n d s  itself t o  a r e c u r s i v e  procedure for pracd-  

cal m u l t i v a r i a b l e  regulator design. 

lows: 

The s teps  i n  t h e  procedure are as fol- 

1 .  System ( A . 1 )  is placed !.n modal form. 

2. The des igner  seiects the  c o n t r o l  weighting mat r ix  R, t h e n  H is calculated. 

3. The designer  selects a real pole or pair of poles t o  be sh i f t ed  and the i r  

desired l o c a t i o n ;  I 8 pai r ,  he also a e l e c t s  the free parameter which 

determines the closet?-loop e igenvec tors .  

4. The s t a g e  g a i n  is c a l c u l a t e d  and t h e  closed-loop system is placed i n  modal 

form . 
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5. Steps  3 and 4 are repeated for other poles u n t i l  the designer is satia- 

fied. 

6. The total system gain is obtained by adding the stage gains. 

Clearly by d u a l i t y ,  t h e  same process can be applied to estimator dss iy? ,  per- 

m i  t ting t h e  development of multivariable compensators. 



APPENDIX 2. 

The ACOSS-1 f l e x i b l e  spacecraft model w a s  developed by t h e  C h a r l e s  S t a r k  

Draper LabOratorY-lO I t  is r e p r e s e n t a t i v e  of many radar and o p t i c a l  control 

problems,  b u t  is s m a l l  enough to  be t e n a b l e  for  r e s e a r c h  s t u d i e s .  The atruc- 

t i re  is a t e t r a h e d r a l  truss s u p p o r t e d  by t h r e e  r i g h t - a n g l e  bipc&. The t r u s s  

members are f l e x i b l e  i n  t h e  axial direction only. The model h a s  12 modes; for 

control design, o n l y  e i g h t  are assumed t o  be  known. 
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ON THE STABILITY OF COLLOCATED 
CONTROLLERS IN THE PRESENCE OF 

UNCERTAIN NONLINEARITIES AND 
OTHERPERILS 

S. M. Joeai 
NASA Langley Research Center 

Hampton, VA 23665 

ABSTRACT 

Robustness properties are investigated For tuo types of controllers for 
large flexible space structures, which use-collocated sensors d actuators. 
The first type Is s ~ l  attitude controller which uses negative definite feedback 
of .easured attitude and rate, uhlle the second type I s  a &ping enhancement 
controller which uses only velocity (rate) feedback. It is proved that collo- 
cated attitude controllers preserve closed-loop global asymptotic stability 
when linear actuator/sensor dynamics satisfyiqg certain phase conditiom are 
present, or monotonic increasing nonlinearities are present. For velocity 
feedback controllers, the global asyrptotic stability is proved under much 
weaker conditions. In particular, they have 90. phase margin and can tolerate 
nonlinearities belongiqg to the lo,-) sector in tbe actuator/sensor character- 
istics. The results significantly enhance the viability of both types of 
collocated controllers, especially when the available infomatlcm about the 
large space structure parameters is inadequate or inaccurate. 

INTROWCTION 

Large flexible space structures are Infinite-dimensional systems wlth very 
8-11 inherent energy dissipatim (damping). Becam of practical limitatlone, 
only finite-dlm!nsional controllers and point actuators and sensor8 m s t  be 
used for controlling large spa= structures (LSS) . In addition, coneIder8ble 
uncertainty exists in the knowledge of the parameters. For these reaaons, the 
design of a stable controller for a large space structure (LSS) is a 
challenging problem. 

A class of controllers, terwd "collocated controllers" [ l ] ,  represents an 
attractive controller because of ita guaranteed stabil'ity properties In the 
presence of plant uncertaiatier. Collocated attitude (a) controllers are 
designed to control the rigid-body attitcde ae well as the structural d e s ,  
while collocated direct velocity feedback (CDVPB) controllers are designed only 
for enhancerent of structural damping. Both types of collocated controllers 
guarantee stability regardless of the number of -des in the LSS rodel and 
uncertainties in the knowledge of tk parameters [ I ] ,  [Z]. A CA controller 
basieally consists of compatible oensor/actuator pairs placed at tlic same 
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loca t ions ,  and u t i l i z e s  negative d e f i n i t e  feedback of posi t ion and ve loc i ty  
(e.g., LSS a t t i t u d e  and attitude! rate). A CWW con t ro l l e r  131 is a special 
case of the CA con t ro l l e r  *re only rate feedback is used f o r  damping 
enhancement without affectiw tbe rigid-body modes. It has been proved i n  
references [ I ] ,  121, (31 t h a t ,  the closed-loop system is a lways  s t ab le  in the 
sense of Lyapunov, and is a l so  asymptotically s t ab le  (AS) under c e r t a i n  
addi t iona l  conditions. 

Although col located con t ro l l e r s  have a t t r a c t i v e  s t a b i l i t y  proper:ies with 
perfect  (i.e., l i nea r ,  instantaneous) sensors and actuators, the sebsurs and 
ac tua tors  ava i lab le  in prac t ice  tend to  have non i inea r i t i e s  and phase lags 
associated with them. In order t o  be useful  i n  p rac t i ca l  appl icat ions,  the 
c o n t r o l l e r  should be t o l e ran t  to non l inea r i t i e s  (e.g., sa tura t ion ,  re lays ,  
deadtones, etc.), and to phase shifts (e.g., actuator dpaarics and/or corputa- 
t i ona l  delays). Uncertaint ies  usually exist i n  the Lnowledge of the nonlinear- 
ities a d  the phase lags. For these reasons, this paper inves t iga tes  tire 
closed-loop s t a b i l i t y  of col located con t ro l l e r s  In the presence of d e l e d  
sensor/actuator  dynamics and noal iooar i t ics .  f& siturtioa ia matheaatically 
described by including an operator in the feedback path. The actual input 
c ' t )  *.s given by: 

where % is the idea l  (desired) input, A? is a mmmtic ipa t ive ,  l i n e a r  or 
nonlinear,  tire-varying or invar ian t  operator. For CA cont ro l le rs ,  it is 
proved tha t  t he  closed-loop system ie global ly  asymptotically s t a b l e  i f  

1) 2 is l i nea r ,  time-invariant (LTI)  and s t ab le  with a rational t r ans fe r  

2 )  If Pe cons ia t s  of t i m e i n v a r i a n t ,  s t r i c t l y  monotonic increasing 
nonl inear i t ies  belonging to the ( 0 ,  0 )  sector.  (A funct ian Mu) is sa id  
t o  belong t o  the [k.h)  sector i f  MO) = 0 and ku2 M u )  < hu2 for  al l  
0 * 0 ) .  

matrix H ( s )  which satisfies ce r t a in  freqwncy-dorain conditions,  or 

For CDVPB cont ro l le rs ,  it is proved that global asymptotic s t a b i l i t y  is 
preserved when 

11 is a s t ab le  nonlinear dynaric operator and s a t i s f i e s  certaln pass iv i ty  
conditions,  o r  

2) $f( is a stable L X  operator with phase within 290' 

3) $4 cons is t s  of mr h e a r  gains belonging t o  the [O,-) sector.  

These ana ly t i ca l  1' .ults s ign i f i can t ly  enhance the s t a b i l i t y  and 
robustness propertice of collocated cont ro l le rs ,  and therefore increase t h e i r  
p rac t i ca l  ayp l l cab i l i  cy. 
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PROBLEM PORMJIATION 

T h  linearized equations of motiaa of a large flexible space structure 
(using torque actuators) are given by: 

.. 0 T 1 
A X + B X + ~ =  1 riUi 

I= 1 
where 

(2) 

(3) 

where Os, $s denote t h  three rigid-body Buler angles, % is tbe 
n u b e r  of structural d e s ,  q1 denotes tbe modal aplitude of itb structural 

1, Is denotes the 3 x 3 ament of Inertia mtrix, mode (i = 1, 2, 
d e - s  ope mtrix at the lth ( 3 - u i s )  actuator location. 

It is uaumed tha m, 3 - d ~  torque actuators are used. It 11 denotes the I 
x 0 identity mmtrix, d diag( ) denotes a block-di.gona1 matrix. D la a 
symetric positive definite or 8ddefInIte matrix wbich represents the 
inherent structural damping. Since - damping, 1y) mtter haw mall, is 
always present, e IUIUDE D > 0 throughout this paper. A I s  m % x % 
diagonal ratrix of squared structural frequencies 

" ' 7  7 Qi is the 3 x 

2 2  2 
*nq' A = diag (*,, w2, . . ( 9 )  

Assrning that I, Saxis attitude md rate 8ensots (e.g., star trackers a d  rate 
gyros) are placed at tht locatiomm of tht actuators, t k  meuured 3-axis 
attitude Jai and rate yri at actuator location 1 (ignoring noise) are 
given by: 

0 

= r x  y r i  i (11) 

denoting 
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0 T T  T T  
Ya [Yaln Y a y  - , Y,l 

Yr  = [ Y r l ,  T T  Yr2' B Y,l T T  

(14) 

(15) 

where u, ya, yr are 3m x 1 v e c t o r s ,  and I' is a 3m x (nq + 3) matrix. The 
c o n t r o l  l a w  f o r  the  co l loca ted  a t t i t u d e  c o n t r o l l e r  is given by: 

u =  c ucp + Ucr 

u C P  = S P Y a  

"cr = X r y r  

(16) 

(17) 

(18) 

where uc r e p r e s e n t s  t h e  c-nd input ,  ucp and uer represent  comand 
a t t i t u d e  and rate inputs ,  and Gp, G r  are 3a x 3m feedback g a i n  matrices. 

For CDVFB c o n t r o l l e r s ,  the rigid-body rates are removed from the feedback 
s i g n a l  by s u b t r a c t i n g  a t t i t u d e  rates at two locat ions.  Consequently, t h e  model 
used for damping enhancement has the form: 

(19) 
q + $ + A q = # u  'T 

where 7 c o n s i s t s  of appropr ia te  d i f f e r e n c e s  between the mode-slopes. The 
c o n t r o l  law is given by: 

u C = ' G r Y r  

where 

(20) 

The c o n t r o l  laws given above f o r  CA and CDVFB c o n t r o l l e r s  have very 
a t t r a c t i v e  robustness  proper t ies .  It was shown i n  [ l ] ,  [2 )  t h a t ,  i f  D > 0, 
Gp = GpT > 0, and G r  = GrT > 0, then t h e  closed-system is  
asymptot ica l ly  s t a b l e  (AS) .  The s t a b i l i t y  r e s u l t  holds r e g a r d l e s s  of the  
number of modes i n  the model, and regard less  of inaccuracy in the knowledge of 
t h e  parameters. I n  real l i f e ,  however, n o n l i n e a r i r i e s  and phase lags exist i n  
the sensors and a c t u a t o r s ,  which i n v a l i d a t e  these  robust s t a b i l i t y  proper t ies .  
The real problem then is t o  i n v e s t i g a t e  t h e  closed-loo s t a b i l i t y  for the case 
where the a c t u a l  input  is given by Eq. (11, where is a nonac t ic ipa t ive ,  
l i n e a r  or conl inear ,  time-varying or i n v a r i a n t  operator.  The s i t u a t i o n  is 
shown i n  Figure 1. Our approach is t o  make use of input-output s t a b i l i t y  
concepts and Lyapunov methods. We assume throughout the paper t h a t  the problem 
is well-posed, and t h a t  a unique s o l u t i o n  e x i s t s .  We s t a r t  by def in ing  the  
terminology and the concepts,  which are adopted from [4] .  
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MTHWTICAL PBELIHINARIES 

Consider the  linear vector  space h2 of real square-integrable 
n-vector funct ions of time t, defined as: 

where Rn is the l i nea r  space of ordered n-tuples of real numbers, and It+ 
denotes the in t e rva l  0 < t < -. The 6calar product is defined ae - 

For gEh2,  its norm is defined as 

Define the truncation operator PT such that 

g ( t )  0 L t - < T A 
B T W  = P # t )  = 

I o  t > T  

Def l ne  the extended space &e2: 

(25) 

Thus he2 Is a l inea r  vector spce of functions of t vhose truncations are 
square-integrable m (0.1) f o r  a l l  T < me For g l ,  g2 € b2, define 
the truncated Inner product 

Consider an operator $f :be2+be2. 2 fr oafd t o  be s t r i c t l y  
passive i f  there e x i s t  f i n i t e  constants  B and 6 > 0 such that 

(28)  2 < $?e, ioT 3 + a w z ,  v T 0, t f g  Lne 

f l  is passive i f  6 - 0 in (28). 
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ROBUSTNESS OF COLLOCATED ATTITUDE CONTROLLERS 

S t a b i l i t y  With Dynamlc Operator i n  t h e  Loop 

We consider  the case where the opera tor  is l i n e a r  and t ime-invariant  
Ue denote $! g 

g(z , ;  g) where zo is the  i n i t i a l  state vec tor  of x ,  and assume m = 1 
(LTI), and has a f ini te-dimensional  s ta te-space representa t ion .  
by 
f o r  s i m p l i c i t y  (i .e. , one 3-axis a c t u a t o r ) .  

Theorem 1. Suppose Is a non-ant ic ipat ive,  s t r i c t l y  s l a b l e ,  completely 
o b s e p a b l e ,  LTI opera tor  whose t r a n s f e r  matrix is H ( s )  = cI+H(a), where E > 0 
and H(s) is a proper,  minimum-phase, rational mtrix. Under these condi t ions,  
the closed-loop system given by Eqs. ( l ) ,  (2), ( l o ) ,  ( l l ) ,  (16)-(18) is 
asymptot ica l ly  s t a b l e  (AS) i f  

where * denotes  the  conjugate transpose.  

Proof - Define the funct ion - 

Since C > 0 ,  A > 0, V ( t )  
t ,  and G i n g  (11, ( l o ) ,  (11)b (1614181, 

0 f o r  a l l  t 2. 0 .  D i f f e r e n t i a t i n g  V with respect to  

.T T -1 v = -  2x Bx - 2ucr Gr x[zo; ucl 

where $? also depends on its i n i t i a l  state zoo Since k! is l i n e a r ,  

where h,(t) is the  unforced response of &? due 
Since & I s  s t r i c t l y  s t a b l e ,  Ihl,  is f i n i t e  f o r  any 

S u b s t i t u t i n g  (32) i n  (31)  and i n t e g r a t i n g  f r m  

to nonzero i n i t i a l  
f i n i t e  zo. 

0 t o  T, s i n c e  V(T) 2 

where 

(31) 

(32) 

state. 

0 ,  



C 8  
. 

I n  ( 3 4 ) .  8 denotes the  de r iva t ive  operator. (?is" is technical;? noncausal; 
however, t h i s  d i f f i c u l t y  can be overcome & defining the de r iva t ive  of 8 trun- 
ca t ion  at  T t o  be equal t o  tha t  of the  -truncated function.) Using Parseval ' s  
theorem, 

The matrix i n  the brackets is pos i t i ve  (from Eq. 29), and we have 

-1  2 
< U  cr' G r  R p ~ c p > T  2 IUcrIT 

which y i e lds  (from (33) 

-1 2 0 V ( 0 )  -2 <;, &>T -2 E l u  cr I T -2 <uCr, Gr ho>T 

(35) 

(36) 

D T D  
wherein we have used the f a c t  t ha t  x Bx - q Dq. Therefore, 

where I Ig denotes the spectral nom of a matrix,  and X, denotes the  
smal les t  eigenvalue. Eq. (37) can be wri t ten  as 

where c1 = d< and c2 = Ihol Therefore, l i m  ( t)  = 0 ,  and t& ucr 
i t )  - 0. Wnoting the rigid-body att1tudet* a = (os, Be, $ )T, t h i s  
i m p l i e s  t ha t  l i m  a ( t )  = 0.  
t-, 

Taking the  l i m i t  of the closed-loop equation as 
t- 

(39) 
- 
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where the overhead bar denotes the l i m i t  as t+=. From (391, flucp = 0 and 
Since fz  is observable and i t s  output tends t o  

zero, i ts s t a t e  vector  tends to  zero as t-, and the Bystem is asymptotically 
s tab le .  

= 0, which y i e lds  = 0. 

The followirig co ro l l a ry  e s s e n t i a l l y  states tha t  , for  d i q o n a l  Gp, Gr, 
and H, i t  is s u f f i c i e n t  t h a t  the phase lag of & j w )  is less than the phase lead 
introduced by the cont ro l le r .  

Corollary - 1. I .  Suppose Gp, G r  and H are diagonal and s a t i s f y  the 
assumptions of Theorem 1 . Then the  closed-loop system is g loba l ly  
asymptotically s t ab le  i f  

-1 WGri -tan - < Arg 
G -  

P i  

where Arg( ) denotes 

For the case 

-1 Oeri 

. P i  
{ai(j")} 180' -tan - fo r  a l l  real w G (40) 

condi t ion (40) becomes 

Gr i 
G -  - > l /ai  

P i  

Thus, fo r  t h e  case of f i r s t -o rde r  sensor/actuator  

(41) 

dynamics, the system is 
asymptotically s t ab le  i f  the r a t i o  of rate-to-proportional gain is at least 
equal t o  the magnitude of the ac tua tor  pole. 

I n  Theorem 1 and Corolla y 1.1, the  t r ans fe r  funct ion of ,@ was assumed t o  
be of the form: H ( s )  = tI + k s ) ,  where E > 0. That I s ,  a d i r e c t  transmission 
term, no matter how small, was present. Prom Theorem 1, the closed-loop system 
is AS fo r  any E. > 0. Therefore, the closed-loop eigenvalues are all in the 
open l e f t  half-plane (OLHP). Beca?lsc CIL~ cont inui ty ,  ii is obvious that, when 
E = 0, the eigenva1':nz rill not cross  the imaginary axio.  That is, the elgen- 
value# Z2ii be i n  the closed l e f t  half-plane (CLIIP). Theorem 2 given below 
considers the case when E - 0. It essent  l l y  ohowe tha t ,  i f  the closed-loop 
system with no elastic modes is AS with 

Theorem 2. Suppose 2 is a non-anticipative,  s t r i c t l y  s t ab le ,  completely 
observable,  LTI operator with r a t iona l  t r ans fe r  matrix H(a) which is proper and 
minimum-phase. If the closed-loop system for the r i z i d  body model alone ( i .e . ,  
Eqs. ' I ) ,  ( 2 ) ,  (10). ( I l ) ,  (16)-(18) with nq = 0) is AS, then the e n t i r e  
clos,  

# i n  the loop, then so is 
with e l a s t i c  modes, provided tha t  ( 2 9 )  is s a t i a f i e d  with H replacing 

Loop system (i .e. ,  with nq f 0) is AS provlded tha t  

H(jw) ("Gr - jG ) + ("GI + 

Proof . Considering the rigid-body 

P 

- 

* 
jGp) H ( j w )  2 0 fo r  a l l  r e a l  w ( 4 2 )  

equations,  

90 

( 4 3 )  



where uq = -G  a - GrG and uq = -Gp#q-Gr4i. 
function from 4 to a i a  given by P. Thur the .  t ranr fer  

# 

Since the clo6ed-loop rigid-body 8yrtem ir r e r i c t l y  s tab le  by u m a p t i o n ,  H(8) 
is r t r i c t l p  s tab le  a d  finite-gain, which irplier 

. . 

where y i r  the gain of H md i r  
proof of Theorem 1, = can a r r ive  
replaced by b. Since %r - Sr (a + 

. 
lu I < cllqlr  + c21hmIT cr T - ( 4 5 )  

where c1 and c2 are porit ive constantr. Completing squarer aa in (38) and 
noting tha t  is. f i n i t e ,  it can be proved that 4 4 1 ~  is bounded for a l l  

remainder of the proof is similar t o  that of Theorem 1. 
T > 0 ,  a d  tha t  lw(t)=O. Rm ( 4 5 ) ,  +r a l e 0  tend8 to zero a8 two T b  

Corollary - 2.2 With the same asrumptiom as i n  Theorem 2, i f  Gp, +, and E 
are diago 1, then the closed-loop spotem tr AS i f  (40)  i r  uat i r f ied  with E' 
replacing T. 

Prom Corollary 2.2, for the caie here Hii(r) $/(r + 3) with 
ki, ai > 0 ,  the clored-loop aaymptotic e t a b i l i t y  i o  aarured i f  Gpi 5 
aiGri for i = 1, 2, . . , 8 0  

The significance of the r e ru l t r  of t h i e  rectim i o  that the s t a b i l i t y  can 
be assured by -king the r a t i o  of the rate-to-proportional gain+ m f f i c l e n t l y  
large. One has to know only the renror/rctuatot ch.r.cterietice. .ad the 
knowledge of the plant parameters ir not required. Thim mmlt  i. c#pletely 
consistent with the rerult obtained in 151 for ein&e-input, single-output 
system, for mall Gp and +, wing a root-locur argument. 

the, loop. 

, 

Thl next rcctioa considerr the cam where ncral1neariti.r are prerent i n  

Stab i l i t y  in the Prerence of Nonlinearltiem 

Suppose Eq. (1) ir replaced by 

u - Muc) ( 4 6 )  

where I, i o  an t v e c t o r ,  one-to-oni, t i r - i n v a r i a n t  function, $: en", as 
f OllOW8: 
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For t h i s  case, the s t a b i l i t y  of the closed-loop system can be inves t iga ted  
using Lyapunov methods. A funct ion d(v): R1+R1 i s  said t o  belong to  the 
( 0 ,  -1 sec to r  if d(0) = 0 and vb(v) > 0 for v # 0. d is , s a id  t o  belong t o  the 
[ O s  -) sec to r  i f  d(0) - 0 and VMU) 0 f o r  v f 0 .  [Pig. 21 Many nonlineari-  
ties encountered i n  prac t ice ,  such as sa tura t ion ,  re lay ,  dead-tones, belong to 
the [ O s  -1 sec tor .  As i n  the previous sect ion,  we assum tha t  the problem is 
well-posed, and tha t  a unique so lu t ion  exists, and we consider the case with 
one 3-axis ac tua tor  for  s implici ty .  

Theorem 3. Consider the closed-loop system given by Eqs. (2 ) ,  ( l . O ) ,  ( l l ) ,  
(16)-(18), and (46), where Gp and G r  are pos i t i ve  d e f i n i t e  and diagonal, 
and each $i is i n  the (0, -1 sector and is s t r i c t l y  monotonic Increasing fo r  
i = 1, 3, . , m. Then the closed-loop system is global ly  asymptotically 
s tab le .  

Proof. Define - 
U 

-1 $i( v)dv 
i= 1 

denote the  i i t h  and i t h  elements of Gp and 
ucp respect ively.  This form is the  w e l l - l m o ~  "Lure'-type" Lyapunov 
functfon ( 6 ) .  From Eqs. (4) and (61, xTCx + :TAX - 0 anly when a - 0, 
q - q - 0. That is, t h i s  quant i ty  can be zero when a 0 0. However, when q = 
0 ,  Ucp* - G a, which is nonzero when a f 0. Thus the th i rd  tela 011 the 
r igh t  hand sfb, of (48) is pos i t ive  ( s ince  $1 is i n  the (0, -) sec tor )  f o r  a 
f 0. Therefore,  V is pos i t ive  de f in i t e .  From (481, using (21, (461, 
( 1614 18) , 

where G p i  and %pi 

Since u 'cpi = GpiC;:Ucri* we have from (49): 

Since $1 I s  s t r i c t l y  monotonic increasing,  

* T o  i -2q Dq (51) 
0 
V-0 only when GO and ucri = 0, which i m p l i e s  - 0. Considering t h e  
closed-loop equation, 
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which yields $i (ucpi) 0 and. q = 0. Since $i(J) = 0 only at v - 0, 
this implies that a - 0. Thus V 5 0 only at the origin, and the system is 
globally asymptotically stable. 

Thus the collocated controller is guaranteed to be globally asymptotically 
stable in the presence of monotonic increasing nonlinearities. This p .._ .. 
of the nonifnearities is also called "incremental passivity." As se' n t.1 

previous section, if the nonlinearities are replaced by dynamic operat 8 ,  mere 
incremental passivity is not sufficient for stability. 

ROBUSTNESS OF VELO$ITY FEEDBACK CONTROLLERS 

Stability with Dynamic Operator in the Loop 

Consider the case where a nonlinear dynamic operator p ( z o ;  v) is & is represented by the following state-space present in the loop. 
model : 

Suppose 

w(t) = p(z, t) (54) 

where v and w are 3m x 1 vectors which are the input and the output of . 
Define the operator 

We define 
finite zO. 

Theorem 4. Consider the system given by Eqs. ( l ) ,  (191, (20 )  (211, where the 
o erator 2 has the state-space representatlon given by ;L3), (54). Suppose 
G&R is passive and ,g i s  uniformly observable, finite-ga! n, internally 
stable, continous operator. Then the closed-loop system is globally 
asymptotically stable. 

to be internally stable If I f l  (to; 0) I is finite for any 

Proof. Defining - 
V(t) - qTAq + iTi ( 5 6 )  

V ( t )  > 0 for all t 0. Differentiating V(t) with reapect to t and uslng Eqs.  
(19),720), (21) and (11% 

= -2q .T Dq . - 2uT G-l R(z0; UCr) 
cr r ( 5 7 )  

Integrating from 0 to T , elnce V 0, 
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which y i e l d s  ( a f t e r  manipulation) 

where B is a cons t an t  (see Eq. 28).  

By using 2 procedure similar t o  t h a t  i n  the proof of Theorem 1, it can be 
proved t h a t  Wql is bounded, and t h a t  t he  system is g l o b a l l y  a sympto t l ca l ly  
s t a b l e .  

The following c o r o l l a r y  is an i m e d i a t e  consequence of Theorem 3. 

Coro l l a ry  4.1 I f  & is a s t r i c t l y  s t a b l e ,  completely observable ,  LTI o p e r a t o r  
with r a t i o n a l ,  mimimum-phasr: t r a n s f e r  matrix H( e),  the closed-loop system of 
Eqs. ( l ) ,  (191, (201, (21) is asympto t i ca l ly  s t a b l e  provided t h a t  

* 
t i ( j w ) G r  + GrH ( j w )  - > 0 f o r  a l l  real w ( 6 0 )  

Note t h a t  the above cond i t ion  is equ iva len t  to p a s s i v i t y  of Gr-',# . 
Coro l l a ry  4.2. Under the  assumptions as i n  Coro l l a ry  l .ly i f  G r  and 
are diagonal ,  t h e  closed-loop system of Eqs. (11, (191, (20),  (21) is 
asympto t i ca l ly  s t a b l e  i f  

Re[Hi(jw)] > 0 f o r  a l l  real w - 
As a resu l t  of Corol lary 4.2, CDVFB c o n t r o l l e r s  can tolerate e t a b l e  

f i r s t - o r d e r  dynamics i n  t h e   loo^. I f  R i ( 8 )  - e'JCi, we have 
He[Hi(jw)] > 0 for -90" bi - < 90'; t h e r e f o r e ,  CDVFL c o n t r o l l e r s  have 90' 
phase margi;: 

S t a b i l i t y  i n  t h e  Presence of N o n l i n e a r i t i e s  

Suppose the ope ra to r  f l  i n  (1) is replaced by an m-vector non l inea r  
func t ion  J, as i n  Eq. (471, except t h a t  J, I s  s l o w e d  t o  be time-varying. The 
following theorem g ives  e u f i i c i e n t  condi t ione f o r  g loba l  asymptotic s t a b i l i t y .  

Theorsm 5 .  Consider the closed-loop system given by Ego. ( i ) ,  (191, (201,  
(21) ,  where Gr is diagonal  and p o s i t i v e  d e f i n i t e ,  and each $i belongs t o  
t h e  [0, -) s e c t o r .  Then the  closed-loop system is g l o b a l l y  neymptotically 
s t a b l e .  
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Proof. S t a r t i n g  with V aa i n  Eq. (561, - 

Thus f < 0, and f f 0 only i f  6 E 0, which can happen (from t h e  equat ions of 
motion) only when q E 0. Therefore,  the system Is g l o b a l l y  asymptot ica l ly  
s t a b l e .  

The next theorem cons iders  a d p e c i s l  case when n o n l l n e a r i t i e a  and 
f i r s t - o r d e r  dynamics a r e  simultaneously present  In  the loop, as sho-a i n  Fig. 
3. 

Theorem 6. Consider t h e  closed-loop system iven by Eqs. (11, (191, (201, 
(21) ,  where Gr > 0 is diagonal.  Suppose $! - diag  ( #I ,  Rz, . . . . . where 

where each $1: R1+R1 is a t ime-invariant ,  d l f f e r e n t i a b l e  func t ion  
belonging to the (0, =) s e c t o r ,  and t h e r e  e x i s t s  a cans tan t  K < such t h a t  lJ l [ l  < K over the  i n t e r v a l  (--, O D ) .  Suppose qi is an LTI operator whose 
t r a n s f e r  func t ion  is: G i ( s !  = ai(1 + pis)- l ,  ai 3 0 ,  p i  > o f o r  i = 
1, 2 ,  . ,m. Then the  system is g l o b a l l y  asymptot ical ly  stable. 

- Proof. S t a r t i n g  with V 88 i n  Eq. (56) and proceeding a8 In the  proof of 
Theorem 4 .  we have 

when 
Using sean value t h e o r e l ,  Eq. ( 6 4 )  can be w r i t t e n  a8: 

is the  unforced response of 91 due t o  nonzero i n i t i a l  state. 

vhere û  lies i n  t h e  interval .  bounded by ( 0 ; U c r  i 1 
+ g,i. Noting t h a t  the  opera tor  $1 
s impl i fy ing ,  we have 

9 i i O ;  ucri33- 16 paroive IO], and 
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where 

3a 

1- 1 
'go' = 1 'ecil < - 

The remainder of the proof is similar to that of rheorem 4. 

CONCLUDIH; REMARKS 

Robustness properties were investigated for tsv types of controllers for 
large space structures, whlch use collocated sensors and actuators. The first 
type is the collocated attitude (CAI controller, whlch controls the rigid-body 
attitude and the elastic motion wiqg negative. definite feedback of measured- 
attitude and rate. The second type of controller is tkz collocated direct 
velocity feedback (CWW) controller for damping enhancement. Such controllers 
are known to provide closed-loop asymptotic stability regardless of the wrrber 
of modes and parameter values, provided that the actuators and renoore are 
perfect. This robust stability property was extended further in this paper by 
proving that the global asymptotic stability le prcaerved eveo vhcn sensor#/ 
actuators are not perfect. Tbe CA controller preserves global asymptotic 
stabljty when the sensorejactuatore are represented by (1) linear, tiw- 
invariant dynamics which satisfy attain sirple phase conditions, or (1%) 
time-invariant, monotonic increasirg nonlinearities belonging to the ( 0 ,  a) 
Rector. The QWPB controller preserves global asymptotic stability mder much 
weaker conditions. In particiiar, CWW controllers have 90" phaw margin and 
are tolerant to time-varying nonlinearities in the [O, 0 )  sector. There global 
asymptotic stability results are valid regardless of the number of modes in t;ot 
model and regardless of parater valuer. Therefore. it can be concluded that 
these controllers offer viable methods for robust attitude control or damping 
enhancement, eopecially when the parameters are not accurately known. An 
important application of the collocated attitude controller would be during 
deployeent or assembly of a large apace structure, then the dpnaric character- 
istics are changing, and during initial operating phase, when tb dynamic 
characteristfcs are not known accurately. A robust collocated contr9ller can 
provide stable interim control which caa perhapr be replaced later by 'a 
high-periormance controller designed wing parameterr estimated OIL orbit. 
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Figure 1. - Collocated Contoller 
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Figure 2.- Nonlinearity belonging to the IO,-) sector 

Figure 3.- Linear dynemi-a and nonlinearltiee slmltaneoualy In the loops 
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Important progress in research and application of Adaptive Control 
Systems has been achieved in the last ten.years. 
are currently used in applications will be reviewed. Theoretical aspects 
currently under iavestigation and which are related to the application of 
adaptive control techniques in various fields will be briefly discussed. 
Applications in various areas will be briefly reviewed. 
techniques for vibrations monitoring and active vibration control will 
be em:hasized. 

The techniques which 

The use of adaptive 

I. ZNTBODUCTION 

The use of adaptive control techniques is motivated by the need of 
automatically adjusting the parameters of the controller when plant para- 
meters and disturbances are unlrnavn or change with the, in order to achieve 
(or to maintain) a certain index of performance for the controlled system. 
While cdis problem can be reformulated as a nonlinear stochastic control 
problem (the unknown parameters are considered as auxiliary states) the 
resulting solutions are extremely coqlicated. Therefore, in order to obtain 
something useful, it .La necessary to Pake'approxiratioae. Adaptive control 
techniques can be viewed as approxlmatlons for nonlinear Stochastic .control 
problems. 
Regulators (STR) can be considered as two approximations among other possible 
approxhtlans. 
been fctr~nsively studied and they are well understood. 
have bt.n proven to be usable in practice and aa Important number of bucce8s- 
ful Lpplications have been reported. Hovcver, some important theoretical 
r tblems still need further investigation and w r e  experience utiliting 
these techniques in practice should be gained. 

Model Reference Adaptive Controllers (MMC) and Self-Tuning 

These two approaches to adaptive cotrroi probleur have 
Theee approaches 

As mentioned earlier the naAC and STR approachee can be considered 
as possible approximations for the solutions of some nonlinear stochastic 
control problems. However, when maklng approximations, some hypothesi8 
should ',e coaeidered which can justify these approxlmations. The basic 
hypc%hesis for MRAC and S?R I s  of an algebraic nature: for any possible 
vcr'kues of the plant (and disturbance) parameters, there exists a linear 

has the pre-specified characteristics. 
.ontroller with a fired complexity such that the plant plus the Controller 

The adaptive control loop 
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w i l l  only search f o r  the  values of the  tuned parameters of a cont ro l le r  
whose s t ruc tu re  has been f ixed using a standard control  design technique. 

The HRAC and S'J'R techniques have been i n i t i a l l y  developed independently. 
Subsequently, connections between these two techniques have been invesgigated 
and emphasized. 
(1983). For ce r t a in  c lasses  of probleme these two approaches are equivalent. 
It is Important t o  note tha t  the  development of these two adaptive control  
t e c a i q u e s  is la rge ly  based on the  deep understanding of ce r t a in  types of 
l i nea r  a lgebraic  control  design techniques and of an appropriate interpre- 
t a t ion  of the  cont ro l le r  design s t ra tegy.  

See Egardt (19801, Landau (1981), Landau (1982), Astrom 

A br ie f  review of the  underlying concepts and configurations used f o r  
HRAC and STR is given i n  Section 11. The l inear  tracking and regulat ion 
problem is reviewed la Section XI1 and t h i s  allows the  de f in i t i on  of the  
s t ruc tu re  of the  control ler .  The s t ruc tures  of various adaptive control  
schemes are presented i n  Section IV. 
are discussed in Section V. 
research trends R r e  indicated in Section VII. 

The parameter adaptation algorithms 
Applications..are l i s t e d  in Section V I .  Current 

11. MIDEL REFERENCE ADAPTIVE CONTBOUERS AND SELF-TUNING REGULATORS 
- BASIC PRINCIPLES. 
Figure 2.1 I l l u s t r a t e s  the  basic  philosophy f o r  designing a l i n e a r  

control ler .  
istics of a dynamic system which is a "realization" of the  desired input- 
output behavior of the  closed loop control  system. 
designed such that the closed loop control  system is characterized by the  
same parameters as those of the  "desired" dynamle system. 

The desired performance is specified i n  terms of the  character- 

The cont ro l le r  is 

Since desired performance correspon6s in f a c t  t o  the  output of the  
"desired" dynamic system which is pre-specif ied , the  design problem can 
be recast as in Fig. 2.2. 
such tha t  the e r ro r  between the  output of the  p lan t  and the  output of the  
reference model (the dynamic system which has the  desired charac te r i s t ics )  
i e  ident ica l ly  nu l l  f o r  i den t i ca l  i n i t i a l  conditione and such that an 
eventual i n i t i a l  e r ror  w i l l  vanish with a certain dynamics. 

The object ive is now t o  design a cont ro l le r  

These two In te rpre ta t loas  of the  l i nea r  control design i n  the case 

Figure 2.3 is aa extension of the  
The difference 

of a plant  with unknown or varying parameters lead t o  two adaptive control 
schemes, shown i n  Pigs. 2.3 and 2.4. 
scheme given i n  Pig. 2.2 and is cul led (expl ic i t )  W C .  
between the  output of the plant and the  output of the  reference model is 
a measure of the  difference between the  r e a l  performance and the  desired 
one. 
adaptation algorithm) t o  d i r ec t ly  adjust  the  parameters of the  controller. 
This is  a "direct" adaptive control scheme. 

This information is used through an "adaptation:rnechaniem" (parameter 

Figure 2.3 is an extension of the  scheme considered in Fig. 2.1 i n  
the sense tha t  a su i tab le  cont ro l le r  can be designed i f  a plant  model 
is estimated on-line based on the  current input-output data  available.  
This scheme is cal led STR and i t  is inspired by the  separation theorem 
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A. Minimum Phase Plants  

Consider the S.I.S.O. d i sc re t e  linear time invariant  plant  described 
by : 

a) determinis t ic  environment: 

b) s tochas t ic  environment: 

A(q-l)y(k+d) = B(q-l)u(k) + C(q")u(k+d) 

where: 

-n A(s') = 1 + a 1 q-l + ... + anq . .  

B(q-l) = bo+b1q-' + . . . + bmq-m bo # 0 

-1 -1 -n C(q 1- = 1 + clq + ... + c*q 

CR(q-') y(k+l) = 0 

where : 

(3.3) 

(3.4) 

is an asymptotically s t ab le  polynomial. 

In  order t o  design the cont ro l le r r  w e  w i l l  consider two s t r a t eg ie s ,  
one using an exp l i c i t  reference model as par t  of the  control  system and 
the other using a 1-seep ahead predictor of the  plant  output which together 
with the  control ler  w i l l  form an impl ic i t  reference model. 

Strategy 1: Explici t  Reference Model 

One considers an e x p l i c i t  reference model given by: 

M where y (k) is the  output of the  explicit  reference model. 
objective is: 

The design 

104 



is the  plant  model error. 
regulation object ive specif ied by Eq. (3.4) ( for  uM(k) f 0 ,  E(k) - y(k)). 
Equation (3.1) with d = 1 can be rewri t ten as: 

It is obvious that Eq. (3.7) Includes the  

where 

* -1 -1 
B (9 1 B(q 1 - bo 

and Eq. (3.7) becomes: 

(3.11) 

* '-1 
CR(q-')e(k+l) = R(q")y(k) + bou(k) + B (q )u(k) - %(q-')y,(k+l) = 0 (3.12) 

which y ie lds  the  desired control  

Introducing the notation: 

T O,(k) = [u(k-1) . . . u(k-m), y(k) . . . y(k-n+l)l 

eo = [bl ... bm , rl ... T 

Equation (3.15) can be writ ten: 

or  in an equivalent form: 

-1 M 
CR(q )y  (k+U = e T 4 W  

where : 

eT - [b  eT] 0 0  

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

The resu l t ing  control scheme is given i n  Fig. 3.1. 
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Strategy 2: Implici t  Reference Model. 

This s t ra tegy  is d i r ec t ly  inspired by the  separation theorem: one 
f i r s t  designs an appropriate predictor  f o r  the  plant  output,  and then a 
control  w i l l  be computed such that the  output of the  predictor  behaves as 
the  desired output i n  tracking. 

F i r s t  s tep:  
the  1-s tep  ahead predict ion e r ro r  E(k+l) is defined by: 

(predictor design). F e  predictor w i l l  be designed such tha t  

;(k+l) y(k+l) - $(k+l) (3.20) 

where $(k+l) is the  predictor output and w i l l  vanish according to:  

C,(q-') E(kt1) - 0 ; k - > 0 (3.21) 

Using Eq. (3.91, one obtains from Eq. (3.21) t ha t  the  1-s tep ahead predictor 
is characterized by: 

(3.22) -1 A * -1 T cR(q )y(k+l) - bou(k) + R(q-l)y(k) + b (q )u(k) - 6 O W  

* -1 where R(q"). B (q 
and (3.19) respectively.  

), 8, O(k) a re  given by Eqs. (3.101, (3.11), (3.181, 

Seconi step: 
tha t  y(k+l) - p ( k + l ) ;  where F ( k + l )  is the  desired output given by Ey. (3.6). 
One f i na l ly  obtains: 

(computation of the  control) .  The control is  computed such 

and the control is given by Eq. (3.17) as expected. 

Because of the  output of the predictor is equal t o  the output of the  
exp l i c i t  reference model, the predictor plus  the  control w i l l  form an 
"implicit  reference model." 

B. Tracking and Regulation i n  Stochastic Environment 

We w i l l  examine f i r s t  the behavior of the  cont ro l le r  designed in the  
previous sect ion when the  plant  is subject t o  a s tochast ic  disturbance of 
the  type contddered i n  Eq. (3.2). For d - 1 Eq. (3,2).becomes: 

A(q") y(k+l) - B(q-l) u(k) + C(q'l) w(k+l) (3.24) 

Using the  control given i n  Eq. (3.13) one obtains: 

CR(q-l)  y(k+l) - CR(q-') yM(k+l) + C(q-') w(k+l) (3.25) 
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Neglecting the effect of the deterministic disturbance (which vanisher 
with the dynamics defined by CR(q-1)) one can re-write Eq. (3,251 as: 

y(k+l) I yM(k+l) + cO w(k+l) 
c,(q-l) 

(3.26) 

Equation (3.26) shows the presence of two reference models: a 
deterministic one for tracking by D(q-l) whose input is the reference 

signal u (k) and a stochastic one for regulation defined by 

input is the white noise sequence o(k+l). 

CT(q-l) 
M 

In general the objective of the design in a stochastic environment is 
to obtain a minimrim variance tracking and regulation, 1.e.: 

From Eq. (3.26) it results straightforwardly that the Objective of 
Eq. (3.27) le achieved If one chooses: 

which leads to: 

For the case d > 1, the control can no longer be computed directly 
using the strategies given above since thio will lead to a non-caural 
controller (future values of the output and input are involved for the 
computation of the control at the instant k). 
by using a polynomial identify which allows us always to express the output 
y(k+d) in terms only of y(k); y(k-1) ... and u(k), u(k-1) ... 

This problem can be avoided 

. .  
Consider the following polynomial identity: 

C,(q-') - A(q-') S(q-') + q'dR(q'l) (3 .30 )  

-1 which has a unique solu' 'on for the polynomials S(q-') and R(q 
deg S(q'l) - d-1 where ) for 
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-1 -d+l S(q-3  = 1 + S1q ... sd,lq 

R(q-') = r1+r2q -1 ... rnq -u+l 

Using the ident i ty  of Eq. (3.30) i n  Eq. (3.9) f o r  d > 1 one obtains: 

Equation (3.7) fo r  d > 1 becomes: 

which yields  the  desired control  

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36; 

The control has he same str c ture  as f o r  the  case d = 1 except that the  
polynomials R(q- E ) and B (q -Y ) are d i f fe ren t ,  as w e l l  as 8, and Oo(k): 

Note tha t  the s t ra tegy presented above achieves a poles- 
zeros placement. 

C. Non-minimum Phase Plants  
-1 In t h i s  case one can no longer aa8uriG tha t  B ( t  ) is asymptotically 

The basic control s t ra tegy (algebraic approach) is  
stable and therefore the zero8 of the  plant t ransfer  function can no 
longer be cancelled. 
the poles placement technique without zeros cancell lag.  
fo r  the  design of the cont ro l le r  is the  Bezout ident i ty:  

The balric r e l a t ion  
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and the  con t ro l l e r  has t h e  s t ruc tu re :  

1 if B(1) = 0 

B ( 1 )  elsewhere 

For a survey of t he  cont ro l  s t ra teg,?s  f o r  non-minimum phase p l an t s ,  see 
Landau, M'Saad, Ortega ( l r q 3 ) .  

IV. STRUCTURES OF ADAPTIVE CONTROL CYSTEMS 

I n  adapt ive con t ro l  scheues t h e  f ixed  con t ro l l e r  designed €or the  case 
of knobrr parameters is replaced by an ad jus tab le  con t ro l l e r  having the  same 

parameter vector  which f o r  t h e  case of t h e d e s i g n  considered f o r  minimm 
phPse p l a n t s  i s  given by: 

- ructure ,  i.e., t h e  f ixed  parameter vector  w i l l  be replaced by an adjustabl-e 

and the correspondiag cont ro l  l a w  w i l l  be given ( e i the r  in de te imin i s t i c  or 
s tochas t i c  environment) by: 

or  : 

' 4 . 3 )  

See Fig. 4.la. 

Note t h a t  i n  the  case of schemes using an im?licit (predict ion)  
reference model (STR) t he  p lan t  pred ic tor  w i l l  be replaced by an adapt ive 
predictor  gcverned by: 

and the  cont ro l  w i l l  be computed according t o  t h e  e t ra tegy  i n  the  l i n e a r  
case with known parametere which w i l l  lead t o  Eq. (4.3). See Fig. 4.lb. 

V. PARAIGTER ADAPTATION ALGORITHMS 

Various approaches have been considered f o r  the development of parameter 
adaptat ion algorithms (PAA). 
given by : 

A f a i r l y  general  s t r u c t u r e  f o r  t he  PA4 is 



Figure 4.la 

Y (k) 

Figure 4. I ’ 
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(5.2) 

Using the  matrix inversion le-: 

A 

where eik) is the  adjustable  parameter vector,  F(k) is the  matrix adaptation 
gain, +(k) is t he  measurement o r  the  observation vector and uo(ksl) ard 
v(k+l) a re  the  "a pr ior i"  and the  "a poster ior i"  adaptation e r r o r s  respsct-  
t ively.  The_"a pr ior i"  adaptation e r ro r  is a measurable quantity which 
depends on e ( i )  up t o  the  in s t an t  k, and the  "a poster ior i"  adaptation e r r o r  
which enter: i n  the  adaptation algorithm is not d i r ec t ly  measurable (it 
depends on e(k+l)) but can be expressed in  term of the  "a pr ior i"  adaptation 
e r ro r  as indicated in eq. (5.2). 

Different choices f o r  Al(k) and Xz(k) are possible leading t o  d i f f e ren t  
types of var ia t ions  of the  adaptation gains. 
adaptive control systems i n  various s i t ua t ions  depend upon the choices of 
these two parameters. 

The performances of the 

For d e t a i l s  see Landau, Lotano (1981) and Landau (1983). 

VI. APPLICA'i' iONS 

There are already a s igni f icant  number of appl icat ions of adaptive 
control systems as w e l l  as a few m r c i a l  products. 
A s t r b  (1983). Landau (1981), Landau, Tomhuka, Auelander (1983), Narendra, 
Mcnopoly (1980). Unbehauen (1980). 

For refereaces,  see 

The adaptive control schemes can be used in three modes of operation: 

1) Auto-tuning of a l i nea r  control ler  in the  case of p lan ts  with unknown 
but constant parameters. 

2) Building a gain schedule fo r  unknown plants  with dynamics depending 
on operating points. 

3) Adapting in real-time the  control ler  f o r  p lan ts  with unknown and time- 
varying parame t ers . 
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An important remark t o  be made is that adaptive control algorithms 
cannot be used in p actice without a priori analysis of the control problem 
corresponding to each tentative application. This analysis should give 
answers to two categories of questions regarding (a) the need of adaptive 
control and (b) specific design requirements. 

The main areas of applications are: 

- Grinding 
- Drying furnaces 
- Cement mills 
- Chemical reactors - Distillatim columns 
- Diesel and explosion engines - Keating and ventilation - Paper machines 
-. Power systems 
- Electrical drives - Autopilots for ships - Robotics 
- Heat exchangers 
- pH-control 
- Actlve vibration control 

A n  adaptive active vibrations control is described in Mote, Rahimi 
(1983). It uses tirst a recursive parameter estlmation technique for 
estimating in real-time the parametric model of the composite vibration 
signal for circular plates (the vibrations frequencies). Then the parameters 
of the transfer from control heat to vibration frequency are estimated on- 
line and used for computing in real time the controller parameters. 

VII. THEORY 

The most complete theory is available! today for the adaptive control 
of minimum phase plants achieving a poles-zeros placerer\t. For this type 
of plant, tracking and regulation vith independent objectives can be 
achieved both in deterministic and stochastic environments. Both MRAC 
and STR approaches lead in this case to "direct" adaptive control scheaes. 

The besic assumptions for the design of adaptive control systems far 
minimum-phase plants in deterministic and stochastic environments are 
m r i z e d  next. 

- Exact knowledge oi the plant delay (d). - Knowledge of an upper bound for the degree of A(q-') which is the 
denominator of the plant transfer function. - The zeros of the plant transfer function must lie within the unit circle. - A lower botnd of the magnitude of the l eading coefficient of the plant 
transfer function should be known. - The sign of the leading coefficient of the numerator plant transfer 
function is useful to be known (in order to avoid large adaptation 
transients). - The stochastic disturbances are modeled by ARMA processes. - Asymptotic type convergence is considered. 
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However, ir prac t ice  some  of these assumptions caanot be reasonably 
s a t i s f i e d ,  i n  par t icu lar ,  the  need for knowing an upp:r bound f o r  the  
denoainator degree (which in many cases simply does nc.t exist) and the  
requirement that the  disturbance is of AWA type. 

The use of reduced order models in adaptive control design is one of 
the main research topics  today, and in te res t ing  r e s u l t s  have been obrainec 
leading t o  improved design techniques. See Ioannou (1983), Ortega, Idnusu 
(1983), Kosut (1983). 

The case of disturbances which cannot be modeled by ARl4A ;--ocesses has 
a l so  been considered. 
(1982). 

See, f o r  example, Samson (1983). Peterson. Narendra 

Another aspect is the  extension of the  adaptive control  design for 
the  mul t i  inputs  - a u l t i  outputs systems. 
extension raises important parameterization problems f o r  liIwD plants .  
survey of the  various designs avai lable  can be found i n  Dion, Dugard (1983). 
More a p r i o r i  knowledge on the p lan t  s t ruc tu re  than ia the  SLSO case is 
required, and the  research is directed towards the  development of adaptive 
control schemes requiring less a p r i o r i  s t ruc tu ra l  information. 
form of HIM0 t ransfer  matrix plays a key r o l e  in understanding the  multi- 
var iable  case. 

Except f o r  tr ivial  cases, the  
A 

The Eerrite 

The case of adaptive control  of non-minlmum phase p l an t s  Is more 
complicated both from the  point  of view of the  c a p l e x f t y  of the  adaptive 
control schemes and of the  analysis. 
techniques f o r  t h i s  type of plant  is given In Landau, M'Saad. Ortega (1983). 
Xost of the  schemes are of *'indirect" type, and the  major question to  be 
answered i n  order to show the  convergence of the  system is whether the  
estinaeed plant  model converges t w a r d s  the  model with sa t i s f ac to ry  proper- 
ties (s tab i l izab le) .  Global convergence r e s u l t s  have been obtained, but 
v i t h  the requirement of using an addi t ional  pers i s ten t  exc i ta t ion  signal, 
see Goodwin. Teoh, Innis (1982). The robustness of the  adoptive control  
designs f o r  non-minimm phase p l a n t s  with respect to model reduction and 
ill-modeled disturbances has also been studied, see, f o r  example, 
Praly (1983). 

A survey of the  adaptive control 
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A B S T R A C T  

A t e c h n i q u e  i s  p r e s e n t e d  f o r  o b t a i n i n g  a c o n t r o l  l a w  t o  
r e g u l a t e  t h e  modal d y n a m i c s  a n d  i d e n t i f y  t h e  modal p a r a m e t e r s  
o f  a f l e x i b l e  s t r u c t u r e .  The m e t h o d  i s  b a s e d  o n  u s i n g  a 
min-max p e r f o r m a n c e  i n d e x  t o  d e r i v e  a c o n t r o l  l a w  w h i c h  may 
be c o n s i d e r e d  t o  be a b e s t  c o m p r o m i s e  b e t w e e n  o p t i m u m  
o n e - s t e p  c o n t r o l  a n d  i d e n t i f i c a t i o n  i n p u t s .  F e a t u r e s  o f  t h e  
a p p r o a c h  a r e  d e m o n s t r a t e d  b y  a c o m p u t e r  s i m u l a t i o n  o f  t h e  
c o n t r o l l e d  modal  r e s p o n s e  o f  a f l e x i b l e  beam'. 

I. INTRODUCTION 

A c l a s s  o f  i n d i r e c t  a d a p t i v e  c o n t r o l  s y s t e m s  p r o p o s e d  f o r  t h e  
c o n t r o l  o f  l a r g e  s p a c e  s t r u c t u r e s  [ l ]  i s  b a s e d  on  a modal 
d e c o m p o s i t i o n  o f  t h e  s y s t e m  d y n a m i c s  and may i n c o r p o r a t e  o n e  
o r  more  o n - l i n e  t e s t i n g  schemes [ 2 ]  t o  d e t e r m i n e  when 
s u c c e s s f u l  p a r a m e t e r  i d e n t i f i c a t i o n  h a s  been a c h i e v e .  The 
c o n t r o l  s t r a t e g y  u s e d  i n  c a l c u l a t i n g  t h e  a c t u a t o r  i n p u t s  m u s t  
a c h i e v e  a d e q u a t e  r e g u l a t i o n  o r  t r a c k i n g  p e r f o r m a n c e  and, a t  
t h e  same t i m e ,  prov;de i n p u t s  t o  a l l o w  a d e q u a t e  p a r a m e t e r  
i d e n t i f i c a t i o n .  A on:ro1 s y s t e m  d e s i g n e r  i s  t h u s  f a c e d  w i t h  
t h e  p r o b l e m  o f  ' P v i s i n g  a c o n t r o l  s t r a t e g y  t o  e n s u r e  
a c c e p t a b l e  s y s t e m  p e r f b r m a n c e  e v e n  when o n - l i n e  p a r a m e t e r  
i d e n t i f i a b i l i t y  t e s t s  hasre f a i l e d  b e c a u s e  t h e  s y s t e m  

* T h i s  work  was s u p p o r t e d  b y  N A S A  u n d e r  G r a n t  NAG-1-6. 
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c o n f i g u r a t i o n  has changed o r  t h e  env i ronmen t  i n  w h i c h  t h e  
system o p e r a t e s  has changed. 

I n  t h i s  paper  we f o r m u l a t e  and examine t h e  pe r fo rmance  o f  a 
n o n l i n e a r  d u a l - a d a p t i v e  c o n t r o l  scheme i n  which a 
sampled-data c o n t r o l l e r  i s  d e s i g n e d  t o  s e l e c t  a b e s t  
compromise between an i n p u t  s i g n a l  t h a t  i s  optimum f o r  
mean-square system r e g u l a t i o n  and an i n p u t  s i g n a l  t h a t  i s  
optimum f o r  pa ramete r  i d e n t i f i c a t i o n .  Dual  c o n t r o l  t h e o r y ,  
o r i g i n a l l y  f o r m u l a t e d  by Feldbaum C3,41, has been s t u d i e d  i n  
[ 5 - 7 1  and i n  t h e  r e f e r e n c e s  c i t e d  t h e r e i n .  A key c o n c e p t  
i n t r o d u c e d  by Feldbaum i s  t h e  d u a l  c o n t r o l  s t r a t e g y  based on 
a pe r fo rmance  i n d e x  t h a t  t a k e s  i n t o  a c c o u n t  t h e  f a c t  t h a t  
f u t u r e  o b s e r v a t i o n s  on t h e  p r o c e s s  w i l l  be made. A 
c o n t r o l l e r  m a v  be a b l e  t o  "probe"  t h e  system f o r  s t a t e  and 
pa ramete r  e s t i m a t i o n  improvement, wh ich  t h e n  may improve  
f u t u r e  r e g u l a t i o n  and t r a c k i n g  per formance.  I n  many 
s i ' t u a t i o n s  where t h e  d u a l  n a t u r e  o f  s t o c h a s t i c  c o n t r o l  i s  n o t  
t a k e n  i n t o  a c c o u n t  t h e  c o n t r o l l e r  becomes " c a u t i o u s "  C5,61 
and tends  t o  " t u r n - o f f " .  T h i s  u n d e s i r a b l e  phenomenon i s  
a v o i d e d  by t h e  approach d e s c r i b e d  below. 

11. FORMULATION OF AN A D A P T I V E  PERFORMANCE I N D E X  

The d i s c r e t e - t i m e  dynamics f o r  each mGde i s  assumed t o  be 
d e s c r i b e d  by t h e  ARMA model 

y (  t ) + a l y (  t - l ) + a e y (  t - 2 )  = b l u (  t - l ) + b ~ u (  t - 2 ) + e (  t) 

where y (  t )  denotes modal d i sp lacemen t ,  u( t) denotes modal 
f o r c e ,  and e ( t )  i s  a sequence o f  independent ,  
e q u a l l y - d i s t r i b u t e d ,  normal ( 0 , d )  random v a r i a b l e s .  It i s  
assumed t h a t  e ( t )  i s  i ndependen t  o f  y(t-l),y(:-2),..., 
u ( t - l ) , u ( t - 2 ) , . . .  and t h a t  t h e  pa ramete rs  a ~ , a 2 , b ~ , b 2  
a r e  unknown c o n s t a n t s .  I f  we l e t  Y t  deno te  t h e  i n f o r m a t i o n  
a v a i l a b l e  t o  t h e  c o n t r o l l e r  a t  t i m e  t, 

I Y t  = y ( t )  ,y( t-1) ,. . ., u ( t - 1 )  ,u( t -2) , .  .. { 
x ( t )  denote t h e  modal pa ramete r  v e c t o r  and e ( t )  denote,a 
modal measurement v e c t o r ,  

x T ( t )  = (a1 s a 2  sblsb2) ;  

e T ( t )  f ( - y ( t - l ) , - y ( t - 2 )  , u ( t - l ) , u ( t - e )  

where ( . ) f  denotes v e c t o r  o r  m a t r i x  t ranspose ,  t h e n  ( 1 )  
may be r e w r i t t e n  as 

y (  t )  = e l (  t ) x (  t ) * e (  t )  

( 3 )  

( 4 )  
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where t h e  c o n s t a n t  pa ramete r  "dynamics' s a t i s f i e s  

x ( t + l )  = x ( t )  

It can t h a n  be shown, f o l l o w i n g  t h e  a n a l y s i s  o f  L81, t h a t  t h e  
c o n d i t i o n a l  d i s t r i b u t i o n  o f  x ( t + 2 )  g i v e n  Yt+ 
w i t h  mean x ( t + 2 )  and c o v a r i a n c e  m a t r i x  P ( t + 2  t where x ( t )  and 
P ( t )  s a t i s f i e s  t h e  d i f f e r e n c e  e q u a t i o n s  

i s  normal  

( 5 )  

Furthermore,  t h e  c o n t r o l  l a w  t h a t  m i n i m i z e s  t h e  r e g u l a t i o n  
c r i  t e r i  on 

V,(u(t)) = E { y * ( t + l ) I Y t )  ( 9 )  

i s  g i v e n  by 

( 1 0 )  xi ( t+ 1) x3 ( t+ 1 1 +P3i ( t+l 1 ei ( t+ l  1 

x i (  t+ 1 +P 33 ( t+ 1 1 
u ( t )  = - 

T where r )  denotes t h e  sum o v e r  i I 1 t o  4 w i t h  t h e  v a l u e  3 
excluded. 

To p r o v i d e  bounded modal i n  u t s  t h a t  improve pa ramete r  

a m p l i t u d e  w i l l  n o t  become e x c e s s i v e l y  l a r g e ,  t h e  c o n t r o l l e r  i s  
des igned  t o  o p t i m i z e ,  a t  each samp l ing  i n s t a n t  t, t h e  f o l l o w i n g  
per formance c r i t e r i o n :  

i d e n t i f i c a t i o n  accu racy  whi ! e g u a r a n t e e i n g  t h a t  t h e  modal 

s u b j e c t  t o  t h e  c o n s t r a i n t s  

where 
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0 

V c  denotes an a c c e p t a b l e  o r  d e s i r e d  l e v e l  o f  r e g u l a t i o n  c o s t .  
V I ( u ( t ) )  denotes and i d e n t i f i c a t i o n  c o s t  f u n c t i o n  o f  u ( t ) ,  

V I ( u ( t ) )  = t r a c e  [ ~ ( t + 2 ; j  ( 1 4 )  

denotes ar,d a c c e p t a b l e  o r  d e s i r e d  l e v e l  o f  i d e n t i f i c a t i o n  
0 

VI 
c o s t .  The m a x i m i z a t i o n  i n d i c a t e d  i n  (11) y i e l d s  a f u n c t i o n  
V ( u ( t ) )  which,  a l t h o u g h  n o t  convex, i s  i n t e r p r e t e d  as 
s p e c i f y i n g ,  f o r  each a d m i s s i b l e  u ( t ) ,  t h e  most c o s t l y  l i n e a r  
c o m b i n a t i o n  o f  r e l a t i v e  r e  u l a t i o n  and r e l a t i v e  i d e n t i f i c a t i o n  
c o s t .  b l i n i m i z a t i o n  o f  V(u3 t h u s  y i e l d s  t h e  modal i n p u t  t h a t  
m i n i m i z e s  t h i s  most  c o s t l y  c o m b i n a t i o n  of  r e l a t i v e  
i d e n t i f i c a t i o n  and r e g u l a t i o n  per formance.  

111. S I M U L A T I O N  RESULTS 

S i n c e  V c ( u ( t ) )  and t r a c e  P ( t + 2 )  a r e  r e l a t i v e l y  s i m p l e  
f u n c t i o n s  o f  u ( t )  t h e  n u m e r i c a l  s o l u t i o n  o f  t h e  one-s tep  
o p t i m i z a t i o n  p rob lem (11 ) - (13 )  a t  each samp l ing  t i m e  i s  q u i t e  
f e a s i b l e .  R e s u l t s  o f  s i m u l a t i o n  s t u d i e s  d e s c r i b e d  below 
i l l u s t r a t e  an i n t e r e s t i n g  f e a t u r e  o f  t h i s  a proach: s i n c e  t h e  
pa ramete rs  i n v o l v e d  i n  t h e  e v a l u a t i o n  o f  V c  P u ( t ) )  and 
V I ( u ( t ) )  depend on system measurements, t h e  optimum 
d i s t r i b u t i o n  o f  r e l a t i v e  c o s t ,  A ( u )  depends on o n - l i n e  
measurement d a t a  and hence, a t  each samp l ing  i n s t a n t ,  t h e  
w e i g h t i n g  between i d e n t i f i c a t i o n  and r e g u l a t i o n  w i l l  change 
depending on t h e  o n - l i n e  system performance. T h i s  i s  i n  
c o n t r a s t  t o C 9 1  i n  wh ich  a f i x e d  w e i g h t i n g  between a b s o l u t e  
c o n t r o l  and i d e n t i f i c a t i o n  c o s t  Is used a t  each sample t i m e .  

I n  t h e  s i m u l a t i o n  s t u d y  we compare t h e  performance o f  t h r e e  
c on t r o l  sy stems : 

a )  A c o n s t r a i n e d  a d a p t i v e  c o n t r o l l e r  t h a t  m i n i m i z e s  (9) 
s u b j e c t  t o  t h e  c o n t r o l  magni tude c o n s t r a i n t .  

b )  An optimum i d e n t i f i c a t i o n  c o n t r o l l e r  t h a t  minirbi i res 
( 1 4 )  s u b j e c t  t o  t h e  c o n t r o l  magni tude c o n s t r a i n t .  

c )  The one-s tep  d u a l - a d a p t i v e  c o n t r o l l e r  based on 
( 1 1 ) - ( 1 3 ) .  

I n  F i g u r e s  1 -3  we p r e s e n t  s i m u l a t e d  modal response d a t a  f o r  t h e  
f i r s t  f l e x i b l e  mode o f  t h e  Lang ley  beam e x p e r i m e n t  d e s c r i b e d  i n  
[lo] where we assume h e r e  t h a t  a s i n g l e  a c t u a t o r  i s  used. The 
accumulated o n - l i n e  r e g u l a t i o n  c o s t ,  VT, shown I n  F i g u r e  1 i s  
d e f i n e d  as 
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and t h e  o n - l i n e  i d e n t i f i c a t i o n  c o s t ,  PT ,  i s  d e f i n e d  as 

P T ( N )  = t r a c e  [ P ( N ) l  

where P ( N )  i s  c a l c u l a t e d  o n - l i n e  u s i n g  ( 8 ) .  Note  t h a t  f o r  t h e  
f i r s t  10 t o  15  samp l ing  t i m e s  t h e  r e g u l a t i o n  c o s t  o f  t he  
d u a l - a d a p t i v e  c o n t r o l l e r  i s  c l o s e  t o  t h a t  o f  t h e  c o n s t r a i n e d  
min imum-var iance c o n t r o l l e r  and t h e  f d e n t i f f c a t f o n  c o s t  o f  the  
d u a l - a d a p t i v e  c o n t r o l  system i s  c l o s e  t o  t h a t  o f  t h e  
c o n s t r a i n e d  one-s tep  optimum i d e n t i f i c a t f  on c o n t r o l l e r .  
F i g u r e  2 i n d i c a t e s  t h a t  t h e  d u a l - a d a p t i v e  c o n t r o l l e r ' s  a c t u a t o r  
s i g n a l s  s w i t c h  between i t s  l i n f t s ,  t0 .5,  more f r e q u e n t l y  t h a n  
do t h e  a c t u a t o r  s i g n a l s  o f  t h e  o t h e T  c o n t r o l l e r s .  
due t o  t h e  l a c k  o f  any energy c o n s t r a i . n t  i n  t h e  above p rob lem 
f ormul a t i  on. 

T h i s  may be 

A f u t u r e  s t u d y  w i l l  examine t h e  pe r fo rmance  o f  t h e  
e n e r g y - c o n s t r a i n e d  d u a l - a d a p t i v e  c o n t r o l l e r  i n  compar ison w i t h  
energy- c ons t r a  i ned m i  n i  mum- va r i  ance and one- s t e p  optimum 
i d e n t i f i c a t i o n  c o n t r o l l e r s .  The r e l a t i v e  r e g u l a t i o n  c o s t  and 
r e l a t i v e  i d e n t i f i c a t i o n  c o s t  d e f i n e d  i n  ( 1 3 )  a r e  p l o t t e d  i n  
F i g u r e  3 where 

0 

Vc ( N )  = Q 2 N 

i s  t h e  accumulated c o n t r o l  c o s t  t h a t  wou ld  be a c h i e v e d  i f  t h e  
pa ramete rs  o f  t h e  system where known p r e c i s e 4  and i f  an 
u n c o n s t r a i n e d  c o n t r o l  l a w  were used; ~2 I: 10- i  was used i n  
t h e  s i m u l a t i o n  runs.  A c o n s t a n t  v a l u e  V f  10-4 was chosen 
a s  i n d i c a t i n g  t h e  a c c e p t a b l e  l e v e l  o f  pa ramete r  
i d e n t i f i c a t i o n .  F i g u r e  3 i n d i c a t e s  t h a t ,  dependin on o n - l i n e  

a t  one s a w p l i n g  i n s t a n t  can  have w i d e l y  d i f f e r i n g  shapes f r o m  
t h e i r  r e s p e c t i v e  d i s t r i b u t i o n s  a t  o t h e r  samp l ing  t imes .  T h i s  
l e a d s  t o  t h e  o n - l i n e  v a r i a t i o n s  i n  t h e  d u a l - a d a p t i v e  c o n t r o l  

s t r a t e g y  men t ioned  e a r l i e r .  

measurements, t h e  one-s tep  i d e n t i f i c a t i o n  and r e g u  ! a t i o n  c o s t  

The s i m u l a t i o n  r e s u l t s  i n d i c a t i o n  t h a t  t h e  one-step, 
c o n s t r a i n e d  d u a l  - a d a p t i  ve c o n t r o l  1 e r  has t h e  f e a t u r e  o f  
p r o v i d i n g ,  based on measured data,  sy-ctem i n p u t s  . t h a t  r e s u l t  i n  
pa ramete r  i d e n t f f i c a t i o n  w h f l e  m a i n t a i n i n g  bounded modal 
amp1 i tude  response. 
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STABLE DIRECT A -.IsIIvE CONTROL OF 

LINEAR INFINFlrlEDDIMJ!,iJSIONAL SYSTEMS USING 
A COMMAND GENERATOR TRACKER APPROACH 

M. 1. Bmb, Ii, Kdhm, aad J. Wa 
Rcrrsstkcr pdyoechnic Institute 

Troy, NY 12180 

Ue present  a c-d generator tracker approach t o  model following cont ro l  
of l i n e a r  d i s t r ibu ted  parameter systems (EPS) whose dynanics are described on 
in f in i t ed imens iona l  Bilbert spaces. 
con t ro l l e r s  capable of exponen t id ly  stable t racking of the  refereme trajector- 
jes when c e r t a i 3  i d e a l  t r a j e c t o r i e s  xre  known to exist f o r  t he  open-loop DPS; 
w e  present  ccndi t ions f o r  the exis tence of these  i d e a l  t r a j e c t o r i e s .  An adaptive 
vers ion of this type of con t ro l l e r  is a l so  presented aid shown t o  achieve (in 
sane cases, asyapto t ica l ly)  atabze f i n i t e d i w n s i o n a l  cont ro l  of the  i n f i n i t e -  
dimensional DPS. 

This re thod generates  f in i t ed imens iona l  

I. INTRODUCTION 

By a d i s t r ibu ted  parareter system (DPS), ve mean a system whose dynamical 
behavior with respect  t o  external dis turbances is described by p a i t i a l  d i f f e r -  
e n t i a l  equations. 
espec ia l ly  i f  high performance is demanded, e.g., a slmple electrical c i r c u i t  
a t  vary high frequencies. 
equation) approximations o f t en  s u f f i c e  to  descr ibe t h e  system behavior of mmy 
engineering s y s t m .  Indeed, such gpproximations are necessery for DPS control-  
ler designs t o  be irplemented with on-line d i g i t a l  computers. Nevertheless, 
the d i s t r ibu ted  parameter nature  of cont ro l  prnblems should not  be discarded 
prematurely; otherwise, control. approaches can be generated vhich look good on 
paper but are not s u f f i c i e n t l y  robust t o  operate  with the  x t u e  system. This 
has been i l l u s t r a t e d  i n  computer s h u l a t i o n  and in even a few laboratory demon- 
a t r a t i o n s  of f l e x i b l e  s t ruc tu res ,  ye t ,  i t  continues t o  be ignored in some pa r r s  
of the  cont ro l  community. 
a DPS viewpoint is essen t i a l .  

Of course, everything is a DPS i f  it is ca re fu l ly  scrut inized,  

However, lumped parameter (ordinary d i f f e r a t f a 1  

To understand the  cont ro l le r -s t ruc ture  in te rac t ion ,  
- 

The most re r ious  d i f f i c u l t y  of the DPS vi2wpoint is t h a t  i t  requi res  the 
mathematical ideas  of i n f in i t e -dhens iona l  function spaces aad unbocnded oper- 
a t o r s  on these spaces; €or example, see [1]-[2]. Savt ra l  r e s u l t s  in the  p a s t  
have been posed within t h i s  mathematical framework with the required mathematical 
r i go r  [3] .  Yet, the necessary practichl cons t r a in t s  were in te rpre ted  so t ha t  
the  r e s u l t s  would be relevant  to  s t r u c t u r a l  dynamicists and cont ro l  sys tem 
engineers and would make the  maximum use of t h e i r  experience and i n t u i t i o n .  

With these ideas  i n  mind, the  concept of model following appears t o  be a 
procedure t h a t  y i e lds  a usefu l  f i n i t e  dimensional con t ro l l e r  t h a t  might be 
designed taking In to  account the  d i s t r ibu ted  na tc re  of the  system dynamics, 
whereas ea r ly  model fol loving cont ro l  systems required the  s a t i s f a c t i o n  of 
c e r t a i n  “Perfect Hodel Following“ conditions which necessi ta tzd the. w e  of a 



reference model having the  same order  as t h a t  of t he  process [4], t he  more 
recent output model following c o n t r o l l e r  o r  CoPrand Generator Tracker (CGT) a s  
developed by Broussard [SI allows the use of a model of a r b i t r a r y  order ,  provided 
that the  number of cont ro ls  is equal t o  the  number of outputs  being control led.  
This concept i n  f a c t  served as the  b a s i s  f o r  a f i n i t e  dimensional aflaptive 
con t ro l l e r  that was used f o r  con t ro l l i ng  l a rge  s t r u c t u r a l  s y s t e m s  [6, 71.  

Thus s ince  the  CGT algorithm makes i t  poss ib le  t o  use a f i n i t e  dimensional 
reference model which subsequently gives  a f i n i t e  dimensional con t ro l l e r  regard- 
less of the pr3cess order .  
t r o l l e r  which produces s t a b l e  closed-loop operat ion with the  class of liiiear 
d i s t r ibu ted  parameter systems considered here. The d i f f i c u l t i e s  of stable 
adaptive d i s t r ibu ted  parameter con t ro l  are de ta i led  i n ,  e.g., [SI-191 and the 
references containcd therein.  I n  S i x t i o r s  2 and 3 the nonadaptive model 
following c o n t r o l l e r  is  developed a id  analyzed; i n  Section 4 ,  the adaptive 
vers lon is presented zind shown t o  produce a s t a b l e  closed-loop. 
axid fu tu re  c'irecticns are presellted i n  Section 5 .  

This provider the basis f o r  a d i r e c t  adaptive con- 

Conclusions 

2. PROBLM FORHULATIQN 

2 . 1  Process Description 

lhe d i s t r ibu ted  paraaeter  systems (DPS) of i n t e r e s t  w i l l  be modeled by the  
following state space form: 

0 
= Av(t) + Bf(t)  ; v(o) = v i a t  (2.  la) 

where the s ta te  v ( t )  is  i n  an infinite-dimensional real Hi iber t  space H with 
inner product ( , 0 )  and corresponding norm I I 1 I . The bounded input-output 
operators  B and C have the same f i n i t e  rank P, and f ( t ) ,  y ( t )  represent  t he  
- i q u t s  f o r  P l i n e 2 r  ac tua to r s  and the  outputs  from P l i n e a r  sensors,  respective- 
l y .  Thus, 

P 

i= 1 
Bf( t )  = 1 bi f,(t) (2.2) 

and 

T 
y ( t )  = [y l ( t ) ,  ..., y p ( t ) l  

Yj ( t )  = (c 

with 

v ( t ) )  ; 1 2 j - < P  (2 3)  
j' 

where bi and c belong to H. In  infinite-dimensional theory, t he  operator  A 

is a closed, l i v e a r ,  unboundad (d i f f e ren t i a l )  operator with domain D(A) dense i n  
H. Furthermore, (2.1)-(2.3) represeuts  some well-posed physical sys tem,  which 
i n  mathematical terms is the  weak formulation of (2.1): 

j 
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t 
vCt> = U ( t )  v0 + J U(t-r) Bf( t )d t  

0 
y ( t )  = W ( t )  f t 2 0 

(2.4) 

where v 

opera tors  generated on H by A. This l a t t e r  means: 

is any i n i t i a l  s tate i n  H and U(t) is t h e  C -semigroup of bounded 
0 0 

V(0) = I (2.5b) 

l i m  [ U ( t )  - I] v = 0 : v i n  H 
t4+ 

Av = [ l i n  - U(t)- l~v ; v iu MA) 
t 

t+o+ 

( 2 . 5 ~ )  

(2.5d) 

N G t e  t h a t  the semigroup U(r) evolves t h e  i n i t i a l  cGnditions v forward i n  t h e .  

When v is i n  D(A) and f ( t )  has continuous f i r s t  de r iva t ive ,  v ( t )  also is d i f f e r -  
en t iabfe ,  lies i n  D(A) for t 2 0 ,  and s a t i s f i e s  (” 1). 

and any sqaare-integrable f ( t )  V-11 s a t i s f y  the  weak formulation (2.4) and y i e l d  
states v ( t )  i n  H f o r  a l l  t 10. Consequently, (2.4) is easier t o  work with i n  
infinite-dimensions and is  more l i k e l y  t o  represent  the actual physical  system 
being modeled by (2.1;. This form, (2.1) o r  (2.4), models most p r a c t i c a l  
i n t e r i o r  cont ro l  problems f o r  l i n e a r  DPS where the  ac tua tor  and sensor inf luence 
funct ions are given by b and c respec t ive ly .  

For example, cont ro l  of the  damped wave equation on a region Sls R 

0 

However, any vo and K 

i j’ 
n 

by a 
s ing le  ac tua tor  and sensor is described by ( fo r  E > 0 ) :  

.-, 
L 

- Aou(x,t) = b(x) f ( t )  a u(x, t )  + E au(x,t)  
2 a t  

’; 

y ( t )  = I c(x) u(x , t )  dx 
R 

(2.6a) 

(2.6b) 

where u ( x , t )  is the  displacement from equilibrium of Sl and the  inf luence func- 
t i ons  b and c can be taken as approximations of Dirac d e l t a  funct ions a t  the 
loca t ion  of the ac tua to r  and sensor.  The operator  A. is the  Laplacian given by 

a‘u(x,t) 
2 A u (x , t )  = 1 

0 e = i  ax, 

on D(A ) E !u(x,t)EHoiu(x,t) i s  smooth and u (x , t )  = 0 on the  boundary of n). 
The domain D(Ao) is dense i n  Ho f L (n) with t h e  usual  Inner product (e,*),. 

This can be put i n t o  the form (2.1) by choosing the  s ta te  v ( t )  = [u (x , t ) ,  

2 0 
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'"1 x H with the auergy inner product: au(x,t)p in = 
0 

- at 

The operator A in (2.1) becomes 

A = -3 
and the rest follows. 

Another important exaaple is the mathematical setting for large structural 
systems (LSS) which may be described as a continurn by the following system of 
partial differential equations: 

m(x;u (x,t) + Dout(x,t) + Aou(x,t) = F(x,t) (2.10) 
tt 

where u(x,t) represents a vector of instantaneous displac-nts nf the structure 
R from its equilibrium position due to transient disturbances and the applied 
force distribution F(x,t). The displacements can be translational and ratation- 
al, and the forces can be generalized to include torques, as well. The mass 
density m(x> is positive and bounded on n. 

The internal restoring force term 'Lou is generated by a tine-invariant, 
symmetric, non-negative differential operator A appropriate to the LSS. The 

dmain D(Ao! of A. contains all smooth functions satisfying the LSS bornpry 
conditions and is dense in the infinite-dimensional Hilbert space Eo = L (0) 
with the usual Inner product ( * ,  -IO and associated norm I I I Io. 
the operator A is assumed to have discrete spectrum, i.e., isolated resonances; 

0 

In post cases, 

C 
this can be expressed by the following eigen-problem: 

2 
Ao4k = "k 0 ,  (2.11) 

where w 

vibration mode shapes. 
rarely known for an actual LSS. 

are the vibration mode frequencies and +,(x) are the corresponding k 
Of course, exact expressions for this modal data are 

The damping term Dout is camposed of a skew symetric part, which repre- 

sents gyroscopic damping due to any on-board rotors or constant spin rate of 
the whole LSS, and a small symmetric part which represents the internal struc- 
tural damping and is thought to provide very low mode damping. 

The applied force distribution is 

1 30 



where F 

non l inea r i t i e s )  and Fc represents  the  cont rc l  forces  due t o  P ac tua tors :  

represents  the ex terna l  disturbance forces  on the LSS (and poss ib le  D 

P 
F C = B f =  0 E bi(X) f i ( t )  

i=l 
(2.13; 

where the ac tua tor  amplitudes are f i ( t )  and t he  ac tua tor  inf luence funct ions 

are bi(x) i n  Ho. 

approximate 6(x-x 1; however, they do not have t o  be point  devices.  

These are usua l ly  loca l ized  or po in t  devices so t h a t  they 

i 

Obse rva t inE  are obtained by P sensors 

y = C u + E u  (2.14) 
0 O t  

where y , ( t )  = (c. ,uo) + ( e . , u  

pos i t ion  sensors  and e for ve lac i ty  sensors  i n  H . Again, these  are usual ly  

lcca l ized  or point  devices but they do not have t o  be. 

1 < ,i < P, with inf luence funct ions c f o r  
- J J t o '  - - j 

j 0 

The LSS dynamics a r e  defixied by (2.10) and (2.14) csn be put  i n t o  the 
infinite-dimensional s t a t e  space form: 

bv( t1  
a t  (2.15a) 

I 
i y(t! = Cv(t) ; v(0) = v9 (2.1%) 

-A-- - Av(t; + Bfie) + I'f,(t) 

with (A,B,C! as i n  (2.3)  and the  p e r s i s t e n t  disturbance term r f D ( t )  obtained 

from F i n  (2 .12) .  Impulsive disturbances i n  the  s t r u c t u r e  are model.ed by the  

i n i t i a l  condition v . 
D 

0 

The Iiille-Yosida Theorem (e.g. [l], Theo. 8, 9, p. 153), provides condi- 
t i o m  under which an operator A generates a C -semigroup U ( t )  sa t i s fy ing :  

0 

I l U ( t )  I I 2 Ke-at, t 0 (2.16) 

where K 
the resolvent  operator R(X,A) 

1 and u real. The necessary fnd s u f f i c l e n t  condi t ions are given for  
(XI-A)- : 

(2.17) 

fo r  a l l  real X 
bounded operator  on HI. The spectrum of A, a(A) = p(A) is much more compli- 
cated in  infinite-dimensions, but ,  i n  finite-dimensions,  i t  cons i s t s  only of 
the ( f i n i t e  number of)  eigenvalues of A. We say t h a t  A is exponentially s t a b l e  
when (J > 0 i n  (2.16), i .e. ,  the semigroup U(t) generated by A deczyb exponen- 
t i a l l y  a t  the  r a t e  a. 
dimensions, but no o thers  provide the s a f e t y  of a s t a b i l i t y  margi3 a; therefore ,  

- a i n  the resolvent  s e t  of A, p(A)  = i X  complex /R(A,A)  is a 

There a r e  many other  types of s t a b i l i t y  i n  k f i n i t e -  
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t h i s  seems t o  be the kind of s t a b i l i t y  of most p r a c t i c a l  i n t e r e s t  f o r  cngineer- 
ing  appl ica t ions  where there  is alvays same uncer ta in ty  i n  the  m o d e l  of JPS. 

2 . 2  Model Following Control Frob]-em Formulation 

Given the DPS as defined i n  (2.1), i t  is desired t o  f i n d  a f i n i t e  dimen- 
s iona l  con t ro l l e r  so t h a t  the output y ( t )  ' ' fo l l~ws"  a des i r ab le  output t r a j ec -  
tory ym(t ) .  

(asymptotically) s t a b l e  reference model : 

This output t r a j e c t o r y  is t o  be generated by the f i n i t e  dimensional 

q = A q + B,um m (2.18a) 

(2.180) 

where 

q is the  model state vector  having dimension N, 

u is a s t e p  3r reference level conmand with dimension P, 

y m 

P 

is the  output t r a j e c t o r y  a l s o  having the dimension P, 

and Am, Bn are matrices with appropriate  dimensions. 

the dimension of bcth y, and urn is t he  same as the  dimension of the  process 

input f and the  process output y as defined i n  (2.1). 
chosen. 

It should be noted t h a t  

Usually qo = 0 w i l l  be 

The output model following cont ro l  problem t o  be solved is the  development 
of an  algorithm t h a t  def ines  the  process input  f ( t )  so t h a t  t he  following two 
model following condi t ions (MFC) are s a t i s f i e d :  

3. DEVELOPMENT OF THE NONADAPTIVE MODEL FOLLOWING CONTF.OLLER 

3.1 Solution Defini t ion 

In a manner similar to Broussard's developmegt of the  Copand Generator 
Tracker (%TI [ 5 ] ,  the  concept of an i d e a l  s ta te  v , cont ro l  f 
t r a j ec to ry  y w i l l  be introduced. 
a a t i s f y  the  process dynamics (2.1) and t h a t  the idea l  output y 

and output 

be iden t i ca l  
It is required t h a t  these  tga j ec to r i e s  
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t c  t h e  model output  y,. Thus: 
* * * 

AV ( t )  + Bf ( t )  
* * * 

y ( t )  = LhJ (t) ; v io)  = v 
0 

(3.la) 

(3 .  l b )  
* 

where t h e  i d e a l  s t a t e  v ( t )  i s  (as w i t h  v ( t ) )  i n  t h e  i n f i n i t e  d i n e n s i o n d  
H i l b e r t  space H. 

Fur t he mor e 

* 
I n  a manner similar t o  t h a t  i n  [SI, i t  w i l l  be assumed that v (t) and * 

f ( t )  are l i n e a r l y  r e l a t e d  t o  t h e  model s ta te  :vector q ( t )  and command v e c t o r  
u (t) as fol lows:  m * 

-J ( t )  = All q ( t )  + S12 um 

f ( t )  = s21 q ( t )  + s22 urn 
* 

The bounded l i n e a r  o p e r a t o r s  Sll, S,,, S21, S22 w i l l  n o t  be determined t o  

s a t i s f y  MFC 1. 

(3 .3)  

( 3 . 4 j  

To t h i s  e f f e c t ,  d i f f e r e n t i a t i o n  of (3 .3)  with r e s p e c t  t o  t and s u b s t i t u -  
t i o n  of ( 3 . 1 )  and (2.18) g i v e s :  

where 

( 3 .  Sa) 

* * 
Replacing v and f on the  r i g h t  s i d e  of (3.5) by (3 .3)  and (3 .4)  g i v e s :  

Sll Amq : B u '11 m m 

A ( " p  + s12 IJ 1 + B ( S 2 p  + S2? Urn) = (3 6) 

Now s i n c e  (3.6)  must be v a l i d  for  a l l  q and urn, i t  is necessary t h a t :  

11 + BS21 SI1 Am = AS 

Sll Bm = ASl2 + BS22 

( 3 . 7 )  

(3 .8 )  
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Final ly  the  incorporation of (3.2) y i e l d s  

Thus : 

order 

order 

which 

* 
Y (t) = CSllQ + CS12 um = ym = cmq 

(3.10) 

(3.11) 

In  summary then eqs. (3.71, (3 .8 ) ,  (3.10) and (3.11) must be*solved i n  
t o  f ind  S,l and S22 which i n  tu rn  def ine the idea l  cont ro l  f 

Recall however, t h a t  both MFC 1 and MFC 2 must both be s a t i s f i e d .  In 
t o  s a t i s f y  MFC 2,  it is use fu l  t o  consider the equation f o r  the  e r r o r  

e = v  - v  (3.17) 

of Eq. (3.4). 

* 
* 

i s  i n  D(A) when vo and vo are both i n  D(A) .  Differen t ia t ion  of (3.12) 
with respect  t o  time gives:  

* 
ae av 
a: a t  
- -  - -  

* * 
= AV + Bf - (Av + Bf ) 

* 
= Ae +, h(f - f ) (3.13) 

This equation suggests t h a t  t he  ac tua l  model following cont ro l  f be defined as: 
* 

f =: f + G(y - ym) 
* * 

= f  + G C ( V - V )  
* 

= f  + G C e  (3.14) 

Subs t i tu t icn  of (3.14) i n t o  (3.13) gives:  

l = (A + B G c ) e  (3.15) 

where G:RP-+RP is a bounded l i n e a r  operator.  
(A + B G C )  generates an exponentially s t a b l e  Co-semigroup, then the  cont ro l  f 
as defincd by (3.14) w i l l  s a t i s f y  the conditions f o r  model following. 

Thus i f  G is  chosen such tha t  ' 

It is  important t o  note  t h a t  t h i s  con t ro l l e r  is clearly f i n i t e  dimensional. 
For implementation it  i s  only necessary t o  "build" a f i n i t e  dimensional re fer -  
ence model and form the proper l i n e a r  combination of its s ta te  vec tor  and comrr.and 
vector.  
such tha t  the decay of any t r ans i en t  caused by i n i t i a l  p lan t  model output e r r o r  
is s u f f i c i e n t l y  fas t .  We summarize the above discussion a s  

The gain operator  G fs a l s o  f i n i t e  dimensional and should be chosen 
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Theorem 1: I f  (A ,B ,C)  i s  exponent ia l ly  output  s t a b i l i z a b l e  and t h e r e  exist  
bounded l i n e a r  o p e r a t o r s  S 11, S12, S21, and S22 such t h a t  (3.7) - (3.8) and 

(3.10) - (3.11) a r e  s a t i s f i e d ,  then t h e  model fol lowing c o n t r o l  (3.4) and (3.14) 
s a t i s f i e s  t h e  model followir-g c m d i t i o n s  MFC (1) and (2) and l i m  [v(t)-v ( t ) ]  = 
0 when both v and v belong t o  D ( A ) .  t- 

0 0 

From [ l o ] ,  lie see t h a t  ( A , B , C )  is exponent ia l ly  output  s t a b i l i z a b l e  i f  and 
only i f  i$ f N(C)I and HR F N(C) form a p a i r  of s t a b i l i z i n g  subspaces f o r  (A,B). 

Note t h a t  dim = ? which is t h e  number of sensors  ( o r  a c t u a t o r s )  used. "he 

condi t ions  f o r  ex is tence  of t h e  i d e a l  t r a j e c t o r i e s  (3.1) w i l l  be  developed i n  
the  next  subsect ion.  

3.2 Existence of I d e a l  T r a j e c t o r i e s  
* 

The ex is tence  of i d e a l  t r a j e c t o r i e s  v (t)  f o r  t h e  DPS (2.1) is  determined 
b y  s o l u t i o n s  S . .  t o  t h e  o p e r a t o r  equat ions  (3.7) - (3.8) and (3.10) - (3.11). 

These can be r e w r i t t e n  a s  
1; 

(3.16) 

wher N .e S :R +D(A) and S12:Rp+D(A) are bounded o p e r a t o r s  wi th  f i n i t e - r a n k  and 

P +R and S, :R+R are matrices of a p p r o p r i a t e  dimension. Note t h a t  

(3.16) d e s c r i b e s  a kind of aggregat ion ( i n  t h e  sense  of h k i )  for t h e  i n f i n i t e -  
dimensional s y s t e m  (2.1) in&o a f ini te-dimensional  system (2.17). 
of t h e  i d e a l  t r a j e c t o r i e s  v ( t )  i n  (3.1) guarantees  t h a t  such an aggregat ion i s  
p o s s i b l e ,  i . e .  t h e  DPS (2.1) genera tes  t h e  i d e a l  t r a j e c t o r i e s  which correspond 
t o  those of the f ini te-dimensional  model (2.18). 

N '4 P P  
& 2  

The exis tence  

* 
In  most s i t u a t i o n s ,  t h e  i d e a l  i n i t i a l  condi t ion  w i l l  be vo = 0; hence, 

from (3.5b) we would choose q, = 0 and SI2 = 0, which c o r r e c t l y  corresponds t o  

(3.11).  This reduces t h e  o t h e r  opera tor  equat ions t o  t h e  following: 

A = A Sll + B S21 '11 m 

'11 Bm = s22 

'11 - 
- 

we have t h e  following : 

(3.17a) 

(3.17b) 

( 3 . 1 7 4  

Theorem 2: 
c losed curve r containing a(Am) i n  i t s  i n T s r i o r  and a(A) i n  i t b  e x t e r i o r ,  then,  

given any l i n e a r  opera tor  S 21 
opera tor  S :RN+D(A) given by 

I f  t h e  s p e c t r a  c(X) and a(A ) are separated by a Sm00th simple 

:R'+RP, t h e r e  e x i s t s  a uniqrle bounded l i n e a r  

11 
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(3.18) 

N ior any q i n  k . 
- PROOF: From (3.17a), i t  follows t h a t  f o r  any AE.(J(A)() u(A,): 

SII R(A,Am)  - R(A,A) B S21 R(A,Am) R(A,A) Sll (3.19) 

But in tegra t ion  of (3.19) over the curve I' produces: 

because : encloses the f i n i t e  number of s i n g u l a r i t i e s  of A 
the spectrum of A. 

D ( A ) ,  and t h i s  is the  desired r e s u l t .  d 

and excludes a l l  of 
Clearly,  s ince  R(X,A):H+D(A), Sll mustmhave its range i n  

Once, we have spec i f ied  the matrix S21, the unique operator Sll is deter-  

Sa t i s f ac t ion  of ( 3 . 1 7 ~ )  could most e a s i l y  be done by defjning Cm t o  be mined. 

C Sll. The determination of the matrix S f o r  (3.17b) could be done from 22 * -1 * 
SZ2 = (B B) B Sli Bm (3.20) 

as long as B 

f u l l  ram P an2 so the  inverse of B B exists. 
is  c sen so t h a t  a so lu t ion  e x i s t s .  Note tha t  the  operator  B has * m 

Although the above exis tence r e s u l t  does not r e a l l y  requi re  the  number of 
ac tua tors  and sensors t o  be equal,  t h i s  w i l l  be needed i n  the la ter  sect ions.  
Also, the following a l t e r n a t i v e  exis tence r e e u l t  requi res  i t :  

Theorem 3 :  
3 

L e t  zezo belong t o  p(A)  and C A - l  B be nonsingnlar on R , then 

Sll satisfies: 

(3.21) 
sll = 51 A* + *12 

Tke proof of Theo. 3 can be obtained by straightforward computation using (3.16). 
Furthermore, t o t e  t ha t  
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which i s  the  same as (3.17a); however, Theo. 3 gives  a wider range of so lu t ions  
thar. Theo. 2 s ince  S need not be zero. The so lu t ion  of (3.21) can be handled 

when zero belongs t o  
1 2  

(A ) because we then have the  following: m 

which has a unique so lu t ion  SI1 whenever the  u(Arn-') and u(n ) are separated 

b y  a smooth simple closed curve (see proof of Theo. 2) .  
11 

4.  THE ADAPTIVE MODEL FOLLOWING CONTROLLER 

4.1 Development of the  Adaptive Control ler  

Tlie nogadaptive cont ro l  l a w  (3.14) requi res  exact knowledge of the gain 
operators  G ,  S and S These may be known t o  exist v i a  mathematical s t r u c t u r e  
of the  DYS (A,6:;) i n  ($?i) (e.g. Theos. 1, 2 ,  3) but  they may not  be ava i l ab le  
i n  an e x p l i c i t  form. Consequently, w e  Mould need an adapt ive vers ion of (3.14): 

f ( t )  = S21(t) q ( t )  + SZ2( t )  urn + G(t) ey(t) (4 1) 

where 
* 

e : y - y m = y - y  
Y 

We assume throughout See. 4.0 thaf the  hypotheses of Theo. 1 are s a t i s f i e d  
fo r  the DPS (2.1). Take e ( t ) * E v ( t )  - v (t) and, f r m  (2 .1 ) ,  (3.1),(3,3) and 
(4 .2) ,  ob ta in  ( f o r  vo and vo i n  D(A) ) :  

ae(t) = A,e(tS t. BAK(t) ri t)  1 a t  

where 

A i A + BGC generates  en exponentially s t a b l e  Co-eemigroup U c ( t )  and 
C 

Wt2' and AK(t) S K(t) - K where 
0 r ( t )  E 

137 



, z belongs 'io RW2', and r where E - 
matrices on R . Note t h a t  ( s i n c e  K is coilstant):  

I' are both p o s i t i v e  d e f i n i t e  
dKI 
dtP P' . .I 

0 

AiI( t )  = $ ( t )  = -rI -1 ey(t)  ( r ( t ) , * )  

where 

AKI(t) E I: ( t )  - K . I 0 

(4.5) 

The closed-loop adapt ive ly  c o n t r o l l e d  DPS io given by (4.3) and (4.5): 

a&) - - - I at= e ( t )  + F ( t ,  e(c)>  

(4.6) 

- 
e ( o )  = e i 

i 
I -  0 

V+2P The s ta te  I ( t )  of (4.6) r e s i d e s  i n  a new H i l b e r t  space E where 

R ) with B (H,,H ) represeqt ing  t h e  Schmidt c?.ass oE compact l i n e a r  o p e r a t o r s  

from H i n t o  H with inner product (A,B) I t r  A E where "tr" denotes  t h c  t r a c e  1 2 
I of t h e  opera tor ;  cap. [ l l ]  pp 262-264 f o r  f u r t h e r  d e t a i l s .  The inner  product uti 
H is formed by s-mining those of H and B we shall use t h e  same symbols f o r  a l l  

E H .A B2(R' 9 

P 
* 2 1 2  

2 '  
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inner products ( * , * )  and their corrzaponding noms 1 I I I . 
tion F(t, * )  :H+H is continuous; hence, 

The nonlinear func- - -  

_.  
c(c)  = i ( t )  Go; t I > 0 (4.7) 

where G(t) is 
- 
U<t)h = 

wl:i re 
- u (t) = 

C 

the nonlinear semigroup defined on % by (for any h in E) : 
- 
il t (t)h + I Ec(t-T) F(T,c(T)h)dt (4.8) 

v (t) 07 

I 0 Li 
C 1 is the linear C -semigroup generated on by io I 0 C 

(4.6). The above follows from [12] Lema 5.2 p.  186 where further details on 
nonlinear semigroups are a l so  available; consequently, the clcsed-loop infinite- 
dimensional system (4.5) AS well-posed on H. .' 

4.2  Closed-Loop Stability 

The stability analysis of the nonlinear infinite-dimensional syctem (4.6) 
This requires the extension of Lyapunov theory to infiniredimensional spaces. 

has been done in [12]-[13] and we summarize the necessary elements here: 

- Def: 
there exists 
t - > 0. 

Y implies lim 
t-- 

(4.5). Usually we can take & = 0 .  We say an equilibrium poitt is unstable 
whenever it is not stable. 

The equilibrium point 4 is stable for the system (4.6) if for every c > 0 
1 /e(t) - $ 1  I < E for all 

If, in addition to stability, there is a y > 0 such that I le(o) - $ 1  I < 
> 0 such that 1 Ie(o) - 4;: < 6 implies 

I Iz(r)-$ll = 0 ,  then 4 is said to be asymptotically stable for 

?ef :  
and ir(e) 5 o for all e in ii wnere A continuous functional V:%R is a Lyapunov function for (4.6) if V(o) = 0 

v (e( t))-v(e). irCe, lim sup c (4.9) 

t*+ 
L 

where e is in % and e(t) = y(t)s as given in (4.7). 

J.emma 1: If V : H + R  is a Lyapunov fmctron for ( 4 . 6 )  with the property that -- 
(4.10) 

for all f= such that 11.11 5 h (where 0 
f :[O,h]+R 

equilibrium point is stable for ( 4 . 6 ) .  

h c m) and fl is or' class M,, (i.e. 
+ with fl(o) = 0 and fl strictly increasing on [O,h], then the zero 1 

Le= 2: If in addition to the hypotheses of Lema 1, the Lyapunov function V(*) 
has tt. property: 
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(4. lla) 

(4. llb) 

where f 
stable $or (4.6). 

is also of class h $ ,  then the zero equflibrium point is asymptotically 

The proofs of knnae 1 and 2 can be found in 1131. 
Lyapuncv' s Direct Method on infinite-dimenaional spaces. 

n e s e  results constitute 

We now have the following stability result for our adaptively controlled 
closed-loop svsteni (4.6) : 

TheGrem 4 : Assume the foiioving : --- 

(a) In (4.3), Ac 5 A + BGC satisfies 
(Ac V, Pv) + (h, ACv) -(QV,v) (4.12) 

for all v in D(A) where P a d  Q are syretric positive operators on E such t h t  
( for some ( I ,  8 pcsitive constants): 

11.1 l 2  5 (V,b) L L? I I v l  l 2  (4.13a) 

(4.13b) 2 ! V I  I 5 (QV,~) (:.e Q is coercive) i ! 
for i?ll v in H, 

( b )  B P = C, 

( c )  

(4.14) 
* 

* 
the hypotheses for Theo. 1 are satisfied, and both vo and vo belong to D(A), 

T e l  - 
chen V(L) E (e,Pe) + (OKI, rI AKI)svith 5 ( t )  I KI(t) - KO and e I 

Lyapunov function for (4.6) snd the zero equilibrium point is stable. 

PROGF : Re ca 11 that - 
AK(t) = AKI(t) + K p ( t )  (4.15) 

Now, clearly V is a continuous functional from 
V(o) = 0. 
differentiable. Hence, from (4.6) m d  (4.121, 

into R (due to (4.13aj with 
Furthermorc, since fr is a quadratic functional, it is Frechet 

c(e) = -(Qe,e) + 2 l ~  

where p 5 [(Pe, BAKr) + (AKI,FI i5)1 

From (4.161, (4.4~1, and (4.151, we have 

(4.17) 
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* 
p = (B Pe, OKr) - (AKI, e (r,*)) 

Y * * 
= (B Pe, AKr) - (r, A 5  ey) 
= !B Pe, AKIr) + (B Pe, K r) - (r, AK e ) 

= (AKIr, [B Pe - e 1) + (K r, B Pe) 

* * * 
P I Y  * * 

(4.18) Y P * * 
where we have used (A,B) E tr A B = tr(BA ). 
(4.18), yields 

Furthermore, using (4.14) in 

tron (4.4b). Consequently, using (4.19) in (4.17), we obtain 

(4.19) 

(4.20 

where a = (r ) and we have used (4.13b). p - ‘min p 

Also ,  using (4.13a), we have 

2 In other words, f,(C) E [l + Xmin (r I )I5 
aboge satisfies the hypotheses of Lemma 1 and the desired result is obtained. 3 

which is of class I$. Therefore, the 
* 

Note that the use of a proportional adaptive gair (4.4b) produced the second 
term in (4.20) ; however, this term is not essential and the above argument 
could be shplified by omitting (4.4b) from the edaptive gain laws. 

The hypotheses (a) and (b) correspond t o  the Kalman - Yakubovich conditions 
in infinite-dimeqsional spaces. 
(Av, v) 2 w l  Ivl I 
(A,B ,Chould be equivalent to satisfaction of hypotheses (2) ; hovever, there 
would be no guarantee that ? and 0 could be found in (4.12). such that (4.14) 
could be obtaineG. In finite-dimensional spaces, the Kalplan - Yakubovich 
conditions are equivalent to the strict positive realness of the transfer 

function Tc(s) = C(sI-Ac) 
115-118. 
relationship in infinite-dimensional spaces. For example, [17] asserts that 
ReTc(jW) must be coercive,which would be quice a bit stronger than what is 
required in finite-dimensions. 
gat ion. 

F’rom [13] Theo. 4.7, if for some real w ,  
for all v in D(A), then exponential output stabilization of 

-1 B, i.e. Re Tc(jo) > 0 fcr all real w; see [14] pp. 
A r.uulber of papers, e.g. [lS] - [17], have been kitten on this 

This is an area rhat requires further investi- 

As pointed out in [9], we cannot immediately conclude asymptotic stability 
from (4.20) since it does not satisfy the hypotheses of Lemma 2. In finlte- 
dimensional space, we could apply the LaSalle Invariance Pxinciple to obtain 
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asymptotic s t a b i l i t y  as  is done i n  161; however, i n  i n f in i t ed imens iona l  spaces,  
i t  is not the case tha t  "bounded sets are prec-act" and t h i s  is e s s e n t i a l  f o r  
the LaSalle r e s u l t .  

The following r e s u l t  ([I31 Theo. 5.4 p. 188) may be helpful :  

Lema 3: L e t  i n  (4.6) generate  the l i n e a r  Co-semigroup E,(t) on and F 
is any-bounded, continuous funct ion such t h a t  (4.6) generates  a nonlinear semi- 
group U ( t )  on H (as given i n  i 4 . 8 ) ) ,  then a l l  bounded o r b i t s  ~7f (4.6) are pre- 
compact i f  e i t h e r  

(a) U ( t )  is rompact operator  f o r  al l  t 0 

C -- - 

- 
C 

or 
- 

(b) U (t)  is exponentially s t a b l e  and the  funct ion 

bounded sets i n t o  recaapact ones) 

i s  campact (i.e. maps 
C 

PA 
Due t o  the  form of lo' ] , i t  is not poss ib le  to  s a t i s f y  (b); however, 

( a )  may be s a t i s f i e d ,  f o r  example by operators  A which generate holomorphic 
semigroups. This latter is determined by the  form of damping operator i n  a 
f l ex ib l e  s t ruc ture .  Again, t h i s  is a top ic  f o r  f u r t h e r  inves t igs t ion .  An 
a l t e r n a t i v e  adaptive gain l a w :  

C 

(4.21) i , ( t )v  = -I' -1 (e (r ,v)  + KI(t)v) 
Y 

y ie lds :  

which does not qu i t e  give asymptotic s t a b t l i t y  but  might be modified t o  do so. 

5. CONCLUSIONS 

In t h i s  paper, we have presented a d i r e c t  adaptive con t ro l l e r  f o r  l i n e a r  
d i s t r ibu ted  parameter systems (DPS) described on inf ini te-dimeneional  Hi lber t  
spaces. The con t ro l l e r  is based on a caasand generator  t racker  approach used 
i n  f ini te-dimecsional  spaces, e.g. [ 6 ]  where it is shown to  be asymptotically 
s tab le .  We have shown here t h a t ,  under c e r t a i n  conditione on the open-loop 
loop DPS, i dea l  t r a j e c t o r i e s  do exist and the  adaptive cod t ro l l e r  is s t ab le ,  
i.e. the output and gain e r r o r s  remain bounded. 
A i n  (2.1) generates  a holomorphic Co-semigror;p is h p o s e d ,  then w e  can a l s o  
conclude asymptotic s t a b i l i t y  which guarantees asymptotic t racking o r  node1 
following. 

I f  the  f u r t h e r  condi t ion t h a t  

A number of i s sues  have been opened f o r  f u r t h e r  invest igat ion:  

(1) use of dynamic ra ther  than output feedback s t ab i l i za t ion ;  
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generation of asymptotic ideal trajectories by the open-loop DPS; 

connections between the Kalman-Yakubovich conditions and the input- 
output description of the 93s; 

development of altermtive adaptive gain laws which produce asymptotic 
stability of the closed-loop system; 

exploration of reasmable conditions under which taSalle's Invariance 
Principle can be used to determine asymptotic sta5flity of the closed- 
loop system. 
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ONLINE FREQUENCY IDENTIFICATION 

ABSTSACT 

A real-time adaptive controDn bu b e e m  designed ud tested smcceddly 00 8 fourth order laboratory 
dynamic system which feat- very low strrrcturl damping and a mon-cobdcd -r pair. The 
controller, impkmented in a digitd miaicomp.ta, couistr'd a stsk estimator, 8 set of state kedbuk e. and 8 Requency-- (FU) for d time pMmtter idecrtilutbm. Tk FLL cam dckct 

parameter and its counterput in the state estimator, and corrcct the eathator puuncter in d time. The 
adaptation dgwithm cam comct tk com?roikr error ud stabihe the system for mocc tLu 50$6 *uirtion 
in the plant natural frequency, compared ritk 8 10% M t y  m u g b  in kqac8q vuhtkm hrahd-gain 
controller havig the SuDe palormuce at the nomid plant conditiin. After it b a  kcLcd to the eomct 
plant freqaency, the adaptive controkr works aa well u the bdqpb eolltrolkr does d e 8  there is no 
parameter mismatch. The is dcmo.strrtd -, 
a d  can ab0 be proven with simpk rootbcos methods. 

the closed-loop natural freqaency of the system S i  coatrogsd, t.kmhte tb mbatcb betreerr.-t 

rapid c-e of tkb drpti*e 

I. INTRODUCTION 

A controller using Kalmu 5lter and hn state Wb8ck usually has good pertornuncC, provided a 
very accurate model of the plant is known. Bot such coltrdkn ue very Seuit ie  to parameter rui.ti, 
especially when the plant has very low inherd damping, and rhem the masor is not colocated with the 
actuator. 

A twodisk laboratory model, consisting of two inertia dias coanccted 8 torsion rod, rkb bas a 
structural damping of 0.004, and with separated seasor ud actortor locatio- WM constmcted to krt mct.l 
adaptive controller designs. The form of the quatiom of moth of the model is known due to the eaee of 
analysis of the lumped system; but the bek of u c m r a k  knowkdge about the n a t d  structural fmquency 
during controller design corresponds to a phnt parameter u a c t r k i o ~  or rui.tmn; and this mcertaiuty is 
what the adaptive controller handles. 

It has been proposed by Kopf, Brown, h4arsh (Ref.1) and Mac& (Mt)  to use a Phm: ;.0eLd-L00p 
to implement tuned damping and notch dltered command toque, so that the ftedback control force a z x  the 
structural frequency can be adjusted propedy according to the natural frequency of the plant, Bosca%ul 
and Cannon (Ref.3) have impkmented such a kind of controller for the tw&k experimental aystem. 

Under the same match project, a dillennt a p p d  using a Frequency-Locked-Loop (FLL) to Mente 
the plant bequency waa developed. Thi- oaper d w r i b a  in detail how the FLL identides the Inknown plant 
parameter and updates the controller in red time. 
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II. DESCRIPTION OF THE TWO-DISK PLANT AND FIXED-GAIN CONTROUEbt 

The plant to be coutrolled b a mechanical system which consists of two h0riCent.l steel dish connected 
by a vertical elastic steel rod. The two dish u e  supported by bearinga which d b w  rotational motion ody. 
A low-friction DC motor is attacked to the bwer disk, and RVDT sensor detects the angular position of 
the upper disk. 

If structural damping is negkted*, the state eqiiation of motion of thb system can be e x p d  a~ 

where tl  and ts are the position state3 of the rigid body mode aod the stmctural osciIl8tion mode respec- 
tively, ts and t4 are rates of those states respectively; w,, ia the natural frequency, J is the tokl moment of 
inertia of the two dish, and Y b the control toque from the DC motor. 

The Sensor output b 
# = 21 + 2s: 

A fintsrder high-paw !Utet with 100 Hz cutoff frequency is used to Merenthte the position semr output 
and provides the pseudo-rate of the top disk. 

. 
(2) 

If all the parameten of the plant are known accurately, a0 LQG design (Ref.4) rill result in a set of state 
feedback gains C for regulation and estimator gains I ,  b r  state estimrrtion. However, if the p h t  n a t d  
frcqacncy w,, is not known by the controller designer, and a value We is aaed m the estimator, the stability of 
the whok system has to be analyzed by augmenting the system state eqrutha  with thosc of the estimator 
states, and finding the modd frequencies and dunpimp of the system (Ref.5) 

Using the same penalty weightings for control effort and state errors, an LQG design produces Merent 
feedback gains C and L for dserent natural frequencies w, of the plant. Analysb shows that the stabity 
of the whok sipstern is lesa sensitive to those feedback g a k  tbu to the parameter we used in the estimcrtor, 
since an error in the latter parameter corruponds to a modeling error, w h i k  ~ k b i o ~  in the dormer ones 
comspond to ditlcrent weighting in the LQG design procar. In the experiment d e s c n i  here, feedbreit 
gains C and L are chosen for the nomind plant frequeoc;, and are kept constant m order to demonstrate 
the adaptation of the controller by correcting we in the estimator. 

. h m  the analysis of the augmented system state quatiom, the kqueney We of the most unstable 
c.6sd-loo~ mode can be found as a function of w,, and we, if .II other puuneten u e  kept constant. Thir 
'UdCth. 

we = J(we,wm), (3) 
ulll &t f the closed-loop performance of the adaptation proeas, and has to be taken into account in the 
design yrocess. The twodisk model has a nomind frequency of 13.3 rad/see, md the function described t 
equatio 1 (3) can be shown approximately na in Fig. 1, can be appmxhakd as 

We - Wn = ( W a  - We)  + 0.6 (4) 

for /wI - we/  < l . b r a d / ~ ~ .  

m. FREQUENCY IDENTIFICATION USING FRXQUENCY-LOCKED-LOOP 

A Phasc-Cocked-Loop (PLL) WM initidly p r o p d  to be d to detect the vibration frequency. PLLs 
have been used widely in locking onto high-frequency signals in electrical engineerbg applications, but it 

- 
It is actually 0.001 
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is only beginning to be uaed h locking onto lor-frequency &nab in mceh.nical systems. A P U  bos tba 
ability to identify the phrw and frequency of a signal eoatuninattd by a nktively large amount of nok .t 
other trtguencies. Several signal components at Merent trepuencke can be ideatfled by using w e d  PLLa. 

The traditional PLLs are nonlinear elements for which the perforname is hucd to analyse and predict; 
and they have Limited locking ranp  due to their nonlinearity? Besides, PLLs ace more aeeositive to the 
phase than to the frequency of their driving signal, which makes them olrsgitabk for frequency ideatibeatior 
because the identieeation will be disturbed by the phose in the e e m r  syld every time a new mition 
command or an external disturbance i s  applied to the system, even though a PLL haa i den tW the comet 
plant frequency already. 

A modification is made to a PLL to eliminate ita sensitivity to phase in the input signal and make the 
input/output relation bear in a larger tracking range, so that it works better for frquetcy identitleation, 
while retaining the other virtues of PLLs. The dnal product, caUed a lkquency-Loeked-hp (FLL), ia 
shown schematically in Fig. 2, and its input/output relation can be seen from the tnoetioaal block diagram 
in Fig. 3, where w, is the frequency of the input &pal and wo ia the output signal - the frequency detected by 
the FLL. Also shown in the same block diagram ue w,, the starting osciliation frequency; Au, the cometion 
on the output; and we,, the error of the output of the F'LL. 

The character of the block G(4) can be chosen arbitrarily by the designer cia bng M it c.0 update the 
output frequency of the FLL accorcliig to its error 0,. If a h p k  integrator 0 is choscn M the element 
C(r),  then the FLL will have a pole at -K where 

Parameters a and b should be determined with the folbwing restriction 

In the present case, 

and the linear sear& range is choscn to be 

wm = 13.snn/Sce, 

The pole loeation 8 = -K should be determined m the molt of a compmmhe ketrcen speed of nsponae 
and noise rejection, at the nomind locking frequency range. In thio case, the parametera of the FLL ut 
chosen rn 

to work in the range of 1 to 3 Hz. 
o=6.0, 6=4.0, C=#).O, w Kz1.67, (9) 

With parameters chose0 M above, the block diagram in Fig. S can be aimpUded to the t d r  hroction 

Fig. 4(s) ahma the test molt of the FLL output when the frequency of the $pa& signal is changed stepwiscly. 
The mpow for r m d  input change (the ha t  change in Fig. 4(a) ) io similu to the step mponee of a dnt- 
order dlter with pole at -K, M ahown io Fi. 4(b). The rerponse for a larger input change (the w-ond 

147 



change in Fig. 4(a) ) experienced some nonlioeuity at the beginnkg beczrrse its internal strocton b mot 
linear; however, the FLL still tracked the input signal and provided the comet output in a mmondde time. 

IV .  CORRECTION OF PARAMETER ERROR IN TIlE CONTROLLER 

Because eigenvalues are properties of the system, they are independent of the instantaneous d u e  d 
state variables and are indueneed only by changes of parameters. The rehtion between we aud we, m shown 
in Eqn. 4, CM be expressed am in Fig. 5. Using the Uemnce between (u,, - 0.6) and we to mpdate - 
thmuKh the integrator $ - the parameter w, in the controller, the dared loap dyalmirr of the parameter 
variation, identfieation, and correction can be expremed ua in Fa. 6. The ~ i c r i S t i c  equation of the 
closed parameter adaptation loop is 

or, 
a(# + K )  + (0  + 2K)B = 0, 

which can be written in Evan's form as 

The root locus of Eqn. 13 vs. the positive value of R with K = 1.67 is shown in Fig. 7, and tbe value cf 
H = 9.9 is chosen obviously to maximihe the adaptation d e .  The change of the dope io Fig. 1 cornponds 
to a variation in the gain in Eqa. 4, and Eqn. (11) C.D be m&ed M 

rH K 
+ (8  + X ) ( r  + K) = O, 

where 2 > r > 0 , and the mot b u s  shown in Fig. 8 quarantees the stability of the rystem over the range 
of the gain V .  

Any sensor measurement, controller state variable, or linear combidion thereof can be &asen as the 
input signal to drive the FLL, so long as the signal contains the modal traquency of merest (the k g e r  the 
better!!. The error between the sensor rate and the estimate of it is &own to drive the FLL, since there is 
less error signal if all parameters in the controller are correct. 

The FLL must be turned off if its input s i g d  is too s d l ,  in order to reject the Muence h m  random 
noise. 

A PDP-11/23 minicomputer was wed to implement the controller and the FLL at 2S HG sample rate. 
The test results of thio adaptive system an summerid in the dotbring section. ' 

V. EXPERlMENW RESULTS 

Fig. 9 rhows the n a t d  0rCill.tiOn d the uncontrdled disk system. The kquency d o e e h t b n  in 
2.11 Hs. with 0.004 damping. (The bng-period motion b cwcd becaase the disk b Long fkom the 
ceiling with a long steel wire to reduce the ud.l t h t  01 beuir;p. "him mod. t a p p h a t e d  u a rigid 
body mode in the controller design adyds.) 

Fig. 10 shows the step nrponse of 8 nonulapthe control system designed with the LQC method. The 
response is  very good (Fig. 10) when there b no modcling error in the controlbr d a i p .  However, u Fig. 11 
shows, the system becomes unstabk when there is 10% modeling error in frequency in the designing of the 
nonadaptive controller. 
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When the FLL is used in the adaptive control, the system e m  detect and eomct a controkr'r p M m e k t  
error of 50% or more ia frqaency. Fign. 13 (a) through (f) show the KpIor ontpot in Werent teata. 'fke 
instability due to the initid parameter erm L ahown when the control syatem waa juat tuned oa, urd tke 
system was then stabilized after the uhptatios algorithm had corrected tbe controlkr'r error. The initid 
turn on of the control system aad the time rbeo podtion eommlada u e  &aged an mar&& on thow 
recordings. 

Fig. 13 shows the comparison of the impulsive disturbance nspoose, between the nonadaptive controller 
with no modeling error and the adaptive one after its parameter e m r  h a  been corrected. The compuison 
shows almost no diaercnce betweep their perfomamea. 

VI. DISCUSSON 

(A) Frequency-Locked-Loop 

The F1.t is a nonlinear element, but its input/output relation b almoat hear. It behaves linearly for 
40% changes ID input r i p d  frequency, and rtin work for loosC chow in frequency in the nonlinear mn. 
The test recorded in Fig. 4 attests to the dteuaaion above.. The hear rage  can 1. chosen by aekting 
parameters pnperly. 

,The FLL still worka when the amplitude of its input si& h, aa weak aa two quantiution intermla of 
the A/D ccnverter, if it L free of noise and biru, but in mal rpptiUtbns it mast be t m e d  od at d &vel 
of input signd to reduce the effect of noiac. 

The FLL can idetitifv the plant characteristic in a s d  rindow ol the &cqaency rpectrum, 10 tba: the 
effects of other parts of the ayrtem dynsmier do not have to be wten into aecoan4 if they are rot  critical 
to the overall performance. It em only detect modes that ere either only slightly damped or unatabk, since 
they can provide oscillatory sign& for detection; however, heavily damped modes ue u a d i y  robuat to 
parameter uncertainty and dw't need adaptive control 

(B) Parameter Error Correction Loop 

The parameter e m r  correction acheme w be determined by root-bcua analyam, or even by the LQG 
method, siuce the FLL haa a linear chluaeteristie. 

Fig. 12 shows some small-smplitnde vibration brrilding up due to the WI d r i p d  to lock the FLL, but 
the pvameter estimate emc  wm soon corrected and vibration s u p p d .  

By examining the reaponre to command h g e  and to dbtnrb.nees, it b band that the Se&lhning 
Adaptive Controller behaved dmwt the aune a8 tbe c o m t  h e d  o p t h d  controller, except tor bhe few 
cycles of vibration at the beginning when the pvnmcter error WIU being corrected. 

It is better to use the c m r  of an eatimated aenaor output to drive the FLL, mince it is undisturbed by 
the control force during a new command cbange if the model is correct. 

Both the identiaeatioa and error cometion are running in red time while' the controller ia  doinc Its job. 
Any change in the plant can be tracked and adapted to rapidly. 

VU. CONCLUSION 

The uae of FLL in identifying ryrtem vibration hquency and adapting controllet parameters b promis- 
ing, AH kinds of eootrolkn, roch u K a l m u ~  alter U I ~  state feedback, band-pur, or notch dlten CUI bave 
their parameter enom corrected in a rimilu way. It L expected that ayrtem with II).DY vibration modea can 
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be handled with several FLLI. 
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T.O. : initial turned o.. 
C.C. : step command &agec. 

Fig. 12 Step Response of the Adaptive Cortmllcr with FLL Detcctbg W kde)hg Emorb Pk.r hcq.cncl: 
(8) 80 ern?. 
(b) -lO%enor. 
(c) +25% error. 

(e) - S o % e m .  
(2) +50% error. 

(d! -25%err0r. 
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Fig. 13 Comparison of the Impobirt Disturbance Rcrp0.r~ betveen (a) tbe Nonadaptive Controller with No 
McrdcIing Error snd (b) the Adaptive One .ikr Its Parameter Error H.s Been Corrected. 
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ABSTRACT 

In a previous paper Schaechter proposes using an extended Kalman filter to 

The present paper shows that the time-varying gains for 
estimate adaptively the (slowly varying) frequencies and damping ratios of a 
large space structure. 
estimating the frequencies and damping ratios can be determined in closed-form 
so it is not necessary to integrate the matrix Riccati equatiots. 
tain approximations, the time-varying adaptive gain can be written as the.pro- 
duct of a constant matrix times a matrix derived from the components of the 
estimated state vector. This is an important savings of computer resources and 
allows the adaptive filter to be implemented with approximately the same effort 
as the non-adaptive filter. The success of this new approsch for adaptive 
filtering has been demonstrated using synthetic data from a ."wo node system. 

After cer- 

I. INTRODUCTION 

Adaptive esthation and control techniques are being studied for their 
future application to the real-time control of large space structures, where 
uncertain or changing parameters may destabilize standard control system 
designs. In a recent paper Schaechter €11 proposes using an extended Kalman 
filter to estimate adaptively the (slow y varying) frequencies and damping 
ratios of a large space structure. For a system with N states and M (slowlyvar- 
ying) parameters the extended Kalman filter requires integration of 3n N+M by N-W 
nonlinear matrix Riccati equation to determine the covariacce and gain for the 
fllter. 
the nonlinear matrix Riccati equation to be replaced by integration of a smaller 
set of linear matrix equations. The N states of the system are estimated using 
constmt gains determined off-line. The time-varying gains for estimating the 
(slowly varying) s? of M parameters are determined on-line by integrating an 
M by N set of linear matrix equations. 

Schaechter introduces approximations which allow the integration of 

The contribut2on of the work presented here is to show that the time- 
varying gains for estimating the (slowly varying) frequencies and damfing 
ratios can be determined in closed-form so it is not necessary to integrate 
the M by N set of linear matrix equations. This is an important savings of 
cmputer resources and allows the adaptive filter to be -'.mplemented with 
approximately the same effort as the non-adaptive filter. In particular, 
after certain approximations the time-varying adaptive gain can be written 
as the product of a constant matrix times a matrix derived from the components 
of the estimated state vector. The constant matrix ?.s determined off-line 
just as the constant gains for estimating the state are determined off-line. 
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The success of this new approach for adaptive filtering has been demon- 
strated on a computer simulation usicg synthetic data from a two mode system. 
Work in progress is applying the new approach to a much larger system using 
experimental data. 
resillts are presented in the paper. 

The theoretical development and preliminary experimental 

11. FORMULATION WITHOUT ADAPTIVE FILTERING 

The standard state variable formulation of the dynamic equations of motion 
are shown below where the dot indicates derivative, x is the state vector, u is 
the control vector, z is the measurement vector, and w and v are dynamic noise 
and measurement noise. [ 2 ]  

0 

x = FX + GU + r w  (1 1 

When'the dynamic system is pregisely known, a state estimator of the following 
form may be constructed where x indicates the estimate of the state x and K is 
the gain matrix. 

* * A 

x 0 FX + GU + K ( z  - Hx) A ( 2 )  
The differential equation for the estimation error ;= x - x ie obtained by 
subtracting Eq. (2 )  from Eq. (1). 

The differentia: matrix equation for the covariance of the estimation error P 
follows where R and Q are from the covariance of thz measurement noise v an 
the dynamic noise v. 

P o E E T )  
T + = (F - KH)P + P(F - KH) 

+ rqrT + K R K ~  

The optimal gain matrix K is chosen to minimize t,he trace of the estimate 
error covariance to give the usual result 

T -1 K = P P H R  ( 5 )  

Notice that €or a precisely known dynamic system, the estimatlon gains may be 
precomputed, even in the event of a time varying system. The analysie used 
with the adaptive filter cloecly parallels the development without adaptive 
filtering. 

111. ADAPTIVE FORMULATION AND SOLUTION 

Adaptive control may be required when ;he model in Eq. (1) is unknown, 
uncertain, or dependent upon a changing eystem configuration. The modifica- 
tions that need to be made in Eq. (1) in order to include the effect8 of an 

162 



uncertair. parameter are given below where the vector parameter a has a dynamics 
matrix C with dynamic noise w a' 

x = F(a)x + Gu -t rw 
a =  C a + w  a 
z = H x + v  (6) 

As can be seen from Eq. (61, the system dynamics are now a function cf  the vec- 
tor parameter a. In this formulation, the vector parameter a represents small 
changes from a nominal value r o  the average value of a is zero. These param- 
eters are assumed to be slowly varying so that they may be adjoined to the 
state vector. An adaptive state estimator may be written so both the st'ate 
vector and the vector of Faraaeters are updated using the measurements. 

1 A m 

x = F(a)x + Gu + Kx(z - Hx) 
I A 

s. = Ca + Ka(z - Hx) 

Let the symmetric matrices P, and Pa represent the covariance of C t . 1  mror in 
the estirates f o r  x and a, respecttvely, and let the rectangular matrAr. Pax 
represent the cross-covariance of the errors in the estimates of x and a. 
It is necessary to calculate these covariance matrices in order to determine 
t h e  optimal gains K, and Ka. The optimal gains are selected t o  minimize the 
trace of the covariance of the estimation error and have the following values, 

T -1 Kx = PxH R 

r -1 K = PaxH R a 

N 
n 

Proceeding as before, and assuming the esiimation error a = a - .  a is small, 
gives the vector differential equation for the error, 

k = - KaH + C z  + wa - Kav 

The n:s,rix differential equatio.18 for the covariance are: 
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dP /dt = 
X 

+ 
+ 

dPax/dt = 

+ 
+ 

dPa/dt - 
where. Fa = 

Pa(Fa;lT- KaHPx 
T 

K,iRKx 
m 

CPa + P$’ + Qa 
KaHpax * - Pax(KaH)T + Ka RK,T 

aF/ aa 

and R, Q, and Qa are covariances of v, rw, and w 

(without delta function). 
a 

The remaiader of this analysts will show approximations which can be used to 
reduce the coniputational effort needed to calculate the covariance matrices 
and the optimal gains when the covariance mal-rix P, is very sm.11 (of 
order c l  and the covariance matrix Pax I s  also very small (of urddr e). 
gain K, w i l l  be very small (of order c) because it is calculated frog Pax. 

The differential equaiion €or the covariance matrix P, will. involve somf  mall 
terms, but most of the terns are larger and constant. If the last two t a m s  
in the differential equation for P, are neglmted (beczuse they are small te:ms 
of order E ) ,  it is possible to calculate the steady-state constant valde of the 
covariance P,. From the cons’,ant value sf th? covariance P, the constant gain 
K, can be determined. As one might suspect, the constant gain 5 hias ,he saae 
value as it would have if there were no errors in estimating the paramecers e. 

The 

Becmse the covariance matrices Pax and P, are of order e, many of the tei 
in the differential equation for Pa : + ?  of order e squared. 
terms in the differential equation for Pa are neElectci? (because they ate v ’ I  

small cerms of order 5 squared), it is pc -sible to calculate the steady.-state 
value of the covariance P, (to order e) .  
steady-state value obtained for Pa is the S i l m e  valuc which’ would have heru 
obtained if K, were zero. 

If the last 

As one might suSpect, the constant 

All that remains is to calculate the time-varying covariance E a  si- st the 
needed gain Ka can be determined. Because the gain hss been ‘ 1  .: A tu 
equal P,HTR-I, the last two terme i:: the differential equation foi Pax cancel 
out. For the remaining analysis i t  will be aacumed there Are N btaie varj- 
ables so the first N/2 variables (designated he N / 2  length 1 vtor x*) cor- 



respond to mode position, ani the last N/2 variables (designated by the N/2 
length vect r x**) correa+ocd to velocity of mode position. 
equatioirs 'or the dynamics of the mode variabies without any forcing or dis- 
turbing terms are presented below where A* correspond9 to the damping terms 
(-2.90) and A** corresponds to the frequency terms (-w-). Notice both A* and 
A** are diagonal N/2 by N/2 matrices. 

The differential 

dx/&t = Fx 

dx*/dt = x** 

dr:**/dt - A*x*+A**x** 

Let there be LJ parameters in the vector a and arrange the order of the param- 
eters a so that the first N/2 garmeters axe the same as the elements of the 
dicgcnal matrix A* and the last N/2 parameters are the same as the elements 
of the diagonal matrix A**. Fu:;thermore, assume the N-by-N symmetric co- 
variance htrix Pa aSbvCidted with these. parameters is diagonal and composed 
of diagor.al sub-matri-as Pa* and Pa**, With these assusptions, the partial 
derivative can be w I in a partLcularly simple way where x* and xx* 
represent diagonal G ~ - . ~ L ~ ~ s  with the di3gonal elements equal to the vectors 
X* and x** 
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One further assumption is that che dynamzcs matric C (for the parameters a) is 
diagonal and equal to the scalar co times the identity matrix I. 
assumptions, the differential equation for the cross covariance Pax can be 
written as follows where 

With those 

x is a diagonal matrix made UF of the elements of x. 

dPax/dt = Pax(F-KxH+C) T 

- 

+ (Pa***[X3 IT 

where 

and 

c = coI 

The remai.rder of the analysis will deal with the cross-covariance matrix P, 
which is the transpose of the covariance matrix Pax. The differential equa- 
tion for the cross-covariance Pxa cag be written as follows: 

dPxa/dt = F* Pxa + P a *** ['I 
where F* = F - Kx H + C (14) 

The linear matrix differential equation for Pxa has particularly desirablc char- 
acteristics. All the terms in the differential equation are known constants 
(because the gain Kx and the covariance Pa arf known and constant) except for 
driving terms due to estimates of the stat_e If the approximation is made 
that the derivative of the forcing terns x is equal to the dynamics matrix F 
times G, then, except for trmsieut terms, the solution to the linear matrix 
differential equation for Pxa can be written in closed form as a linear com- 
. ;pa;ion of the torcing terms 2. This is similar to the result in elementary 
iinear differential equations where the general solution is composed of the 
sum of the homogeneous solutfofi due to the unforced different,al !quation and 
the particular solv'.ion due to the forcing function. 

Because the forcing funct'ion [;I is a diagonal matrix, the first element $1 is 
the forciig te? for the firs; column of the solution for the matrix P 
second element x2 is the forcing term for ?he second column of the matrix Pax, 
and so on. 
P2X. The linear matrix-vector differential equation for the i-th column can 
be wrltten as follows where Pairis a scalar which is the i-th element of the 
dipqonal matrix Pa and ;1 's, a scalar which is the i-th element of 2 and Pf is 
is the i-th col-nn of the matrix Pa*** which is all zeroes except for entries 
eqiial to tne diagonal tlements of Pa 

x. 

the 

L e t  Pi be a vector which represents the i-th column of the matrix 
av' 
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A 

dPi/dt = F* Pi + Pi* xi (15) 

The solution for the vector Pi is assumed to be composed of the sum of-two 
vectors. 
(corresponding to the estimate of the position of the mode) and the second 
vector is the constant vector Gi times the scalar & 
estimate of the velocity of the appropriate mode). 

The first vector is the constant vector Ei times the scalar xj 

(corresponding to the 

where for i 5N/2 then j = i and k = i + N / 2  

for i >N;2 then j = i-N/2 and K = i 

The derivative of the vecfor Pi can be ca!culated direct1 

and 
derivative of the vector x is equal to F x with A: 
represent the j-th element of the representative aiagona 
up F. 

if it assumed the *' being scalars which 
matrices which make 

dPi/dt = E i 1  ds /dt + Gidjik/dt 

= Fi< + G i A*< j j + GiAj**< 

Substituting the expression for the assumed form of the vector Pi and the 
expression for the derivative of the vector Pi into the differential equation, 
g i v e s  the following equations where 6ij i s  a discrete delta function which is 
unity if i equals j and zero otherwise. 

* 1 

= F* E x + F*Gi% + 6 P *X + dikPk* xk i j  i j j  1 
A 

Collecting all terms which multiply the scalar x 

equation. 

gives one vector equation 
and cglleccing all terms which multiply the scal a r Gk gives a second vector 

The- 2 are two vector equations and two unknown vectors Ei and Gi. 

G i J  A . *  = F*Ei A SijPj* 

Ei + G A ** = F* Gi + 6ikPk* 
i j  

(19)  
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The expression for Ei obtained fiom the second equation is substituted into the 
first equations to give a single equation with the unknown vector Gi 

Since n * and A ** are both scalars, it is possible to solve directly for the 
unknown vector 'Gi where I is the identity. j 

In the same way, the expression for Gi obtained from the first equation is siib- 
stituted into the second equation to give a single equation with the unknown 
vector Ei. 

It is again possible to solve directly 

Thus the cvo unknown vector quantities 
quantities so the covariance vector Pi 
matrix P can be determined. ax 

[-15 (F*-IA.**)P.*+6. A *Pk* ij J J ik j (23) 

Ei and Gi can be determined from known 
and the approximation for the covariance 
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IV. SIPJUTION RESULTS WITH TWO MODES 

The new, simplified adaptive formulation was first tested vith a single 
After encouraging results were obtained with one mode, a tgo-mode mode system. 

system was examined. 
shown in Figure 1. 

The two-mode system used in the simulation studies is 

FIG. 1 TWO-MODE SYSTEP- 

The system consists of two masses, M, three springs, K, and three viscous 
dampers, B. For this study, M=l, K = l ,  and B10.10. Control forces may be 
applied to both masses, random external forces disturb both masses, and noisy 
measurements of the position of both masses are available. 
are used for estimating the state vector, and for estimating the parameter 
vector. The differential equations representing this system are: 

The'measurements 

z1  = x1 + v1 

z2 * x2 + v2 

The natural frequencies and damping ratios of this system are: 

w1 = 1 c1 = 0.05 

w2 - 1.732 c2 = 0.0869 

where the low frequency mode is the common mode motion of the two masses. 
spectral densities of both the process and measurement disturbances (Q and R) 
are 0,0163. 
during a sixty second computer simulation. 

The 

Tw43 hundred position measurements of both the rnames were made 
This sixty second duration was 
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selected to assure about ten oscillations of the lowest frequency mode. 
sample rate was selected to give about ten samples per cycle of the highest 
frequency mode. 
that are to be estimated was 250 seconds (so Co is 1/250). 
larger than the time constants of the system. 
value is important in order to allow the adaptive filter to average values 
over several cycles of the system. The fol' )wicg table gives a summary of 
the test cases. In each case, both the standard, non-linear extended Kalman 
filter, and the siuiplified extended Kalman filter described in this paper 
were run in order to make comparisons. In all of the cases studied thus 
far, these two cases were indistinguishable, except for a small, initial 
transient. This transient effect is attributed to beginning the standard 
extended Kalman filter covariance integration with values slightly different 
from the steady state values. 

The 

The value of the correlation time constant for the parameters 
This value is much 

The selection of a "large" 

r 

CASE 1 w 1  unknown 5 known no noise 1 

w2 unknown c2  known 

CASE 2 W 1  unknown Cl unknown no noise 

w2 unknown c2 unknown 

CASE 3 unknown C1 unknown 

5 unknown 

-. ~ L 

r.oise 

2 
7- -. 

The results are shown i the following figures and are discussed below. 
In Case I the starting estimates for the natural frequencies were chosen 
to be 10% in error with w 1  estimated to be 0.9 (rather than 1.0, and 9 
estimated to be 1.559 rather than 1.732). The damping parameters were 
exact, and no noise was present in the system. The results for the estimate 
of W 1  (Fig. 2) show that the modal frequency is very readily identified from 
the measurements, inspite of the 10% initial error in the estimate. 
system response diminishes, less information is available for updating the 
parameters. Consequently, with no new information coming into the system, 
the parameter estimate begins to return to its nominal value (0.9) with the 
selected time constant of 250 sec. 

As the 

The estimate of 9 behaves similarly. 

In Case 11, the objective was the same as in Case I with the additional 
problem of simultaneously estimating the damping parameters. 
estimates of the damping parameters were zero. The results of :hc poor ini- 
tial guess of the damping parameter are evidept in Fig. 3 .  
of the modal frequency tends to be lightly damped, but in all other aspects, 
the estimate of W1 appears to have the 
Case I. As has been found in past 

The initial 

The estimate 

that were present ~ I I  

estimate of the dampii; 
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parameter itself is quite poor. 
measux emen t contains very 1 it t 1 e damping info nuat ion. 

This is due to the fact that the position 

Cast! I11 is identical to Case I1 with the addition of both process and 
measurement disturbances. Surprisingly, this case yielded the best results, 
as is evident in Figures 4 and 5 .  
visible in the figures. However, in contrast with the previous two cases, 
the process noise continues to excite the system after the transient effect 
of the initial conditions have subsided. The result is that the measurements 
continue to provide informatj.on on the parameters for the duration of the 
simulation. 
less perturbed by the external disturbance, the improvement in the natural 
frequercy estimate of mode two is not as dramatic. 

The effects of the .ioise are clearly 

Since the higher frequency mode is more heavily damped, and is 

CONCLUSIONS 

This paper has developed approximations which allow dramatic reductions 
in the on-line computational requirements of the extended Kalman filter. 
Numerical simulations of this technique have validated the approach for two 
simple spring-mass systems. It was found that the full non-linear extended 
Kalman filter and the closed-form adaptive filter developed in this paper gave 
virtually identical results. Work is currently in progress to apply this 
ipproach to a much larger system using experimental data, rather than simulated 
data. 
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TI 
FIGURE 2 Estimate of o1 (CASE I) 

FIGURE 3 Zstimiite of w1 (CASE 11) 
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TIME 
FIGURE 4 Estimate of w1 (CASE 111) 

TRUE w2 

TIME 

FIGURE 5 Estimate of w2 (CASE 111) 
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ROBKST ADAPTIVE CONTROL 
K. S. Nartndra and A. M. Ammwamy 

Yale University 
New Haven, CI' 06520 

ABSTRACT 

The paper discusses swreral concepts and results in robcst adaptive control 
and is organized in three parts. 
Different formulations of the problem and theoretical solutions that have been 
suggested are reviewed here. 
role of persistent excitation in robust adaptive systems and the use of hybrid 
control to inprove robustness. 
research are suggested which combine different approaches currently known. 

The first pal. "ir.;eys existing algorithms, 

The second part contains new results related to the 

In the third part promising new areas for future 

1. INTROEUCTICN 

The stable adaptive control of linear time invariant plants, in what is now 
termed "the ideal case", was resolved in 1980 [l-41. 
[1-4] regarding the plant to pro\-e global stability are quite stringent. 
cally, knowledge of the sign of the high frequency gain K , the relative degree 
n* and an upper bound n on the order af the plant transfe! function are assumed 
to be known. 
lie in the left half plane, the plant parameters are constant (though unknown) and 
the system is disturbance free. IIowevar, in practice, these assumptions are rare- 
ly met. No actual plant is truly linear, finite dimensional or noise free. Fur- 
ther, in practical situations, the rationale for using adaptive control is to com- 
pensare for large variations in plant parameters, In the presence of such devia- 
tions from ideal conditions, the algorithm suggested in [l-41 no longer assure 
the boundedaess of the signals in the adaptive loop. 
interest in the. past few years in what is termed robust adaptive control to 
achieve satisfactory performance in the prese .;e of both wdelinp, and operating 
uncertainties. 
been made in this direction, presents some new results for improving robustness 
and discusses promising directions for future research. 

The assumptions made in 
Specifi- 

Further it is assumed that the zeros of the plant transfer function 

This accounts for the wide 

This >aper attempts to survey some of the modest gains that have 

Adaptive systems are special classes of nonlinear systems and many questions 
which arise in such systems can be stated as problems in the stability theory of 
differential equations. In particular, questions of robustneds can be addressed 
using amply discussed results cn practical stability and total stability. Since 
such results are bound to find increased application in adaptive systems,some of 
the more frequently used concepts, definitions and theorems are collected in 
section 2. 

Recent years have witnessed many contributions to the robustneso problem. 
Among these some assume additional prior information regarding the UP !rtainties 
to suitably mcdiry the adaptive algorithms [S-9  ] while others assi. that the 
reference inputs possess properties which make the ideal system E ,,onentially 



stable. 
the true situation deviates in specific ways from the ideal. 
lytical results which are currently known are presented in section 3. 

In all cases it is shorrn that boundedness of solutions is assured when 
Some of these ana- 

Sections 4 and 5 contain some new results on persistent excitation and hy- 
In sec- brid auaptive control which are relevant to the problem of robustness. 

tiun 4 a nonlinear error equation of second order is discussed in detail. While 
the ideal system is uniformly asymptotically stable it io shown that unbounded 
solutions can result if the disturbance is sufficiently large. It is also shown 
that by increasin,: the dezree of persistent excitation of the reference input the 
overall system can be made practically stable. 
trgl algorithms recently introduced by the authors [lo]. The same algorithms can 
also be modified to adaptively conLro!. discreti plants by updating control param- 
eters infrequently. Some plausible arguments are given towards the end of the 
section as to why such  algorithms -lay be more robust than continuous algorithms 
when external bounded disturbances are present. 

Section 5 discusses hybrid con- 

Finally, in section 6 ,  possibie :lays of combining known methods are discussed 
in the.hope that: it will stimulate research in these new directions. While no 
hard results exist in these areas the suggestions are based on extensive simula- 
t ion studies. 

2. MATHEMATIC-4L PRE',IHINARIES AND STAdILITY RESULTS 

Some well known concepts and results of stability theory which find frequent 
application in the analysis of adaptive systems are included in this section. 
Ziile they can be readily found in any good text [11-13] we present them here fox 
easy reference as well as to place some of the problems discussed.in the follow- 
ing sections in proper perspective. We start with the definiLions of uniform 
asymptotic and exponential stability of the solution x = 0 of an equation 
3 = f(x,t), f(0,t) = 0. We assume that f is continuous and satisfies condicions 
which guarantee the existence and uniqueness of solutions and continuity of their 
dependence on the initial conditions. The general solution of che differeiitial 
equation is denoted as p(t,x ,t ) with p(tO,xO,tO) = xo. 0 0  

differential equation J = f(x,t) is uniformly asymptotically stable if it is uni- 
0 and all c2 > 0 there is a T(c1,c2) > 0 such that formly stnble and for some E 

IIxo JJ < cl implies11 p(t,xo,tO) II < 

(ii) Definitjon (Exponential Stability) : The equilibrilim state of the equation 

(i) definition (Uniform Asymptotic Stability): The equilibrium x = 0 of the 

1 
for all t >c t,, 4 T. 

= f(x,t) is exponentially stable if two positive constants a and t3 which are 

A linear time-invariant system with f(x,t) = Ax where A is a constaat nlatrix 
is asymptotically stable if the eigenvalue. of A arc in the open left t .If of the 
complex F'Lane. Asymptotic, uniform asymptotic and exponential stabiiity are 
equivalent in this case. 
does not iaply uniform asymptotic stability whereas the l.atter is equivaleric to 
exponential stability. For linear systems, all stability properties hold in the 
large. In general, for nonlinear systems exponentfal stability implies uniform 

For linear time-varying .,yatems,asymptotic stability 
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asymptotic s t a b i l i t y  but not  v i ce  versa.  
t, a l l  s t a b i l i t y  p rope r t i e s  are uniform. 

I f  f ( x , t )  is autonomous o r  per iodic  i n  

I n  robust  adapt ive con t ro l  w e  are in t e re s t ed  i n  deducing the  p r o p e r t i e  nf 
t he  so lu t ions  of a perturbed system (S  ) from t h e  tehavior  of t he  so lu t ions  of an 
unperturbed system (S) . These are d e s k b e d  by the d i f f e r e n t i a l  equations 

a 

A = f ( x , t )  (S) 3 x a f h t )  + g(x,t)  (SP) (1) 

L e t  the  equi l ibr ium state of (S) be exponent ia l ly  s tab le .  
f o r  s u f f i c i e n t l y  small b and 6 ,andl lx l l<  6,then the equi l ibr ium star-  of (S ) i s  
a l s o  exponentially s t a b l e  1111. I n  physical  s i t u a t i o n s  t h e  condi t ion g(0,tY = 0 
required above is  not  general ly  m e t  and t h i s  gives  rise t o  the  concept of t o t a l  
s t a b i l i t y  . 

If Ilg(x,t) l l  < L Y 11 

( i i i )  Defini t ion (Total  S t a b i l i t y )  [’lj: The equi l ibr ium state x = 0 of (S) i s  
t o t a l l y  s t a b l e  i f  f o r  every E > 0 two p o s i t i v e  purnbers 6 (E) and 62(~) e x i s t  such 

t h a t  every so lu t ion  p ( t , x  
1 

t ) of (S ) sa t i s f i e s I lp ( t , xo , tO) I (  < E, t >c tO provided 
IIxob < 61 and) lg(x , t )  I<  0, 62’ o P 

In  the  Russian l i t e r a t u r e  t h i s  is a l s o  re fer red  t o  as s t a b i l i t y  under per- 
s i s t e n t  disturbances.  
implies t o t a l  s t a b i l i t y  [ll] and is  frequent ly  used t o  prove robustness of adap- 
t i v e  sys tems i n  the  presence of s u f f i c i e n t l y  small per turbat ions.  
magnitude cons t r a in t  on ~ ( x  11 i n  t he  d e f i n i t i o n  of t o t a l  s t a b i l i t y  has been relaxed 
by Ande:-son and Johnstone ?8] a t  t h e  expense of s t ronger  condi t ions on f ( x , t ) .  

The uniform asymptotic s t a b i l i t y  of t h e  li- Jetturbed sys tem 

Recently the 

I n  p r a c t i c a l  s:ftrters w e  are inta-rested I n  t h e  uniform boundednees of t he  aolu- 
t i o a s  i r ?  t h e  presence of perturbat!ons as w e l l  as i n  t h e  magni:Jdes of t h i s  bmnd. 
This leads  t o  the  concept of p r a c t i c a l  s t a b i l i t y  d e f a e d  below. 

( iv)  Def in i t ion  (P rac t i ca l  S t a b i l i t y )  [12]: L e t  Qo - { X I  I lxfl  < 6,) be open 

set i n  1p 

I f  the  so lu t ions  of (S ) l i e  w i t t i n  R c lose1  bounded set Q =)Qo f o r  xo E Q, then 

n 
0‘ and 6* > 0 a constant  such t ha t I lg (x , t ) l l  < f o r  a l l  x and L 2 t 

P 
the  s y s t e m  (S) is said-  t o  be p rac t iL -21~  s tab le .  

Total  s t a b i l i t y  assurz8 t h e  ex is tence  of Q, and 62 r e l a t i v e  t o  which the  eys- 

tern (SI is Dract ica l ly  s t a b l e  but  provides no way of est imat ing the  s i z e  of Q or 
the  magnitude of 6 In adapt ive cont ro l  appl ica t ions  t h i s  i s  not adequate. ‘One 

is more in t e re s t ed  i n  determining an estimate of Q from a knowledgd of 6 
2’  

2 ’  

An a l t e r n a r i v e  method f o r  t r ed t ing  the  e f f e c t  of p e r t u r .  t i ons  is  by consid- 
e r ing  them arl bounded Independent functiona of time. 
concept of bounded input - bounded output (BIBO) s t a b i l i t y .  

This leads t o  the  WI C 1  known 

(v) DefiniLlon ( B I B 0  S t a b i l i t y ) :  A system 4 - f (x ,u , t )  with i (” ,O, t )  = 0 is 
BIBO s t a b l e  i f  f o r  every a >c 0 and every a 3 0 there  i s  a 3 = e(a ,a)  w c h  tha t  
JIpu(~,xO,tO)l l  i 6 f o r  a l l  T >c t f o r  every ? .ni t ia l  condition (x 0’ t c ) with 

I/.+,..’! f a and s y p  I Ju ( t>  116 a, where p (-, 

i @ # > . ! I -  u( * ) ,  

0 
t ) 18 tne so lu t ion  of t he  s y s t e m  with 

u xoD 0 
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A liilciar s y s t e m  x = A(t)x + b ( t ) u  is  L'dG s t a b l e  i f  the  homogeneous p a r t  1.8 
This is a property which i s  f requent ly  used i:: 

In con t ra s t  

A similar 

unifcrmly asymptoticallv s t ab le .  
robust adapt ive cont ro l  using the  concept of p e r r i s t e n t  exc i t a t toc .  
t o  the  above, uniform asymptotit s t a b i l i t y  of a nonlinear system daes not imply 
B I B 0  stabi1it .r .  An example of t h i s  bas given by Desoar et a1 [14]. 
situ; . t ion arises i n  the  discussion of robustness of a second order  nonlinear eye- 
tern i n  e rc t ion  4. 

S t a b i l i t y  Problems i n  Adaptlve Syste 3: Thc study of t he  s t a b i l i t y  cr adapt ive 
systems (2s shwn In t he  following s t c t ions )  can be conveniently ca r r i ed  out  usiul 
a set of n m l i n e a r  time-varying e r r o r  d i f f e r e n t i a l  equations. Even i n  the  ".'Ai.al'' 
o r  dis turbance f r e e  case the  t ime-variations arise due to t h e  presence of t he  
reference input  r ( * ) .  
s t a b i l i t y  quest ions which arise i n  adapt 

-- 

The foilowing are qome noteworthy f ea tu res  of many of the  
e systems.  

(i) In  the  !deal case, a Lyapunov funct ion V > 0 with '5 . J can ne found. The 
r.egntive semi-definiteness of 3 cannot he avoided and is  D r e s u :  i. ci t h e  adap t iv i  
l a w  used. 

( i i )  h:' a result of ( i )  even the  unforced (autonomousj P. cea is uniformly sta- 
ble .  Even when t n e  reference input  is p e r s i s t e n t l y  exc i r in s ,  3 6 0 buc t h e  system 
can be shown t a  be uniformly asymptotically s t a b l e  [15]. 
theorem cannot be d i r e c t l y  appl ied Lo prove t h i s  s ince  the  sys tem is nonautonomous. 

We note  t h a t  LaSalle 's  

( i i i)  Since the  sys tem is exponentially sta. !.e with a p e r s i s t e n t l y  exc i t ing  ref-  
erence input ,  Malkin's theorem can be used t o  conclude t h a t  t h e  so lu t ions  w i l l  be  
bounded f o r  some i n i t i a l  set Q and per turba t ion  of magnitude $ & However, velry 

: i t t l e  can be sa id  d i r e c t l y  about e i t h e r  Qo o r  &2. 

boundedness of so lu t ions  u d n g  Lyapunov's Direct method f o r  given bounus on per- 
tu rba t ions  is no longer t r i v i a l .  Sowe of these caws are <:onshered i n  sec t ion  3. 
In sec t ion  4 i t  is shown tha t  even v' m the  reference inpu. is persis*.entiy exc i t -  
ing,  i f  the  diaturbance is l-cge thc. ; ~ l u t i o n a  can be unbounded. klccrnli tely,  f o r  
a given bound on the  dis turbance the  p r s i a t e n t  exc i t a t ion  cm Ee made su f f i c i en t -  
l y  l a rge  t o  assure the  boundednest of the solut ions.  

0 2'  

(iv) Aaother CL .sequence of t he  eemidefiniteness of 9 is t h a t  assur ing  even the 

3. ZECENT XESULTS Ih ADAPTIVE CONTROL 

In  t h i s  s e c t i . n  we attempt, t o  survey b r i e f l y  some 01 t he  theo re t i ca l  r e s u l t s  
cur ren t ly  known ir. the  area of robust adaptive control .  The a i m  of t he  sec t ion  ia 
t o  provide an understanding of t he  q u a l i t a t i v e  idea? t h a t  l6.d t o  these  r e s u i h  8 4 

well  as the  analy . i c a l  toola  used I n  derl.*;'-ng them. Sincr the i d e a l  system rclrma 
the  s t a r t i n g  point of a l l  perturbatiols a.:Ayses, w e  s h a l l . b r i e f l y  o u t l i n e  the  
statement of the  oroblen end tne proof of s t a b i l i t y  i n  ch is  case. Further,  whiie 
severa l  s t a b l e  ad,iptive a lgor iL , im have bee:r suggested f n  the  l i t e r a t u r e ,  w e  s h a l l  
d i scuss  the  proof of s t a b i l i t y  using only 
proof8 using a l l  the  o ther  algorithms follow along similar l i l ies .  

2 a lgLr i thm proposed in [16]. The 

a )  ge;l System: The plant  
e 
x = A , x  4- 

P P P  

t o  be  c o n t r d i e d  i s  describe3 by the  r a t e  e q w t i c n s  
w 

b u  
P yP = cP P 

178 



and a re ference  mo&l is ciescribed by . .F 

x m = A x  m m  + b m r  ; y m = c L x  m m  (3)  

where v, , u and y 
x anu 'ym are the  st4tt: anb o u t p t  of t h e  model. The t r ans fe r  funct ions of 

t he  p lan t  and m d e l  ace- 

are rzspecti-rely the  state input  and output of t h e  p l an t  and 

m 

T -1 % K 2 (s) 

r, .\s; 
T 

Rm(s) 
Wp(s) = cp (s1-Ap)-lb = Lk ; hm(s)  = cm (sI-Am) bm * 

r. 
P 

The following assumptions a:- r i-le regarding W (s) and W ( 8 )  P m 
(i) Z (s) , R ( 8 )  and d -) are m r t c  polynomi '-s of degrees m, n and n*=n-m 

P P 1 

P m (ii) 7 (s) and R (9) ax, . t r i c L l y  SCdbk polynomials 

and ( i i i )  r is a piecewise cantinuous unuormly bounded reference input.  

The objec t ive  is t o  co t r J  the  p l an t  i n  such a fashion t h a t  t he  output e r r o r  
between p lan t  and model e 

na l s  and parameters of t h e  sys tem remain uniformly bounded. 
t ha t  knowledge of :he exact r e l a t i v e  degree n* of t he  p lan t ,  an upper bound n on 
i ts  order,  tho s ign  of t he  gain K 
given i n  ,ii) are needed t o  solve 'he problem. n* enables the  model t o  be con- 
s t ruc ted  while the  value of n detLLmines the  order  of t he  con t ro l l e r  t o  be used. 
The s ign  of K and the  cons t r a in t  on Z (s) are needed t o  prove t h e  s t a b i l i t y  of 

s = v - y, t w d s  t o  zero asymptotically,  while the  s ig-  

It is  now w e l l  known 
1 9  

and the  condi t ion t h a t  2 (5) be  Hurwitz as 
P P 

the  ove ra l l  spstem. P 

St ruc ture  of Control ler :  
K - Km = 1. 

ing equations is used: 

I n  the  following we s h a l l  assume t h a t  K is known and 
To meet the  cont ro l  ob jec t ive  a c o n t r o l l e r  descr ibe1 by t h e  follow- 

I' 

where F I s  an asymptotically s t a b l e  run matrix, (P,g) is cont ro l lab le ,  

w = [ w ( 1 ) T s b ( 2 )  ] and 6 ( t )  is  a 2n dimensional parameter vector  which is  t o  be  
adjusted adaptively.  
e x i s t s  such t h a t  t he  t r a n s f e r  funct ion of t he  p lan t  together  with t h e  con t ro l l e r  
matches tha t  of the  model exact ly ,  when e ( t )  E e*. 
is t o  ad jus t  9 ( t )  i n  such a mpwier t h a t  :he ove ra l l  system is global ly  s t a b l e  and 
lim e,(t)  = 0 .  
t- 

s idered,  we discclss below the  general  case when W !s) has a r e l a t i v e  degree 

n* 3 2. 
of the  p lan t  can be expressed as 

T T 

It is w e l l  known [17]  t h a t  a unique constant  vector  8* 

The a i m  of t he  adapt ive l a w  

While severa l  dpecial  cases of t h e  adaptive cont ro l  problem have been con- 

P A I f  e ( t )  - e* - + ( t ) ,  then + is t he  parameter errqr vector  and the  output 



The Adaptive Scheme: 
is  added t o  e ( t )  t o  generate an augmented e r r o r  E (t) I f  

To generate the  adaptive l a w  an aux i l i a ry  e r r o r  s igna l  y (t) 
a 

( 6 )  

1 1 

then 

vhere W ( s ) I w  = i. 
mented mrrror E (t)  and the  s igna l  C ( t )  and is  given by 

The adaptive l a w  f o r  updating e ( t )  then depends on t h e  aug- 

- El(t )S(t )  

1 + s T ( t ) r ( t )  

1 

G(t) = i(t) = ( 8 )  

rh i s  has been shown t o  r e s u l t  i n  global  s t a b i l i t y  of t he  adaptive loop [16]. 

Proof of Global S tab i l i t y :  
T 

I f  V(4) = 1 / 2  ()i + s  t h e  adaptive lav ( 8 )  y i e l d s  
2 

-El ( 0 )  

1 + sT(t)s(t) 
i ( 6 )  = 

from which i t  follows t h a t  

( i )  # and are uniformly bounded 

(ii) E L2 
2 and ( l i i )  E l ( t )  = u ( t ) [ l  + ~ ~ ( t ) s ( t ) ] ~ ’ ~ ,  u 8 l. 

Since the complete proof is too long and involved to  be included here  i n  its 
en t i r e ty  we merely ou t l i ne  the  p r inc ipa l  s t eps  involved. 

(a) Since the parameter vector is bounded by (i) it is f i r s t  shown t h a t  

S U P I Y p ( T )  1 ‘L sup 1 P’, (TI(:  % SUP ((wll Q SUP 1 I;(?) u (10) 
T , < t  TSt T d t  Tdt 
is an equivalence r e l a t i o n  and Implies t h a t  t h e  corresponding signals i n  Here 

(10) grow a t  t he  same rate [is]. 

(b) .  Since 6 e L it can be shown that ya(t) grovs at a. slower rate than 2 

sup B w ( T ) ~  denoted by ya ( t )  - o[sup M ~ ( T )  fl 1. 
T , < t  T < t  

(c)  From (5) ,  (9- i i i )  and (11) it follows t h a t  

z 
(d) Since v E L using equation f4) we conclude t h a t  

sup\\ w(2)  (T) 11 - o sup 11 W ( T )  11 which cont rad ic t s  (10). 
T d t  Tdt 
Hence a l l  the  s igna l s  i n  the sys tem are uniformly bounded and l i m  el(t) = 0 .  

t-w 

(11) 
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The importance of demonstrating the  boundedness of b ( t )  and 4 E L 2 i n  t he  
proof of f t a b i l i t y  is worth noting. 
t h a t  l i m  O(t) = 0 .  which serves  t h e  same purpose.] The former assures  t h a t  the  

relevant  si n a l s  i n  (10) grow a t  the  same rate while the  l a t te r  is used t o  prove 
t h a t  I y  ( t ) r  andllw2(t)l l  should grow at d i f f e r e n t  rates i f  t he  adapt ive cont ro l  

P 
is used ,  leadiag t o  a contradict ion.  

[ I n  some cases it may be poss ib le  t o  show 

t- 

Asymptotic S t a b i l i t y  of the  Idea l  System: Once the  boundedness of a l l  t he  s igna l s  
i n  the  adapt ive system has been establ ished,  i n t e r e s t  s h i f t s  t o  t h e  convergence 
of t he  parc3eter  vector  8 ( t )  t o  its des i red  value 8* or equivalent ly  of +(t) t o  
the  n u l l  vector. Since the  adapt ive l a w  (8) can be represented as 

i(t) = 

t he  condi t ions t h a t  have t o  be imposed on r ( t ) * . t o  accomplish t h i s  is of in t e re s t .  
Following the  r e s u l t s  of Morgan and Narendra [ l g ]  i f  s( t)  is pers i s ten t -  

41 + sT(t)stt) 
l y  exc i t ing  l i m  $ ( t )  * 0 and t h e  convergence is exponential. Since Wm(s)Iu = s, 

t- 
a s u f f i c i e n t  condi t ion f o r  ~ ( 0 )  to  be pe r s i s t en t ly  exc i t ing  is t h a t  u(*)  is per- 
s i s t e n t l y  exc i t i ng  [lS].  Hence condi t ions under which w ( * )  w i l l  be pe r s i s t en t ly  
exc i t i ng  have beell invest igated by several authors  [15,20-22]. 

Pe r s i s t en t  Exci ta t ion (PE) of w ( t )  and w*(t): 
the  parameter vector  t o  the  n u l l  vector were stated in ’rems of the  PE of u( t ) .  
However s ince  w(t)  is a dependent va r i ab le  within the  adaptive loop, very l i t t l e  
can be sa id  d i r e c t l y  about its p e r s i s t e n t  exci ta t fon.  Hence attempts were made t o  
express t h i s  condition i n  terms of t he  PE of signals i n  the  model which are a t  the  
d iscre t ion  of the  designer. Since the  adapt ive system and w d e l  t r ans fe r  funct ions 
are iden t i ca l  when e ( t )  E 8*, the  model can be parametrized i n  such a fashion that 
a s igna l  w* i n  it would correspond t o  the  signal w ( t )  i n  t he  adaptive loop. Fur- 
ther  s ince the  model i s  t i m e  inverian , condi t ions on r(t) which would assure  the  
PC of w * ( t )  can be derived. I f  u ( t )  w ( t )  - u*(t) ,  t he  adaptive l a w  assures  t h a t  
l i m  w ( t )  = 0. Hence, i n  the  idea l  case the  PE of u*(t)  ensures t h e  PE of w ( t )  
t- 
and hence the convergence of the  parameter vector  8 ( t )  t o  its t r u e  value. 

Early r e s u l t s  on the  convergence of 

% 

Ctaments: 

(i) The above arguments have focussed a t t en t ion  on several i n t e r e s t i n g  ques- 
t i o a s  re la ted  KO per s i s t en t  exc i t a t ion  and transforPrations’.under which the  proper- 
t y  is preserved [15]. 

(ii) The convergence of z<t)  tci 0 i s  used above t o  show the  PE of w ( t )  and hence 
the  convergence of $ ( t )  t o  0 .  This i a  no longer possible  when an external  dis-  
turbance is present s ince  even the  boundedness of the s igna l s  is not assured i n  
such a case. 

(iii) From the  r e s u l t s  of several  authors i t  is now known t h a t  an almost per iodic  
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re ference  input  with n - d i s t i n c t  frequencies r e s u l t s  i n  t h e  PE of w ( t ) .  

b) Adaptation Under Perturbations:  
t i on  (3a) assumed idea l  conditions.  

The adaptive cont ro l  system described i n  sec- 
The p lan t  was l i n e a r  and time-invariant and 

no external  dis turbances were present. I n  addi t ion,  considerable p r i o r  knowledge 
of p lan t  t r ans fe r  c h a r a c t e r i s t i c s  vas assumed t o  help i n  s e t t i n g  up a reference 
model and der iving s t a b l e  adapt ive l a w s .  A s  mentioned earlier, p l an t s  are r a re ly  
s t r i c t l y  l i n e a r  o r  f i n i t e  dimensional and i n  many p r a c t i c a l  s i t u a t i o n s  the  need 
f o r  adapt ive cont ro l  arises due t o  l a rge  parameter var ia t ions .  Also, externa l  in- 
put and output disturbances are invariably present  i n  real systems. 
is a d e f i n i t e  need t o  extend t h e  theory developed f o r  t he  idea l  case t o  s i t u a t i o n s  
with modeling errors and ex terna l  disturbances.  
been proposed i n  recent  years  t o  achieve robustness i n  the presence of such per- 
tu rba t ions  are b r i e f l y  reviewed i n  t h i s  sec t ion  and sow new r e s u l t s  are reported 
i n  sec t ions  4 and 5 .  

Hence the re  

Some of the  schemes t h a t  have 

The bas ic  adaptive sys t em i n  the  idea l  case is only uniformly s tab le .  
implies t h a t  bounded per turbat ions can theo re t i ca l ly  produce unbounded outputs. 
When t he  reference input  is pe r s i s t en t ly  exci t ing,  t he  nonlinear system is uni- 
formly asymptotically s t a b l e  i n  t h e  l a r g e  and exponentially s t a b l e  when the  in i -  
t i a l  state x . 

BIB0 r e s u l t s  t o  be  derived using theorems c f  t he  type described by b l k i n ,  pro- 
vided the per turbat ions are s u f f i c i e n t l y  small. However, as pointed out  i n  sec- 
t i o n  2, very l i t t l e  can be sa id  using such an approach about the  e f f e c t  of bounded 
per turbat ions of a spec i f ied  aaxipupp amplitude on the  global  behavior of t he  solu- 
t i ons  of the  adapt ive system. 
global methods have a l s o  been used t o  der ive  r e s u l t s  i n  robust adaptive sys tem.  
The pr inc ipa l  concepts involved i n  der iving some of these  are discussed below. 

This 

lies i n  8 f i n i t e  b a l l  around the  or igin.  The latter f a c t  allows 0 

I n  addi t ion  t o  such per turbat ion methods a few 

(i) Use of Dead-Zone - IS]: The problem statement is 
idea l  s y s t e m  with the  exception t h a t  y 

turbance. Using the  same adaptive l a w  (8) as i n  the  
t ions  can be expressed a s  

= c Tx + v 
P P P  1 

9 T ( t ) r ( t )  + v ( t )  = €(t) 

at) = 
1 + sT(t)rs(t) 

and 

-I-& ( t 15 ( t )  

similar t o  t h a t  given f o r  t he  
where v is a bounded dis- 

i dea l  case, the  e r r o r  equa- 
1 

(14) 

(adaptive l a w )  

where v is  an equivalent output disturbance due t o  vl. 

t o  the presence of v ( t )  i n  (14). 
i n  the  r igh t  direct ion.  
its desired value. 
is of the order of the  vound v of v ( t ) .  The modification i n  the  algorithm sug- 
gested i n  [ 5 ]  is t o  use a dead-zone so t h a t  the  adaptive parameters are not ad- 
jus ted  when c ( t )  lies ins ide  it. 
a l i n e a r  time-invariant mode when l e ( t ) l  6 v + 6 ( fo r  some constant 6 > 0) and 
an adaptive mode otherwise. 
a s y s t e m  with bounded s ignals .  
t ime. 
Invariant  system i n  a f i n i t e  time a f t e r  which the  output e r r o r  w i l l  l i e  en t i r e ly  
i n  the  dead-zone and hence adaptation ceases en t i r e ly .  

The d i f f i c u l t y  arises due 

Otherwise the  parameter vector  m y  be adjusted away from 
This implies t h a t  problems of convergence may arise when c ( t )  

T T 
When sgn[+ 5 + v]  = sgn[4 r;] t he  adaptation is  

0 
Hence the  ove ra l l  system operates  i n  two modes-- 

In  (51  it  is sh8wn t h a t  such an algorithm r e s u l t s  i n  
Further,  adaptat ion takes place f o r  only a f i n i t e  

This implies t h a t  i n  p rac t i ce  the  system w i l l  converge t o  a l i n e a r  t i m e -  
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(ii) 
was taken by Kreisselmeier and Narendra [ 6 ) .  While the statement of the problem 
as well as the structure of the controller are identical to that in ($1, it is 
assumed that no knowledge of a bound on the disturbance is available. Instead, 
it is assumed that the desired vector e* has a norm less than a specified value 
I l e * l l  max. 

S : { e l  l l e l l  c.11 e* llmx}. The adaptive law used to update e(t) is identical to that 
in the ideal case when 8 lies in the interior of S and is modified when it reaches 
the boundary of S, or lies outside it. In [a ]  it is shown that such a scheme re- 
sults in the boundedness of all signals in the system. 

Bound on 1 e* u : An alternate approach to the bounded disturbance problem 

Hence the search procedure can be confined essentially to the set 

Apart from the obvious differences between the schemes suggested in [SI and 
[ 6 ] ,  there are mathematical diiferencee in the proof that are worth stressing. 
As in [1-4], the proofs of stability in [ 5 ]  use limiting arguments as t + 03 to 
show that 4 E L2.  Such a procedure cannot be used in [6], since #(t) does not 
tend to any limit ?s t -t 0.  

behavior of the Fjsten over a finite interval. 
es in IS] and [ 6 ]  complement each other and can be > ombined to have wider applica- 
tion in adapti\e systems in the future. 

Hence all arguments are based on the analysis of the 
As shown in sectton 6 the approach- 

(iii) The o-modification Scheme: In approaches (i) and (ii) certain prior infor- 
mation is assumed to implement the adaptive laws. In contrast to this, a scheme 
suggested by Ioannou and Kokotovic [7] assures boundednass of all signals in the 
system, without any asscmptions regarding the bounds on either the disturbance or 
the control parameters. However, to the authors' knowledge, the naethod has been 
shown to result in global boundedness only for the special case when the refer- 
ence model is strictly positive real. 

The method is based on the following simple ideas .  If V(e,$) is a quadratic 
Lyapunov function candidate, the time derivative *(e,$), along a trajectory, is 
generally a quadratic futction of e and hence is negat ve se definite. Whe a 
disturbance is rtesent, V(e,+) has the general form -e Qe + e av, where Q = 2, 0 ,  
a is 6 constant vector and v is a bounded disturbance. Very little can be con- 
clL-led regarding stability from this and accounts for the modifications suggested 
in [5] and [6). In [ 7 ] ,  an additional term -ae is used in the adaptive law, as a 
result of which t(e,$) becomes negative definite outside a bounded region in the 
(e,4) space. From this it is concluded that all signals in the system are bound- 
ed. 

* 9  

(iv) The methods outlined in sections 
3b(i-iii) deal with the global behavior of the adaptive systems when bounded per- 
turbations are present. 
adaptive control problems where the assumptions made regarding the system deviate 
slightly from the ideal. While [ 81 addresses primarily the problem of time- 
varying plant parameters the authors claim that the same methods with remarkably 
littlezhange allow examination of the effect of measurement noise, plant nonlin- 
earity and undermodelling of the plant order. 

Adaptive Systems and Time-Varying Plants: 

In contrast to this Anderson and Johnstone [ 81 examine 

As in our discussions in section (3a), the authors first consider the ideal 
system and demonstrate uniform or exponential stability in the presence of per- 
sistent excitation. For the various types of perturbations considered,their aim 
is then to show that the resulting equations can be cast in such a form that the 
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total stability of the overall system can be demonstrated using modifications of 
Malkin's theorems. 
ily for establishing !he existence of robustness in the presence of sufficiently 
small perturbations rather than for providing guidance in the choice of the con- 
trol input to assur: bomdedness of solutions when the class of perturbations is 
specified. 

iwwever, as mentioned earlier, the theorems are Gseful primar- 

4. PERSISTENT EXCITATION AND ROBUSTNESS 

In the last section, we discussed two approaches of studying the robustnass 
problem in adaptive systems. The approach in 3 4  assumed that the Perturbations 
were sufficiently small and derived BIB0 results local in nature, using Malkin's 
theorem, vhereas in 3a-3c the approach was global in nature and used additional 
information regarding plant dynamics and the external perturbations. Also, the 
first approach made use of the PE of the reference input which vas not needed in 
the second. 

In this section, we present some new results which demonstrate global bound- 
edness of all signals in the adaptive system in the presence of bounded disturb- 
ances'when the reference input is sufficiently persistently exciting. 
that by analyzing a set of nonlinear error differential equations, we can estab- 
lish the global robustness behavior of the adaptive systems. In particular, it is 
shown that if the persistent excitation of the model output is larger than the 
disturbance, the solutions will be globally bounded and that if the maximum q l i -  
tude of the disturbance is greater than that of the model output, the system can 
have unbounded solutions. 
tive control of a first order plant and studying the corresponding second order 
nonlinear differential equations in detail. 
applicable to the general adaptive control probhm. 

We show 

The basic idea is stated here by considering the adap- 

The same methodology is 

Nonlinear Error Equations: 
ing reference model and the resulting error equations are as follows: 

The plant to be adaptively controlled, the correspond- 

Plant: 
. 

+ u + v ;  
yP = aPYP = + 

Model : 
. 
Y, = -Ym + r . 

Error Equations: el = -el + $yp + v 

Adaptive Law: 4 = -elYp 

is the output ' el where r is the referfnce input, v is a bounded input disturbance 
1 I Y p  m error defined as e 

when v(t) 0 ,  by considering 
- y and .$ is the parameter error. In the ideal case, 

it immediately follows that the system is uniformly stable and if y (t) is per- 
sistently exciting, the system is exponentially stable. When a disturbance 
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v ( t )  is Present ,  i t  is tempting t o  proceed as i n  t h e  i d e a l  case and r e q u i r e  y ( t )  

n e n t i a l l y  s t a b l e  r e s u l t i n g  i n  a bounded e r r o r  v e c t o r  f o r  bounded per turba t ions .  
Since s t a b i l i t y  of t h e  o v e r a l l  system h a s  n o t  been e s t a b l i s h e d ,  y ( t )  cannot b e  
assumed t o  be bounded and proving t h a t  i t  i s  P E  becomes speciousOP Hence we have 
t o  express  t h e  r i g h t  hand s i d e  of (15) i n  terms of t h e  model ou tput  y ( t )  which 
is a n  independent v a r i a b l e  r a t h e r  than t h e  dependent v a r i a b l e  y ( t ) .  %is restilts 

i n  (15) t o  be p e r s i s t e n t l y  e x c i t i n g  so t h a t  t h e  unperturbed system is  expo- P 

i n  t h e  fol lowing nonl inear  e r r o r  d i f f e r e n t i a l  equat ions:  P 

By analyzing t h e  above nonl inear  d i f f e r e n t i a l  equat ion,  we demonstrate t h e  g l o b a l  
behavior of t h e  adapt ive  system i n  t h e  presence of v ( t ) .  

The I d e a l  :ystem: I n  t h e  absence of external:  per turba t ions ,  t h e  nonl inear  system 

can be shown t o  b e  uniformly asymptot ica l ly  s t a b l e  i n  t h e  l a r g e  as follows: 

W(el,$) = 7 [ e l  + 4 1 ,  t h e  t ime-derivat ive W[rl,$] = -el2 5 0. Hence t h e  system 

e , ( t )  and $ ( t )  a r e  uniformly bounded for a l l  t > t 
2 T  Since e E L and g1 is bounded, l i m  e,(t)  = 0. 1 

can be considered t o  be t h e  input  t o  t h e  l i n e a r  p a r t  which is exponent ia l ly  s t a b l e  
if y,(t) is PE. 

as t -+ 

i a l  t i m e  t and t h e  magnitude of t h e  i n i t i a l  condi t ions ,  t h e  system is u.a.s.l. 

It is a l s o  worth not ing  t h a t  when y (t) is  PE, t h e  l i n e a r  p a r t  of (18) is expo- 

If 
1 2 2  

i f  U[el(tO),$(tO)] < -. 
The nonl inear  v e c t o r  [Oe,,-e, ] 

t- 

+ 0 a s  t + m, t h i s  i n p u t  t e n d s  t o  zero and hence x ( t )  + 0 

- 0' 2 

As e 
h ' T  where x = [e,,$] . Since a l l  t h e  arguments ere independent of t h e  i n i t -  

0 

m 
n e n t i a l l y  s t a b l e  but  t h e  nonl inear  system is exponent ia l ly  s t a b l e  only when t h e  
i n i t i a l  s tate x ( t  ) l i es  i n  a f i n i t e  b a l l  around t h e  o r i g i n  aud n o t  &loball;? ex- 
ponent i a l  l y  s t abl?  . 
Perturbed System: 
tem, w e  s h a l l  d i s c u s s  t h r e e  cases where t h e  per turbed nonl inear  system (17) i s  
autonomous. 

To provide some i n s i g h t  i n t o  t h e  behavior of t h e  nonl inear  sys- 

Case ( i )  y,(t) : 0: 
l i m  $ ( t )  = -m and l i m  e , ( t )  = 0.  
',* t- 
Case ( i i )  y ( t )  E ymx: m 
LaSal le 's  theorem, is u.a.s.1. s i n c e  t h e  l a r g e s t  i n v a r i a n t  set i n  E = {xlei2 - 0) 
is t h e  o r i g i n .  However, s i n c e  t h e  system is nonl inear ,  i t  no longer  fol lows t h a t  
a bounded input  w i l l  r e s u l t  i n  a bounded output.  I f ,  f o r  example, v ( t )  5 -v 

When v ( t )  E 0, thP system is uniformxy s t a b l e .  I f  v ( t )  5 vmX, 

The unforced system i n  t h i s  c a s e  is autonomous and, by 

max * 
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w e  can show t h a t  lirn e ( t )  = - and l i m  g ( t )  = -m. 

t- YIMX 
t-+oo 

where v 

Case ( i i i )  ym(t)  z y > vwx: The sys tem i s  Lagrange s t ab le .  When 

) which is v ( t )  5 -vmax, the  s y s t e m  has  an equi l ibr ium s ta te  a t  (0, - 
u.a.s.1. S imi la r ly  when v ( t )  E v t h e  system has an equi l ibr ium s ta te  a t  

(0, - - ). 

max > Ymax, 

max 'Yrnax V 
l M X  

ymax 

I M X  
V 

I M X  

'max 
The above spec ia l  cases revea l  t h a t  t h e  behavior of t h e  nonl inear  system is  

very much dependent on y and v I n  p a r t i c u l a r ,  when y (t) : y and 

v ( t )  : -v 
t i ons  are bounded when y > v The r e s u l t s  a l s o  carry over t o  the  general  max max. 
case when both v ( t )  and y ( t )  are time-varying and are s t a t e d  i n  t h e  following 
main theorem of the  paper? 

Theorem I:Let ly ( t )  I 
c i t i n g  s igna l  i n  the sense described i n  [23]. 
T ,E 

with [ t 2 * t 2  + 60]c [ t  , t  + To] and - Jt2+6hm(r)dr l  

(a) 

U X  max m W X  

the  sys tem has  unbounded so lu t ions  when v and a l l  solu- max >ymax max * 

(Fig. 1) 

Iv ( t ) l  vmax and y ( t )  be a smooth p e r s i s t e n t l y  ex- 

> 0, there  exis ts  a t2 E [tlstl + To], 
I Yma,' m m 

This i m p l i e s  t h a t  pos i t i ve  numbers 

c0. Then 

and 6 e x i s t  such t h a t  given any t 0 0  0 

To t2 

= sgn(el(t))vmax l e p l  < Ymax 

1 1  

If Ymx < Vmx* by choosing an input  v ( t )  as 

v ( t )  = -sgra(ym(t))vmx when (el(t)l 2 ymaX 

A a( t )  when a ( t )  f 0 and is equal t o  uni ty  when a ( t )  = 0, the re  

1 
= 1 m -  where sgn (a ( t ) )  

e x i s t  i n i t i a l  condi t ions f o r  which l l m  $(t) = -00 and e (t) approaches asymptotic- 

a l l y  the  region le 1 
(b) I f  cO > v 

t-- 
+ E,  where E is an a r b i t r a r y  pos i t i ve  constant.  

1 2 ymax 
+ 6 where 6 is any a r b i t r a r y  pos i t i ve  constant,  then a l l  t he  

UlaX 

so lu t ions  of the  d i f f e r e n t i a l  equation (17) are bounded. 

Proof : 

a) L e t  D1 be the  open domain enclosed by t h e  l i n e  el - -v and the  curve 
mAx e + v  

with 4 < 0. When y,(t) 2 y,, and v ( t )  ,= -vmX a l l  so lu t ions  1 mi;x 
4 -  - 

el + ymax 
t ha t  s tar t  on the boundary a ( D  ) en te r  D Since the  system is autonomous and 

contains  no s i n g u l a r i t i e s  i n  D,,all so lu t ions  o r ig ina t ing  D are unbounded and 
1 1' 

1 I 

ymax. l i r n  $(t )  - - 0 0 ~  l i m  e l ( t )  = - 
t* t- 

For a time-varying s igna l  y ( t )  the  proof of unboundedness is re l a t ed  t o  the  
above autonomous case. Consider*the so lu t ion  of the d i f f e r e n t i a l  equation with 
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UUX , w i t h  y,(t) E ymx and v ( t )  E -v 
LMX' 

i n i t i a l  condf t ion  ( O , $ o )  with  O0 < 
YUUX 

L e t  r denote  t h e  open curve along which t h e  t r a j e c t o r y  lies f o r  a l l  t 3 0.  
l a r l y  le t  r- denote t h e  curve along which t h e  s o l u t i o n  l i e s  f o r  a l l  t 3 0 when 

L e t  r($o) = r+ u r-. v ( t )  = v and y ( t )  = - 
two open reg ions  D and D where (Os$) E D i f  I$ < $ Then a l l  s o l u t i o n s  of t h e  

d i f f e r e n t i a l  equat ion wi th  Iy ( t ) l  & ymX and I v < t > l  s vmax with i n i t i a l  condi t ions  m 
on r ($  ) l i e  e i t h e r  i n  I . ($  ) o r  e n t e r  D 

s o l u t i o n s  a r e  unbounded and l i m  g ( t )  = -0. 

Simi- + 
l-($ ) d i v i d e s  t h e  p lane  i n t o  Ymax' 0 maX 

C 

2 2 2 0' 

Since t h i s  is t r u e  f o r  every 4 t h e  0 0 2'  0' 

A T 
b) L e t  x = [e l ,$ l .  - 

2 t- 
Let D denote  t h e  reg ion  i n  R W x I  lel/ < v-1 and l e t  - m 

DC denote t h e  complement of D. 

a t r a j e c t o r y  is i ( x >  = -e * + e v < 0 f o r  x E DC. 

can i n c r e a s e  only i n  E. 

I f  W(x) = 1 / 2  x'x, t h e  time d e r i v a t i v e  of W along 
C Hence IIx I ldecreases  i n  D and 1 1 

Ue wish t o  show t h a t  .d cons tan t  c e x i s t s  so t h a t  i f  
Ilx(t,jll = c1 7 c over an i n t e r v a l  [ t  , t  + T I s  t h e n l l x ( t O  + To)(I < cl. 0 0  0 - 

I f  llx(toYI = cos i n t e g r a t i n g  t h e  equat ion f o r  6 i n  (17) i t  $an be shown t h a t  
m a X  

1 
C i f  x ( t O )  E D, then x ( t  ) E D f o r  eome t E [ t O , t O  + To] if co > - , where 1 1 s i n 0  

c o t  e = 2[T + . Hence under t h e  condi t ions  s p e c i f i e d  i n  t h e  theorem, t h e  

t r a j e c t o r y  i n v a r i a b l y  e n t e r s  D during every per iod T 

monScot.ially, t h e  t r a j e c t o r y  can be made to  l i e  in a subdonain of DC f o r  a f i n i t e  
time A with 0 < A < 6 
t h i s  subdomain, a cons tan t  c > c 

(Eo-Vmx)T 
C By increas ing  Ilx(tO)ll  0' 

over every period. 

0 

S i n c e q x ( t ) f l  decays exponent ia l ly  i n  0 e x i s t s  s a t i s f y i n g  t h e  condi t ions  of the theorem. 

Comments:l.The p o s i t i v e  l i m i t  set of any s o l u t i o n  x ( t )  lies i n  D. -- 
2. 
t h e  s o l u t i o n s  are bounded i f  
To, and 6 

E~ w i l l  b e  r e f e r r e d  t o  as t h e  degree of p e r s i s t e n t  e x c i t a t i o n .  
> vmax but  t h e  n a t u r e  of t h e  l i m i t  

0' 

By t h e  theorem, 
set depends on 

3. From t h e  theorem i t  fol lows t h a t  f o r  a given bound v on t h e  p e r t u r b a t i o n s ,  
t h e  system can be made robus t  by increas ing  t h e  degree - of p e r s i s t e n t  exc i ta -  
t ion .  Note t h a t  t h i s  is an example of practical s t a b i l i t y .  

4. The condi t ions  € o r  boundedness and unboundedness of s o l u t i o n s  are given i n  
t h i s  case  i n  terms of y,(t). 
press them i n  terns of 

For design purposes i t  is more appropr ia tn  t o  ex- 
t h e  re ference  input  r ( t ) .  

-5. HYBRID ADAPTIVE CONTROL 

I n  continuous adapt ive  systems of t h e  type descr ibed i n  t h e  previous s e c t i o n s ,  

Recent advances i n  microprocessor and r e l a t e d  d i g i t a l  computer tech- 
t h e  p l a n t  o p e r a t e s  i n  continuous t i m e  and t h e  c m t r o l l e r  parameters are ad jus ted  
continuously.  
nology favor  t h e  use of d i s c r e t e  systems i n  which s i g n a l s  are def ined a t  d i s c r e t e  
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i n s t an t s .  
t inuous elements. 
repor t  [ l o ]  t he  authors  have developed a n a l y t i c a l  models of hybrid ys tems i n  
which cont ro l  parameters are ad jus ted  i n  d i s c r e t e  t i m e  even as the  continuous 
p lan t  s i g n a l s  are processed i n  real t i m e .  The same algorithms can a l s o  be extend- 
ed t o  cont ro l  d i s c i e t e  t i m e  p l an t s  so t h a t  the  ove ra l l  d i s c r e t e  system opera tes  
on two t i m e  s ca l e s  - a f a s t  time s c a l e  i n  which the  system operates  and a slow 
t i m e  scale i n  which the  cont ro l  parameters are updated. We s h a l l  r e f e r  t o  such a 
s y s t e m  as a d i s c r e t e  hybrid system. 

Practical sys t ems  on the  o ther  hand may contain both d i s c r e t e  and con- 
Such sys t ems  may be described as hybrid systens. I n  a recent  

In  t h i s  s ec t ion  w e  descr ibe b r i e f l y  one of t he  hybrid adapt ive algorithms and 
demonstrate global  s t a b i l i t y  i n  t h e  i d e a l  case of an adapt ive system which uses  
such an algorithm. 
when bounded ex te rna l  dis turbances a r e  present .  
seGtioc, arguments are put forward as to  why hybrid schemes should r e s u l t  i n  more 
rcbust  system and s imulat ion r e s u l t s  are presented t o  show t h a t  t h i s  is indeed 
the case. 

The behavior of a d i s c r e t e  hybrid system is then discussed 
Using t h e  r e s u l t s  of t he  previous 

a )  Hybrid Error Model: 
e r r o r  mcdels giver; i n  [ l o ]  and d iscuss  i t s  propert ies .  
be derived i n  a l l  the o the r  cases. 

In this  sec t ion  we consider t h e  f i r s t  of severa l  hybrid 
Similar  r e s u l t s  can a l s o  

The e r r o r  model is  described by the  equation ' 

k E N  
+ m  + 1  where u: fi -P P , el: E! -+Ut 

red t o  as the  input and output  funct ions of t h e  e r r o r  model. 

a l l y  increasing unbounded sequence i.n @t with 0 < TmLn & Tk 
where T = t 

od. $ I : B  +p is  a piecewise constant function, r e fe r r ed  t o  as t h e  parameter 
e r r o r  vector  and assumes values  $ ( t )  - 4k, t r [tk,tk++l), where 4, is a constant 
vector.  

are piecewise continuous fuvzt ions which are refer -  

f o r  k E: N 
{t } is a monotonic- k + 
Tmax < - t When Tk = T, a constant ,  we  shall  ca l l  T t h e  sampling peri-  k + k+& k' 

It is assumed t h a t  0 (and hence + ) is unknown, the  values  u ( t )  and t l ( t )  

can be adjusted a t  - 'k 4,, 
The objec t ive  is t o  determine an adapt ive l a w  f o r  choosing the  sequence 

4 0 k 
can be observed a t  every i n s t a n t  t and AQk 

{ A $ k }  using a l l  ava i l ab le  input-output d a t a  so t h a t  l i m  e ( t )  = C. 

Theorem 2:If i n  the  e r r o r  equation (19) the  vector  0, is updated according t o  the  
adaptive law 

= tk+l' 
1 t- I 

I tk+l  e,(.r)u(.c) - dT ( 2 0 )  
-1 *" = % It,  1 + uT(r )u( r )  

then 

(i) 

( i i )  

+ 
if u ( t )  and G(t\  a r e  s i r o r m l y  bounded i n P  l i m  e l i t )  = 0 

c- 
i f  i n  add+.tion t o  the  condi t ions i n  (i) vi i l s  p e r s i s t e n t l y  exc i t ing  over an 
i n t e r v a l  T l i m  @k = 0 min' k- 
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T 112 2 
( i i i )  If u E L: then e , ( t )  = p ( t ) [ l  + u u]  , p E L . 

I T  1 T  
_1_ Proof:  If V(k) = y I)k Ok,  us ing  t h e  adapt ive  l a w  (20) we o b t a i n  AV(k) - - 7 I)k 

[ 2 1  - ppk 2 0 

where d r  * 

Hgnce V(k) is a Lyapunov f u n c t i o n  and a s s u r e s  t h e  boundedness of 4 

k=l 

Since k' 
E AV(k) < - i t  fol lows t h a t  l i m  AV(k) = 0. Henc? 

T 
el (TI 

d t  = 0. 

2 
le,, 

k-m T l i m  +k \Ok = l i m  - 
k- k- Tk tk 1 + u (T)u(T)  

(i) I f  u i s  bounded, e is bounded and e E f . If  is bounded l i m  e , ( t )  = 0. 

(ii) 

( i i i )  , I f  u grows i n  an unbounded fash ion  with u E Le, el = p m  where p E f2. 

Comments: I n  t h e  t h r e e  cases given i n  theorem 2 t h e  f i r s t  two assume t h a t  t h e  
input  u is uniformly bounded and t h e  corresponding r e s u l t s  are a p p l i c a b l e  
i d e n t i f i c a t i o n  problem. 
a b l e  t o  t h e  c o n t r o l  problem. 

t-m 1 1 
If u i s  p e r s i s t e n t l y  e x c i t i n g  \ is uniformly p o s i t i v e  d e f i n i t e  and hence 

-t 0 as k 3 a. 

m 
'k 

1 t h e  
The t h i r d  case which treats unbounded i n p u t s  is appl ic -  

The f a c t  t h a t  T need not  be a cons tan t  is a l s o  worth not ing.  As shown i n  s e c t i o n  
6 a time-varying per iod may be used t o  improve t h e  t r a n s i e n t  response of t h e  sys- 
tem. 

k 

b) The hybrid adapt ive  a lgor i thm 
descr ibed i n  t h e  preceding s e c t i o n  can be used to a d j u s t  t h e  c o n t r o l  parameters 
of a hybrid adapt ive  system. 
t i o n  3 f o r  a cont inuoas time system t h e  o v e r a l l  system can be shown t o  be g l o b a l l y  
s t a b l e ,  

S t a b l e  Hybrid Adaptive Control - I d e a l  Case: 

Using an approach very similar to  t h a t  used i n  sec- 

Using t h e  same n o t a t i o n  as i n  s e c t i o n  3 we have f o r  t h e  adapt ive  l a w  - rtk+l cl(?)S(r) 
A+k = -- dT 

Tk J t k  1 + c T ( ~ > < ( r )  
From t h e  a n a l y s i s  i n  t h e  previous s e c t i o n  we conclude t h a t  

( i )  t h e  parameter e r r o r  v e c t o r  is bounded k 
T 2 and ( i i )  E = p J I  + g 5 where p B L , 1 

whi-h condi t ions  are t h e  same as those  o ined f o r  t h e  continuous case.  Condi- 
t i o n  (I) a s s u r e s  that: t h e  s i g n a l s  y 

r a t e .  

vious a s s e r t i o n  proving t h e  boundednevs of a l l  

85v, Ilu(t)l l  and 1 q ( t ) l  grow a t  t h e  same 
P). 

Condition (ii) results i n  Iy ( t )  I = o ~ z r l l  w(r)ll which co i i t rad ic t s  t h e  pre-  
P 

t h e  s i g n a l s .  

The s i m i l a r i t y  between t h e  continuous and hybrid s y s t ? m s  a l s o  extends t o  
cases  when e x t e r n a l  bounded d is turbances  a r e  present  and t h e  methods descr ibed i n  
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sections 3 and 4 apply to the hybrid case as well, 
lowing section, the use of averaged values over an interval rather than instant- 
aneous values, results in nore robust coutrol. 

However, as shown in the fol- 

c) Adaptive System with Two Time Scales: 
in section 5a and applied to hybrid adaptive systems in section 5b can also be 
SI' 

The hybrid adaptive algorithm developed -- 
. modified for discrete hybrid systems or discrete systems with two time 

' .es, shown below. 

1 Let the output error e (k) E B and the paranreter error 1 reldted by tne error equation 
T 

$ (k)w(a) = el(L) k,& E N, a ~[kT,(k+l)Tl 
where $(k) is a constant vector aver the interval [kT,(k+l)T], T E N and denotes 
the period of the interval and w(a) cBn is an input vector, 
collected over the entire interval, the parameter error vector $(k) is updated at 
time (k+l)T using the adaptive law 

Using information 

(k+l)T-1 e,(i)v(i) 
c A $(k+l) - $(k) = A$(k) - 1/T 

i=kT 1 + v(i)Tw(i) 
. .  

w( i > W W T  (k+l)T-1 
where R(k) 1/T C I- . 

kT 1 + w(l)'w(i) 
T In [lo] it is shown that V(k) = 1/2 $ (k)+(k) is a Lyapunov function for the 

system (21) from which it follows that $(k) I s  bounded if $(O) is bounded and 
e p )  

I E N  (23) 1/2 = O i- [l+w(i)Tw(i) I 
1 im 

If the adaptive law (22) is used in a control. system to update the parameters, 
equation (23) can be used to demcnstrate global stability [lo]. 

When an external disturbance v is 
modified as 

T 0 (k)w(k) + v(a> = el(&) 

Using the same adaptive law as before, 
(k+l) T-1 

A$(k) -R(k)$(k) + Z 
i=kT 

present the error equation (23) have to be 

the error equation has the form 
w(i)v(i) 

1 + w(iITw(i) 

(k+l)T-l w(i)v(i) 
where s(k) = c ,F . A 

i=kT 1 + w(i)'w(i) 
The matrix R(k) and the vector 8(k) in algorithm (25) are averaged values 

over an interval rather than instantaneous values. 
may be considered to have more persistently exciting inputs in its homogeneous 

Hence the equivalent syscem 
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equation and a smaller magnitude of perturbation (if the mean value of the dis- 
turbance is small). 
tion results shown in Fig. 2 indicate the dramatic improvement in performance. 

Due to both reasons the outputs tend to be smaller. Simula- 

6 .  NEW DIRECTIONS 

The criteria for judging the perforsance of an adaptive control system are 

In the preceding sections methods using 
no different from those used for any conventional control system and include sta- 
bility speed and accuracy of response. 
persistent excitation of reference input, and nonlinear and hybrid adaptive algo- 
rithms were described which would make the overall system stable under perturba- 
tions. A judicious combination of these different methods may improve the robust- 
ness of the system substantially and result in schemes which are practically at- 
tractive. Some of these combinations as well as extensions of known methods which 
appear promising are given below. 

(i) A detailed analy- 
sis of a first order adaptive system containing a single control parameter was 
given in section 4 .  When a disturbance is present it was shown that a sufficiently 
large persistently exciting reference input would also result in bounded solutions. 
Further 
higher order systems and research is currently being done to determine the bounds 
on the sol-t  ions 
(ii) Hybrid Adaptive Control: 
tion 5 ,  it was shown that the sampling incerval T,. could itself be time-varying 

Robustness of nth Order System Using Perdstent Excitation: 

studies have revealed that siailar c-nclusions can be drawn regarding 

In the adaptive control system described in sec- - --. 

provided it lay in a bounded interval [Tmin,TmaxIKwith Tmin > 0. In practical 
systems it Pppears possible to adjust T on line to improve the transient response 
of the 7 n. k 

(iii) tmd-Zone, Persistent Excitation and Plant Identification: A sufiiciently 
large deLd-zone in the adaptive algorithm was shown to result in bounded solutions 
in section 3.  The results in section 4 indicated that boundednesa of solutions 
could also be achieved by increasing the PE of the reference input. 
appears likely that the same results can be achieved using a combinatioq of a 
smaller dead-zone and a smaller degree of persist, .: excitation. 
dies have shrwn that this le indeed the case and a:,empts are being made to demn- 
strate this theoretically. 

It therefore 

Simulation stu- 

When the reference input is persiatently exciting and the adaptive loop is 
stable, the plant paraineters can be estimated on-line and used in second level 
adaptation to reduce the dead-zone further. 
of reference inputs appears to be of boLh theoretical and practical interest. 

Hence combining a dead-zone with PE 

Ile*II maX and Persistent Excitation: As in (iii) a persistently exciting in- 
put enables e* to be estimated and hence an attempt could be made to use tha infor- 
mation to decrease the region of search. 

(v) a-mcdification and Persistent Excitation: The a-modification sclleme, in its 
basic form, described in sectiou 3 is unappealing, since the parameter error can 
be large if IIe*Jl is large. Using identification methods as in (iii) and ( i v )  and 
estimating t3* on line, second level adaptive procedures may result in a smaller 
bias 
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The second l eve l  adaptat ion problems s t a t e d  i n  ( i i ) - (v)  while p r a c t i c a l l y  at- 
Further,  t r a c t i v e ,  lead t o  s t a b i l i t y  quest ions i n  more complex nonlinear systems. 

it is worth point ing out  t h a t  a l l  of them consider external dis turbances r a t h e r  
than per turbat ions i n  p lan t  dynamics. 
the design of a low order  c o n t r o l l e r  t o  adapt ively cont ro l  a higher order  p lan t  i s  
general ly  agreed t o  be the  s i n g l e  most important t heo re t i ca l  quest ion i n  the  f i e l d  
of adaptive c m t r o l .  
area, i t  is acknowledged t h a t  even a proper formulation of t h i s  problem is a form- 
idable  one. 
sect ion w i l l  cont r ibu te  s i g n i f i c a n t l y  towards this  end. 

The reduced order  problem which dea ls  with 

While considerable research is  being ca r r i ed  out  i n  t h i s  

I t  is f e l t  t h a t  t h e  answers t o  some of t h e  quest ions r a i sed  i n  t h i s  
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Fig. 1: Persistent Excitation 
and Xobustnees. 

(d) 
(a) autonomous case I ym I c Iv I unstable 
(b) autonomous case I yml > I v 1 stable 
(c) non-autonomous case y < v unstable 
(d) non-autonormus case E > v stable 
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MAXIMUM LIKELIHOOD ESTIMATION WITH 
EMPHASIS ON AIRCRAFI' FLIGHT DATA 

K . W . I l i i r a a d R . E . W  
NASA Ames Rtscarctr Center 

Dryden Flight R t s w c h  Facility 
Edwuds. CA 93523 

Accurate rodel ing of flexible space s t r u c t u r e s  is a n  important f ie ld  that is 
cu r ren t ly  under inves t iga t ion .  Parameter estimation, using rethods such aa MX- 

imm likel ihood,  is one of the ways that the  aodel can be inpzm?ed. The ~ d a u  
l ike l ihood estimator has been used t o  e x t r a c t  s t a b i l i t y  and con t ro l  der iva t ives  
from f l i g h t  data fox  many years. H o e t  of the l i t e r a t u r e  on a i r c r a f t  es t imat ion 
concentrates  on new developments and applicatitma, assur ing  f a m i l i a r i t y  w i t h  
basic est imat ion concepts. This paper presents  sow of these basic concep+s. 
me pawr b r i e f l y  discusses the maxinu likelihood estimator and the aircraft 
equat ions of motion thu t  the estimator uses. 
and est imat ion are exadned for a simple computed aircraft example. The coat 
funct ions that are t o  be riniaized during est imat ion are defined and discussed. 
Graphic representat ions of the coat funct ions are given to help illustrate t h e  
minimization prxess. Fina l ly ,  t he  basic concepts are generalized, and es t ima-  
t i o n  from f l i g h t  data is discusaed. Specific examples of es t imat ion of s t ruc-  
t u r a l  dynamics are included. 
example are also developed for the ana lys is  of f l igh t  data. 

'Iha basic concepts of d n i d z a t i o n  

Sou of the  major conclu8iona for the computed 

INTRODUCTION 

Accurate modeling of flexible space s t ruc tu res  is an inpor tan t  area that is  

Such techniques have been succe88- 
cu r ren t ly  under invest igat ion.  
can be improved using parameter estimation. 
f u l l y  used to  estinate a i r c r a f t  s t a b i l i t y  and con t ro l  derivatives and r e f ine  
aircraft  mathematical models. Sore of the experience gained i n  the a i r c r a f t  
problem can be applied d i r e c t l y  to ana lys i s  of f l e x i b l e  space s t ruc tures .  

The mathematical w a l i n g  of these s t ruc tu res  

The maximum likelihood estimator has been used t o  &thin s t a b i l i t y  and con- 
t ro l  estimates from f l i g h t  data f o r  nearly 20 yearcr. 
ca t ions  have been reported worldwide. Reference 1 contains  u representat ive 
list of some of these reports. Several good texts  (includifig R e f s ,  2 and 3 )  
conta in  thorough treatments of the theory of .axinurn l ike l ihood estimation. 
Experience reports (Refs. 1, 4, and 5 )  poic t ing  out  practical considerat ions for 

The r e s u l t s  of many appl i -  

*Senior S ta f f  s c i e n t i s t  
*Aerospace Engineer . 
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applying the  maximum l ike l ihood estimator ham also been published. 
and con t ro l  derivatives eatimted from f l i g h t  data are cu r ren t ly  required for 
co r re l a t ion  s tud ie s  w i t h  predictive techniques, handling q u a l i t i e s  ductmentation, 
design compliance, a i r c r a f t  s i r u l a t x  enhancement and refinement, and con t ro l  
system design. Corre la t ion ,  s inu la t ion ,  and con t ro l  s y ~ t a ~  design epplicatiom 
(including the space s h u t t l e )  are dircusaed i n  Ref. 6. Current  s tud ie s  have 
concentrated on es t imat ion  model s t r u c t u r e  de te rn ina t ion  (Refs. 7 and 81, equa- 
t i o n  error w i t h  state reconstruct ion ( R e f s .  9 t o  111, and maximum likelihood 
est imat ion i n  the  frequency domain (Refs. 12 and 13). 

S t a b i l i t y  

Most of the reporta  i n  the est imat ion area concentrate  on new developments 
and appl ica t ions ,  assuming f a m i l i a r i t y  w i t h  the basic concepts of maxinu. l ike-  
l ihood estimation. I n  this paper s’- of these basic concepts are reviewed, 
concentrat ing on simple, idealized models. These simple models provide i n s i g h t s  
appl icable  to  a w i d e  va r i e ty  OE real problems. 

This  paper a l s o  presents  sone of the basics of m a x i m u  likelihood est imat ion 
It b r i e f l y  discusses the maximar l ikel ihood as appl ied to the aircraft probltr. 

estimator and the aircraft equations of ro t ion  that the sstimtor uses. 
basic aspects of minimization and twi tha t ion  are then examined in de ta i l  f o r  a 
simple computed aircraft example. Final ly ,  the discussion is expanded t o  the 
general  a i r c r a f t  es t imat ion probler including s p e c i f i c  examples of est imat ion of 
s t r u c t u r a l  dynamics. 

me 

system matrices 

normal acce lera t ion  positive upward, g 

longi tudina l  acce lera t ion ,  g 

lateral acce lera t ion ,  g 

normal acce lera t ion  poritive upward, g 

reference span, f t  

c o e f f i c i e n t  of r o l l i n g  m m n t  

c o e f f i c i e n t  of yawing moment 

c o e f f i c i e n t  of a x i a l  force 

c o e f f i c i e n t  of side force 

coe f f i c i en t  of normal force 

general  funct ions 
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measurement noise  covariance matr ix  

acce le ra t ion  due t o  gravi ty ,  f t/sec2 

approximation t o  the information matrix 

moment of i n e r t i a  b u t  subscripted a r i a ,  s lug- f t2  

general  index 

cost func t ion  

sidewash factcr 

r o l l i n g  moment divided by I,, deg/mec2 

r o l l i n g  momeat, ft-lb 

r o l l i n g  moment due to yaw jet, f t - l b  

p i t ch ing  moment divided by fy, deg/(1ec2 

Inass, s l u g  

number of time po in t s  or cases or yawing moment divided 
by IZ, deg/sac2 

state noise vector  or nunber of unknowns 

estimated roll rate due to turbulence, d*g/sec 

ro l l  rate, deg/sec 

p i t c h  rate, deg/sec 

dynamic pressure,  l b / f t2  

innovat! rn  covariance matrix 

yaw : te, -g/sec 

re ference  area, f t 2  

time increment, aac 

time, sec 

con t ro l  input  vector 

forward veloci ty ,  f t / s e c  
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X state  vector 

z 

a 

A 

6 

5 

Q 

T 

9 

w 

Subscripts:  

0 

m 

d is tance  between lateral accelerometer and the 
cen te r  ol grav i ty  along the  appropriate  ax is ,  f t  

observation vector  

pred ic ted  Kalman-filtered estimate 

angle  of attack, deg 

angle af s i d e s l i p ,  deg 

estimated angle  of sideslip due to  turbulence, t2eg 

t i m e  sample in t e rva l ,  sec. .  

contrGi def lec t ion ,  deg 

a i l e r o n  def lec t ion ,  deg 

elevon def lec t ion ,  deg 

rudder def lec t ion ,  deg 

measurement noise vector 

pitch angle, deg 

mean 

vector of unknown8 

standard devia t ion  

time, sec 

t r a n s i t i o n  matrix or bank angle, dag 

i n t e g r a l  of t r a n s i t i o n  matrix, or heading 

f requency, rad/sec 

angle, dag 

partial de r iva t iv s  w i t h  respect to subscr ipted quant i ty  

bias or a t  time zero 

measured TGantity 
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Other nomenclature: 

.., predicted estimate 
* estimate 

transpose 

I i nd ica t e s  moment i n  f t - l b  

MAXIMUM LIKELIHOOD ESTIMATION 

The concept of maximum l ike l ihood is discussed i n  this sect ion.  F i r s t  the 

In 
general  h e u r i s t i c  problem is d h ~ ~ ~ s a e d ,  and then the specific equations f o r  
obtaining maximum 1 ikelihood estimates f o r  the 'aircraft problem are given. 
the following sec t ions ,  both the  concepts and the  computations involved i n  a 
simple tut realistic example are discussed i n  detail.  

The aircraft parameter est imat ion problem can be defined q u i t e  simply i n  
The system inves t iga ted  is assvmed to  be modeled by a set of general  terms. 

dynamic equations containing unknown parameters. To determine the values of the 
unknown parameters, the system is exc i ted  by a s u i t a b l e  input ,  and t h e  inpu t  and 
a c t u a l  system response are measured. The valuas of the unknown parameters are 
then infer red  based on the requirement that the model response to the given 
input  match the  a c t u a l  system response. 
problem of ident i fy ing  the unknown parameters can be e a s i l y  solved by many 
methods; however, complicating factors a r i s e  when appl ica t ion  t o  a real  system 
is considered. 

When formulated i n  this manner, the 

The f i r s t  complication r e s u l t s  from the imposs ib i l i ty  of obtaining perfect 
measurements of the response of any real mystem. The inevitable sensor e r r o r s  
a r e  usual ly  included as add i t ive  measurement noise  i n  the dynamic d e l .  Once 
th i s  noise is introduced, the theoretical nature of the problem changes drasti- 
ca l ly .  It is no longer possible tc exac t ly  iden t i fy  the values of the unknam 
parameters) instead, the values rust be estimated by some statistical c r i t e r i o n .  
The theory of es t imat ion i n  the  presence of waeurentent noise  i m  r e l a t i v e l y  
s t ra ightforward for a system with discrete time ob~erva t ions ,  requi r ing  only 
basic probabi l i ty .  

The second complication of real s y s t e r ~ r  is the presence of state  noire. 
S t a t e  noise is random exc i t a t ion  of the system from unmeasured sources,  t he  
s tandard example for t h e  a i rcraf t  s t a b i l i t y  and con t ro l  problem being 
atmospheric turbulence. If state noise  i o  preren t  and measurement noise  is 
neglected, the analye i r  r e s u l t s  i n  the  regreemion algorithm. 

When both state and measurement noise are considered, the problem is more 
complex than i n  the cases that have only sta te  noise o r  oirly measurement noise. 
Reference 14 develops a mixed continuoue/diecrete maximum l ikel ihood formulation 
that allows for both etate and measurement noise. This formulation has a con- 
t inuous system model w i t h  discrete aampled observations. 
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The f i n a l  problem for real systems is modeling. I t  has been assumed through- 
o u t  the  above d iscuss ion  tha t  for so10 value (called t h e  "correct" value) of the 
unknown parameter vector, the  system is co r rec t ly  described by the dynamic model. 
Physical  systems are seldom described exac t ly  by simple dynamic models, so the  
quest ion of modeling e r r o r  arises. 
ava i lab le .  The most common approach is to  ignore it: Any modeling error is 
simply treated as state noise  or measurement noise, or b o t h 8  i n  spite of the 
fact that the modeling error may be de te rmin i s t i c  rather than random. 
assumed noise  statistics can then be adjusted to include the cont r ibu t ion  of 
the  modeling e r ro r .  This procedure is not  r igorously j u s t i f i a b l e ,  but,  combined 
with a ca re fu l ly  chosen model, it is probably the best approach ava i lab le .  

No comprehensive theory of modeling error .is 

The 

W i t h  t he  above d iscuss ion  i n  mind, it is p s i b l e  to make a -re precise, 
mathematically p r o b a b i l i s t i c  statement of the parameter est imat ion problem. The 
first  step is t o  def ine  the general  system node1 (aircraft equations of motion). 
This  model can be wri t t en  i n  the  continuous/discrete form as 

where x is the state vector, z is the  observation vector,  f an3 g are system 
state and observation functions,  u is the known coritrol input  vector, 4 is the 
unknown parameter vector, n is the state  noiae vector, and q i s  the measurement 
noise  vector. The state noiae vector is assumed to be zero-mean white Gaussian 
and s t a t iona ry ,  and the measurement noise mctor is assumed to be a sequence of 
independent Gaussian randop variables w i t h  zero mean and i d e n t i t y  covariance. 
For each possible estimate of the unknown parameters, a probabi l i ty  that the 
aircraft  response t i m e  h i s t o r i e s  a t t a i n  values near the observed values can then 
be defined. The maximum likelihood estimates are defined as thoee that  maximize 
t h i s  probabi l i ty .  
characteristics; for example, it y ie lds  asymptotically unbiased, cons is ten t ,  and 
e f f i c i e n t  estimates ( R e f .  15) .  

Maximum l ikel ihood eatimaMon has many desirable Statist ical  

If  there is no state noise and the matrix G is known, then the  maximum 
l ike l ihood estimator minimizes the  cost funct ion 

where GGf is the measurement noise covariance matrix, a d  z ~ ( t i )  is the computed 
response estimate of z a t  ti f o r  a given value of the unknown parameter vector 
6. The cost funct ion is a funct ion of the d i f fe rence  between the measured and 
computed time histories . 
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I f  Eqs. ( 2 )  and ( 3 )  are l i n e a r i z e d  (as i e  the case f o r  the s t a b i l i t y  and 
c o n t r o l  d e r i v a t i v e s  i n  the a i r c r a f t  problem), 

N 

For the no-state-noise  case, t h e  zE(tj.1 term of 4. ( 4 )  can be approximated by 

where 

When state noise  i s  important,  t h e  nonl inear  form of  Eqs. (1  1 to  ( 3 )  is 
i n t r a c t a b l e .  For t h e  l i n e a r  model def ined  by Eqs. ( 5 )  to (71, the cost f u n c t i o n  
t h a t  accounts for state mise is 

where R is t h e  innovat ion covariance matrix.  
is the  Kalman-fil tered estimate of z,  which, i f  t h e  state noise  covariance 
i s  zero,  reduces t o  the form of Eq. ( 4 ) .  I f  there is no state noise ,  
t h e  second term of Eq. ( 1 1 )  is of no consequence (unless  one wiuhes t o  inc lude  
elementa of the G matr ix  as u n k n m s ) ,  and R can be replaced by GGf which makes 
E q .  ( 1 1 )  the same as 4. ( 4 ) .  

The ;((ti) term i n  Eq. (119 

To minimize t h e  cost f u n c t i o n  J(F)# we can apply t h e  Newton-Raphaon 
algori thm which chooses succeesive estisttes of t h e  vec tor  of unknown coef-  
f i c i e n t s ,  i. 
obtained from t h e  L estimate as follows: 

L e t  L be t h e  i t e r a t i o n  number. The L + i estimate of is then 
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The f i r s t  and second g r a d i e n t s  are def ined  as 

The Gauss-Newton approximation t o  t h e  second g r a d i e n t  is 

The Gauss-Newton approximation, which is sometimes r e f e r r e d  to  as modified 
Newton-Raphson, is computat ional ly  much easier than t h e  Newton-Raphson approxi- 
mation because t h e  second g r a d i e n t  of the innovat ion never needs to  be calcu- 
lated. I n  a d d i t i o n ,  it can have the advantage of speeding the convergence of 
t h e  algori thm, as is discussed  i n  the SIMPLE A I R C W  EXAHPLE sec t ion .  

Figure 1 i l l u s t r a t e s  t h e  maximum l i k e l i h o o d  e s t i m a t i o n  concept. The meas- 
ured response of the aircraft is compared w i t h  the est imated response, and the 
~ i f f e r e n c e  between these responses is called t h e  response error. The cost func- 
t i o n s  of 4 s .  ( 4 )  and ( 1 1 )  inc lude  this response error. The Gauss-Newton com- 
p u t a t i o n a l  a lgori thm is used to  f i n d  the c o e f f i c i e n t  values  that  maximize t h e  
cost funct ion.  Each i t e r a t i o n  of this algori thm provides a new estimate of the 
unknown c o e f f i c i e n t s  on the basis of t h e  responae error. These new estimates of 
the  c o e f f i c i e n t s  are then  used to  update  the mathematical mode1 of the a i r c r a f t ,  
providing a new estimated response and, t h e r e f o r e ,  a new response error. The 
updat ing of the mathematical d e 1  cont inues i t e r a t i  a l y  u n t i l  a convergence 
c r i t e r i o n  is s a t i s f i e d .  The estimates r e s u l t i n g  from this procedure are the 
maximum l i k e l i h o o d  estimates. 

The maximum l i k e l i h o c ?  estimator also provides a measure of t h e  r e l i a b i l i t y  
of each estimate based on t h e  information obtained from each dynamic maneuver. 
T h i s  measure of the r e l i a b i l i t y ,  ana!.~o\m t o  the s tandarq  devia t ion ,  is called 
t h e  Cram&-Rao bound (Ref. 16) or the uwerr ta in ty  l e v e l .  The Crambr-Rao bound 
as computed by c u r r e n t  programs should g e n e r a l l y  be used as a measure of rela- 
t i v e  accuracy ra4&er than  a b s o l u t e  accuracy. Tha bound is obtained from the 
approximation of the information matrix,  H. This matr ix  equals  t h e  approxima- 
t i o n  to  t h e  second g r a d i e n t  given by E q .  (14b).  The bound f o r  e t c h  unknown is 
t h e  square root of t h e  corresponding d iagonal  element of H. That is, for 

t h e  i t h  unknown, t h e  Crambr-Rao bound is m. 
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The Maine-I l i f f  formulat ion (Ref. 14) and minimization a lgor i thm discussed  

The program and computational a lgor i thms are descr ibed  f u l l y  
above are implemented w i t h  t h e  I l i f f -Maine code (MMLE3 maximum l i k e l i h o o d  esti- 
mation program). 
i n  R e f .  17. A l l  t h e  computations shown and described i n  t h e  remainder of t h e  
paper  use t h e  a l g o - r i t h m  e x a c t l y  as described i n  R e f .  17. 

AIRCRAFT EQUATIONS OF MOTION 

For t h e  disr :ussion tnat  fol lows i n  later sections of this paper, some ' 7 w l -  
edge of t h e  a i r x a f t  equat ions  of motion is assumed. To c l a r i f y  a m  of t r~a .  

discuss ion ,  t h e  a i r c r a f t  equa t ions  are d iscussed  briefly i n  t h i s  section. 

rirst,  tire a x i s  system on which t h e  aircraft e q u a t i m s  of motion are baaed 
is discuas:d.  Figure 2 ( a )  shows th? a i r c r a f t  re fe rence  .&dy-axia system and t h e  
conventio.ia1 c o n t r o l  r v f a c e s .  The o r i g i n  of t h e  body-axis system is a t  t h e  
c e n t e r  of g r a v i t y .  
r ight-hand r u l e  w i t h  the x-axis def ined  a8 positive forward on t h e  a i r c r a f t .  
The l o n g i t u d i n a l  accel .erat ion (a,) and nondimensional ax i a l  f o r c e  c o e f f i c i e n t .  
(Cx) are def ined  a long  t h i s  a x i s ,  and the r o l l  rate (p) and r o l l i n g  moment (L') 
are defined about  this axis .  The y-axis is def ined  as p o s i t i v e  o u t  t h e  r i g h t  
wing. 
(Cy)  are def ined  a long  t h i s  axis, and t h e  p i t c h  rate (9) and p i t c h i n g  moment 
(H') are defined about  t h i s  axis.  The z-axis is def ined  as p o e i t i v e  out the 
bottom of t h e  a i rcraf t .  
f o r c e  c o e f f i c i e n t  ( C z )  are r'afined a long  this axis, and t h e  yaw rate ( r )  and 
yawing moment (N'j are def ined  about  t h i s  axis* '=fie normal a c c e l e r a t i o n  is 
sometimes def ined  3s positive upward b u t  is then r e f e r r e d  to  as aN.  The t h r e e  
,omenta (L', M',  and N') are u s u a l l y  divided by t h e  corresponding moments of 
i n e r t i a  (Ix, Iy, and Iz!, cnd are then r e f e r r e d  to without  t h e  prime as L, M, 
and N. The83 q S A a n t i t i e s  are nondimensionalized ((24, G, arld Cn, r e s p e c t i v e l y )  
f o r  u s e  i n  t h e  eq.:ations of motion soon to  be discussed.  The primary c o n t r o l  
about  th. roll a i i s  (x-axis)  is t h e  a i l e r o n  ( d a ) ,  about  the p i t c h  a x i s  (y-axis)  
i s  t h e  ele rator (tSe) ,  and about  t h e  yaw axis  (z-axis) is t h e  rudder  ( d r ) .  Some 
a i r c r a f t  have o t h e r  c o n t r o l s ,  b u t  i n  t h i s  paper these vi11 only be def ined  where 
they  are d iscussed  ( t h e  reac'iion c o n t r o l  jets on t h e  space s h u t t l s ,  for example). 

The s i g n  convention f o r ' t h i s  a x i s  system is defined by t h e  

The la teral  a c c e l e r a t i o n  (a,) and nondimerlbional side f o r c e  c o e f f i c h n t  

The normal a c c e l e r a t i o n  (a,) and nondimensionai normal 

The Euler  angles  +, 8, and $ d e f i n e  +he aircraft a t t i t u d e  w i t h  respect t o  
t h e  earth. 
t o  t h e  a i r c r a f t  re fe rence  body-axis system of Pig. 2 (a) .  . The order of r o t a t i o n  
must be a t o u t  t h e  z-axis  ( j r ) ,  then the y-axis (81, and f i n a l l y  t h e  x-axis ( + I  
for t h e  a i r c r a f t  equa t ions  of motion t h a t  w i l l  be w r i t t e n  mbrequent ly .  

These angles  d e f i n e  the r o t a t i o n s  which t ransform ear th- f ixed  axes 

For e t a b i l i t - *  aad c o n t r o l  a n a l y s i s ,  t h e  v e l o c i t y  of the a i r c r a f t  with 
respect to  t h e  a i r  ( n o t  wi th  respect t o  t h e  e a r t h )  is of primary i n t e r e s t .  
Figure 2 (b )  shows We r e l a t i o n s h i p  between t h e  a i r c r a f t  a x i s  system pnd t h e  flow 
angles .  
f low a n q l e  i n  t h e  x-y plane is t h e  angle  of s i d e s l i p  ( 8 ) .  

The flow angle  i n  t h e  x-z p lane  is the angle  of attack (a), and t h e  
A more r igorous  and 
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detailed d e f i n i t i o n  is requi red  for the d e r i v a t i o n  of t h e  equat ions of motion, 
b u t  the above d e f i n i t i o n s  are s u f f i c i e n t  to  d e f i n e  the fol lowing equat ion  of 
motion. 

General ized nonl inear  equat ions  of motion are given i n  d e t a i l  i n  Ref. 17, 
which f u l l y  describes the I l i f f - M i n e  code (MtUE3 program). A l l  computations 
an(’ a i rcraf t  examples i n  t h i s  wper use  t h e  l i n e a r i z e d  form €or t h e  lateral- 
d i r e c t i o n a l  equat ions.  
remainder of the paper. 

These equat ions  are given b e l o w  and referred to  i n  t h e  

- 
21 = (cy + i o )  + 8 cos e s i n  + + p s i n  a - r cos a (15)  

where 

where t h e  6 term is summed over  a l l  cont ro ls .  

The observa t ion  equat ions are 

P m I P  

r,,, - 1: 

9m * 0 

. . .  
Em = P + PO . .  
r, = r + ro 
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The state, c o n t r o l ,  and observa t ion  vectors f o r  t h e  lateral-directional lode 
can then be def ined  as 

SIMPLE AIRCRAFT EXAMPLE 

The basic concepts  involved i n  a parameter e s t i m a t i o n  problor can be i l l u s -  
t r a t e d  by usir,g a simple example r e p r e s e n t a t i v e  sf a realistic d r c r a f t  problem. 
The example chosen h e r e  is r e p r e s e n t a t i v e  of 9n aircraft thet exhibits pure 
r o l l i n g  motion from a n  a i l e r o n  input .  This  example, a l though s i m p l i f i e d ,  typ i -  
f i e s  the motion e x h i b i t e d  by many aircraft i n  particular f l i g h t  regimes, such as 
the F-14 a i r c r a f t  f l y i n g  a t  9 i g h  dynamic pressure, *.e P-111 aircraft a t  d e r -  
a te  speeds with  the winq i n  t h e  forward p o s i t i o n ,  and the T-37 circraf t  at l o w  
speed. 

Derivat ion of an  equation d e s c r i b i n g  this motion is a t r a i g h t f o r u a r d .  
Figure 2 ( c )  shows a s k e t c h  of a n  aircraft w i t h  the x-axia perpendicular  to the 
p l a n e  LE t h e  f i g u r e  (positive forward on the a i r c r a f t ) .  "he r o l l i n g  moment (I.@), 
roll r a t e  (p) ,  and a i l e r o n  d e f l e c t i o n  (gal  are positive as shown. 
exaaple,  the only state is p and t h e  only c o n t r o l  is 6ae 
moments is 

For this, 
Ihe r e s u l t  of summing 

The f i r s t - o r d e r  Taylor expansion t h e n  becomes 

where 

Since t h e  a i l e r o n  is the only  c o n t r o l ,  it is n o t a t i o n a l l y  eirpler to use 6 
i.nstead of 6, for t h e  d i s c u s s i o n  of t h i s  example. Bquation (33) taxi then be 
w r i t t e n  as . 

~ = * + + 6  (34)  

;.- ? I t e r n a t e  approach t h a t  r e s u l t s  i n  the 8aae equat ion i a  to  coablne Eq. (16) 
w i t 3  dq. ( 2 0 ) ,  ELbstit-uting for C.:# snd then e l i m i n a t e  t h e  terms that are zero 
for our example. This y i e l d s  
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where p is the r o l l  rate and 6 is t h e  a i l e ron  &f lec t ion .  
t h e  equation can be pu t  i n t o  the d lmns iona l  de r iva t ive  form of lh.. 134). 

Rearranging terrs, 

Equation (34 )  is a simple aircraft equation &ere the forc ing  funct ion is 
provided by the a i l e r o n  and t h e  damping by the dappping-in-roll term, 5. 
subsequent s ec t ions  w e  examine in detail t h e  parameter est imat ion problem where 
Bq. (34) describes t h e  system- For this single-degree-of-freedom proble~n, t h e  
maw- l ike l ihood estimator is used t o  e n t i r a t e  e i t h e r  Ip or L6 OX both for a 
given computed ti- his tory .  

In 

W e  w i l l  ass- t h a t  t h e  system has measuremeat naise, but  no state noise  as 
i n  Bqs. (11,  (21 ,  and (3). Equation ( 4 )  then  gives  t h e  cost funct ion  for mxbu 
likelihaod e s t h a t i o n .  
l e t  it equal 1. For our exarple, Qt3- ( 2 )  and (3) b t c m  x i  = pi  and ti = X i .  
Therefore, Eq. (4 )  becares 

The weigf?ci,xg a;* is unimportant f o r  this probla, so 

where p i  is the value of the peasured response p a t  tire ti and f i i ( $ 8 & 3 )  is the 

c q u t e d  time h i s to ry  of 
rest of the paper, where coaputed data (not  iiight data) are used, the m s u r e d  

t i m e  h i s to ry  refers t o  p i ,  and t h e  computed tire h i s to ry  r e f e r s  to &($#La)* 
The computed time h i s to ry  is a funct ion of t h e  cur ren t  estirutes of Lp and Q, 
but  the measured tine h i s t o r y  is not. 

.. 
at  tire ti f o r  Lp = $ and Lg = ;a. Throughout the 

The mst s t r a igh t fo rva rd  method of obtaining p i  is w i t h  -8. (3 and ( 8 ) .  
In terms of t h e  nota t ion  stated above8 

where 
4 = exp ($A) 

ar.9 A is t h e  length of the sample i n t e r v a l  ( t i+l  - ti). Simplifying the 
no ta t  ion 

then  
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The maxima l i k e l i h o o d  estimate is obtained by minimizing Eq. (36). The 
Gauss-Newton method described earlier is used for t h i s  minimization. 
t i o n  (12)  is used t o  determine s u c c e s s i v e  va lues  oL the estimtes of the 
unknoms dur ing  the minimization. 

qua- 

A 6 . .  a 

For t h i s  simple problem, 5 = fLp q l *  and success ive  estimates of Lp u d  

are determined by updat ing Bq. (12).  The f i r s t  and second g r a d i e n t s  of Ipq. (12) 
are defined by 4 s .  ( 1 3 )  and (14). The complete set of equations is given i n  
R e f .  17. 

The e n t i r e  procedure can noy be w r i t t e n  for o b t a i n i n g  the mxirur l i k e l i h o o d  
estimates for this simple example. 'Po start the algori thm, an  i n i t i a l  estimate 

of Lp and Lg is needed. This  is t h e  value of €0. With m. (121, (1 and s u b  

sequent ly  5~ are d e f i n e d  by u s i n g  the f i r s t  and second g r a d i e n t s  of J ( + , L & )  
from Eq. (36). The g r a d i e n t s  for this p a r t i c u l a r  example from Eq. (13) and 
'14b) are 

A 

a 

With the specific equat ions  d e f i n e d  i n  t h i s  s e c t i o n  for t h i s  simple example, 
w e  can noy proceed in t h e  next s e c t i o n  to the computational de ta i l s  of a speci- 
f i c  example. 

Computational Details of n i n i m i z a t i o s  

I n  the previous s e c t i o n  w specified t h e  equat ions  for a simple example and 
described t h e  procedure for o b t a i n i n s  estimates of the unknowns from a dynamic 
maneuver. I n  this s e c t i o n  we give the corprtatioril details for o b t a i n i n g  the 
estimates. Some of t h e  basic concepts  of parameter e s t i m a t i o n  are beat shown 
with computed data vhere t h e  correct answers are known. Therefore, i n  this sec- 
t i o n  w e  s tudy  two examples involv ing  computed ti- histories. me f i r s t  e-le 
is based on data that have no measurement noise, which r e s u l t s  in e8l.iwtes that  
a r e  t h e  same as the correct value. The socond example c o n t a i n s  s i g d f i c a n t  
measurement noise;  consequently,  t h e  estimates are n o t  the same as t h e  correct 
values.  Throughout t h e  rest of t h e  paper, diere computed d a u  are used, t h e  
term "no-noise case" is used f o r  t h e  case with no n o i s e  added and 'noisy case' 
f o r  the case vherc noise  has been added. 

S ince  ve are s tudying  a simple conputed example, it is desirable to  keep it 
simple enocgh t o  complete soma or a l l  of the c a l c u l a t i o r a  on a home computer or, 
wit some labor, on a c a l c u l a t o r .  With t h i s  i n  mind, the number of data p o i n t s  
needs rn be kept snzll. Por thitr F q u t e d  example, 10 p o i n t s  ( t ine  samples) are 

2 09 



used. T1.e s imulated data8 which w e  refer to as the measured data8 are based on 
Eq. (34).  
r e spec t ive ly )  for both examples. I n  addi t ion,  the same input ( 6 )  is used f o r  
both e, mles, t h e  sample i n t e r v a l  (A) is 0.2 sec, and the i n i t i a l  conditions 
are t e r c  
examp?i. These values  ire given to four  s i g n i f i c a n t  digits,  although t o  obta in  - exac:2 t; 
s ign iz i c in :  digits,  as i n  the co rpu ta t i ca  of these tables. If the f o u r - d i g i t  
n u m e r t  are used i n  the carputation, the answers w i l l  be a few t en ths  of a 
percent  o f f ,  bu t  w i l l  s t i l l  serve to i l l u s L r a t e  the minimization accuracy. 

both exarples ,  the i n i t i a l  values  of Lp and 
respect i ve ly  

W e  use the 8- correct values of Lp and L6 (-0.2500 and 10.0, 

Tables of a l l  t h e  s i g n i f i c a n t  internediate values are g i w n  with each 

8- values  w i t h  a computer or calculator requi res  the use of 13 

I n  . 
(or €9) are -0.5 and 15-08 

-ample W i t h  No kkasurerent W i s e  

The easurement  time h i s t o r y  f o r  no m e a s u r a n t  noise (no-noise case) is 
shown i n  Fig. 3. The a i l e r o n  inpu t  star<& at zero, goes to a f ixed  value, and 
then re turns  to  zero. The r e s u l t i n g  r o d - F a t e  t i m e  h i s t o r y  is also shown. The 
values of the  measured roll rate to 13 s i g r i f i c a n t  d ig i t s  are given i n  Table 1 
along with the  a i l e r o n  input. 

A -  

Table 2 shows the values f o r  $ 8  Lg, and J f o r  each i t e r a t i o n ,  along w i t h  

the values of 0 a..d J, needed for  calculations of pi. I n  three iterations the 
aigori thm c;nverges to t h e  correct values to  four  s i g n i f i c a n t  digits f o r  both $ 

and L(j. Q overshoots s l i g h t l y  on the f i r s t  i t e r a t i o n  and then comes quickly  to 

the correct answer. 

- 
A 

A 

$ overshoots s l i g h t l y  on the second i t e r a t i o n .  

Figure 4 shows the  natch between the measured data ar?d the computed data for 
each of the  first three t t r a t i o n s .  The match is very good a f t e r  two iterations. 
The r a t c h  is nearly enac t  a f t e r  t h ree  iterations. 

Although the z l g o r i t h a  has converged to  four-digit accrrlracy i n  % and La, 
t h e  value of the coat funct ion,  J, continues to decrease rap id ly  between itera- 
t i o n s  3 and 4. This is a consequence of using the W M ~ B U ~  l ike l ihood estilrator 
on data w i t h  no measurement noise. 
value of J a t  the minimum should Lo zero. RQVCver, w i t h  f ln i t t  accuracy the 
value of J becomes small b u t  never q u i t e  zero. 
nuabet of s i g n i f i c a n t  d i g i t s  t h a t  are being used. For the 1 3 4 i g i t  accuracy 
used here, the c o s t  eventual ly  decreases to approximately 0.3 x 

Theoret ical ly ,  using infinite accuracy the 

'Ibis value is a funct ion of the 

Example W i t h  MeasurePent Noise 

The data  used ,n this &ample (noisy case) are the  same as those used i n  the 
p r e v i a 8  sec t iun ,  except t h a t  pseudo-Gaussian noise has been added to the r o l l  
rate. The t i m e  h i s to ry  ik 8.10~-n i n  Fig. 5. The signal-to-noise ratio is quite 
low i n  thi- example, as is readi ly  apparent by comparing Figs. 3 and 5. The 
exact values of the time h i s t o r y  to  1 3 4 i g i t  accuracy are shown i n  "able 3. 

values of Lp, Lb, p, J,, and J are s h a m  far each i teration i n  Table 4. The 

The 
A A  
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algori thm converges i n  f o u r  i t e r a t i o n s .  The behavior of the c o e f f i c i e n t s  as 
they approach convergence is much l i k e  the no-noise case. The most notable  

r e s u l t s  of this case are the converged va lues  of 5 and L6, which are somewhat 
d i f f e r e n t  from t h e  correct values.  
time h.' tc-y if+ shown i n  Pig. 6 f o r  each i t e r a t i o n .  No change i n  t h e  l a t c h  is 
apparent  for the last two iterations. The match is very good cons ider ing  t h e  
amount of measurement noise.  

L L 

The match between t h e  measured and computed 

I n  Fig .  7 ,  +he computed t ime h i s t o r y  :or t h e  correct va lues  of $ and 
compared to  that for the noisy-case estimates of T , and L6. 
algorithm converged to va lues  sorevhat d i f f e r e n t  an the correct values,  the 
tvo compute. t i m e  histories are s i m i l a r  b u t  n o t  i d e n t i c a l .  

is 
Because the 

The accuracy of the converged elements  can be assessed by looking a t  t h e  
CraGr-Rao i n e q u a l i t y  (Refs. 16 and 17) discussed earlier. 
can be obta ined  from a e  fol lowing approximation to the i n f o m a t i o n  matrix. 

The Cram&-Rao bound 

The Cram&-Rao bounds for 5 and Q are the square roots of  the d iagonal  ele- 

ments of the H matrix,  or (H(1,l) and /H(2 ,2) ,  respec t ive ly .  

bounds are 0.1593 and 1.116 for Lp and u, respectf-;-,ly. 
L6 are less than the bounds. 

The Cram&-Rao 
A A 

Ihe errors i n  L,, and 

C o s t  Functions 

In the previous  s e c t i o n  we obtained the m a x i m u m  l i k e l i h o o d  estimtes for 
computed time h i s t o r i e s  by minimizing the values  of the cost funct ioa .  To f u l l y  
understand what occurs i n  this minimization, we lust s t u d y  in more detai l  the 
form of t h e  cost f u n c t i o n s  amid some of their more important  c h a r a c t e r i s t i c s .  I n  
t h i s  s e c t i o n ,  t h e  cost f u n c t i o n  f o r  the no-noise case is discussed b r i e f l y .  me 
cost func t ion  of the noisy case is then  discussed in more de ta i l .  The same two 
t i m e  h i s t o r i e s  s t u d i e d  i n  the previous s e c t l o n  are z-amined here.  The noisy 
case is more i n t e r e s t i n g  because it has a meaningful Cram&-Rao bound and is 
more r e p r e s e n t a t i v e  of a i r c r a f t  f l i g h t  data. 

F i r s t  ve w i l l  look a t  the one-dimensional case where L6 is f i x e d  a t  t h e  
correct value,  because it is easier to  grasp some of the c h a r a c t e r i s t i c s  of t h e  
cost func t ion  i n  one dimension. Then ;*e w i l l  look a t  the'two-dimensional case, 
where both Lp and Lb are varying. It i3 important to  remember t h a t  every th ing  
shown i n  t h i s  paper on cost f u n c t i o n s  is based on computed time histories t h a t  
a r e  def ined  by Eq. (36). For every time h i s t o r y  w e  might choose (computed or 
f l i g h t  data) ,  a complete cost func t ion  is defined.  
t h e  cost t u n c t i o n  d e f i n e s  a hypersurface of n + 1 dimensions. 
u s  t h a t  we could j u s t  c o n s t r u c t  t h i s  s u r f a c e  and look for  t h e  minimum, avoiding 
t h e  need t o  bother  with the minimization algorithm. This  is not  a reasonable 

For t h e  case of n var iab les ,  
It  might occur to  
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approach because, i n  general ,  the number of va r i ab le s  is g r e a t e r  than two. 
Therefore, the  cost funct ion can be descr ibed mathematically b u t  no t  p ic tured  
graphical ly .  

To i l l u s t r a t e  the  many i n t e r e s t i n g  aspects of cost funct ions,  it is eas- 
i e s t  t o  f i r s t  look a t  c o s t  func t ions  having one var iable .  
t i o n ,  t he  cost func t ion  of tp and Lg w a s  minimized. 
i n t e r e s t i n g  i n  t h e  Lp d i r ec t ion .  Ther=:ore, t he  one-variable c o s t  func t ion  
s tudied  here  is J(Lp). 
to  the carrect value of 10. Figure 8 shows the c o s t  func t ion  p l o t t e d  as a func- 
t i o n  of Lp f o r  the  case where thsre is no measurement noise  (no-noise case). As 
expected f o r  t h i s  case, the minimum cost is zero and occurs a t  the correct value 
of Lp = -0.2500. 
more negative Lp than f o r  a pos i t i ve  TT. 

to  become less negative where $ is more negat ive than -1.0. 

makes sense s ince  the more negative values of 5 represent  cases of high damping, 
and the  p o s i t i v e  Lp represents an  unstable  system. Therefore, t h e  pi  for posi- 
t i v e  Lp becomes increas ingly  d i f f e r e n t  from the measured t i m e  h i s t o r y  f o r  small 
pos i t i ve  increments i n  5. 
would show e s s e n t i a l l y  no response. Therefore, large increases  i n  damping 
r e s u l t  i n  r e l a t i v e l y  small changes i n  the  value of J($). 

In  an earlier sec- 
That cost funct ion is most 

A l l  subsequent d i scuss ions  are f o r  J ( L p )  with Lg equal  

It is apparent tirat the  c o a t  increases  much more slowly f o r  a 
I n ' f a c t ,  t he  s lope  of the curve tends 

Physical ly  this 

For very l a rge  damping (very negat ive $1 the system 

I n  Fig. 9, t he  cost funct ion based on the  time h i s to ry  with measurement 
noise  (noisy case)  is p lo t t ed  as a func t ion  of Lp. 
Lp (-0.2SOO) and the  value of Lp (-0.3218) a t  t he  minimum of the  c o s t  (3.335) 
a r e  both ind ica ted  on the  f igure .  
Pig. 9 is similar to  that shown i n  Fig. 8. Figure 10 shows the  comparison 
between the  c o s t  funct ions based on the time h i s t o r i e s  with and without masure- 
ment noise. The comments r e l a t i n g  to  the  c o a t  funot ion of the  no-noist zase 
a l s o  apply t o  the cost funct ion based on the noisy case. Figure 1@ shows 
c l e a r l y  t h a t  the t w o  coa t  funct ions are s h i f t e d  by the  d i f fe rence  1:; the value 
of Lp a t  the minimum and increased by the  d i f f e rence  i n  the  min imum cos t .  One 
would expect only a small d i f fe rence  i n  the value of the c o s t  when f a r  from the 
minimum. This is because the "estimated" time h i s to ry  is so f a r  from tho 
measured t i m e  h i s to ry  t h a t  it becomes i r r e l e v e n t  as t o  whether the  measured time 
h i s to ry  has noise added. Therefore, f o r  large values of cos t ,  the d i f fe rence  i n  
t h e  two c o s t  funct ions should be small i n  comparison to  the t o t a l  cost. 

The correct value of 

The genera l  shape of the c o s t  funct ion i n  

Figure 1 1  shows the gradien t  of J(LP) p lo t t ed  as a funct ion of Lp for the  
n o i s y  case. 
equivalent ly ,  t h e  minimum of tht c o s t  func t ion)  using the  Gauss-Newton method of 
a previous sect ion.  
t he  value of the  minimum of J(Lp). 

This is the  fun r t ion  f o r  which w e  were t ry ing  t o  f ind  the  zero (or 

The qradien t  is zero  a t  Lp P -0.3218, which corresponds to  

The d i f fe rence  between the  Newton-Paphson method (4. ( 14a) ) and the 
Gauss-Newton method ( E q .  (14b) ) of minimization has been  mentioned previously. 
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For t h i s  simple one-dimensional case, w e  can e a s i l y  compute t h e  second gradien t  
both with the  second term of Eq. (14a) (Newton-Raphson), and without t he  second 
term (Gauss-Newton, 4. (la) 1. Figure 12 shows a comparison between the  
Newton-Raphson and the  Gauss-Newton approximation second gradients .  The 
Gauss-Newton second gradien t  (dashed l i n e )  always remains p o s i t i v e  because it 
i s  the sum of quadra t i c  terms (squared f o r  t he  one-dimensional example). T h s  
Newton-Rapnson second gradien t  can be positive or negative,  depending upon the 
value of the second partial with r e a p c t  to Lp. Other than the  d i f fe rence  i n  
s i g n  for the more negative $, the two curves have similar shapes. 

As stated earlier, t h e  Gaiiss-Newton method can be shown t o  be super ior  t o  
Newton-Raphson i n  c e r t a i n  cases. W e  can demonstrate obvious cases of t h i s  
w i t h  our example. 
Raphson method w i l l  occur is to  look f o r  places where t h e  second gradien t  ( s lope  
of the  g r a d i t n t )  is near ze ro  oL aegative. Figure 1 1  has such a region near 
Lp = -1.0. 
are forced t o  d iv ide  by zero  i n  E’. (12) w i t h  t he  Newton-Raphson metr,A. 
po in t  is a t  Lp = -1.13 i n  Fig. 12. I f  t he  value of t he  s lope  of the  grad ien t  is 
negative,  then the Newton-Raphson method w i i l  go to very negative values of Lp. 
For very negat ive values of $, the cost becomes asymptot ical ly  cons tan t  and the 
g rad ien t  becomes near ly  zero. In  that region, the  Newton-Raphson algorithm 
would diverge towards negative i n f i n i t y .  If the slope of the gradien t  is 
p o s i t i v e  bu t  small, w e  s t i l l  have a problem with the  Newton-Rapheon method. 
Figure 13 shows the f i r s t  i t e r a t i o n  s t a r t i n g  from $ = -0.95 for both Gauss- 
Newton and Newton-Raphaon. The Newton-Raphson method selects a po in t  where the  
t a n g e n t  of the gradien t  a t  $ = -0.95 i n t e r s e c t s  t he  zero  l i ne .  This r eau l t a  i n  
the  se l ec t ion  of an Lp of approximately 2.6 i n  t he  f i r s t  i t e r a t i o n .  
value it requi res  many i t e r a t i o n s  to re tu rn  to  the  a c t u a l  minimum. On the o the r  
hand, t he  Gauss-Newton method selects a value f o r  Lp of approximately -0.09 and 
converges t o  the  minimum t o  four -d ig i t  accuracy i n  two more i t e r a t i o n s .  With 
more complex examples a comparison of the convergence properties of the two 
algorithms becomes more d i f f i c u l t  to visua l ize ,  bu t  t he  problems are gerieraliza- 
t i o n s  of the  s i t a a t i o n  w e  have observed with the one-dimensional example. 

An easy way to  select a spot where problems with the Hewton- 

If we choose a po in t  where t h e  g rad ien t  slope is  exac t ly  zero,  we 
This 

From that 

The usefulness  of the  Cra&r-Rao bound was discussed i n  the  Example W i t h  
Measurement Noise sec t ion .  A t  this po in t  it is use fu l  to  d ig res s  b r i e f l y  to 
d i scuss  some of t h e  ramif icat ions of t he  CramhRao bound f o r  the one-dimensional 
case.  
example, t he  estimate of Lp is -0.3218 and the  Cram&-Rao bound is 0.0579. 
ce lcu la t ion  of the  Cramk-Rao bound w a s  defined i n  the previous section f o r  both 
one-dimensional and two-dimensional examples. 
mate of the  s tandard devia t ion  of the esti.mate. One would expect t he  scatter i n  
t h e  estimates of $ to be of about the same magnitude as the  estimate of the 
s tandard deviat ion.  For t he  one-dimemioaal case discussed here, the  range 
(Lp (-0.3218) plus  o r  minus the  Cram&-Rao bound (0.0579)) nearly includes the  
c o r r e c t  value of $ (-D.2500!. I f  noiay cases are generated f o r  many t i m e  hia- 
t o r i e s  (adding d i f f e r e n t  measurement noise t o  each time h i s t o r y ) ,  then the sam- 
ple mean and sample s tandard devia t ion  of the est imates  f o r  these cases can be 
ca lcu la te? .  Table 5 gives the  sample mean, eample standard deviat ion,  and the  

The Cramdr-Rao bound only has meaning f o r  the noisy case. I n  the  noisy 
The 

The CramhRao bound is an esti-  
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s tandard  d e v i a t i o n  of t h e  sample mean (s tandard  d e v i a t i o n  divided by t h e  square  
root of t h e  number of cases) for 5, 10, and 20 cases. ?!he sample mean, as 
expected, g e t s  closer to t h e  correct va lue  of -0.2500 as t h e  number of cases 
increases .  This is also r e f l e c t e d  by t h e  decreas ing  va lues  i n  column 4 of 
Table 5, which are estimates of t h e  e r r o r  i n  t h e  sample mean. Column 3 of 
Table 5 shows the sample s tandard  d e v i a t i o n s ,  which i n d i c a t e  t h e  approximate 
accuracy of t h e  i n d i v i d u a l  estimates. This s tandard  d e v i a t i o n ,  which s t a y s  mor3 
o r  less cons tan t ,  is approximately equal  t o  tne Cram&-l?ao bound for the noisy  
case being s t u d i e d  here.  
noisy cases used here  ( n o t  shown i n  the t ab l e )  do n o t  change much from t h e  
values  found f o r  t h e  noisy case being s tudied .  Both of t h e s e  r e s u l t s  are i n  
good agreement with t h e  theoretical c h a r a c t e r i s t i c s  ( R e f .  16) of t h e  Cram&-Rao 
bounds and maximum l i k e l i h .  a 3  estimators i n  general .  

I n  f a c t ,  t h e  Cram&-Rao bounds for each of t h e  20 

The examples shown here  i n d i c a t e  the value of o b t a i n i n g  more sample t i m e  
h i s t o r i e s  (maneuvers). More samples improve confidence i n  t h e  estimate of t h e  
unknowns. The same r e s u l t  ho lds  t r u e  in analyz ing  a c t u a l  f l i g h t  time h i s t o r i e s  
(maneuvers); thus  i t  is always a d v i s a b l e  t o  o b t a i n  s e v e r a l  maneuvers a t  a given 
f l i g h t  condi t ion  to  improve t h e  best estimate of each d e r i v a t i v e .  

The s i z e  of t h e  Cram&-Rao bounds and of t h e  error between the correct value 
and t h e  estimated value of + is determined to  a large e x t e n t  by t h e  length  of 
the  time h i s t o r y  and t h e  amount of noise  added to  t h e  correct time h i s t o r y .  For 
the  example being s t u d i e d  here ,  it is apparent  from Fig. 5 t h a t  the amount of 
noise  being added to  t h e  time h i s t o r y  is large. The effect of t h e  power of t h e  

measurement noise  (GG*, Eqs. ( 3 )  and ( 4 ) )  on t h e  estimate of Lp (that is, Lp) 
f o r  the t i m e  h i s t o r y  is given i n  Table 6.  The estimate of Lp is much improved 
by decreas ing  t h e  measurement noise  power .  A reduct ion  i n  the value of G t o  
cine-tenth of the  valu.? i n  t h e  noisy example being s t u d i e d  y i e l d s  a n  acceptable 
e s t i m a t e  of Lp. 

t h e  accuracy of t h e  output  of t h e  measurement sensors .  

A 

For L i l g h t  data, the ueasurement noise  is reduced by improving 

Two-Dimensional Case 

I n  t h i s  s e c t i o n  t h e  cost f u n c t i o n  (which is deiendent  on both Lp and t&) is 
s tudied .  The no-noise case is examined f i r s t ,  followed by the noiey case. 

No-noise case. Even though the cost f u n c t i o n  is a f u n c t i o n  of m l y  rwo 
unknowns, it is much more d i f f i c u l t  to  v i s u a l i z e  than  t h e  one-unknown case. The 
c o s t  f u n c t i o n  over  a reasonable  range of Lp and L& is shown i n  Fig. 14. The 
cost i n c r e a s e s  very r a p i d l y  i n  t h e  region of p o s i t i v e  $ qnd l a r g e  values  of 
Lg. The reason it3 j u s t  an  ex tens ion  of t h e  argument. fcr p o a i t i v e  giver, i n  
t h e  previous s e c t i o n .  The shape of the s u r f a c e  can be depicted i n  g r e a t e r  
d e t a i l  i f  w e  examine only t h e  values  of the cost f u n c t i o n  less than 200 f @ r  5 
less than 1.0. Figure 15 shows a view of t h i s  restricted s u r f a c e  from t h e  upper 
end of t h e  sur face .  The minimum must l i e  i n  t h e  curving v a l l e y  t h a t  g e t s  
broader as we go to t h e  f a r  s i d e  of t h e  sur face .  Now that we  have a picture of 
t h e  sur face ,  we can look a t  t h e  i s o c l i n e s  of conatan t  cost orr t h e  Lp-VerSUS-L6 
plane.  These i s o c l i n e s  are shown i n  Pig. 16. The minimum of t h e  cost func t ion  
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is  ins ide  the closed i soc l ine .  
positive-$ d i r e c t i o n  is once aga in  apparent. Inside the closed i s o c l i n e  the 
shape is more nearly e l l ipt ical ,  i nd ica t ing  that the c o a t  is near ly  quadratic 
here, so f a i r l y  rapid convergence i n  chis region would be expected. 
becomes an asymptote i n  cost as L6 approachea zero. The cost is cons tan t  for 
L6 = 0 because no response would r e s u l t  from any a i l e r o n  input.  
response is zero  for a l l  values  of $, r e s u l t i n g  i n  cons tan t  eoat.  

The st.eepness of the cost func t ion  ir ,  the 

The $ axia 

The astimated 

Figure 16 shows the region of t h e  minimum value of the cost function, which, 
as seen i n  the earlier example (Table l ) ,  occure a t  the correct valuea f o r  Lp 
and L6 of -0.2500 and 10, respect ively.  
cost funct ion sur face  shown i n  Pig. 17. The sur face  has ita minimum 3t the 
c o r r e c t  value. As expected, the value of the cost funct ion  a t  the minimum is 
zero. 

This is also evident  by looking a t  the 

Noisy case. As s h w n  before i n  t h e  one-himemional case? the primary d i f -  
ference between t h e  cost func t ions  for the no-noise and noisy cases was a shift 
i n  t h e  c o s t  function. I n  that i m t a n c e ?  the noisy case w a s  sh i f t ed  so tha t  the 
minimum was a t  a higher cost and a more -mgative value of 
dimensional case, the no-noise and noisy cost funct ions exhibit a similar sh i f t .  
For t w o  dimensions the s h i f t  is i n  both the Lp and L6 d i rec t ions .  
small enough that the d i f f e rence  between the two cost funct ions is not  v i s i b l e  
a t  the scale shown i n  Fig. 14 or from the perspect ive of Fig. 15. Figure  18 
shows the i s o c l i n e s  of cons tan t  cost for the noisy case. The f i g u r e  looks much 
l i k e  the i soc l ines  for the no-noise case shown i n  Pig. 16. The d i f f e rence  
between Figs.  16 and 18 is a s h i f t  i n  $ of about 0.1. 

i n  the value of Lp a t  the minimum f o r  the no-noise and noisy cases. 
c a l l y ,  one can see that the same would be true for cases wi th  more than two 
unknowns. 
mini mum. 

I n  the t w o -  

The s h i f t  i e  

This is the di f fe rence  
Heuris t i -  

The primary d i f f e rence  between the two cost funct ions is near the 

The next l og ica l  part of the c o s t  funct ion to e d n e  is near the minimum. 
Figure 19 shows the same view of the cost funct ion for the noisy case as was 
shown i n  Fig. 17 for the no-noise case. The aha-w is roughly the same as that  
shown i n  Pig. 17, bu t  t)ie sur face  is sh i f ted  such that  i t a  minimurn lies over 
Lp = -0.3540 and L6 = 10.24, and is sh i f t ed  upward t o  a c o s t  funct ion value of 
approxinu t e  ly 3.3 . 

To g e t  a more p rec i se  idea of the c o s t  of the noisy case near the minimum, 
w e  once again need t o  examine the i aoc l ines .  The i s o c l i n e s  (Fig. 20) i n  t h i s  
region a r e  much more l i k e  o l l i p s s e  than they are i r  Figs. .16  aad 18. W e  can 
follow the path of the minimization exaiaple used before  by including the r e s u l t s  
from Table 4 on FiQ. 20.  The f i rs t  i t e r a t i o n  (5  = 1)  broughc the values of Lp 
and I,6 very c lose  to  the values a t  the  minimum. 
selected the valuea a t  the minimum when v-:smd a t  this scale. One of the rea- 
sons the  convergence is so rapid i n  t h i e  region is that  the i soc l ines  are near ly  
% l l i p t i c a l ,  demonstrating that t h e  c o s t  is very near ly  quadra t i c  i n  this region. 
If w e  had started the Gauss-Newton algorithm a t  a po in t  where the i soc l ines  
a r e  m c h  less e l l ip t ica l  (as I n  rome of the border regions i n  Fig. 181, the  

The next i t e r a t i o n  e s s e n t i a l l y  
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convergence vould have been much slower i n i t i a l l y ,  b u t  much t h e  same as it 
e n t e r e d  the n e a r l y  q u a d r a t i c  reg ion  of t h e  cost funct ion.  

Before concluding o u r  examination of the two-dimensional case, we need to  
e x a n h e  the Cram&-Rao bound. 
is  based on the Cram&-Rao bounds def ined  i n  an  ear l ier  s e c t i o n .  
s h i p s  between t h e  Cram&-Rao bound and t h e  u n c e r t a i n t y  e l l i p s o i d  are discuss,:d 
i n  R e f  . 16. The Uncer ta in ty  e l l i p s o i d  almost  inc ludes  t h e  cxrec t  value of Lp 
and Lg. The CramGr-Rao bound f o r  Lp and L6 can be determined from t h e  p r J j e c -  
t i o n  of t h e  u n c e r t a i n t y  ell ipsoid onto  the Lp and Lg axes, and compared with t h e  
values  given earlier, which were 0.1593 and 1.1 16  f o r  Lp and Lg, respec t ive ly .  

Figure 21 shows t h e  u n c e r t a i n t y  ellipsoid, which 
The relatior- 

ESTIMATION USING FLIGHT DATA 

I n  t h e  previous s e v e r a l  s e c t i o n s  w e  examined t h e  basic mechanics of obtain-. 
ing maximum l i k e l i h o o d  estimates from computed examples wi th  one or two unknown 
parameters.  Now t h a t  w e  have a grasp of t h e s e  basics, we can explore t h e  esti- 
mation of s t a b i l i t y  and c o n t r o l  d e r i v a t i v e s  from a c t u a l  f l i g h t  data. For t h e  
computat ional ly  much more d i f f i c u l t  s i t u a t i o ?  u s u a l l y  encountered us ing  actual. 
f l i g h t  data, we w i l l  o b t a i n  t h e  maximum 1ikeli.hood estimttes with the ISrf-  
Maine code ( W E 3  program) described i n  Ref. 17. The equat ions  of motion t h a t  
are of i n t e r e s t  are given i n  t h e  AIRCRAFT EQUATIONS OF MYTION s e c t i o n  of this 
paper; the remainder of the equat ions  are given i n  Ref. 17. 

I n  genera l ,  f l i g h t  data e s t i m a t i o n  is f a i r l y  complex, and codes s x h  as the 
I l i f f -Maine cade must u s u a l l y  be used to  assist i n  t h e  ana lys ie .  However, one 
must s t i l l  be caut ious  about  accept ing  t h e  r e s u l t s ;  tkac :s, +&e ea t imates  must 
f i t  t he  phenomenology, and t h e  match between the m;sured and computed time h i s -  
tories must be acceptable .  This is true i n  a l l  f l i g h t  regimes. ?xt one must be 
p a r t i c u l a r l y  c a r e f u l  i n  p o t e n t i a l  prQblem s i t u a t i o n s  such as ( 1 )  i n  separated 
f l o w  a t  high Mach numbers o r  high angle  of a t t a c k ,  ( 2 )  w i t h  unusual a i r c r a f t  
conf igura t ions  such as the obl ique  wing (Ref. 181, or ( 3 )  with modern high- 
performance a i r c r a f t  with high-gain feedback loops. 
one should be p a r t i c i i l s r l y  c a r e f u l  where there are even small anomalies i n  t h e  
match. These anomalies may i n d i c a t e  ignored terms in the equat ions  of motion, 
separa ted  flow, n o n l i n e a r i t i e s ,  sensor  problems, i n s u f f i c i e n t  r e s o l u t i o n  
( R e f .  1 1, sensor  l o c a t i o n  ( R e f  . 1 1, time or phase l a g s  ( R e f s .  1 and '91, or aiIy 
of a long l i s t  of ocher  problems. 

I n  any of t h e  above cases, 

The fol lowing b r i e f  examples are intended to  show how t h e  above cavea ts  and 
t h e  computed examples of prev ious  s e c t i o n s  can be used to'assist i n  the analy- 
sis. 11. the computed example, t h e  d e s i r a b i l i t y  of low-noise sensors ,  an  ade- 
quate model, and s e v e r a l  maneuvers a t  a given f l i g h t  condi t ion  is shown. 

Hacd C a l c u l a t i o n  Example 

Sometimes e v a l u a t i o n  of a F a i r l y  comp:.ex f l i g h t  maneuver can be augmented 
w i t h  a simple hand c a l c u l a t i o n .  One example of this can be found for t h e  space 
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s h u t t l e .  
e n t e r  the atmosphere from space and land  h o r i t o n t a l l y .  The e n t r y  c o n t r o l  system 
c o n s i s t s  of 12 vertical reaction-control-system (RCS) jets ( s i x  up-f i r ing and 
s i x  down-firing),  8 h o r i z o n t a l  RCS jete ( f o u r  l e f t - f i r i n g  and f o u r  r i g h t - f i r i n g )  
4 elevon s u r f a c e s ,  a body flap, and a s p l i t  rudder sur face .  The l o c a t i o n s  of 
these devices are shown i n  Fig. 22. The vertical j e t s  and the elevons are used 
for both pitch and ro l l  c o n t r o l .  The jets and elevom are used s y r a w t r i c a l l y  
for p i t c h  c o n t r o l  and asymmetrically for roll c o n t r o l .  The space s h u t t l e  con- 
t r o l  system is described b r i e f l y  i n  R e f .  6. 

The space s h u t t l e  is a l a r g e  double-delta-winged v e h i c l e  designed t o  

The s h u t t l e  example used here is from a maneuver obta ined  a t  a Mach number 
of approximately 21 and a n  a n g l e  of attack of approximately 40°. The c o n t r o l s  
being used for  this l a t e r a l - d i r e c t i o n a l  maneuver are the d i f f e r e n t i a l  e levons 
and t h e  s i d e - f i r i n g  jets (yaw jets) .  The maneuver is shown i n  Fig. 23. 
Equations (15) to  (31) describe the equat ions  of motion. A simplified approach 
can be used to  determine some of the d e r i v a t i v e s  by hand. 
t h a t  has  b e n  used s i n c e  t h e  beginning of dynamic a n a l y a i e  of f l i g h t  maneuvers. 
I n  p a r t i c u l a r ,  for t h i s  mneuver  the slope of the rates can be used t o  determine 
the yaw je t  c o n t r o l  d e r i v a t i v e s .  This is possible for this example, even w i t h  a 
high-gain feedback system, because the yaw jets arc e s s e n t i a l l y  step func t ions ,  
and the elope of t h e  rates p and r can be determined before the v e h i c l e  and the 
d i f f e r e n t i a l  e levon ( a i l e r o n )  responses become s i g n i f i c a n t .  The r o l l i n g  moment 
due t o  yaw je t  (LYJ) is p a r t i c u l a r l y  important  for the s h u t t l e  (Ref. 6 discusses 
t h e  e s s e n t i a l  n a t u r e  of f l ight-determined LYJ i n  the r e d e f i n i t i o n  of e n t r y  
maneuvers) and is, i n  genera l ,  more d i f f i c u l t  to  o b t a i n  than  the more dominant 
yawing moment due to  yaw jet. Therefore, as an  i l l u s t r a t i v e  example, LYJ is 
determined by hand. F igu re  24 shows yaw j e t  a c t i v i t y  and smoothed rol l  rate 
plotted a t  expanded scales. 

The approach is one 

The equat ion  for LYJ is given by 

LYJ = ~Ix/(Number of yaw jete) (42) 

Therefore, given that I, B 900,OOG elug-f t2 ,  and the nuaber of yaw jets is 4, 
LYJ f 2750 ft- lb.  

The same maneuver was analyzed w i t h  MEUIE3, and t h e  r e s u l t i n g  match * s h m n  
i n  Fig. 25. The match is very good except  for a small miaxnatch i n  p a t  about  
6 sec. This smal.1 mismatch w a s  s t u d i e d  s e p a r a t e l y  w i t h  MMLE3 and found to  be 
caused by a n o n l i n e a r i t y  i n  the a i l e r o n  d e r i v a t i v e .  The value from =E3 for 
LYJ is 2690 f t - l b ,  which for the accuracy used here is e e e e n t i a l l y  the same 
value as obta ined  by the s i m p l i f i e d  method. The a i l e r o n  d e r i v a t i v e s  would be 
d i f f i c u l t  to  determine as a c c u r a t e l y  a s  the yaw j e t  d e r i v a t i v e s .  
estimates can seldom be obtained w i t h  t h e  elope method discussed  here, rough 
estimates can u s u a l l y  be obtairied t o  g a i n  some i n s i g h t  i n t o  values  obtained w i t h  
W E 3  (o r  any o t h e r  maximum l ikel ihood program). These rough estimtes can then 
be used t o  h e l p  e x p l a i n  unexpected values  of estimate6 from an  es t imat ion  
program 

Although good 
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Sometimes a f l i g h t  example becomes too complex t o  ollow anyth ing  o t h e r  than  
q u a l i t a t i v e  estimates t o  be determined by hand. The example shown i n  Fig. 26 tr 
t h e  determinat ion of the  rudder  d e r i v a t i v e  for tke F-8 aircraft with the  yaw 
sugmentation syetem on. "hie example, t aken  f r o m  Ref. 20, include8 an a i l e r o n  
pulee  and a rudder pulse .  Although an  indepmdent  p i lo t  rudder p u l s e  i e  i n p u t  
dur ing  t h e  mnauver ,  the  rudder is l a r g e l y  reeponding t o  t h e  lateral  accelera- 
t i o n  feedback. 
moving, t h u s  making it d i f f i c u l t  to u s e  t h e  eimplif inl l  qproach jurlt diecussed. 
However, Cn6 

1.7 sec f r o n  t h e  start  of t h e  maneuver. Most of t h e  slope of yaw rate pro- 
bably caused by t h e  rudder ,  bu t  a poor estimate would be obta ined  u s i n g  t h e  hand 
ca 1 cu l a t  ion. 

When the rudder i a  moving, eeveral other variables are also 

can be roughly detcrmined when t h e  rudder  moves, approximately 
r 

C o s t  Function for F u l l  Aircraft Problem 

The a n a l y s i s  of a l a t e r a l - d i r e c t i o n a l  maneuver obta ined  i n  f l i g h t  t y p i c a l l y  
has from 15 t o  25 unknown parameters (a8 shown i n  -8. (15)  and ( 3 1 ) ) ,  i n  
c o n t r a s t  t o  t h c  one or two i n  t h e  simple a i r c r a f t  example. This  make8 detailed 
examples unwieldy and any graphic p r e s e n t a t i o n  of t h e  co8t f u n c t i o n  impoeeiblr,. 
Therefore, i n  t h i e  section we  are p r i m a r i l y  examining tLe e s t i m a t i o n  procedure 
and t h e  process of the mipimization. 

For our  f l i g h t  example, we have chosen a l a t e r a l - d i r e c t i o n 6 1  manevver, w i t h  
both a i l e r o n  and rudder inpute ,  t h a t  h a s  97 unknown parmeetere. The data arc 
from t h e  obl ique  wing a i rcraf t  (Ref. 18) wi th  the wing unskewed dur ing  the 
maneuver. This example was chosen because it is a t y p i c a l  maneuver. 
h i s t o r y  of t h e  data and t h e  eubeequent olzcput of MMLE3 have been published i n  
R e f .  21. Some r e e u l t s  of t h e  a.ia7ysis a r e  shown i n  Table 7. The match between 
t h e  measured t i m e  hietciry ( e o l i d  A n e a )  and t h e  estimated (calculated) time 
h i s t o r y  (dashed l i n e s )  i e  shown as a f u n c t i o n  of i t e r a t i o n  i n  Pig.  27. Fig- 
u r e s  27(a)  t o  ( e )  are for  i t e r a t i o n s  0 to 4, respec t ive ly .  Table 7 ehows that 
t h e  cost remains unchanged a f t e r  f o u r  i t e r a t i o n s .  
f o r  t h e  two-dimensional simple aircraf t  example i n  Fig. 6 and Table 4. 

The time 

A similar r e s u l t  w a s  ob ta ined  

Of t h e  m n y  t h i n g 8  t h e  a n a l y s t  met cons ider  in o b t a i n i n g  estimates, the two 
n o s t  impaxtant on88 are how good is t h e  match and how good is t h e  convergence. 
A s a t i s f a c t o r y  match and monotor 
c i e n t ,  condi t ions  f o r  a succesr! A a n a l y s i e .  Figure 2 7 ( e ) ,  a l thczgh  n o t  per- 
fect ,  is a very good match. 
the normalized cost  TI the l ae t  row of Table 7. The coet has converged r a p i d l y  
and monotonically i n  f o u r  i t e r a t i o n e ,  and it rewaine a t  the converged cost. 
These factors are convincing evidence that  t h e  convergence i e  complete. There- 
fore, the criteria of match and convergence are s a t i s f i e d  i n  our  example. I n  
some cases w e  might encoi?nter coet t h a t  doe8 n o t  converge r a p i d l y  ( i n  f o u r  t o  
s i x  i t e r a t i o n s )  or monotonically, or s t a y  "exactly" a t  the  d n h u m  value.  TheRe 
s i t u a t i o n s  u s u a l l y  i n d i c a t e  a t  l e a s t  a small problem i n  t h e  a n a l y s i s .  
probieme, i f  found, are u s u a l l y  traced t o  an ins t rumenta t ion  or data a q u i e i t i o n  
problem, an inadequate  mathematical model, or a mneuver  t h a t  contain8 a mar- 
g i n a l  amount of information. 

convergence are necessary,  but not  suffi- 

The convergence can best be eva!uated by looking a t  

These 
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Table 7 also show8 t h a t  t h e  s t a r t u p  va lues  of a l l  t h e  c o e f f i c i e n t s  are zero 
f o r  the c o n t r o l  and bias variables. Wind t u r n e l  estimates could have been deed 
f o r  s t a r t i n g  value;? b u t  t h e  convergen-e of t h e  a lgor i thm is  n o t  very dependent 
on t h e  s t a r t u p  vs lues .  A s  p a r t  of the startcp algori thm, t h e  MMLE3 program nor- 
mally holds  t h e  d e r i v a t i v e s  of t h e  state v a r i a b l e s  consta:-t u n t i l  a f t e r  the 
f i r s t  i t e r a t i o n ,  ad is evident  i n  Table 7. 

Figure 2 7 ( a )  shows the mztch between t h e  measured and computud data f o r  the 
s t a r t u p  values.  The match is very poor because t h e  s t a r t u p  values  f o r  the con- 
t rol  d e r i v a t i v e s  are a l l  zero,  YO t h e  only  motion is i n  response to  +he i n i t i a l  
condi t ions .  The c o n t r o l  d e r i v a t i v e s  and biasc. are determined on the f i r s t :  
i t e r a t i o n ,  r e s u l t i n g  i n  t h e  much improved match shown i n  Fig. 27(b) .  The match 
a f t e r  t w o  i t e r a t i o n s ,  shown i n  Fig. 27!c), is improved as t h e  Srogram f u r t h o r  
modifics t h e  c o n t r o l  d e r i v a t i v e s  and, f c r  t h e  f i r s t  time, a d j u s t s  t h e  deri7,a- 
tives a f f e z t i n g  t h e  n a t u r a l  frequency (CnB and C Q ~ ) .  By the t h i r d  i t e r a t i o n  

(F ig .  2 7 ( d ) ) ,  t h e  improvement i n  t h e  match is.a'lmo8t complete, because minor 
adjustments  t o  t h e  frequency are made and t h e  damping d e r i v a t i v e s  are c5anged. 
Fig. 27(e) shows t h e  match when a l l  but t h e  aost minor d e r i v a t i v e s  have ceased 
t o  change. 

Severa l  genera l  observa t ions  can be made based on this w e l l  behaved example. 
The s t r o n g  or most important  coeff i c i o n t s  have e s s e n t i a l l y  converged i n  t h r e e  
i t e r a t i o n s .  
verged faster than Lp (Table 4 ) .  
c o e f f i c i e n t s  have only converged to  t w o  plitces after t h r e e  iterations and are 
s t i l l  changing by one d i g i t  i n  t h e  f o u r t h  place a t  the end of s i x  i t e r a t i o n s .  
Another observa t ion  is t h a t  for  some c o e f f i c i e n t s  (C.tr, Cnda, and Cab 1 even 

r 
though t h e  s i g n  is wrong a f t e r  t h e  f irst  i t e r a t i o n ,  t h e  a lgor i thm-quickly  
selects t h e i r  correct values  once t h e  important  d e r i v a t i v e s  have stabil ized. 

The same e f f e c t  was s8en i n  t h e  simple example - t h a t  is, Le con- 
Some of t k e  less i u p o r t a n t  or  eecond-order 

I n  general ,  i f  t h e  a n a l y s i s  of a maneuver has gone w e l l ,  we  do n o t  need to  
spend much t i n e  inspecr ing  a table analogous t o  Table 7, e m e v e r ,  it there have 
been problems i n  cozz~2rgsiiea or in t h e  q i l a l i t y  of the f i t ,  a d e t a i l e d  i n s p e c t i o n  
of such a table may be necessary.  The data may show an  important  c o e f f i c i e n t  
going uns tab le  a t  an  e a r l y  i teration, which could caase problems later. If the 
s t a r t i n g  values a te  g r o s s l y  i n  error, t h e  algorithm is driven a long way from 
reasonable  values  and then  f o r  many reasons does n e t  behave w e l l .  Occae iora l ly  
t h e  alqori thm a l t e r n a t e l y  select8 from t w o  d i v e r s e  se% of values  of two ~t more 
c s e f f i c i e n t s  on success ive  i t e r a t i o n s ,  behaving as i f  t h e  shape of t h e  cost 
func t ion  were a narrow multidimensional v a l h y  analogous to  but  more extreme 
than t h e  two-cYnensIona1 v a l l e y  shown i n  Figs. 18 and 20. 

Cram& -Rao Bounde 

The earlier s e c t i o n s  regarding t h e  computed example have shown t h a t  t h e  
Cram&-Rao bound is a good i n d i c a t o r  of the accuracy of an  estimated parameter. 
The Cramir-Rao bounds can be used i n  a similar, b u t  eomewhat more q u a l i t a t i v e ,  
f a s h i o i  on f l i g h t  data .  
w e l l  as many o t h e r  maximum l i k e l i h o o d  es t imat ion  programs) have been u s e f u l  i n  

The Cram&-Rao bounds that are included i n  MULE3 (as 

219 



determining whether estimates are good or bad. 
h e r e  has b c a  reporced previous ly  ( f o r  example, i n  R e f s .  ? and 16). However ,  
t h i s  e x m p l e  of t h e  use of t h e  Cram&-Rao bound i n  the assessment of f l i g h t -  
dprived estimates is p e r t i n e n t  to  t h e  t h r u s t  of t h i s  paper. Figure 28 shows 
estimates of C a s  a func t ion  of angle  of a t t a c k  for t h e  ?A-30 twin-engine 

g e n e r a l  a v i a t i o n  a i r c r a f t  ( R e f .  22)  a t  t h r e e  f l a p  s e t t i n g s .  There is a s i g n i f i -  
cant. amount of scatter, which makes the r e l i a b i l i t y  of the information on C 

ques t ionable .  The d a t a  showr. are the estimates from t h e  MMLE3 program, which 
a l s o  provides  t h e  Cra&r-Rao bounds for each estinute, 
has  shown t h a t  i f  the Cram&-Rao bound is m u l t i p l i e d  by a scale factor (the 
r e s u l t  soinetimes being called t h e  u n c e r t a i n t y  levre1 (Refs. 1 and 16)) and plot- 
t e d  as a vzrtical  bar with the  associated estimate, it hel- i n  the interpre+a- 
t i o n  of fl ight-cietermined r e su l t s .  F igure  29 shows the same data as Fig. 28, 
with t h e  u n c e r t a i n t y  le--1s now included as vertical bars. The estimates wi th  
small u n c e r t a i n t y  l e v e l s  (Cra&r-Rao bounds) are t h e  best estimates, as w a s  
d i scussed  earlier i n  t h e  s e c t i o n  on Cram&-Rao bounds f o r  the one-dimensional 
case. The f a i r i n g  shown i n  Pig. 29 goes through the estimates w i t h  8-11 
Cramir-Rao bounds and i g m r e s  t h e  estimates with l a r g e  b u n d s .  One can have 
g r e a t  confidence i n  t h e  f a i r i n g  of t h e  estimates, because t h e  f a i r i n g  is w e l l  
def ined  and c o n s i s t e n t  when t h e  Cram&-Rao bound information is included. I n  
t h i s  p a r t i c u l a r  ins tance ,  the estimates with small bounds were from maneuvers 
where t h e  a i l e r o n  forced t h e  motion, and t h e  large bounds were from maneuvers 
where the rudder forced t h e  motion. Therefore,  i n  a d d i t i o n  to  a i d i n g  i n  the 
f a i r i n g  of t h e  sstimates, t h e  Cram&-Rao bounds h e l p  show t h a t  the t i l e r o n -  
forced mtineuwrs are s u p e r i o r  for e s t i m a t i n g  Cn 

The a i r c r a f t  example discussed 

"P 

"P 

P a s t  experience (Ref. 1 ) 

for the PA-30 aircraft. P 
This example i l l u a c r a t e s  t h a t  the Cram&-Rao bounds are a u s e f u l  tool i n  

a s s e s s i n g  f l ight-determined estimates, j u s t  as they were found usefu l  for the 
simple a i r c r a f t  example with computed datae 

Atmospheric Turbulence (Stzste Noise) 

Atmosphtric tu rbulmce  (state mise) cannot always be avoided i n  b l i g h t ;  
therefore ,  it is desirrrble  to  be able to  o b t a i n  s * d b i l i t y  and control deriva- 
t i v e s  i n  t h e  presence o f  turbulence.  I n  addi t ion ,  an  e s t i m n t e  of the t u r h l e n c e  
time history can be of i n t e r e s t ,  p a r t i c u l a r l y  i n  the implementation of tur- 
bulence svK>pressioc systems. 

Many years ago it was demonstrated t h a t  the s t a b i l i t y  and control deriva- 
t i v e s  Cdil  be adequately determined with maximum l i k e l i h o o d  e s t i m a t i o n  techniques 
fo.- maneuvers performed i i l  smooth air. 
account for turbulence,  are a2pl ied  to  data obtained i n '  turbulence,  nst only are 
t h e  r e s u l t i n g  matches of t h e  t i m e  h i s t o r i e s  unsa t i s fac  tory b u t  t h e  estiiaated 
c o e f f i c i e n t s  are unacceptable (Refs. 23 to  25). The tecnnique d e a c r i b d  i n  
Refs. 14, 23, and 25 can rrccouilt for the e f f e c t  of turbulence.  With this tech- 
nique, maximum l i k e l i h o o d  a s t i m a t e s  of the s t a b i l i t y  and c o n t r o l  d e r i v a t i v e s  as 
w e l l  as esthatas  of t h e  turbulence time h i s t o r i e s  are j t ta ined  by zrinimieing 
t h e  cost f u n c t i o n  given by m. ( 1 1 ) .  ReRults of t h e  a p p l i c a t i o n  of the tech- 
nique t o  lonqi  t u d i n a l  maneuvers obtained i n  turbulenco have been r e s o r t e d  
previous ly  (Refs. 23 to 25) .  

If the;e t echniq ies ,  which do n o t  



Trre lateral-directional equations (Eqs. (151, (161, (17;, (181, and (29) 1 
can  be modified i n  a manner s i m i l a r  t o  that used to  d i f y  the l o n g i t u d i n a l  
e q u a t i o n s  i n  Refs. 23 t o  25. The turbulence  ( s t a t e  n o i s e )  -1 is t h e  Dryden 
express ion ,  which is described i n  R e f  . 26. The Iliff-&ne code (Ref . 17) c.m 
be used to  o b t a i n  the maxirum l i k e l i h o o d  estimates w h e r e  state n o i s e  fs present. 

Thi r ty-e ight  semnds of data from the PA-30 a i r c r a f t  f l y i n g  i n  turbulence  
w a s  analyzed a t  50 samples/sec. The best match t h a t  could be obtained with the 
maximum l i k e l i h o o d  e s t i r a t i o n  cethod that  does n o t  account  fcr turbulencz i a  
shown i.? Fig. 30. 
t h e  s t a b i l i t y  and c o n t r o l  derivatives. Figure 31 s h a r s  the r a t c h  obta ined  w i t h  
t h e  maximum l i k e l i h o o d  e s t i m a t i o n  technique t!at accountcl f o r  tu rbulence  
(Re’ , 1 4  and 17). The laatch is e x c e l l e n t  and the maneuver provided acceptable 
es .mated s t a b i l i t y  and c o n t r o l  derivati7es. f t  is also of i n t e r e s t  to compare 
t h e  power spectra of t h e  estimated turbulence  time histories. 

spectrum of the turbulence component a f f e c t i n g - a n g l e  of sideslip, B,, is shown 

i n  Fig. 32. Figure 33 pre,sents t h e  power spectnu of t!e turbulence corponent 

a f f e c t i n g  r o l l  ?ate, pg. The slopes of t h e  asymptotes shwc i n  Pigs .  32 and 33 

are those def ined  by t h e  Dryden express ion  given i n  R e f .  26. Good agreement is 
S h o W i r  becdeen the power spectra and the asymptotes for 8, and pg. 

The r a t c h  is  unacceptable  and r e s u l t e d  i n  poor estimates of 

The powr 
A 

A 

A A 

The a lgor i thm used here  is based on a linearized system described by 
Eqs. ( 5 )  t o  ( 7 )  and solved by minimizing t h e  cost f u n c t i o n  giver. by Bq. ( 1 1 ) .  
The system need n o t  resemble that for t h e  a i r c r a f t  s t a b i l i t y  and c o n t r o l  problem 
o t h e r  than i n  t h e  r e q u i r e r e n t  for l i n e a r i t y .  Therefore, many formula t ions  f o r  
t h e  s t r u c t u r a l  problem are wr iz ten  i n  t h e  form of 4 8 0  ( 5 )  to (71, and t h e  
algorit.hm under d i s c u s s i o n  can be d i r e c t l y  applied w i t h  t h e s e  formulations.  

ESTIMATION FOR SIMPLE STWCTUUL . PRoBLEn 

The p r o b l a s  of t.?e L l e x i b l e  space s t r u c t u r e  is mast f u l l y  c t a r a c t e z i i e d  as a 
d i s t r i b u c e d  parameter system with i ts  associated dis t r ibu-d system c o n t r o l  
laws. 
e n a r o n e s n t ,  such as szlar heat ing.  rAs  i n  most cases, the p r e f e r r e d  s o l u t i o n  is 
t h e  s i m p l e s t  s u c c e s s f u l  approach, 
and computationally f a r  more e f f i c i e n t  chan t h e  f u l l y  d i s t r ibu ted  paraneter sys- 
t e m  approach. 
the-art approaches has proved very successfu l .  Admittedly, the a i r c r a f t  struc- 
t u r e  i s  heavier  than most s p a c e c r a f t ,  b u t  Pany c i - r c r a f t  s t r u c t u r e s  are h ighly  
complex, c o n s i s t i n g  of many s u b e t r x t u r o s  wi th in  t h e  main s t r u c t u r e .  
novice,  many of t h e  sp-ce s t r u c t u r e s  x r r e t i t l y  k i n g  i . ivest igated appear sieqlsr 
thar. modern, l a r g e  a i r c r a f t .  I f  the l u q e d  parameter system approach used f o r  
the  a i r c r a f t  pro’ s m  is found to be inadequate,  it s?em l i k e l y  t h a t  d i s t r i b u t e d  
parameter estimatiorl  codes w i i l  evolve tu whatever complexity in zecessary to  
s o l v ?  t h e  f Leuible space s t r u c t u r e  problea. 

The model w i l l  vary depend~;.3 upon changes i n  its c o n f i g r a t i o n  or its 

\%e lumped svstem approach is much simpler 

For example, structural  rode c o n t r o l  base? on e a r r e n t  s ta te-of-  

To the 
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This  paper has  discussed some of t h e  experience gained from the a p p l i c a t i t n .  
of a i r c r a f t  s a b i l i t y  and c o n t r o l  a n a l y s i s  to  f l i g h t  data. The codes used for 
t h i s  a n a l y s i s  are for lumped parmter systems i n  the time domain. 
have been used s u c c e s s f u l l y  for s t r u c t u r a l  problears and are f u l l y  a d a p t a b l e  to  
t h e  frequency domain Ff t h a t  is found to  be preferable. 

The codes 

Although f e u  r e s u l t s  have been obtained fer t i re-domain s t r u c t u r a l  a n a l y s i s  
a t  the Ames Dryden F l i g h t  Research F a c i l i t y ,  sose s u p e r f i c i a l  experience i n  
s t r u c t u r a l  t i r e - d c r a i n  a n a l y s i s  has been obtained. 
show how the techniques being used for  s t a b i l i t y  and c o n t r o l  a n a l y s i s  can be 
applied to  simple s t r u c t u r a l  problems. The preceeding s e c t i o n  discussed the 
incorpora t ion  of state n o i s e  i n  the d e l .  The following examples do n o t  
inc lude  t h e  u s e  of s t a t e  noise ,  b u t  state noise, i f  warranted, could e a s i l y  be 
incorpora ted  i n  the types of examples to  be discussed. 

The f o l l o v i n g  tvo examples 

Est imat ion of S t r u c t u r a l  Characteristics 

All aircraf t  have observable  s t r u c t u r a l  mdes. These lodes u s u a l l y  cause no 
d i f f i c u l t y  i n  e s t i m a t i n g  a t a b i l i t y  and c o n t r o l  d e r i v a t i v e s  because t h e  struc- 
t u r a l  f requencies  are h i g h e r  than the aerodynamic frequencies .  I n  general ,  i f  
t h e  s t r u c t u r a l  f requencies  are h igher  than  the highest aerodynamic frequency by 
more than a f a c t o r  of 5 to  10, they  can be neglected u n l e s s  their amplitude is 
so large as to mask lreasurementr desired for t h e  aerodynamic a n a l y s i s .  However, 
i f  one or more s t r u c t u r a l  nodes are a f f e c t i n g  t h e  aerodynamic modes, as MY 
occur  i n  Large a i r c r a f t ,  these s t r u c t u r a l  d e s  must be included i n  t h e  aathe- 
matical model being analyzed. 

Even though no completely s a t i s f a c t o r y  practical r e s u l t s  are a v a i l a b l e  t h a t  
account  for s t r u c t c r a l  modes and t h e i r  i n t e r a c t i o n s  w i t h  t h e  aerodynamics, it is 
i n t e r e s t i n g  t o  assess the time-domain a a x ~ m u m  l ike l ihood a n a l y s i s  of the struc- 
t u r a l  modes independent of any i n t e r a c t i o n .  This can be done where a s"crurtura1 
mode is observed and no s i g n i f i c a n t  coupl ing is apparent.  

Figure 34 s h w s  a s t r u c t u r a l  rode on the lateral a c c e l e r a t i o n  of an  a i r c r a f t  
where l i t t l e  effect was observed f o r  structural-aerodynamic coupling. The fre- 
quency of t h e  rode is high enough that the mode does n o t  i n t e r a c t  w i t h  the aero- 
d Y M u C  modes. Therefore, the s t a b i l i t y  and control d e r i v a t i v e s  w e r e  obtained 
s e p a r a t e l y  and he ld  c o n s t a n t  for the succeeding a n a l y s i s ,  !l'hc a n a l y s i s  con- 
sisted of using t h e  r a x i n t m  l i k e l i h o d  estimation program lOlLE 3 ( R e f .  17) w i t h  
a s ix th-order  model t h a t  included t h e  l a t e x a l d i r e c t i o n a l  aerodynaaic  unies p l u s  
one s t r u c t u r a l  Me .  The dynamic presaure  and the v e l o c i t y  were allowed to  -rsry 
i n  t h e  a n a l y s i s .  The structural  mode frequency and damping were est imuted as 
lifiear func t ions  of dynamic pressure. The i n i t i a l  condi t ione  w e r e  also esti- 
rated. A s t r u c t u r a l  mode frequency of 7.S4 Hz w a s  chosen t o  start t h e  estiea- 
t i d r  process. The comparison between the o r i g i n a l  data and t h e  match obtained 
w i d .  the maximum l i k e l i h o o d  estimation method ie shown i n  Fig. 35. The t w o  time 
h i s t o r i e s  are i n  g d  agreeaent  a t  t h e  beginnin5 of the maneuver and a t  t h e  end 
of t h e  maneuver, hit they aye 180° out of phase a t  a time of approximately 
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0.3 8ec. The match shown i n  Pig.  35 sugges ts  Lk t  the mmcisu l i k e l i h o o d  esti- 
mator h a s  reached a local minimum but ,?ot %he global dnirur. 
aze not  normally a problea when o b t a i n i n q  t h e  s t a b i l i t y  and c o n t r o l  d e r i v a t i v e s  
of aircraft with t h e  maximum l i k e l i h o o d  e s t i m a t i o n  method. 

Mult ip le  minima 

The reason f o r  the rmltiple dnira is d t r o n s t r a t e d  by t h e  fo l lowing  simple 
scalar example. Let  the n o i s e i e s s  measured response be t( t)  - sin (wet) and the 
estimated response be zc = s i n  (ut), where o i o  the only  unknown c o e f f i c i e n t .  
Then, by Eq. (41 ,  the cost f u n c t i o n  becoares 

I f  T is chosen t o  r e p r e s e n t  10 cycles, as shown i n  Pig. 35, then for a n  00 of 
1 r a d l s e c ,  T equals 20r. I n  Fig. 36, the cost func t ion  J(w,2Or) is shown as a 
f u n c t i o n  of w. The global minimum is a t  an o of 1 rud/scc,  aa it should be, b u t  
t h e r e  are many local m i n i m  at increments of a p p r o x i m t e l y  0.05 rad/st?c. I f  a 
value  of less than  0.97 or g r e a t e r  than 1.03 were  choaec for a s t a r t i n g  estimate 
of w ,  t h e  algori thm would converge to a local minimum. If a value of betveen 
0.98 and 1.02 were chosen, it would converge to the global minllun. Therefore,  
f o r  this example where 10 c y c l e s  were observed, the s t a r t i n g  vahe of w mist be 
less than 3 percent  from the correct anwner to converge to  the global minimum. 

Figure 37 shows a sine Wave f o r  the g l o b a l  minimum along W i t h  a s i n e  wave 
with a frequency that varies 10 p e r c e n t  from t h e  qlobal minimum. The s i n e  waves 
are i n  phase a t  t h e  beginning and em!, ami 180" aut  of phase i n  the riddle. 
These data appear similar t o  those shown f o r  f l i g h t  dam i n  Pig. 35. 
one or t w o  c y c l e s  were used f o r  the aMlySi5 ,  t h e  problem i l l u s t r a t e d  i n  Pig. 37 
would be minimized. This is apparent  i n  Pig. 38 where only  t h e  f i r s t  cycle of 
Fig. 37 is shown. 

If only  

I f  T is chosen to  r e p r e s e n t  on ly  one cycle and 00 remains 
( a s  i n  Fig. 381, then T equals  2rr. The c o s t  f u n c t i o n  J(w,2*) 
f a n c t i o n  or w i n  Pig. 39. The g l a b a l  minimum is c o r r e c t l y  at  
b u t  now the algori thm converge& t~ the g l o b a l  m i n i m u m  i f  0 is 
approximately 25 p e r c e n t  of the correct value. 

equal  to  1 rad/sec 
i o  preser.tad as a 
an w of 1 rad/sec, 
s t a r t e d  wi th in  

Knowing the s e n s i t i v i t y  of t h e  a1goriV.m when a record with many l i g h t l y  
damped cycles  is being analyzed, t h e  d a t a  of ?ig. 34 can be reanalyze6 s t z r t i n g  
closer t o  t h e  observed frequency. 
method w i t h  an  w of 3.0 r e s u l t s  i n  t h e  f i t  shown in Fig. 10. This is an  accep- 
table f i t  of t h e  da ta .  

S t a r t i n g  the maximum l i k e l i h o o d  e s t i m a t i o n  
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Based on t h e  preceding r e s u l t s ,  i f  data are to  be analyzed where many c y c l e s  
of a s t r u c t u r a l  mode are p r e s e n t ,  the structural  lode frequency, w, must be clc- 
s e l y  approximated before  s t a r t i n g  the e s t i m a t i o n  process. 

S t r u c t u r a l  nodes i n  Space - 

I n  the process  nf analyz ing  aircraft f l i g h t  da ta ,  the a u t h o r s  haw fre- 
q u e n t l y  observed r e s u l t s  that c l e a r l y  exhibit unmodeled dynamics. f i e  u d e l e d  
dynamics could be caused by many phenomena, such as higher-order  aerodynamic 
modes or s t r u c t u r a l  modes. These mdes can u s u a l l y  be ignored and l e f t  UMO- 

deled because they have no e f f e c t  on the r e s u l t s  of primary i n t e r e s t  i n  tne ana- 
l y s i s .  I f  the unrodeled modes cannot be ignored, t h e n  t h e  system equat ions  must 
be r e v i s e d  to  i n c l u d e  the d e l e d  modes. 

The a u t h o r s  have n o t  y e t  found it n e c e s s a r y . t o  model structural  modes f o r  
data obta ined  i n  space i n  the process of o b t a i n i n g  c o n t r o l  derivatives for the 
space s h u t t l e .  However,  the s t r u c t u r a l  modes have been observed. Figure 41 
shows the response of the space s h u t t l e  to the firir.9 of a roll je t  and a yaw 
j e t  a t  an  a l t i tude  of 430,000 ft. The space s h u t t l e  c o n f i g u r a t i o n  and the loca- 
t i o n  of the RCS jets are shown i n  Pig. 22. 'Ihe changes i n  the rigid-body rates 
and lateral. a c c e l e r a t i o n  caused by the j e t  f i r i n g s  are apparent  i n  Fig. 41. The 
s t r u c t u r a l  modes are also e x c i t e d  by *.e jets, as evidenced by the increased  
r i n g i n g  i n  each signal a t  the t i m e  of the jet  f i r i n g s .  The ro l l  jet f i r i n g  has 
l i t t l e  e f f e c t  on t h e  rigid-body responae for the yaw rate and lateral accelera- 
t i o n ;  nowever, the yasr jet r e s u l t s  i n  a rigid-body responre for a l l  t h e  s i g n a l s  
chosen. This maneuver waa analyzed to  o b t a i n  cont ro l  derivatives for the r i g i d -  
body response described by -8. (1s)  to (31 ). The resulting match between the 
measured and computed response is shown i n  Pig. 42. The estimated coatrol deri- 
v a t i v e s  a r e  i n  good agreement w i t h  those obtained from the maneuvers. The unm- 
d e l e d  s t r u c t u r a l  dynamic modes are evident ,  but it is apparent  that t h e  d e s  
vi11 have l i t t l e  e f f e c t  on the rigid-body c o n t r o l  derivatives. The d i f f e r e n c e s  
between the measured and computed rigid-body responses (the r e s i d u a l s )  for the 
time close to  when the jets were fired are ahawn in Pig. 43. The data shown 
h e r e  a r e  for a sample i n t e r v a l  of 0.006 8ec. Same persistent s t r u c t u r a l  
r i n g i n g  is shown for the t w o  rates and t h e  latemal a c c e l e r a t i o n .  Havever, when 
a je t  is f i r e d ,  the increased  s t r u c t u r a l  response is evident ,  The s t r u c t u r a l  
c o e f f i c i e n t s  can be e x t r a c t e d  d i r e c t l y  from the r e s i d u a l  as they were for  t h e  
example i n  the previous s e c t i o n .  I t  appears that there m y  be some contamina- 
t i o n  caused by t h e  rigid-body response a t  t h e  i n s t a n t  the jets fire. I f  so, 
t h i s  contamination can be eliminated i n  one of two ways: either ana lyze  the por- 
t i o n  of the maneuver a t e n t h  of a secocd after the j e t  fires, or adapt t h e  equa- 
t i o n s  of motion to  inc lude  the s t r u c t r l r a l  dynamics i n  a d d i t i o n  to  t h e  r i g i d  
dynamics. 
b u t  the procedure is s t ra ight forward .  
same as that used on t h e  example i n  the preceeding s e c t i o n .  It is apparent ,  
howe-rer, that  more than  one s t r u c t u r a l  atode wqwld need t o  be included i n  t h e  
m o d e  1. 

The s t r u c t u r a l  dynamics depictea i n  Fig. 43 have n o t  been analyzed, 
The procedure used on t h i s  case was the 

All t h e  a n a l y s i s  techniques discussed i n  t h i s  paper apply to t h e  a n a l y s i s  of 
this space s h u t t l e  example. 
m o d e l ,  then  the l i n e a r  form of 3 s .  ( 5 )  t o  ( 7 )  would he required.  In g e a e r a l ,  

I f  state mise is included i n  the mathematical 
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if the s t r u c t u r a l  par t ia l  d i f f e r e n t i a l  equat ion  can be expressed i n  the l i n e a r  
for= of 4 s .  ( 5 )  to  (7 )  (wi th  or without  state n o i s e ) ,  the s t r u c t u r a l  modes can 
be analyzed readi:, W i t h  the lQlLE 3 program (Ref. 17) i n  t h e  time domain. If 

t h e  a n a l y s t  p r e f e r s ,  the problem can  be expressed i n  t h e  l i n e a r  c o n s t a n t  c-wf- 
f i c i e n t  form and analyzed i n  t h e  frequency domain, as described i n  R e f .  12. The 
relative advantages and disadventagee of t iredomain a n a l y s i s  as compared with 
frequency-dorain a n a l y s i s  are also diacuseed i n  that reference.  
t i o n s  are nonl inear ,  b u t  in t h ~  form of Dqs. ( 1 )  t o  (31, then  ~Xim l i k e l i h o o d  
estimates can be obta ined  i n  t h e  time domain. 

If t h e  equa- 

The co rpu ted  simple aircraft example shawed the basics of minimization and 
t-.d g e n e r a l  concepts  of cost f u n c t i o n s  t h e r s e l w s .  In a d d i t i o n ,  the example 
demonstrated t h e  advantage of low m e a s u r e a n t  .noise, rul t iple  estimates a t  a 
given condi t ion ,  and the Cram&-Rao bounds, and t h e  q u a l i t y  of the match between 
t h e  measured and computed data. The f l i g h t  data shcned that  many of t h e s e  con- 
cepts s t i l l  hold true even though the d i . e n s i o n a l i t y  of t h e  cost f u n c t i o n  makes 
i t  impossible to  plot  ar v i s u a l i z e .  I n  addi t ion ,  the techniques used f x  t h e  
a i rcraf t  problem w e r e  shown to be applicable t o  the flexible s t r u c t u r e  problem. 

1 .  

2. 

3. 

4.  

5 .  

6. 

7. 

8 .  

I l i f f ,  K. W., "Aircraft I d e n t i f i c a t i o c  Experience," AGARD-LS-104, 1979, 
pp- 6-1 t o  6-35. 

Goadwin, Graham C., and Payne, R o b e r t  L., Dymaic System I d e n t i f i c a t i o n :  
Experiment Design and D a t a  Analysis,  Academic Press ,  New York, 1977. 

Sorenson, Harold W., Parameter Estimation; P r i n c i p l e s  and Problems, 
Marcel Dekker, Inc., New York, 1980. 

Kl.ein, V., "On the Adequate W e 1  f o r  Aircraft Parameter E s t i m E t i C f i , "  CIT, 
C r a n f i e l d  Report Aero No. 28, Mar. 1975. 

H a m e l ,  P., "Determination of S t a b i l i t y  and Control  Parameters Prom Flight 
Test ing ,"  AGAFtD-LS-114, 1981, pp. 10-1 to 10-42. 

I l i f f ,  Kenneth W., and Maine, Richard E., "NASA Dryden's Experience in 
Parameter Est imat ion and Its Use i n  P l i g h t  Teat," AIAA Paper 82-1373, 
Atmospheric F l i g h t  Mechanics Conference, San Diego, C a l i f . ,  Aug. 1982. 

Gupta, N. K., H a l l ,  Earl W., and Trankle,  T. L., "Advanced Methods of M o d e l  
S t r u c t u r e  Determination from T e s t  Data," A I A A  Paper 77-1170, 1977. 

Trakkle, T. L., ViLcent, 3. H., and Frankl in ,  S. U., "System I d e n t i f i c a t i o n  
of Nonlinear Aerodynamic Models:" The Techniques and Technology of 
Nonlinear F i l t e r i n g  and Kalrnan F i l t e r i n s ,  AGARD-AG-256, 1g82. 

2 25 



9. Klsin,  V., and Schiess ,  J. R . ,  "Compatibi l i ty  Check of Ueasured A i r c r a f t  
Responses Using Kinematic Equations and Extended Kalman F i l t e r ,  ' NPSA 
TK D-8514, 1977. 

10. 

! I .  

12. 

13. 

14. 

15. 

1 e .  

17. 

18. 

19. 

20. 

21 

22. 

Bach, R, E., and Wingrove, R. C . ,  "AppliCatiOn8 of State E s t i m a t i o n  i n  
A i r c r a f t  F l i g h t  Data Analysis," AIM Paper 83-2087, 1983. 

Mulder, J. A., Jonkers,  H. Lo, Horsten, J. J., Breemn, J. H., and 
Simons, J. H., 'Analysis of Aircraft Performance, S t a b i l i t y  and Control 
Measurements," AGARD-LS-104, 1979, pp. 5-1 to 5-87. 

Klein, Yladis lav,  "Maximum Likelihood Method for %stimating Airplane S t a -  
b i l i t y  and Contro l  Parameters From F l i g h t  Data i n  Frequency Domain," 
NASA TP-1637, 1980. 

Fu, K. H., and k r c h a n d ,  M., "Helicopter System I d e n t i f i c a t i o n  i n  the 
Frequency Domain,* Ninth European R o t o r c r a f t  Forum, Paper 96, Stresa, 
I t a l y ,  Sept. 13-15, 1983. 

Haine, Richard E., a d  I l iff ,  Kenneth W m t  "Formulation and Inpleaenta t ion  
of a P r a c t i c a l  Algorithm for Parameter Est imat ion with Process  and 
Keasureaent Noise," SIAM J. Appl. Math,, vol. 41, 1981, pp. 558-579. 

Balakrishnaz,  A. V., ColarrurAcation Theory, H c G r a w - H i l l  Book Co., c.1963. 

Haine, Richard E., and I l i f f ,  Kenneth W., *The Theory and P r a c t i c e  of 
E s t i m a t i n g  t h e  Accuracy of Dynamic Flight-Determined Coeff ic ien ts , "  NASA 
RP-; 073 + I981 

Maim?, Rjchard, E., and I l i f f ,  Kenneth W., "User's Manual for HMLE3, A 
General F O R M  Program for M a x i m u m  Likelihood Parameter Ektimation," 
NASA TP-1563, NOVO 1980. 

Maine, Richard E., Aerodynamic Derivatives f o r  a n  Oblique Wing Aircraft 
Estimated From F l i g h t  D a t a  by Usiqg a Naximum Likelihood mchnique,"  NASA 
TP-1336, 1978. 

Steers, Sandra Thornberry and I l i f f ,  Kenneth W.; "Ef fec ts  of Time-Shifted 
Data on Flight-Determined S t a b i l i t y  and Cont ro l  Derivatives," NASA 
TN D-7830, 1975. 

Shafer ,  M. F., "Flight-Dererrined Correct ion Terms f o r  Angle of Attack and 
S i d e s l i p ,  " A I M  Paper 82-1 374, 1982. 

Maine, Richard E., "Fryrammer'a Manual f o r  MMLE3, A General FORTRAN 
Program f a r  Maximum Likelihood Parametor Estimation, " NASA TP-1690, 1981 

Fink, Marvin P., and Freeman, Delma C., Jr., "Full-Scale Wind-Tunnel 
I n v e s t i g a t i o n  of S t a t i c  Longi tudinal  and L a t e r a l  C h a r a c t e r i s t i c s  of a 
Light  Twin-Engine Airplane," NASA TN D-4983, 1969. 

226 



23. I l i f f ,  K. W.; * I d e n t i f i c a t i o n  and S t o c h a s t i c  Cont ro l  W i t h  Application t o  
F l i g h t  Control  i n  TUrbulance,* UCLA-QJG-7340, School of Engineering and 
applied Science,  Univ. C a l i f . ,  Loa Angeler, Cal i f . ,  Hay 1933. 

2 4 ,  I l i f f ,  Kenneth W., 'An Aircraft Application of Systen  I d e n t i f i c a t i o n  i n  t h e  
Presence of S t a t e  Noise,' Pew Directions i n  S i g n a l  Processing i n  
Communication and Control ,  J. K. Skwirzyneki, ed., Nwrdhoff In te rna-  
t i o n a l  Publ i sh ing  (Leyden, The Netherlands) ,  c.1975, pp. 529-541. 

25. I l i f f ,  Kenneth W.; *Est imat ion of C h a r a c t e r i s t i c s  and S t o c h a s t i c  Control  of 
a n  A i r c r a f t  F ly ing  i n  Atmospheric Turbulence,' Proceedings of A I M  3rd 
Atmospheric F l i g h t  Mechanics Conference, c.1976, pp. 26-38. 

26. Chalk, C. R., Neal, T. P., Harris, T. M., P r i t c h a r d ,  F. E., and 
Woodcock, R. J., 'Backgrounu Information and User Guide f o r  
MIL-T-878SB(ASG), * M i l i t a r y  S p e c i f i c a t i o n  - Flying  Qualities of P i l o t e d  
Airplanes, '  AFFDLTR-69-72, A i r  Force F l i g h t  Dynamics Lab., Wright- 
P a t t e r s o n  A i r  Force &Be,  Aug. 1969. 

227 



Table 1 Values of computed tme 
history with no maasureaent noise 

i 6 ,  deg P, deg/sec 
1 0 0 
2 1 0.9754115099857 
3 1 2.878663149266 
4 1 4.689092110779 
5 1 6.411225409939 
6 1 8.049369277012 
7 1 9.607619924937 
8 0 10.11446228200 
9 0 9.621174135646 

10 0 9.151943936071 

Table 2 Pertxnent values as a function of iteration - 
L i p ( L )  (L) 4 ( L )  S(L) JL 

0 -0.5000 15.00 0.9048 2.855 21.21 
1 -0 30C5 9.888 0.9417 1.919 0.5191 
2 -0.2475 9.996 0.9517 1.951 5.083 x 10-4 

3 -0.2500 10.00 0.9512 1.951 1.540 x 

4 -0.2500 10.00 0.9512 1.951 1.060 X 

Table 3 Values of compueedtime his- 
tory with added measurement noise 

1 0 0 
2 1 C.4875521781881 
3 1 3.230763570696 
4 1 3.429117357944 
5 1 6.286297353361 
6 1 6.953798550097 
7 1 10.80572930119 
8 0 9.739367269447 
9 0 9.788844525450 

13 0 7.382568353168 
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T a b l e  4 Fertment values as a function of i terrtron - 
- L fp(L) &j (Li O(L) W L )  JL 

0 -0.5000 15.00 0.9048 2.855 30.22 
1 -3.3842 10.16 0.9260 1.956 3.497 
2 -0.3518 10.23 0.9321 1.976 3.316 
3 -0.3543 10.25 0.9316 1.978 3.3 16 
4 -0.3542 10.24 009316 1.978 3.316 
5 -0.3542 10.24 0.9316 1.978 3.316 

Table 5 Mean and standard deviations €or estimateo OF Ip 

Sample standard 
Number of Sample mean, Sample standard derivation of the 
cases ,  N IJ (4) deviation, uiLp) mean, a&)/& 

A 

5 -0 2668 0.0739 0.0336 
10 -0.2511 0 0620 0.0196 

C 0578 0.0129 20 -0 34.52 

Tble 6 E s t - t e  of 5 and Cram&-Rao bound a s  
a function of the square root of noire powst 

Square root of E s t i m a t e  Cr&r-Rao 
noise  power of Lp bound 

U.0 
0.01 
0.05 
0.10 
0.2 
0.4 
0.8 
1.0 
2.0 
5.0 

10.0 

-0.2500 
-0 2507 
-0 2535 
-0.2570 
-0 264 1 
-0.2783 
-0.3071 
-0.3218 
-0.3975 
-0.65 19 
-1.195 

--- ---- 
0.00054 
0.00271 
0.00543 
0.0109 
0.0220 
0.0457 
0.0579 
0.1248 
0.3980 
1.279 
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Fig.  1 Waxfaurn likelihood -ti- 
mat ion concept .  

X--- 

( a )  neasuremcnt and control surface 
d e f i n i t i o n s .  

(b) F l o w  angle definitions. 

F i g .  2 Aircraft axis system. 
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Pig. 22 space shuttle cold'guration. 

2 r  

4 r  

?ig. 23 laterrl-directiorral space 
a mch NVlVlr of 21. 

Fig.  24 
slmple calculatfom for the shuttle 
data from rig. 23. 
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p u t e d  la tera l  a c c e l e r a t i o n  ob ta ined  
when maximum likelihood estimator 
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F i g .  36 C o s t  f u n c t i o m l  for 
10 cycles of data as f u n c t i o n  
of frequency, showing close 
p r o x i m i t y  of i w a l  m i n i m a  
t o  g loba l  minimum. 

F ig .  37 S imple  scalar example i l l u s -  
t r a t i n g  a l o c a l  minimum similar t o  
that shown for  f l i g h t  d a t a  i n  F ig .  35.  
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P i g .  38 S i m p l e  sca lar  example showing 
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Fig. 29 C o s t  funct ion for  one cycle 
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showing wide region o f  mnvergence 
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pressure - 0 .  
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SUMMARY 

The opthiurn senso r  1-cat ion problem, OSLP, may be  thought of in terms of t h e  
set  of systems, S, t h e  class of i npu t  t ime f u n c t i o c s ,  1,. and t h e  i d e n t i f i c a t i o r .  
a lgo r i thm (e s t ima to r )  used, E. Thus, for a giyen time h i s t o r y  of i npu t ,  t h e  
technique of determining t h e  OSL r e q u l r e s ,  i n  gene ra l ,  t h e  s o l u t i o n  of t h e  o p t i -  
mizat ion and t h e  i d e n t i f i c a t i o n  problems s imultaneously. .  However, t h i s  paper 
i n t roduces  a technique which u n c m p l e s  t h e  two problems. 
of t h e  concept of an e f f i c i e n t  estimator f g r  which t h e  c o v a r i a r c e  of t h e  parameter 
estimates is inve r se ly  p r o p o r t i o n a l  t o  t h e  F i she r  Informatlon Matrix. 

Th i s  is done by m e a n s  

INTRODUCTION 

The problem of F t r u c t u r a l  i d e n t i f i c a t i o n  i n  s t r u c t a r a l  engineer ing is one 
which has  received cons ide rab le  a t t e n t i o n  from several researr-sers i n  t h e  recent 
p a s t  (Refs. 1-4).  Though v a r i o u s  methods have been developed f o r  i d e n t i f y i n g  the 
d i f i e r a t  parameters that c h a r a c t e r i z e  a s t r u c t u r e  from reco rds  obtained i n  them 
under v a r i o u s  loading c o n d i t i o n s ,  few i n v e s t i g a t o r s ,  i f  any, have looked a t  t h e  
quest ion of where t o  l o c a t e  s e n s o r s  in a s t r u c t u r e  t o  -iequA ? d a t a  f o r  "best" 
parametr ic  i d e n t i f f c a t i o n  (Ref. 5 ) .  The problem of op t ima l ly  l o c a t i n g  sensors i n  
a s c r u c t u r s l  system arises from c o n s i d e r a t i o n s  o f .  
instrumentat ion;  ana (2) e f f i c i e n t l y  d e t e c t i n g  structural changes i n  t h e  system 
with a view t o  acqu i r ing  improved assessnent of s t r u c t u r a l  i n t e g r i t y .  

(1) minimizing t h e  c o s t  of 

The problem addressed in th i s  paper can be  s t a t e d  as f d l o w s :  Given m sen- 
scrs, ..here should they be loca ted  i n  a strucfxre so that r eco rds  obtained from 
those 1oca:ions y i e l d  t h e  "best" estimates of t h e  unknown parameters? 

I n  t h e  p a s t ,  the optimal  s enso r  l o c a t i o n  problem (OSLP) was solved by 
p o s i t i o n i n g  t h e  g 2 . m  number of s enso r s  i n  t h e  system, us ing  t h e  r eco rds  ob ta ined  
A t  t hose  l c c a t i o n s  wi th  a s p e c i r i c  ez f Im. to r ,  and r e p e a t i n g  the procedure f o r  
d i f f e r e n t  sensor  l o c a t i o n s .  
estimates would then be  s e l e c t e d  as op'cimal. The essimates obtained,  of course,  
would r r a tu ra l ly  depend upor. t h e  type  of e s t i m a t o r  uied.  
t i o n s  are e s t i m t o r  dependent, and .an e x h a s t i v e  s e a r c h  needs t o  be performed f o r  
each sp:c+.fic e s t ima to r .  Such a procedure, bes ides  being h igh ly  computation2 *r 

i n t e n s i v e ,  s u f f e r s  from t h e  rnajr,r drawb'qck of not  y i e l d i n g  any physic21 i n r i  
into why c e r t a i n  l o c a t l o n s  are p r e f e r a b l e  t o  o t h e r s .  

The set of l o c a t i o n s  which y i e l d  t h e  "best" parameter 

Thus t h e  opt imal  loca- 

Recently,  work c t h e  s o l u t i o n  of t h e  OSIP w a s  done by Shah and Udwadia 
(Re:. 5 ) .  I n  b r i e f ,  .hey used a l i nea r  r e l a t i m s h i p  between small percurbarions 
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i n  a f l n i t e  dimensional r e 9 r e s e n t a t i o n  of t h e  system parameters and a f ini le  
sample of observa t ions  of t h e  system t h e  response.  
e s t i m a t e s  a r e  minimized, y i e l d i n g  t h e  opt imal  l o c a t i o n s .  I n  t h i s  p a p e r , v e d e v e l o p  
a more d i r e c t  approach t o  t h e  problem which is both  computat ional ly  s u p e r i o r ,  and 
throws c..qsiGerable l i g h t  on t h e  r a t i o n a l e  behind t h e  optimal s e l e c t i o n  process.  

The e r r o r  i n  t h e  parameter 

We uncoupia t h e  opt imiza t ion  problem from t h e  i d e n t i f i c a t t o n  problem using 
t h e  concept of ari c f i i c i e c t  e s t i m a t o r  (e.g., t h e  maxFmum l i k e l i h o o d  e s t i m a t o r  as 
t i n e  becomes very large!. t h t o r  t h e  covariance of t h e  parameter 
estima es  is a minimum. 
ment;, a r igorous  for=  l a t i o n  a d  s o l u t i m  of t h e  OSLP is presented.  The method 
is  appl ied  t o  a bui ld ing  s t r u c t u r e  mcdelled as a genera l  linear dynamic system. 
For t h e  N +egree of fre2dom system consida-ed,  t h e  methodology f o r  s e l e c r k i g  
m ( m < N )  of t h e  nodai  displacements  for purpost: of m e a s u r a m t  i s  presented.  

For such a n  
Using t h i s  technique and motivated by h e u r l s t i c  argu- 

Sample c a l c u l a t i o n s  are made for a simple bui ld ing  c;rTu?ture modelled as a 
The ~ ~ ? - r l l  sensor two-degree-of-freedom system subjec ted  t o  base e x c i t a t i o n s .  

l o c a t i o n  f o r  t h e  i d e n t i f i c a t i o n  o f :  
r a t i o  is inves t iga ted .  

(a)  t h e  mass r a t i a ;  and (b)  t h e  s t i f f n e s s  

The r e s u l t s  i n d i c a t e  K h a t  t h e  OSLP depends on: 

i) t h e  c l a s s  of systems, S, t o  which t h e  s t r u c t u r e  belongs; 

2 )  t h e  type of e x c i t a t i o n ;  

3) t h e  actual system p a r a - A e r s  involved; and 

4 )  t h e  parameters t o  be i d e n t i f i e d .  

THEORY 

Consider a system modelled by t h e  equation 
.. 

MX + C i  + KX = F ( t )  

where M, C, and K are t h e  (NXN) mss, damping and s t i f f n e s s  %trices,  F ( t )  is 
an (Fix11 vec tor  containing i n e r t i a l  f o r c e s  and e x t e i . d l y  appl ied  loads  and X 
is t h z  N-vector of nDdal displacements.  Let BM, Bc and 8K b e  v e c t o r s  conta in ing  
t h e  var ious  parameters r e l a t e d  t o  t h e  mass matr ix ,  the. damping ma-r ix  an8 t h e  
s t i f f n e s s  matr ix ,  r e s p e c t i v e l y ,  which need tc, be i d e n t i f i e d .  For convenience, 
w e  c o l l e c t  these  q u a n t i t i e s  i n  t h e  parameter v e c t o r ,  e, defined as 

% 

where t h e  s u p e r s c r i p t  T i n d i c a t e  mat r ix  t ranspose.  I f  t h e  M, C and K are 
symmetric each of t h e  t h r e e  scbvec tors  has  a maximum dimension of N(N+1)/7. 

Given m sensors  (m<N),  w e  $hen need t o  f i n d  where t o  l o c a t e  them s o  t h a t  
t h e  covariance of t h e  estimate, 6,  i s  a minimum. 
measurement vec tor  Z ( t )  can be expressed as 

Assutz f u r t h e r  t h a t  t h e  
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where Z i  is t h e  i t h  component of Z ( t ) ,  and t t e  f u n c t i o n a l s  g i  r e p r e s e n t  t h e  
"measurement process". 
vec tor  8 is e x p l i c i t l y  noted The aeasurement n o i s e  N i ( t )  is taken as non- 
s t a t i o n a r y  Gaussian White n o i s e  with a var iance  of J12(t). Therefore,  

The dependence of t h e  response X on t h e  parameter 

where 5K and 6~ s tand  f o r  t h e  kroneker and t h e  d i r a c - d e l t a  func t ions ,  
respec t ive ly .  
they conta in  t h e  n o s t  i n f o r u a t i o n  abcut  t h e  system parameters and are maxi- 
m a l l y  s e n s i t i v e  t o  any changes in t h e  parameter values .  
process  can be represented by a n  m-dimensional v e c t o r  Y such that 

A t o t a l  of m o u t  of N responses  need to  be s e l e c t e d  so  that 

This  "select ion" 

vhere S is t h e  (m x N) upper t r i a n g u l a r  s e l e c t i o n  matrix wi tk  each row con- 
t a i n i n g  n u l l  elements except f o r  one which is uni ty .  The m d i f f e r e n t  compo- 
n e n t s  of Z s e l e c t e d  t o  be aeasured sre so ordered i n  v e c t o r  Y, that i f  t h e  
element i n  t h e  i - t h  row and k-th column of S is unity, t h e  ( i + l ) - i t h  row has 
u n i t y  i n  its E-th column w i t h  E > k. 
P = STS i n  an (NXN) d iagonal  matrix w i t h  u n i t y  in i t s  i - t h  row i f ,  and only  
i f ,  Z i  i s  s e l r c t e a  t 3  be measured. 
Hence, m e  can w r i t e  

The matrix S has t h e  proper ty  that 

The elements of P are otherwise zero.  

If gi is l i n e a r l y  r e l a t e d  t o  ;he response X in general ,  then 1' 
r , i x ( e , t ) l  = SRX ( 6 )  

where Rit) car, be  thought of as a dynamic ga in  matrix. In  t h e  case t h a t  gi 
is relatee t? :he r e s p o r s s  Xi o A y ,  then matrix R w i l l  reduce t o  a diagonal  
matr ix ,  r 3 j  J 

The prcblem cjf l o c a t i n g  sensors  in an optimal mamer then reduces t o  
~ l e t r r m i n i n ~  t\e se1ic:ion matrix S, o r  a l t e r n a t i v e l y ,  f i n d i n g  t h e  m l o c a t i o n s  
iri P t h a t  Thould be uni ty .  These l o c a t i o n s  must be so chosen as t o  obta in  t h e  
b c  s t 'I pa rame t e r es t ima t e s . 

5GME MOTIVATING THOUGHTS AND THE FISHER INFORMATION MATRIX 

Consider a L a s e  i n  whi-b one t r i e s  t o  estimate only one parameter,  91 ( t o  
be I d e n t i f i e d )  involved i n  a dynamic system model wi th  only one sensor  provided. 
Therefore,  one dants  t o  i d e a l l y  choose a l o c a t i o n  i (out  of N p o s s i b l e  such 
l o c a t i o n s )  such t h a t  t h e  ineasurernent y i ( t ) ,  i e [ l , N ] ,  t e (0 ,T)  a t  l o c a t i o n  i y i e l d s  
t h e  best. estimate of t h e  parameter 81. H e u r i s t i c a l l y ,  one shculd p l a c e  t h e  
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sensor  a t  such a l o c a t i o n  that t h e  t i m e  h i s t o r y  of aeasurements obtained a t  that 
l o c a t i m  is n o s t  s e n s i t i v e  to any changes i n  t h e  parameter 81. He-ce, i n  equa- 
t i o n  (5B) it is real ly  t h e  s l o p e  of H[X(e l , t ) ]  w i t h  r e s p e c t  t o  81 that needs t o  
be maximized. 
interest, i t  is l o g i c a l  t o  wanr i f i n d  i ( o r  e q u i v a l e n t l y  determine t h e  selec- 
t i o n  matr ix  S descr ibed  previous l? )  such as t o  maximlze (aH/a81)2 over  t h e  inter- 
val (0,T) d u i n g  which t h e  response is  t o  be measured. This  l e a d s  t o  naximizing 
the following i n t e g r a l :  

However, s i n c e  onlv  t h e  a b s o l u t e  magnitude of t h i s  slop* is of 

When t h e r e  is more than one parameter to  be est imated,  and t h e  number of 
sensors  i s  g r e a t e r  tban  u n i t y ,  t h i s  i n t u i t i v e  approach aeeds t o  be extended i? a 
more r igorous  aanner. I n  such cases r e c o u r s e  t o  mathematical t r e a t m e n t  is 
necessary,  and Le shall see that.  such t reatment  w i l l  be in agreement w i t h  our  
h e u r i s t i c  s o l u t i o n  o u t l i n e d  above. 

To f u r t h e r  understand t h e  problem, let  u s  loo': at it from another  angle, 
namely, t h e  concept of an  e f f i c i e n t  unbiased es t imator .  
che covariance of t h e  estimates is a minimum. F u r t h e m r e ,  i t  can be shown that 
for any unbFased e s t i m a t o r  of 8, 

For such as e s t i m a t o r  

where 6 is  the estimate of 8 and t h e  mat r ix  [ a H / a e ] , j  p aHi/Wj. 
= t o r  is " e f f i c i e n t " ,  t h e  above i n e q u a l i t y  becomes an e q u a l i t y .  
:he left-hand s i d e  of i n e q u a l i t y  (8) t a k e s  i t s  lowest v a l u e  (minimum covariance) .  
Hencs , 

I f  t h e  esti- 
This  means t h a t  

The term i n s i d e  t h e  bracket  on t h e  right-hand s i d e  of t h e  equat ion (9) is known 
as the F i s h e r  Information Matrix,  Q(T). 
t o  a a in jmiza t ion  of t h e  covariance of t h e  e s t i m a t e ,  8. ' 

Thus, maximi:ing Q(T) would indeed lead 

sj2 n o t e  then t h a t  t h e  m sensor  l o c a t i o n s  need t o  be so chosen that a s u i t a b l e  
n o m  L t h c  matr ix  !?(TI given by 
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is  maximized. 
t i c a l l y  der ived earlier f o r  t h e  scalar case ,  t o  t h e  v e c t o r  s i t u a t i o n .  
equat ion ( 6 )  i n  equat ion (10) one may w r i t e  

This  c o n s t i t u t e s  an  extension of equat ion ( 7 ) ,  which we heur i s -  
Introducing 

where t h e  i j  element of  X can be w r i t t e n  as: e 

where X =  xi)^ and 8 = {ei),. W e  note that t h e  F isher  Matrix is symmetric and 
is dependent on i h e  l e n g t h  of t h e  record a v a i i a b l e ,  2s w e l l  as the l o c a t i o n s  of 
t h e  sensors  as determined by t h e  matrix P. 

I f  t h e  m l o c a t i o n s  where t h e  sensors are t o  be placed are denoted by 
sk, k = 1 , 2 , .  . ,m, then 

P = C  I 
k = l  ' k  

where t h e  (N x N )  diagonal  matrix' Isk has a l l  I t s  elements equal  to zero excepr: 
t h e  element of t h e  Sk row, which is uni ty .  Noting that P is a d iagonal  matrix, 
equat ion (11) can be s i m p l i f i e d  t o  y i e l d  

where rSk is  t h e  Sk row of t h e  mat r ix  R. 
made of t h e  dependence of t h e  F isher  Matrix on t h e  t ime l e n g t h  T of t h e  a v a i l a b l e  
da ta ,  t h e  sysiem S,  t h e  parameter v e c t o r  8, and t h e  time-variant input  I. I f  t h e  
matr ix  R is diagonal ,  with diagonal  elements PI,. . . ,pN,  then t h e  i j  element of 
t h e  matr ix  Q, af ter  some manipulation, reduces t o  

Also i n  eq. (13) e x p l i c i t  mention is 

Each element of Qij  r e p r e s e n t s  t h e  c r o s s - s e n s i t i v i t y  of measurement with respec t  
t o  t h e  response x of node sk. 

k S 
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The cp t imal  sensor  l o c a t i o n s  are then  obtained by 
k = 1 , 2 ,  ..., m, out  of a p o s s i b l e  N ,  so t h a t  a s u i t a b l e  
maximized (e.g. ,  t h e  t r a c e  norm, etc ...). This  may be 
cond i t  ion 

picking m l o c a t i o n s  sk, 
norm of t h e  mat r ix  Q is 
spec i f  i ed  by t h e  

Although t h e r e  a r e  several matrix norms which could be used, perhaps t h e  
most u s e f u l  and p h y s i c a l l y  meaningful in t h i s  contex t  Is t h e  trace norm. 
order  no t  t o  d e t r a c t  t h e  r e a d e r  from t h e  b a s i c  methodology w e  d e f e r  an exhaust ive 
t reatment  of s u i t a b l e  mat r ix  n o m s  t o  a later cormnunication. 

I n  

The methodology presented up t o  t h i s  p o i n t  is v a l i d  f o r  both linear and non- 
l i n e a r  sys t ems  since t h e  c r i t e r i o n  developed i n  equat ion  (13) w a s  der ived  us ing  
only equat ions  (5) an? (9). We w i l l  now i n d i c a t e  its a p p l i c a t i o n  t o  linear 
multi-degree-of-freedom systems. 

APPLICATION TO LINEAR DYNAMIC SYSTEMS 

Consider t h e  N-degree-of-freedom dynamic system w h o s e  governing d i f f e 5 e n t i a l  
equat ion of m2tion is given by eq. (11, toge ther  wi th  X(to) = Xo,  X(to) = Xo, 
where X o  and Xo are t h e  given initial c o n d i t i o n s  for t h e  system. 
s y s t e m  t o  be c l a s s i c a l l y  damped. 

Assume t h e  
Introducing 

where 9 is t h e  (N x N) weighted modal mat r ix  and n ( t )  Is t h e  N-vector qf 
general ized coord ina tes  w e  ge: 

(17) 
.. T T 
q+2SNwN;HA'l = 4 F ( t ) ,  dtO) = +TMXo, ( t o )  = 4 Go, 

where t h e  ( N  x N) diagonal  matrix A is given by 

The so1utic. i  of equat ion (17) is given as 

t 

'0 

w h e r e  n and no a r e  i n i t i a l  condi t ions  and 
Oi i 
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u i ( t >  = E D ( - S i w i t )  

v . ( t )  = - 
i "d 1 

Sinwd t , 
i 

cui 
di 

Coswd t + - w i 

p i ( i >  = oTF(t) ,  i = 1 ,2  ,..., N .  

Also, d i f f e r e n t i a t i n g  equation (1) with respect to  8 ,  y i e l d s  

/\. /\. A f.di. e +Cie+KXe = Fe( t )  - (MeX+CeX+KeX ; X e ( 0 )  = 0,  ie(0) = 0 

where 

i = 1, ..., N ,  and j * 1, ..., L.  

Introducing 

x = 4z e 

y i e l d s  

z+2FN%;+hz = G(t) 

where 

G(t) = @T[F6-(MeX+CeX+KeX)] A. A. P . 
Equation (21)  can further b e  s impl i f i ed  t o  g i v e  
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where ii and can b e  obtained by d i f f e r e n t i a t i o n  of eq. (18) .  This may be shown 
as follgws 

where 

t 

rli(t) = rl w ( t - t o) +;I oi T i(  t-t ()) + j i + ) P i ( T ) d T  
Oi e 

where 
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T p i ( t )  = F ( t ) ,  i = 1 , 2  ,..., N. 
Therefore ,  s u b s t i t u t i n g  equat ions  (23)  and (24)  i n t o  equat ion (22)  g i v e s  G( t ) .  
Consequently t h e  s o l u t i o n  of equat ion (20) can be  w r i t t e n  as: 

ij 

where h i ( t )  is t h e  same as t h a t  of eq. (18). Notice that t h e  i n i t i a l  condi t ions  
i n  eq. (20)  are zero.  This is due t o  t h e  fact  that t h e  i n i t i a l  condi t ions  of 
(18) are known constants .  

I f  w e  assume that [ C ]  is expressed as a linear combination of [K] and [MI, 
then eq. (22)  can f u r t h e r  be s impl i f ied .  Namely, 

C = 2aK-t2$M, (26)  

where a and $ are known cons tan ts .  Hence i n  equat ion ( 1 7 j ,  t h e  percentage of 
damping, C,, can be expressed as: 

, i = 1 , 2  ,..., N B 5, = aw + - 
i wi 

To f u r t h e r  s impl i fy  equat ion (22)  under t h i s  assumption, le t  us consider  t h e  
Following t h r e e  cases: 

1) The vector  8 conta ins  only 8M, i . e . ,  only es t imat ion  of mass param- 
eters is undertaken. Then 

2 )  The vec tor  8 c o n t a i n s  only t h e  subvector eK. Then 
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3 )  F i n a l l y  i f  t h?  v e c t o r  e = [ a  B ]  T , 

(28B) 

L f  t h e  input  F ( t )  is no t  a func t ion  of 6 ,  thon Fe would be omit ted a l l  through 
t h i s  d i s c u s s i o n .  Once t h e  s o l u t i o n  of equa t ion  (25) i s  ob ta ined ,  t h e  F i she r  
&tr ices  may be obtained as i n  equat ion (13). Hence 

T T T  T z @ rs rs @z 

d t  
q 2 W  

Q = 2  f 
L= 1 0 

Je n o t e  t h a t  t h e  summation form of relation (30) is p a r t i c u l a r l y  amenable to t h e  
maximization of t h e  trace nOrm of Q. 
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EXAMFLE 

To i l l u s t r a t e  some of t h e  ideas  of t h e  previous s e c t i o n ,  cons ider  t h e  prchlem 
of f i n d i n g  t h e  opt imal  sensor  l o c a t i o n  (OSL) i n  a s t r a c t u r a l  system modelled by t h e  
two-degree-of-freedom system (shown in Figure 1 )  which is subjec ted  t o  t h e  base 
e x c i z a t i o n  of f ( t ) .  

The governing d i f f e r e n t i a l  equat ion of motion can o e  expressed as 

.. 
M + Ci + KX = -W f ( t )  

where X = <x x s ~ ,  C =  cxK, W = <Am and t h e  mat r ices  M and K are 1 2  

A c a s e  s tudy f o r  l o c a t i n g  sensors  t o  b e s t  i d e n t i f y  (1) t h e  mass r a t i o ,  A, of t h e  
f i rs t  t o  t h e  second f l o o r  and (2 )  t h e  s t i f f n e s s  r a t i o ,  B ,  ;If t h e  f i r s t  t o  t h e  
second f l c o r ,  w i l l  be presented.  

L e t  si denote  t h e  lower mass l o c a t i o n  and s2 t h e  upper mass l o c a t i o n .  
s e l e c t i o n  between t h e  l o c a t i o n s  can be equated t o  determining t h e  one non-zero 
element of t h e  [1x2] s e l e c t i o n  matr ix ,  S ,  wi th  t h e  measurement H( t )  def ined by 

The 

H( t )  = SX + V(t)  , 

where, V l t )  i s  S t a t i o n a r y  Gaussian White Noise (S G W N) with  Jl(t)=JIo. 

If S = E1 01 t h e  lower mass is s e l e c t e d  f o r  measurement; i f  S = [G 11 t h e  
clpper mass is s e l e c t e d .  
t i o n  9 2  f o r  i d e n t i f y i x g  t h e  parameter A, i f  Q [ T , s l ]  > Q [ T , s 2 ] ,  where T is  t h e  
time t h a t  t h e  measurement i s  taken, 

The l o c a t i o n  s i  would then  be prefer red  aver  t h e  loca-  

2 

=L 2 [ (2) d t ,  

d'O 

(32A) 
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and 

Since on ly  one parameter i s  being e s t ima ted  t h e  F i she r  m a t r i c e s  reduce t o  
s c a l a r s .  

The dependence of t h e  OSL on v a r i o u s  t y p e s  of t h e  b a s e  e x c i t a t i o n s  can be  
L e t  u s  f o r  t h i s  p r e s e n t a t i o n  cons ide r  ground a c c e l e r a t i o n  i r ?  t h e  s t u d i e d  now. 

form of a d e l t a  f u n c t i o n ,  i . e . ,  f ( t )  = 6 ( t ) .  

I n  t h i s  case, c losed  form s o l u t i o n s  f o i  0' and Q, can  be ob ta ined .  

For t h e  OSL problem f o r  t h e  "best" (minimum cova r i ance )  i d e n t i f i c a t i o n  of 

1 

t h e  parameter A (given t h e  parameters B and u) us ing  an impulsive base e x c i t a t i o n ,  
Figure 2-A shows t h e  p l o t s  of th;. raKio of t h e  information matrices Ql(T)/Qz(T),  
f o r  T = 50 secs, f o r  v a r i o u s  v a l u e s  of  t h e  parameters A (which i s  t o  be  i d s n t i -  
f i e d )  and a* 0 awo, where uo P o i n t s  on t h e  graph w i t h  o r d i n a t e s  g r e a t e r  
than u n i t y  i n d i c a t e  t h e  o p t h - 1  l o c a t i o n  t o  be t h e  l o w x  mass l e v e l  and v i c e  
ve r sa .  The graphs i n d i c a t e  t h a t  t h e  opt imal  l o c a t i o n  in most cases, f o r  t h e  
range of A Considered, i s  t h e  upper mass l e v e l .  However, w e  obse -ve :bat f o r  
some small va lues  of  A and a* t h e  OSL is the lower l e v e l .  
enough, t h a t  t h e  opt imal  sensor  l c c a t i o n  f o r  i d e n t i f i c a t i o n  of 4 a c t u a l l y  depends 
not  on ly  on t h e  a c t u a l  va lues  of B and a which are presumably known, 'nut a l s o  on 
t h e  va lue  of t h e  parameter A i t s e l f  which is  t o  be iden t i f i e r ! !  
t o  a s c e r t a i n  t h e  opt imal  sensor  l o c a t i o n  some a p r i o r i  assessment of A is 
necessary.  

m. 

We n o t e ,  i n t e r e s t i n g l y  

Thus t o  be  a b l e  

Figure 2-B shows t h a t  t h e  opt imal  l o c a t i o n  f o r  i d e n t i f i c a t i o n  of t h e  param- 
eter B (given A and a), using an impuisive base i n p u t ,  is aga in  t h e  upper mass 
l e v e l  f o r  t h e  range of B va lues  considered.  For l a r g e r  B v a l u e s ,  however, and 
a*>0.05, t h e  ;rend appea r s  t o  be more and more i n  f avor  of t h e  upper mass. This  
seems i n t u i t i v e l y  c o r r e c t ,  f o r  as B becomes l a r g e r ,  t h e  lower p a r t  of t h e  system 
becomes s t i f f e r  and t h e  OSL would be t h e  upper mass l e v e l .  

Figure 2-C i s  a s s o c i a t e d  w i t h  t h e  OSLP f o r  e s t i r a t i n g  t h e  parameter B iisir~: 

a s i n u s c L a 1  base e x c i t a t i o n ,  f ( t )  = a s i n  u t .  The f i g u r e  shows t h a t  a s  t h e  
normalized d r i v i n g  frequency y = u / w o  v a r i e s ,  t h e  OSL changes.  For t h i s  example 
t h e  F i she r  Matrices can be computed i n  c l o s e d  form. For the e s t i m a t i o n  of B, 
(g'ven A and a* = 0) t h e  dimensiLn3.eso d r i v i n g  crequency y = y i e l d s  no 
information on B from reco rds  a t  e i t h e r  of t h e  two mass l z v e l s .  The responses  a t  
t h e  two mass l e v e l s  y i e l d  i d e n t i c a l   amour,'^ of information on B a t  y = 0 and 
y = fi f o r  A. # 1, a s  ind ica t ed  by the  va lues  of 41/42 = 1 a t  ttese f r equenc ie s .  
The va lue  of 41/42 = 0 a t  y = 1 is i n d i c a t i v e  of t h e  f a c t  t h a t  t h e  upper mass 
l e v e l  i s  ,. far  better l o c a t i o n  f o r  a senpor when e s t i m a t i n g  B w i t h  a* = 0. 
Figure 2-LI shows t h e  mean va lue  of t h e  r L t i o  Q l / Q 2  f o r  a random Gaussian white  
n o i s e  base e x c i t a t i o n  toge the r  w i th  t h e  1-CI band. 
upper mass l e v e l  f o r  i d e n t i f i c a t i o n  of A. 

The OSL appea r s  t o  be a t  t h e  
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CCINCLCSIONS AND DISCUSSION 

T h i s  paper  p r e s e n t s  a g e n e r a l  methodology f o r  de t e rmin ing  t h e  op t ima l  s e n s o r  
l o c a t i o n s  i n  dynamic s y s t e m s  f o r  o b t a i n i n g  r e c o r d s  v h i c h  would e n a b l e  t h e  "best"  
(minimum c o v a r i a n c e )  i d e n t i f i c a t i o n  of  a g iven  set of unknown pa rzme te r s  i n  t h e  
s y s t e m .  The t echn ique  u t i l i z e s  t h e  concept  of  a n  e f f i c i e n t  e s t i m a t o r  t o  uncouple  
t h e  i d e n t i f i c a t i o n  €rom t h e  o p t i m i z a t i o n  problem. 
?.de& i n  as c lear  a f a s h i o n  a s  p o s s i b l e ,  w e  have r e s t r i c t e d  t h e  d i s c u s s i o n  i n  t h i s  
s eque l  t c  l i n e a r  sys tems.  

In  o r d e r  t o  p r e s e n t  t h e  b a s i c  

The method has been i l l u s t r a t e d  by a p p l i c a t i o n  t o  a two degree  of freedom 
s y s t e m .  Though t h e  r e s u l t s  p re sen ted  h e r e  f o r  t h e  s imple  sys tem chosen form o n l y  
a f i r s t  s t e p  towards  a c q u i r i n g  a d e t a i l e d  unde r s t and ing  of t h e  OSL problem, t h e  
fo l lQwing  c o n c l u s i o n s  appea r  t 3  be r e l e v a t  a t  t h i s  t ime:  

(1) The OSL f o r  a g iven  sys'tem h e a v i l y  depends on t h e  class of  f x - c i n g  
f u n c t i o n s  used f o r  o b t a i n i n g  r e sponse  d a t a .  I n  t h i s  s t u d y ,  an im- 
p u l s i v e  base  m t i o n  is  cons ide red .  

( 2 )  The OSL f o r  l i n e a r  dynamic sys tems is independent  of  t h e  ampl i tude  o f  
t h e  f o r c i n g  f u n c t i o n .  

( 3 )  The OSL depends i n  g w e r a l  on a l l  t h e  v a l u e s  o f  system parameters .  For 
i n s t a n c e ,  t h e  OSL f o r  e s t i m a t i n g  A w i t h  minimum c o v a r i a n c e  depends n o t  
o n l y  on t h e  a c t u a l  parameter  v a l u e s  B P.? a b u t  on t h e  vaJ.ue of A it- 
s e l f  f o r  t h e  s y s t e m !  
i d e n t i f y i n g  a g iven  parameter  ( o r  a set of parameters )  i n  a dynamic 
s y s t e m  n e c e s s i t a t e s  t h e  Lnovledge of soae  a p r i o r i  e s t i m a t e s  of t h e  
unknown parameter ( s )  . 

T h i s  i m p l i e s  t h a t  t h e  OSL problem associated w i t h  

( 4 )  i h e  r e s u l t s  o f  O U T  s imple  example show that i h e  OSL problem may y i e l d  
s o l u t i o n s  which m a y  be d i r f i c u l t  t o  p r e d i c t  on p u r e l y  h e u r i s t i c  
grounds.  
problem, i n  a r a t h e r  c m p l e x  manner on t h e  a c t u a l  parameter  v a l u e s  of 
t h e  system and t h e  n a t u r e  o f  t h e  base  e x c i t a t i o n .  

The OSL appea r s  t o  depend, even i u r  t h i s  r e l a t i v e l y  s imple  
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Figure 1. 2-degree-of -f reedom 
generic structural 
systep. 
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Flgure  2-C. Variation of 41/22 with y 4 iu/wo for d i f ferc7t  a* gicen 4 = & = m = l ,  
k=100 and f ( t )  = Smut.  
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FOR A STATIC MODEL OF THE MAYPOLE 

(HOOP/COLUMN) ANTENNA SURFACE 
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Parameter and state estimation techniques are discussed for an ellip- 
tic system arising in a developmental model for the antenna surface of the 
Maypole Hoop/Column antenna. A computational algorithm based 311 spline 
approximations for the state a d  elastic parameters is given and numerical 
results obtained using this algorithm are summarized. 

Results are presented from a Langley program directed towards 
developing computattonally efficient identification techniques for flexible 
systems modeled by partial differential equations with an emphasis on large 
space structures. Initial efforts have been directed towards extendidg the 
spline-based theory and computational techniques used by the first tw 
authors [11-[6] in solving identification problem with delay and partial 
differential equation e e l s  in one spatial variable to solve distributed 
problems in several spatial variables. Additionally, ir. order to support 
Langley's technology development program [ 7 ]  in large space antennae, a 
narameter aad state estimation algorith has been derived for a prototype 
distributed model of the Maypole (Hoop/Column). antenna reflector 
surface [8 ] .  Thz next section describes the Hoop/Colum antenna and pre- 
sents the identificotion problem being considered. The state and pazawter 
estimation approach is rhen outlined and rliscuased in  tne :.antext of the 
Hoop/Column application. Subsequent sections include mathematical details 
of the antenna application and numerical results. 



For the purpose of technology development, the NASA Large Space 
S:rstems Technology (LSST) program of f  ice has pinpointed focus missions and 
i d e n t i f i e d  fu ture  requirements for  la rge  space antennas for  communications, 
e a r t h  sensing, and radio astronom; [ 7 ] .  I n  t h i s  study, par t icular  emphasis 
is placed on mesh deployable antennas i n  the 50-120 meter diameter cate- 
gory. One such antenna is the Maypole (Hoop/Column) antenna shown for  the  
lOOm point-design i n  Mgures 1 and 2. This antenna concept Is being devel- 
oped by the Harris Corporation, Melbourne, Flor ida,  under contract  t o  the 
Langley Research e n t e r  [ 8 ] .  

The Hoop/Column antenna cons i s t s  of a kni t ted  gold-plated molybdenum 
wire r e f l e c t i v e  mesh s t re tched  over a co l l aps ib l e  hoop that suppl ies  the 
r i g i d i t y  necessary t o  maintain a c i r c u l a r  ou ter  shape. The annular 
membrane-like r e f l e c t o r  sur face  surrovnds a . te lescoping  mast which provides 
anchoring loca t i -ns  fo r  t h e  mesh center  sec t ion  (Pig. 1). Thq mast also 
provides anchoring for cables  tha t  connect the top end of the mast t o  the 
ou te r  hoop and the bottom end of the mast t o  48 equally spaced r a d i a l  
g raphi te  cord t r u s s  systems woven through the mesh surface [ 8 ] .  Tensions 
on the upper (quar tz )  cables  and outer  lower (graphi te  epoxy) cables  are 
counter balanced t o  provide s t i f f n e s s  t o  the hoop s t ruc ture .  The Inner 
lower cables produce, through the truss systems, d i s t r ibu ted  surf ace load- 
ing to  control  the shape of four c i r c u l a r  r e f l e c t i v e  dishes (Pigs. 1 and 2) 
on tLle U B L , . ~  sur facer  

After  deployment or a f t e r  a long period of operation, the r e f l e c t o r  
surface may require  adjustment. Optical  sensors are to  be locatc3 on the 
upper mast which aeasure angles of r e t r o r e f l e c t i v e  t a rge t s  plactd on the 
t r u s s  r a d i a l  cord edges on the antenna surface.  This information can then 
be processed using a ground-based computer t o  determlne a da ta  set of val- 
ues of mesh surface loca t ion  at se lec ted  targeb points.  I f  necessary, a 
new set of shaping (cont ro l )  cord tendione can be fed back t o  the antenna 
for  adjustment. 

It is des i rab le  to  have an i d e n t i f i c a t i o n  procedure which allows one 
t o  estimate the antenna mesh shape at  a r b i t r a r y  surface points  and the 
d i s t r ibu ted  loading from data  set observations.  It can a l so  be rinticipated 
t h a t  environmental stresses and the  e f f e c t s  of aging w i l l  alter the mesh 
mater ia l  propert ies .  The i d e n t i f i c a t i o n  procedure m u s t  also allow one t o  
address t h i s  i s sue .  

Considering the antenna t o  be f u l l y  deployed a n d ’ i n  s ta t ic  equi l ib-  
rium, a d i s t r ibu ted  mathematical model whick deocribes the an tema  surface 
devipt ion from a cbrved equilibrium configurat ion is under inves t iga t ion  
( f o r  preliminary f indings,  see [ 9 ] ) .  Using a cy l ind r i ca l  coordinate system 
with the z-axis along the aast, it is expected tha t  the resu l t ing  model 
w i l l  e n t a i l  a system 02 coupled second-order l i n e a r  p a r t i a l  d i f f e r e n t i a l  
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equat ions  i n  two s p a t i a l  var iab les .  The c o e f f i c i e n t s  of these  eqwrtions 
are func t ions  of the material p r o p e r t i e s  of the s t r e t c h e d  mesh. The d e r i -  
v a t i o n  and computer sof tware f o r  t h i s  model are st i l l  under dPvelopment. 
I n  the meantime, a simpler developmental (prototype)  problem has been 
solved which is d e s c r i p t i v e  of the  o r i g i n a l  problem. 

For the  developmental problem, t h e  loading is assumed t o  be normal t o  
the h o r i z o n t a l  plane coa ta in ing  the hoop rim, and tbe mesh s u r f a c e  is 
assumed t o  be descr ibed by the  s t a t i c  two-dimensional s t r e t c b d  membrane 
equat ion [ lo] with v a r i a b l e  s t i f f n e s s  (elastic) c o e f f i c i e n t s  and appropri-  
a t e  boundary condi t ions  f o r  th2 Hoop/Coluun geometry. Hathematical ly ,  i n  
polar  coord ina tes ,  we have 

where u(r,O) is the v e r t i c a l  displacement of the mesh f r o a  the hoop 
plane,  f ( r ,Q)  is t h e  d i s t r i b u t e d  loading f o r c e  per u n i t  area, and 
E(r,O) > 0 is the  d i s t r i b u t e d  s t i f f n e s s  (elastic) c o e f f i c i e n t  of the meoh 
s u r f a c e  ( f o r c e / u n i t  length) .  E f v a t i o n  (1) is to be solved over t h e  annular  
r e g i o n  Q = [ E , R ]  x [0,2a]. Appropriate boundary condi t ions  are 

a long  with the p e r i o d i c i t y  requirement 

where R i s  the rad ius  from the mast c e n t e r  t o  t h e  circular o u t e r  hoop, 
c is the  rad ius  f r a a  ti= mast t o  the beginning of the mesh sur face  (see 
F i g .  21, and uo i a  the coordinate  a t  r = E of the  meah s u r f a c e  below 
t h e  outer hoep plane. 

We f u r t h e r  assume t h a t  the  J i s t r i b u t e d  loading slo.ng with a d a t a  set 
of v e r t i c a l  displacements,  u ( r  8 ), at s e l e c t e d  p o i n t s  (r,,e,) on t h e  

mesh sur face  is known. Given t h i s  ‘-nform*+ion, the developmental problem 
is  t o  es t imate  the  material p r o p e r t i e s  of the mesh as represented by 
E(r,O) anti produce s t a t e  estimates of the eurcace represented by u(r,e) 
a t  a r b i t r a r y  (r,O) poin ts  within n. The procedure appl ied t o  so lve  t h i s  
problem is discussed i n  the next sec t ion .  

m i’ j 
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The first two authors and their colleagues have derived techniquec for 
approximating the solutions to systems identification and control problem 
involving delay equation models and partial differential equation models in 
one spatial variable and have used them in a variety of applications 
[ l l ] ,  (121. The Hoop/Column application requires an extension of the theory 
and numerical algorithms to elliptic distributed systems in several spatial 
variables. The approach, when specialized to the system identification 
problem, may be 6' marized as follows: (1) select a distributed parameter 
formulation containing unknown parameters for a specific system; (2) mathe- 
matically "project" the formulation down onto a finite dimensional subspace 
through some approximation procedure such as finite differences, finite 
elements, etc.; (3) solve the identification problem within the finite 
dimensional subspace obtaining an estimate .dependent upon the order o€ the 
approximation embodied in the subspace; (4) successively increase the order 
of the approxima+.ion and, in each case, solve the identification problem so 
as to construct a uequence oi parameter and state estimates ordered with 
increasing refinement of the approxiaatiun scheme; (5) seek a mathematical 
theory which providcs conditions under which t!e sequence of approximate 
solutions approaches the distributed solution as the subspace dimension 
increases with a convergent underlying sequence of parameter estimates. 

In applying this approach to the developmental problem, the stiffness 
function is parametrized in terms of cubic splines of fixed order; thir 
converts the estimation of E(r,6) into a finite dimensional parameter 
estimation problem. After writing the energy functional generic to the 
membrane equation, the Galerkin procedure is used to project the dtstti- 
buted formulatian onto a finite dimensional state subspace spanned by ten- 
sor products of linear spline functions defined over n. The approximate 
displacement (state estimate: thus obtained is expressible in terns of the 
spline basis fuwtions. The Galerkln procedure in this case yields alge- 
braic equations which def :ne the displacement approximation coordinates in 
tei- of the unknown E(r,8) parameters. In order to solve the approxi- 
mating parameter estimation problem, the parameters defining E(r, ct) are 
chosen so that Y -east squares measure of the fit error between the 
observed and predicttd (by the estimated state) data 3et is minimized. 
Finally, following steps (4) a d  (5) an algorith Is constructed to 
determine the order of the linear spline approximation above which little 
or no further improvement is obtained in the unknown quantities 88 one 
increases the dimension of the subspaces. Details of this system 
identification approach 3re ?resented in the following sections. 
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P r i o r  
dimensional 
cor?diticns 
dependent v 

to  applying the Galerkin procedure [13,14] t o  perform the f i n i t e  
approximation fo r  the  developmental problem, the boundary 

(2)  are converted t o  homogeneous form by introducing the new 
f a r i ab le  

Equation (1  ) then becomes 

with boundary conditions 

Iollowing the standard formulation (nee 113,141) f o r  the weak o r  
LI 

var i a t iona l  for- of (51, the  energy funct ional  E associated with ( 5 )  is 

where 0 is the gradient  i n  polar coordinates which, i n  the form used 
here,  I, equivalent t o  

H 

The function f is giber by 

h, rE( r ,e )u, 
f ( r , e )  - f ( r , e )  + - -  r l a  ar ( E - R )  

and the v e r t i c a l  displacement z ( r ,e )  of the mesh sur face  a w q  from the  
hoop equilibrium plane is a function sa t i s fy ing  the boundary conditions ( 6 )  
and posseszing f i r s t  der iva t ives  on S l  i n  the d i s t r i b u t i o n a l  sense (we 

(Sl) f 2). The f i r s t  va r i a t ion  6; of ; about denote t h i e  by 

the function y(r.0) is given by 
%,per 



= i2'lR {E(r,B)Vy V-r - [f(r,e)v + E(r,e)Z Vv]) rd rde  (10) 

where 

k =  (;I ($) 
(11) 

(0) and v is an a r b i t r a r y  function i n  Z - .Ho,per 1 .  

A 

Given a f i n i t e  d i l aen810d  subspace 2 of 2 ,  the Galerkin procedure 
A A 

defines  the approximation y as the so lu t ion  i n  Z of 

* a  

for  a l l  VEZ. 

For computational e f f ic iency ,  the bae ls  funct lons used for  t he  

representat ions of y i n  (12) are taken as tensor products of l i n e a r  

B-splines ( [ 1 3 ] ,  p. 27; [14:, p. 100). Thus v and y are i n  t h e  space 
spanned by 

a 

A A 

- a N w ,  , ( j  5 j . 
.*,N - 11, M where aM - ai(r) ,  (i = 1 ,..., M - 11, and i 

a re  standard l i n e a r  B-aplines with knots uniformly spaced over and 
! 0 , 2 n ] ,  respect ively,  modified t o  s a t i s f y  the appropriate  bocndsry 

condi t ions. The elements {a:} %re modified t o  s a t i s f y  homogeneous 
b o o  ' iry conditions while has been a l t e r ed  t o  satisfy- per iodic  

boundary conditions [ 151. 

f & , R ]  

8: 
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’pN we can write For yMsN(r,O) within the subspace spanned by v 
il 

Replacing j(r.0) in (12)  by yMSN(r,Q) from (14) and successively set- 

tiaig v(r ,O)  = vMBN(r,Q) for i = l,...,M - 1 and j = l , . . . , ! l  leads to 
a set of high-order linear algebraic equations for ths 

We avoid sparse matrix methods in s.olving the 

ij 
M * N  coordinates. 

M s N  eqdation by 
wij imposing a separability condition: 

As shown in [ 1 5 ] ,  condition (15) reduces the 
~0.1uti~i of the matrix equation 

wid M s N  calculaticn to the 

with 
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and 

where, in (17) - (22) ,  i , p  = l s . o o s H  - 1 and j,q * 1 ,..., N. 

Equation (i6) is rewritten i n  the equivalent form 

and solved by the Bartels-Stewart algorithm [161. 

In order to estimate, via a numerical scheme, the functional 
coefficients E1 and E2, we parametrize these functions so that 
idertification is performed over a finite-dimenaional parameter set. To 
this end, let 

are scalar parameters and where vk and 
cubic B-spline funct on8 defined 113, p. 611 over 
respectively, whose orders are independent of M and 

2 & and lJ are 
(€,R] and f 0 , 2 n l ,  
N. The basic spline 

functions are modified so that 
boundary conditions. uj and its derivatives satisfy periodic 

We turn next to the computer implementation of the identification 
scheme. 
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Appealing to the ideas found in previous sections, we now detail an 
algorithm for estimating thc coefficients V k ,  k - I,..., MI and 
j = 1, ..., N I ,  for E(r,8) that provide the "best fit" between 
estimations of the state u and observed data obtained from various 
sample poince on the surface. We may equivale3tly consider data for y by 
making the transformation 

for i = l , . . . ,  L, and j = I,.-. ,  LQ. 

A parameter estimation algorittrm may 'k organized into the following 
steps. 

1. Select an order of approximation for the cubic spline elements 
N1, used to ";is j = l B * * * s  

Ah, k = I , . .  ., M1 and 
represent E1 and E2. Set n = . 

2. Select M and N, .r: number of the linear spline basis elements 
used to represent UNSN (and P s N ) .  

3. Assume a nominal set of values for 

v - (vl, V*,...s 'MI) 
(27) 

and 

6 - p l ,  6* ,..., 6 . (28) 
\ N1) 

4. Calculate the ioefficient matrices in (23)  and solve for 
#sK( V ,  6). 

5 -  Calculate, from (141,  f19N(r4L,@j; \:,a) and evaluate 

6. Proceed to step 8 if J'*N(u,6) €8 sufficiently small. 
Otherwise, through an optimization procedure, determine a net pair 

( v , 6 )  which decreases the value of J . If no euch pair can M,N 
A I  

be found, go to step 8 .  

271 



A -  

7 .  Set ( v , & )  - ( V , 6 )  and return t o  s t e p  4. 

8 .  Preserve the cur ren t  values of JHsN and the corresponding 
( v , 6 )  yair a s  the h i t h  en t ry  i n  a sequence of these pa i r s ,  
ordered with increasing N and N. 

9 .  Proceed t o  s t e p  10 i f  s u f f i c i e n t  da ta  has been obtained to analyze 
the sequences. Otherwise, set G = n 4 1 and re turn  t o  s t e p  2 
with increased M and N. The current  values of ( V , 6 )  W i l l  bt 
used ig i n i t i a l  values fo r  the next optimizatdcm process. 

10. From ana lys is  of the numerical sequences, ee l ec t  t he  (M,N) en t ry  
which ind ica tes  the beet numerical r e su l t s .  The correspoading 
parameter estimate (u, 6)  pai r  y i e lds  E(r,B) which determines the 
material proper t ies  of the antenna'.mesh. The matrix d r N (  V ,  61, 
when used i n  conjunction with (141, determines a state 
approximation yMrN fo r  the shape of the  antenna surface.  

A convergence th iory  f o r  the i d e n t i f i c a t i o n  a l g o r i t h  may be found 
i n  [15 ] .  Numerical results are described i n  the next eecrion. 

Experimental data  fo r  the Hoop/Column antenna is not avai lab le  a t  t h i s  
time. Therefore, syn the t i c  da ta  is constructed t o  deaonetteee the 
preceding algorithm. 

As shown i n  Figure 2 ,  the parent r e f l e c t o r  has four separate area8 of 
I l luminat ion on its surface.  Each area is assumed t o  have tk same 
parabol ic  shape. For 0 < 0 < - and E 5 r 5 B- - - 2  



where 

ql(0) = stnO + cos0 . (31) 

The f u n c t i o n s  q2!0) and q3(0)  are cub ic  poljaomial f i t s  used t o  

ensure smoothness in regions of 0 near (3 = 2 , f ,  2 3n , 2n. Formulae f o r  
qZ(0) and c 3 ( 0 )  may be found i n  1151. The parameter k > 0, a 
s t r e t c h  f a c t o r  used t o  pe r tu rb  the  s u r f a c e  b e l o w  the  conic  (k = 0) shape is 
taken as 0.25. 

f 

For the complete s u r f a c e ,  we d e f i c e ,  f n r  E L r R, 

It is expected t h a t  the mesh w i l l  be s t i f f e s t  near  the o u t e r  hoop 
( r  = R) and around the  Fnr\er r a d i u s  (t = E), For t h i s  r e a v n  we choose a 
known value of E l ( r )  as 

where T is a cons t an t  dependent on the mesh material. The s t f f f n e e e  In 
t he  angular  d t r e c i o n  18 exrectod to  oe uniform with 

From d a t a  rrovld :8] f o r  the IO’l-meter point design,  a reasonable  

value f o r  (given i n  u n i t s  vGG is 

A 

T = 3.391 ; (35) 

s i m i l a r l y ,  other parameters are c a l c u l a t e d  t o  be uo = -7.501, E u P.2351~  
and R - 50m. 
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A 10 x 24 g r i d  of d a t a  p o i n t s  u+ri,€)j)  is c a l c u l a t e d  by - 
e . - a lua t ing  u(r,O) a t  p o i n t s  (ri,ej) wt th  

(37) 
n 0 0 [7.5" + (j - !) 15'1 E (j = l , Z ,  ... ,Le = 24) 0 

j 

Values of Qj correspond t o  d a t a  taken along every o t h e r  r a d i a l  cord 
t r u s s  sys t em with r e f l e c t o r s  assumed l o c a t e d  on t h e  gore edges. 
D i s t r i b u t e d  loads  are obtained bv 8 u b s t i t u t j . q  ( 3 2 ) - ! J 4 )  i n t -  (1) and 
e v a l u a t i n g  f ( : ,O ). . .  

I n  the  examples of the  i m c t l f i c a t l o n  p racess  to oe presented,  an 
equal  number of l i n e a r  s p l i n e  b a s i s  func t ions  are ueed in boLh r ~ .nd  8 
d i r e c t i o n s .  That is, M = N + 1 f o r  an i n c r e a b i q  sequence of N-values. 
The cubic  s p l i n e  appruximrtions ( 2 4 )  and ( 2 5 )  are ueed with f i x e d  
M1 - N1 - 4 t o  xepresent  E1(r) and E-;e). The L%L ver s ion  
( WSSQ) of the Levenberg-Harqusrdt dgorithm [ 17f is employed to minimi ee  
J M s N  given by (29). For t t e  f i r s t  choice of N; s d n a l  (v ,6)  parameter 
values t o  I n i t i a l i z e  the  Levenherg-brquardt  s lgo r i thm are obtained by 
f ind ing  those ( u t & )  coordinateb which came ( 2 4 )  and (25) t o  beet approxi- 

mate assumed ftli.ctions E1(r) and E2(2) chosen as guessed f o m  f a r  

E ( r i  83d t 2 ( e ) ,  r e spec t ive ly .  P,,L Iorger N, the latest previoueLy 

obtained set of converged c o o r l f n a t e e  I s  used as norn1-d parameters. 
PI. r i c a l  c a l c u l a t i o n s  are performed on a CDC Cyber 170-series d i g i t s 1  
. ;z.puta: using d e f a u l t  valuee 02 the IHSL convergence paramcters. 

0 0 
- 

1 

Two measurzs of i d e n t i f i c a t i o n  scherae performance are employed. The 
q u a n t i t y  

is uaed as a measure 02 state e s t lma t im accuracy. A a d i t i m a l l y ,  
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measures the relative e r r o r  between the t r u e  

and the estimatec. E ( r , O )  denoted by 

which is c a l c u l a t e d  from ( 2 4 )  and (25) using the  ( M , N I t h  l e v e l  of state 
a p p r o x i c - t i o n  obtained a t  s t e p  8 of the  computational procedure. In (391, 

1.1 ,c‘.~otes t h e  L2 norm on [6,R] x [0,2+1. RMPN provides a 
lneasure of parameter e s t ima t ion  accuracy. 

Convergence i n  the sense t h a t  

#,N + 0 

and 

as 

depends on the a b i l i t y  of t he  cubic  s p l i n e  approximates ( 2 4 )  and (25) t o  

a c c u r a t e l y  r ep resen t  E l ( r )  and E2(8). An exact pointwise f i t  can be 

obtained f o r  E (e) by choice of the 4 6-coe f f i c i en t s  in (25). However, 

E1(t) 

- - 
- 

2 - 
can a t  best be approximated t o  

r e l a t i v e  error by (24) and (27) with M = 4, Consequently, e n t r i e s  i n  the  

(RM’N, jMgN) (M,N) 
value. Less rea l i s t ic  examples i n  which (24) acd (25) e x a c t l y  f i t  s i m p l e r  

1 
sequence can be expected t o  cease decreasing pas t  some 



- 
E (r) and E (0) funct ions,  and and RnsN monotonically decrease 

with increasing ( M , N )  can be found i n  [15] .  Also, using the best cubic 

s p l i n e  f i ts  t o  E1(r)  and E2(8) obtained f r a  (24) and (25) t o  

def ine  E(r,e), along with the exact f ( r , e )  data ,  we observed that 

1 2 

- - 

jnSN - 0.087 

un i fomly  i n  ( l 4 , N ) .  T k  fol loving nurer ica l  remlts shcw that the  
parameter estimates from the  l d e n t l f l c a t l o n  procedure tend t o  Improve 

( reduce) t h i s  J An*N value at the expetme of RwJ 

Example 1: Estimate E2(8) holiing El(’) f ixed  a t  the best 

cubic  sp!i.re estimate of (r )  using ( 2 4 ) .  M n d  Fsraneterb tor the 

N = 4 
1 

s t a r t i n g  value are obtained by f i t t i n g  (25) to  

3 1 
2 E2(e) - 1 + -  COS e . 

Four 6-parameters are estimated and results s c r l t c d  below. 

N RnBN, % 8 t he ,  see 

4 0 . 0390 5.13 
6 0.0384 5.57 
8 0.0322 5.69 
10 0.0347 6.01 
12 0 0330 5.83 

8 
23 
86 
105 
132 

EssentiaLLy no improvement in state estirate vu obtained past N = 8. 
E;’N(6) tepded t o  3.591 instead of 

a t t r i bd ted  to  the I n a b i l i t y  J f  ( 2 4 )  to exact ly  f i t  xl(r). 

The 
The - 0.20 bias  is 

- 
E2(8) E 3-39?. 
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Example 2: Estimate El(r) holding E2(8) fixed at the best 

cubic spline estimate of E2(B) using (25). Nominal para~eters for the 
N = 4 starting value are obtained by fitting (24) to 

- 

Four +parameters are estimated aod results surmkarized below. 

N ;'~N, m RMsN, % 2 time, sec 

4 
6 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 

a 
0.0355 

0.0270 
0.0293 
0.0275 
0.0273 
0.0271 
0.0267 
0.0264 
0 -0260 
0.0267 
0.0250 
0 A203 
0.0259 

0.0343 
32.25 
24.5 
4.39 
13.17 

7.44 
7.59 
7.68 

7.91 
8.11 
7 -49 
7.58 
7.71 

8-08 

8.03 

22 
41 
75 
103 
130 
168 
222 
292 
370 
460 
578 
751 
847 
1050 

Prom a state estimation viewpoint, N = 28 provides the best 
accurrcy. Overall, considering state, parameter and ease of co8putatioa, 

N = 8 is best. Figure 3 shows the character of EYBN(r) for selected 

values of N. 
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Example 3: EstiMte both E1(r) and Ez(e). N d n a l  parameters 
are obtained aa before for N = 4 from 

s i n  e E p )  = 1 - - 0 

For each N, the f irs t  coefficient, 61 ,  is bcld fixed at its iaitial 
value. Seven parameters are estimated. 

N ItnBN, 6 the, Bcc 

4 
6 
8 

10 
12 
14 
16 
13 
20 
22 
24 
26 

0.0356 
0.0341 
0.0270 
0.0293 
0.0275 
0.0273 
0.0271 

0.0264 
0.0262 
0.0260 
0.0260 

0.0267 

32 . 24 
28.71 
4.42 

13.18 
8.09 
7.45 
7 059 
7.69 
8.04 
7.90 
8.12 
7.47 

40 
67 

168 
209 
236 
337 
411 
490 
567 
65 1 
768 
945 

Again, f r a  overall consideratioxm, N * 8 giver, the beet results. 
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In all examples we have been able to succeesfully estimate the surface 
shape of the model antenna. Similr.. results have been obtaiced where 
random noise (approximately 5% noise level) has been added to the data. 
These and other findings may be f o d  la Section VI of [ 151. 
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FEED ASSEMBLY 
(4 REQU I RED) 

FEED MAST 

UPPER MAST HOOP SUPPORT CABLE 

h O O P  SUPPORT CABLE 

Figure 1 .- Side View of Heypole (Hoop/Column) Antenna. 

Figure 2 .- Maypole (Hoop/Coltimn) Antenna Reflector Surface. 
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N = 4  

RMsN = 4.39% 2 -  FIN = 0.0270m 

11 I I I I 1 I I I 

2 RM*N = 7.58% jMIN = 0.0203m 

0 
I@ 1 5 2 0 2 5 3 0  35 40 45 50 
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ABSTRACT 

This paper describes an on-going simple laboratory experiment, referred to 
as the Beam Control Experiment (BCE), which has the essential features of a 
large fisxible structure. The experiment is used to develop and evaluate iden- 
tification and control algorithms which 1ook.promising in the active control of 
high performance large space structures. 
hood identification of the parameters of the beam-actuator-sensor assembly from 
experimental data is presented in the paper. 

Some results on the maximum likeli- 

'I. INTRODUCTION 

One of the major problems in the design of control systems which operate 
in the presence of a flexible structure is obtaining accurate information about 
the plant dynamics. In particular, knowledge of the frequencies, damping ratios 
and mode shapes c the flexible modes is critical to the successful design of 
a high performance system. 
success of which depends upon the choice of algorithm and system model, the 
choice of inputs to excite the system, and the quality of output data. A cere- 
ful integration of these items is especially critical in the case of large 
flexi )le struztures. 

Systen! identification is an iterative process, the 

Ln this paper we describe the development and performa,ice testing of a 
simple laborat2ry model of a jitter control sys !m designed to provide a stable 
image with optical components mounted on a flexible structure. 
be carried out in three stages: (a) identification with simulated data, (b) 
identification with real data, and (c) comparison of closed loop performance 
with simulated results. Results from the first two stages are reported in 
this paper. 

The study will 

This paper is organized as follows: Section 2 describes tne experimental 
set-up and a msthematical model for the BCE is developed in Section 3 .  A brief 
description of the maximum likelihood estimation (MLE) algorithm is presented 
in Section 4 .  Results on the identification of the parameters of the BCE using 
both simulated and experimental data are discussed in Section 5. 
and future work is described in Section 6 .  

A summary 

11. BEAM CONTROL EXPERIMENT 

The idea behind this experiment (Fig. 1) is to demonstrate the inter- 
action between the control of an optical system, symbolized by a laser beam, 
and control of a flexible structure, represented by a flexible aluminum beam 
to which passive and active mirrors are attached. These mirrors bounce the 
laser beam toward a desired targtt. The  intezesting control problem stems 
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from the fact that the active mirror is in fact part of a proof-mass actuator. 
Thus, any attempt to control the laser beam will tend to disturb the aluminum 
beam, thereby also disturbing the laser beam. This intricate coupling is 
quite a challenge f o r  a classical design but more amenable to modern techniques. 
The other aspect of the experiment is the use of a commercially available 
cated microprocessor (IS1 MCP-1001 capable of handling at maximum a 32--, e 
Kalman filter at 3 2000-E2 sampling rate. Such implementation, aside f 1 its 
laboratory usefulness, bring control technology one step further toward r?al 
space implementation, and the experience gained is valuable. 

The schematic of the experiment is shown in Figs. 2 and 3. The laser beam 
bounces first on a mirror situated near the middle point of the vertical alumi- 
num beam, then on a mirror attached to the tip of a pivoted proof-mass actua- 
tor (PPM). The laser beam finally reaches a photodetector, which measures the 
laser beam position. A beam splitter provides a visual display of the jitter 
by projecting the spot on a remote screen. ; 

Two sensors are used in the experiment: the photodetector measuring the 
lue-of-sight (LO'S) error, and the I'PM rate sensor measuring the relative velo- 
city of the proof-mass. 

A preliminary experiment had been performed earlier (Ref. 1) using com- 
Only mercially available software for identification and control synthesis. 

one sensor was used (position) end the control system was able to signifi- 
cantly damp out the beam vibrations; thus stabilizing the line-of-sight. 
However, in order to eliminate the static error and achieve a higher perform- 
ance, a better model is needed and thus more sophisticated identification 
techniques are sought to that end. 

For purposes of identification, a known control force is applied to the 
The control force time-history and the beam ueing the proof-mass actuator. 

beam position and relative rate outputs are recorded on a Nicolet 4094 digital 
oscilloscope. 
Nicolet 4094 to a Harris 800 computer where the identificatim algorithms 
were exercized. Thus an efficient link between hardware ter'-s and eophisticated 
computer analyses (rig. 4 )  was established. 

Special software transfers the input and output data from the 

111. MATHEMATICAL MODEL 

In this Section, a state space model of the system is developed. The 
mathematical form of this model will be used both for simulation and identifi- 
cation of the parameters of the BCE. 

The angular displacement, ea, of the proof-mass actuator is limited to 
to a few degrees. 
tor are given by the equations (Reference 2) 

For small angles the force and torque applied by the actua- 

T = INa 
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where m is the mass of the proof-mass actuator, b is the distance from the cen- 
ter of mass to the proof-mass pivot and I is the centroid inertia of the proof- 
mass actuator. The dynamics of tte aluminum beam will be defined in terms of 
the principal modes and mode shapes. 
mode and define: 

Let qi be the modal amplitude of the ith 

w 

Ti = damping of the ith mode 

$i = translational mode shape of t h e  ith mode at the 

= angular velocity of the ith mode i 

beam tip (where the PPM is mounted) 

and +i R = rotational mode shape of the ith mode'at this tip. Let $im and $im R 
be the corresponding values for che mode shapes where the mirror is mounted 
on the flexible beam. The modal equations for che beam are: 

where M is the number of modes represented in the model. Due to the actuator 
dynamics, the control force fc applied to the actuator is related to fa by the 
equation 

where r = lever arm of the actuator 

g = acceleration due to gravity 

K = spring constant of the actuator 

D = damping constant of the actuator 

and €It = rotation of the beam tip 

The rotation of  the beam tip can be expressed in terms of the modal amplitudes 
by 
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Equations (1) - (5) can be reduced to the set of equations 

(6) 
R R r .. ea = - (K + mgb!/I ea - D!I ba + tU1 Z qi + DII C 9, ii + i fc 

and 

+ Bi f c  ( 7 )  

where 

Bi = Ai r/K (9) 

and ‘i = Ai D/K (10) 

Let y 1  be the displacement of the laser beam from the reference point \%.e. ,  
this is a measurement of the L.O.S. error). 
rate between the actuator and the beam tip. 

Let y2 be the relative angular 
Then, 

and 

where El is the distance between the mirror on the beam and the mirror on the 
proof-mass actuator and a2 is the distance between the photodetector and the 
mirror on the proof-mass actuator (See Fig. 3 ) .  

Equations 6, 7, 11, and 12 give a state space representation of the 
input/output behavior of the BCE with [ea ea q1 q1 . . . qH 
state vector. I 

as the 

For a single mode model the equations are given by 

x = ‘rx + Gu 
y = hrx 
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whert 

c.- 

2 I 4 ~ 1 O - ~  Kg-m 

m 0.07895 Kg 

b 0.06985 m 

r 0.021 m 

0.165 m 
0.217 m 

5 
$2 

- 

F =  

and 

0 

[; 1 

1 

-D/ I 

0 

-C 1 

0 

2 R  
@ ?  6 1  

0 

2 R  
-wl+AIC1 

[O r / I  o B1 '1 (16) 

where uz = (K + mgb)/I . a 

R The F 
$lrn,+tm) and the Irn-cm parameters 
known parameters are tabulated in Table 1. In this aodel the number of unknown 
parameters is equal to (6Vt2) where M is the nuiiber of modes. 

G and H matri2es depend on the unknown parameters (Ua,D,w1,51,41,@1, 
The values of the (I,m,b,r,Rl and a2 1. 

Table 1. Kqown Parameters of the BCE 
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I V .  MAXIMUM LIKELIHOOD ESTMATIClN (MLE) 

There are several methods available for the estimation/identlfication of 
Figure 6 shows the main components of an identification method. parameters 

The system to be idenzified and a mathematical model, W(p), of the system 
is excited by a known input u. An error function, L(p,e), is fonned from the 
outputs of the system and the model. 
adjusting the model parameters p to minimize the error furictior. 
of M(p), L(p,e) and the adjusting mechanism for p lead to different identifi- 
cation algorithms. In this paper, we shall restrict our attention to the 
maximum likelihood estimation of parameters. 

Identification I s  the process of 
The choice 

The MLE can be applied to a large class of problems and has good statis- 
tical convergence and accuracy properties. In addition, HLE is well suCted 
for identifying physical parameters of thc system. This is a drawback with 
most recursive algorithms. The main disadvantage of MLE is the amount of 
computation. However, the amount of computation can be reduced significantly 
by taking into account the special features of the dynamics of the large space 
structures. 

The flow of computation in the MLE is sham in Fig. 7. The mathematical 
model for the system is assumed to be 

x = F(p) x + G(p)u + w (20 )  

where x is the n-dimensional state vector, y the p-dimensional output vector 
and u the m-dimensional input vector. ‘1) and represent the process and 
measurement noise respectively. 
of unknom system parameters. 
applied t3 the system and the output y of the system has been observed at dis- 
crete times to, tl, . . . tN. 
zero-mean gaussian random variables with 

The matrices F, G and H depend on p,the vector 
~n input signal 

Further, it is assumed that x(o) 

[u(t), o < t < tN] has been 

and w are 

cov (x(0)) = P(0) (22) 

cov ( 0 )  = Q  (23) 

and cov (v) = R  , (24) 

The identif icatlon problem consists of estimating the parameters p from the 
experimental data u ( t i ) ,  y(ti) , i - 1 ,2 ,  ... N. Let be the state estimte, 
the output estimate, and e(tR) be thc outDut error 

where e q  = Y(tk) - &t,L ( 2 5 )  



The negative l o g  likelinood function, v(p,e), can be written as 

N -  - 1  

i= 1 
L'(p,e) = - log L(p,e) = C b(i) E(i) e(i) + log jB(i)l ( 2 6 )  

The maximum likelihood estimate of the parameters p is obtained by maxi- 
mizillg the ?ikelinoJd function L(p,e) (or by dn'imizing V(p,e)). This non- 
linear minimization protlem has to be solved by numerical methods and makes the 
X E  cornputationally intensive. The computational aspects of MLE are discussed 
in Reference 4 .  

V. IDENTIFICATION RESULTS 

Numerical results on the identitication of the parameters will be pre- 
sented in two steps. First results from the identification of simulated data 
will be snown. This will be followed by results from experirental data. 

a. Simulation Results: Identificaticn with simulated dcta was done 
to get a tetter understanding of the dynamics of the BCE, to pro- 
vide guidelines to set up the experiment and to test the MLE 
software. The system was simulated using 4 modes and was excited 
by a "bang-bang" type input with ar. amplitude of tO.1 Newton. 
Figure 8 shows the laser beam position and relative velocity 
output from the Simulation. This i?put/output simulated data 
was used to identify a single mode beam model of the system 
(see equations 1 3 - 1 7 ) .  The negative log likelihood function 
V ( p , e )  was probed at a few points to see its variation with param- 
rter p. Figure 9 shows the variation of the likelihood surface 
with wa ar,d w,. 
The damping terms Ga and G1 were set to thfi simulatior values and 

vary. Table 2 shows the results based on simulated daca. There 
is good agreement between simulated and estimated values. 
are ready to try the identificationwith experimental data. 

The surface is well-beh&ved in these two variables. 

o n l y  parameters (wa. w 1 ,  $1, $1, R $i, and +in) were allowed to 

Now we 

b. Experimental Results: The aluminum beam was excited by applying 
to the proof-mass actuator a sinusoidal force with a lizearly 
varving frequency (so-called "chirp" excitation) . Figure 10 shows 
the control force fc. The position and rate measurements are shown 
in Figure 11. A s  before, the single mode model will be used as a 
starting point € o r  the identification of paraaeters (ua, D, w 1 ,  G I ,  
91, I $ 1 ,  $im, $im). 
These were related to one or more of the following causes: 1) large 
differences between the values of some of the actual BCE parameters 
and those of the original simulation, 2 )  bias in the input force 
and position measurements, and 3) error in rate measurement cali- 
b r a t  ion. 

R R Initially, the MLE had convergence problems. 
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The bias was accounted for simply by subtracting a constant from 
the force input and position output. The error in rate calibra- 
tion was taken into account by defining a scale factor a. This 
results in a new H matrix where 

R - ($im - ("+") 4J 

H =  [:. 
The scale faztc- 
ters. The esth 
parameters show 

0 

a 

was 

0 

estimated along with the other 

] (27' 

R 
-01 a 

8 parame- 
tea v lues are shown-in Table 3.. 
in Table 3 for "simulation valties" were obtained 

Th- model 

from an extremely simplified model of the aluminm beam (canti- 
levered with a point mass at tip). Thus, it is not surprising 
that some of the values obtained fro- the identification are very 
different. In particular, values of r3tational mode shapes are 
quite sensitive to local inertias and masses. 

w a 

1 w 

'a 

';1 

41 

01 

0 im 

* irn R 

a - 

Simulated 
Data 

46.36 

54.63 

0.005 

0.005 

3.328 

-13.51 

1.068 

-10.6 

1 .o 

Estimate 
(Simulation 

Data) 

45.5 

54.58 

.005* 

.005* 

3 .49  

-13.61 

0.98 

-10.3 

1.0* 

Est hat e 
(Experimental 

Datc) 

37.18 

40.32 

25E-4 

0.01 

7.48 

-110.0 

21 .o 

2.49 

3.80 

'These parameters were $et to their simulation values. 

Table 3 Results with Experimental Data 
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i.'igure llsl ".IS a comparison between the measured i:nd estimated values of the 
or:t.puts. The estimated values were generated for the prameter set which 
rejulted from identification using experimental data (Table 3 ) .  Figure l l a  
.:.k,ows the measured and estimated values of the position. Figure llbis a 
t .ow-up of the same curve to show the difference between measured and estimated 

Figures Ilcandlld shou curvessimilar tolla and l l b  for the rate ?lues. 
casurement. There is very good agreement between the model output and the 
:xperimental data. 

This model will be validated by taking the direct approach. In the third 
stage of the experiment, a control system w i l l  be designed using the identi- 
fied model. 
with its experimental. behavior. 

ThE predicted behavior of the control system will be compared 

VI. CONCLUSIONS AND SUMMARY 

In this paper, we have described a laboratory experhect which has the 
.ialient features of controlling an optical system located on a flexible struc- 
ture. The experiment will be used as a test bed for designing control and 
i-dentification algorithms for large space structures. The plrameters of  a 
:lode1 suitable for designing a control system were identified using maximum 
jikelihood estimation. The real test of  a model is of iourse how well ic 
satisfies the goal of modelling. Currently, we are designing a control 
 stern based on this node1 and the results of this final stage will be 
reported in another paper. 
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ABSTRACT 

A method, c a l l e d  the  Eigensystem Real izat jon Algorithm (E! 5 developed 
f o r  modal parameter i d e n t i f i c a t i o n  and model reduction o f  dynamic systems frtm 
t e s t  data. A new approach i s  introduced i n  conjunction w i th  the  s ingular  value 
decomposition technique t o  der ive  the  basic fornrulatlon o f  mlnimun order 
rea l i za t i on  which i s  an extended version of the  Ho-Kalman algori thn. The basic 
?ormulation i s  then transformed i n t o  modal space for modal parameter i d m t i f i c a -  
t ion. Two accuracy i nd i ca to rs  a re  developed t o  quan t i t a t i ve l y  i d e n t i f y  t h e  
system modes and noise modes. Fbr i l l u s t r a t i o n  of the  algorithm, examples are 
shown using simulat ion data and experimental 'data f o r  a rectangular g r i d  struc- 
ture. 

I. INXCWCTION 

The s ta te  space model has rece 
analyses and design i n  recent cont ro l  
these areas, i n  par t i cu la r ,  i s  con t ro l  
design controls f o r  a dynamic system 
model which w i  11 adequately describe 
constructing a s ta te  space represent 
system real izat ion.  

ved considerable a t ten t i on  f o r  system 
and systems research programs One o f  
o f  la rge  space structures. I n  order t o  
i t  i s  nebessary t o  have a mathematical 
t he  system's motion. The process o f  
t i o n  from experimental data i s  ca l l ed  

b r i n g  the past two decades, numerws algorittmns f o r  the  construction o f  
s ta te  space representations o f  I f nea r  systems have appeared i n  t h e  contro l  
l i t e ra tu re .  Among the f i r s t  were the  works o f  G i l be r t  [l] and Kalman [Z], 
introducing the  important p r i nc ip les  o f  rea l i za t i on  theory i n  terms o f  t he  
concepts o f  control l a b i  1 i t y  and observabi 1 t y  . Both techniques use the  transfer 
funct ion matr 'x  t o  solve the  rea l i za t i on  problem. Ho and Kalman [3] approached 
t h i s  problem from a new viewpoint. They showed t h a t  the  minimum r e a l i z a t i o n  
prcblem i s  equivalent t o  a representation problem Invc lv ing  a sequence o f  rea l  
matrices known as Markov parameters (pulse response functions). By ninimum 
rea l i za t i on  i s  meant the  smallest state-space dimension among systems real ized 
t h a t  has the same input-output re la t ions  w i th in  a speci f ied degree o f  ac.curacy. 
Questions regarding the  minimum rea l i za t i on  from various types o f  input-output 
data and the  generation o f  minimum p a r t i a l  r e a l i z a t i o n  are studied by Tether 
[4), Silverman [5], and Rossen and Lapidus [ 6 ]  using Markov i - - -dwters.  Rossen 
and Lapidus [ 7 )  successfully appl ied Ho-Kalman [3] and Tether [4] methods t o  
chemical engineering systems. A c m o n  weakness o f  t he  above schemes i s  t h a t  
e f fec ts  o f  noise on the  data analysis were not evaluated. Zeiger and McEwen 
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IS] proposed a combin i t ion o f  t h e  Ho-Kalman a lgor i thm [3] w i t 4  t h e  s ingular  
value decomposition technique for. the  tmatment o f  noisy dato However, no 
theore t ica l  o r  numerical studies were reported i n  Reference [P1 unony fo l low-  
up developments along s im i la r  I tnes ,  Kung [9] presented anc a 1 gor i t hm .i n 
conjunct ion w i t h  the  s ingular  value deconposition techniqG:o ti' Incorporate the 
presence of  the  noi  se. Note t h a t  t h e  s ingu la r  value decorr!::#ai t i o n  techniqLe 
[lo-113 has been widely r e q n i z e d  as beiclg very ef fect 'vd and numerically 
stable. Although several techniques o f  niinimun r e a l i z a t i o n  are i rva i lab le i n  the  
l i t e r a t u r e ,  formal d i r e c t  app l i ca t ion  t o  the  modal parameter i d e n t i f i c a t i o n  f o r  
f l e x i b l e  s t ructures was not ye t  addressed. 

In  the  s t ructures f i e i u ,  t h e  f in i te-element technique i s  used almost 
exc1usivt:ly f o r  constructin: ana ly t i ca l  models. This approach i s  we'll estab- 
l i shed and normally provides a model accurate efiough f o r  s t ruc tu ra l  design 
purposes. Once the s t ruc tu re  i s  b u i l t ,  s t a t i c  and dynamic tes ts  are performed. 
These tes -  resu l t s  a re  used t o  r e f i n e  the  fi.nite-element model, which i s  then 
use4 for::final analyses. This t r a d i t i o n a l  approach t o  ana ly t i ca l  model devel- 
opment may no t  be accurate enough f o r  use i n  designing a v i b r a t i o n  cont ro l  
system f o r  f l e x i b l e  structures. Another approach i s  t o  rea l i ze  3 model d i r e c t l y  
from the  experimental resul ts ,  This requi res t h e  const ruct ion o f  a minimum- 
order model from the  t e s t  data t h a t  character izes the  dynamics o f  t h e  system 
a t  the selected contro l  and measurement posi t ions.  lhe present state-of- the-art  
i n  s t ruc tu ra l  modal t e s t i n g  and data analys is  i s  m e  o f  controversy about the  
best technique t o  use. Classical  t e s t  techniques, which may provide only good 
frequency and moderate mode shape accuracy, are of ten considered adequate f o r  
f i n i  te-element model v e r i f i c a t i o n  purpoces. On the  other  hand, advanced data 
ar,alysis techniques which o f f e r  s i g n i f i c a n t  reductions i n  t e s t  t ime and improved 
accuracy , have been ava i lab le  [12-163 but are not  ye t  f u l l y  used. For example, 
Ibrahim [13] presented a method based on s ta te  space f o r  t he  d i r e c t  i den t i f i ca -  
t i o n  o f  modal parameters from f r e e  responses. Recently, Void and Russell [161 
presented a method using frequency response funct ions and time domain analysis 
which can also i d e n t i f y  repeated eigenvalues. A comparison of Contemporary 
methods us inq data from tne  Ga l i leo  spacecraft t e s t  i s  provided by Chen r171. 

A1 though s t ruc tu ra l  dynamics tethniques are generally successful f o r  ground 
data, f u r the r  incorporat ion w i th  work from the contro ls  d i s c i p l i n e  i s  needed t 3  
solve modal parameter i den t i f i ca t i on /con t ro l  problem. For example, i t  i s  Known 
from contro l  theory [18] t ha t  a system wi th  repeated eigenvalues and Indepsndent 
mode shapes i s  no t  i d e n t i f i a b l e  by s i n g l e  i npu t  and s ing le  ouput. Methods 
which aliows only  one i n i t i a l  condi t ion ( input )  a t  a t ime [13], w i l l  miss 
repeated eigenvalues. Also, i f  the rea:ited system i s  not  o f  a minimum order 
and matr ix  invers ion i s  used f o r  construct fng an ovcrbfzed s t a t e  ma t r i x ,  
numerical e r ro rs  may become dominant. 

Under the i n t e r a c t i o n  o f  s t ruc tu re  and cont ro l  d isc ip l ines ,  the ob jec t ive  
o f  t h i s  paper i s  t o  introduce an Eigensystem Real izat ion Algorithm (ERP,) f o r  
modal parameter i d e n t i f i c a *  and model reduct ion f o r  dynamtcal systems from 
t e s t  data. lhe a lgo r i t hn  consists o f  two major par ts ,  nemely, basic formulation 
o f  the minimum order r e a l i z a t i o n  and modal parameter i den t i f i ca t i on .  I n  the  
sect ion o f  bas'lc formulation, t he  Hankel matr ix  which represents the  dFtS 
s t ruc ture  f o r  Ho-Kalman a l g o r i t h  i s  generalized t o  a l l o w  random d i s t r i b u t i o n  
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of Markov pdrameters generated by f ree decay reponses. A unique approach 
based on t h i s  generalized Hankel matrix i s  developed t o  extend the do-Kalmn 
a1 or t thn i n  combination w i th  the s i n y l a r  value decoaposition technique [lo- 
113. Through the use of the generalized Hankel matr ix ,  a l inear  model i s  real ized 
for dynamical system matching the input and output relationship. lhe real ized 
system model i s  then transformed i n t o  modal space f o r  modal parameter i d e n t i f i -  
cations. As part  o f  ERA, two accuracy indicators, namely, the modal amplitude 
coherence and the modal phase co l l i nea r i t y ,  are developed t o  quanti fy the 
system modes and noise modes. The degree o f  modal dxc i ta t ion and observation 
are evaluated. The ERA method thus forms the basis for  a rationa: choice o f  
model size determined by the singular values and accuracy indicators. 

Two examples are given t o  i l l u s t r a t e  the ERA method. The f i r s t  example 
uses simulated data from an assuned structure. The ef fect  of repeated eigenvalues 
on the parameter i den t i f i ca t i on  i s  shown. The second example uses experimental 
data f ra  I simple g r i d  structure. Conparison o f  the ERA resul ts  wi th  a f i n i t e  
element mdel  o f  the g r i d  i s  performed. Experimental resul ts f o r  a more complex 
structure--the G a l  i \eo spscecraft--are sham i n  Ref. [19]. 

11. BASIC FORMULATIONS 

A finite-dimensional, discrete time, l inear, t ime-invariant dynmical 
systein has the state-variable equations 

x(k+l) = Ar(k) t Bu(k) (1 1 

where x i s  an n dimensional state vector, u i s  an m dimensional control input, 
and y i s  an p dimensional output o r  measwernent vector. The integer k i s  the 
sample indicator. The t rans i t i on  matrix A characterizes the dynamics o f  the 
system. For f l e x i b l e  structures, i t  i s  a representation of mass, s t i f fness 
and damping properties. The problem o f  system real izat ion i s  then the follow- 
ing. Given the measurement functions y(k) ,  construct constant matrices [A, B, 
C] such tha t  the functions y are reproduced by the state-variable equations. 
With d i f f e ren t  sets of  inputs and outputs, several C?SBS can be obtained. lhe 
simplest case, namely, s i3g le input and single output, i s  t reated f i r s t  t o  
a l l o w  the  reader fami l iar  wl th notations f o r  the treatment o f  mult i- input and 
mu1 t i-output cases. 

Single input and single output 

For the system (1 ) w i th  f ree pul se-response ( o r  i q i  t i  al-state-response) , 
the time-domain descript ion i s  given by the function know1 as Markov parameter 

y(k)  - CAk-16 [or y(k)  - CAkx(O)] ( 3 )  

where x(0 )  i s  the system i n i t i z '  -0nditions and k i s  an integer. Note t h a t  the 
m a t r i x  6 i s  a collrmn vector (si..%ie input)  whereas the matrix C i s  a row vector 
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(s ing le output). br free in i t ia l -stateresponse, the m a t r i x  B only represents 
the i n f o m t i o n  of i n i t i a l  conditions rather than the  control influence matrix 
as shown i n  Eq.(l). The probles of system real izat ion i s  t o  construct matrices 
[A, B, C] i n  t e r m  of the measurement function y(k)  such that  the i den t i t i es  o f  
Eq.(3) hold. Now observe that  

Assume that t h i s  n th  order system has no repeated eigenvalues. mere exists 
a row vector C from observabil i ty theory (Ref. 18) such tha t  V has rank n. 
Consequently , rearrangi ng Eq . (4) becomes 

- 
y(  k+l ) = VAkB = VAV-ly( k) (6) 

Given the sequence of measurenent vectors T ( k t l ) ,  the generalized Hankel 
matrix H(k) i s  defined as 

: I ('I 

,y(k+l) ,..., y(k+n-1) 
H(k-1) = G ( k )  I y(k+l)  ,..., y(k+n)l = ,y(k+2) ,..., y(k+n) 

) ,y( k+n) , . . ,y( k+2n-2) 

It inrnediately follows from Eq.(6) that  

H(k) = VAV'lH(k-l) - VAkV-ltl(0) ( 8 )  

or from Eq. (4) tha t  

H(k) = VAk[B, AB,..., Ak-161 - VAkW ( 9 )  

*here W i s  a con r ro l l ab i l i t y  matrix (Ref. 18). Again i f  the systf!m w i th  order 
.I has no repeated eigenvalues, there ex is ts  a c o l u n  vector 8 such tha t  Y has 
rank n. This means tha t  H(k) i s  inver t ib le  i f  the system i s  control lable and 
observable. Lett ing k = 1, Eq. (8) w i l l  then detemfne the state matrix A i n  
the following way 

VAV-1 = H(I)H-~(o) ( lo)  

To rigorously prove t h i s  result, define E as the column vector ET=[l,O,...,O]. 
The measurement function y(kt1) can then be wr i t ten by 

y(k+l )  = ETH(k)E = ETH(k)H-I(O)H(O)E - ET[H(l)H'1(O)]kH(O)E (11) 

wi th the a id  o f  Eqs. (8) and (10). Hence by €q. ( 3 ) ,  the t r i p l e  [H(l)H'1(0), 
H(O)E, ET] i s  a rea l izat ion i n  the sense that  i f  the t r i p l e  [A, 6, C] i n  the 
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system equations (1) an? (2) i s  replaced by the  [H(l)H'I(O), H(O)E, ET], the 
measurement functions y(k)  are reproduced as proved i n  Eq. (11). In other 
words, s ta te  var iable equations (1) and (2) are transformed t o  the fo l lowing 
q u a t  i ons 

- 
x(k+1) = H(l)W1(0)F(k) + H(O)Eu(k) (1 2) 

y(k)  - EG(k)  (1 3) 

where y( k) = V - l  x( k )  . (14) 

Let us summarize the case as fol lars. 

A finite-dimensional, d iscrete tine, 1 inear time invar iant  dynmical system 
with a s ingle input and a s ingle output i s  real izable i f  the state matrix A has 
no repeated eigenvalues, and the system i s  control lable and observable. 

Mu1 t i  -i nput and 9ul t i -output 

(o r  ini t ial-state-reponse) function knorm as Markov parameter 
The time-donrain descript ion f o r  t h i s  case i s  given by the pulse-response 

Y(k) = CAK'lS (or Y(k) - CAk[xl(0),x2(0),...,x,(0)]) (1 5) 

where x i (0 )  represents the 9th set o f  i n i t i a l  condit ion and k i s  an integer. 
Note tha t  8 i s  a nxm matrix and C i s  a pxn matrix. The problem o f  system 
real izat ion i s  that, given the functions Y(k), construct constant matrices [A, 
B, C] i n  terms o f  Y(k) such tha t  the i d e n t i t i e s  o f  Eq. (15) hold. The algorithm 
begins by forming the rxs block matr ix (generalized Hankel matrix) 

where ji(i=l,...,r-l) and ti(i-l,...,s-l) are a rb i t ra ry  integers. For the 
system w i th  init ial-state-response measurements, slatply . replace Hrs(k-1) by 
Hrs(k) It i s  easy t o  prove from Eq. (15) tha t  Eq. (9) also holds for  
t h i s  mult i- input and mrlt i-output case, 

where V r  and W s  are respectively the observabi 1 i t y  and control 1 abi 11 ty mat -ices 
i n  a yeneral sense. Note tha t  Vp and US are rectangular matrices with dimensions 
r p  x n and n x ms respectively. Assme tha t  there ex is t  a matrix H I  sat isfy ing 
the re la t i on  
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Ys#Vr = In ( 3 1  

where I,, i s  an ident i t y  ma t r i x  of order n. 

order p. E: CS. o~.".. and [h .  %..... o,,,I. I n  view of 4s. 
(16) and (18), the measurement function b(k+l) can be obtdned through ei ther 
of t w o  algorithms A1 and A2. lhe algorithm A 1  i s  

&f ine Op as a nu l l  m a t r i g  

Y(k+l) = EpTHrs(k)C = EpVpA T k i  YsH V # s h  

.. 
and the algorithm A2 i s  

Y (k+l) = E$,,( k) €,,, = E$PsH'VPkYsQ 
EpTVrY,CH'VrMS Ik 

= EpTH,S(O)CH'HrS(l )Ik% (20) 

Hps(O)~Hrs(O) * Vp#V$s Vrus Hrs(0) (21) 

Cience, by Eq.(15)D CHr (1)~'s H ( 0 )  +, $1 o r  C H ~ H  01, E,,, $ ~ ( o ) I  
i s  a realization. There f s  no dm62 tha t matr ix #plays a 'or ro le  i n  
solutions (19) and (20). m a t  i s  M? Observe that, fror Eqs. (17) and (18). 

Hx i s  a pseudo-inverse o f  Hrs(0) i n  a general sense. When the rank o f  Hrs(0) 

equals t o  the colmn nmber of  Hrr(0) , then H~=~[Hrs(0)]THrs(O)J'l~Hrs(O)]T. 

If the rank equal t o  the row nunber, then ~ l [H~s(0 ) ]T IHrs (O) [Hr~ (O)J  1 1 -1 . 
Ihe m a t r i x  Hrs(l)H 5) has been used i n  structural dynmlcs area t o  ident i fy 
system modes and frequencies.13 Both are special cases representing either 
single input or single output which can not real ize a system that has repeated 
eigenvalues, or  a noise-free system unless the system order i s  a p r i o r i  known. 
A general solution f o r  ## i s  given belm. 

For an nth order system, f i nd  the nonsingular matrices P and Q such 
that10,ll .. 

Hrs(O) = p w T  (22) 

where th.? rpxn m a t r i x  P and the nxrm matrix QT are isometric matrices ( a l l  the 
columns are orthonormal), leaving the stngular values of  HrS(0) i n  the diagonal 
m a t r i x  D with posi t ive elements [dl,d2,...,d 3.  The rank n o f  Hrs(0) 4s 
determined by test ing the singular values !or zero ( re la t ive t o  deslred 
accuracy)l2 uhlch w i l l  be described I n  the next section. k f h  

Hrs(O)= pOpf CPDICQTI * PdQT (23) 
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Each of the four 
Eq.{1?) wi th  k=O, 

- 
VrWs - 

Mult ip ly ing on the 

matrices [P&QT,Us,V:] has rank and row number n. By 

T i s  nonsingular because if U = USQ(QTQ)”= WsQ,  then TU= I by Eq. (25). Since 
TU = I = U T  far  nonsingular T ar,d ‘.I then 

Hy= [()][(P~Pd)-lP~] = [Q][o“PT] = QP$ i 27 )  

The dimension o f  matrices Q and Pa with rank n are respectively msxn and 
nxrp. To t h i s  end, sunmrize the case as f o l l w s .  

A finite-dimensional , discrete time, l inear time-invariant dynamical system 
with mult i - input and multi-output i s  real izable i n  terms o f  the measurement 
function i f  the system i s  control lable and observable. 

Note that  no res t r i c t i ons  on system eigenvalues are given f o r  t h i s  case. 
In other words, t h i s  technique can rea l ize a system with repeated eigesvalues. 
The system (1) wi th t h i s  rea l izat ion w i l l  be transformed i n t o  the fol lowing 

x(k+l) = Hrs(l)&(k) + Hrs(0)E,,,u (28) 

(29) 

(30) 

(31 1 

equation - 
F Y(k) = EpX (k) 

where x(k)  = Vs#x(m. [lr 

~ ( k )  EpTHrs(O)T(k) (32) 

- 
x(k+l) = HtHr,(l)z(k) + E,,,u 

where x f k )  = Wsx(k) (33) 

The real izat ions (28)-(33) are not o f  minunrun order, since the dimension o f  ‘51 
i s  the number o f  e i t he r  columns or  rows o f  the matrix Hrs(0) which i s  larger 
than the order n o f  the state matrix A f o r  nul t t - input and multi-output cases. 

With the a i d  o f  Eqs.(l7), (18) and (27), a minimum order o f  rea!ization 
can De obtained from 
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where Eq.(23) has been used t o  obtain the l a s t  equality. This i s  t he  basic 
formulation o f  rea l i za t i on  fo r  ERA. 

The t r i p l e  [PxHrs(l)V, Q i s  a minimum real izat ion, since the 
o f  the s tate vector x. h e  sane 

solut ion i n  a d i f f e r e n t  form f o r  the case where j i = ti = i (i=l,...,r-l) can 
be obtained by conpletely d i f f e r e n t  approach as shown i n  Refs. [3 8 20). h e  
system (1) with t h i s  rea l izat ion i s  wr i t ten as 

order n o f  P$lrS(l$Q equals 

%(k+l) = PdHrs(l)Uz(k) + QT$p (35) 

y (k )  = ETP&k) 
where 

X(k) = U,QY(k) 

(36) 

(37) 

A simple exercise such as replacing Y(k+l) by Y(k) I n  Eqs.(lS), (20) and (34) 
shows that  a l l  the algorithms developed above are also t rue  f o r  the rea l izat ion 
o f  a system w i th  init ial-state-response. 

Examination of Eqs. (19), (20) and (34) reveals t h a t  a l g o r i t h s  ( A l )  and 
(A2) are special cases o f  ERA. A1 i s  formulated by inser t ing the i d e n t i t y  
matrix (18) i n t o  the r i g h t  hand side o f  the s tate matrix A as shown i n  Eq. 
(19). On the other hand, A2 i s  obtained by inser t ing the i d e n t i f y  matr!x (18) 
i n t o  the l e f t  hand side o f  the state matrix A as sham i n  Eq. (20). However 
the a igor i thn ERA i s  forned by inser t ing the i d e n t i t y  matrix (18) i n t o  both 
sides of the state matrix A as shown i n  Eq. (34). Because o f  the d i f f e ren t  
insert ion, A1 and A2 do not minimize the order o f  the state t rans i t i on  matrix. 
Mathematically, i f  the singular Val: 2 deconposition technique i s  not included 
i n  the c q u t a t i o n a l  procedures, A1 and A2 can not be numerically implemented, 
unless a cer ta in  degree o f  a r t i f i c i a l  noise and/or system noise are present. 
Noises tend t o  make up the rank deficiency o f  t he  generalized Hankel matrix 
Hrs(0) f o r  algorithns A 1  and A2. Since the degree of  noise presence i s  generally 
unknown, a lgor i th- r  A 1  and A2 are not recommended. 

I I I. MOWL PAR.WETER IDENTIFICATION AND MOOEL REDUCTION 

h e  presence o f  almost unavoidable noise and structural  nonl inear i ty 
introduces uncertainty about the rank o f  the generalized Hankel matrix and, 
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hence, about the dimension o f  resul t ing real izat ion. By employing the singular 
value decomposition (SVO) technique, the rank structure o f  the Hankel matrix 
can be quant i ta t ive ly  displayed. The Set o f  singular values can be used t o  
judge the distance of the m a t r i x  wi th  determined order t o  a lower-order one. 
Therefore, the structure of the generalized Hankel matr ix can be properly 
exploited t o  e f f i c i e n t l y  solve the rea l izat ion problem. These include an 
excel lent numerical performance, s t a b i l i t y  o f  the rea l izat ion and f l e x i b i l i t y  
i n  determining order-error t radeoff  . 

Assume that, by Eq. (22) 

If the m a t r i x  Hrs(0) has a rank n then a l l  the singular values di(i=n+l,...,N) 
should be zero. When singular values d (1-n+l,...,N) are not exactly zero but 

away from a n-rank matrix. However, there can be real  d i f f i c u l t i e s  i n  deter- 
mining a sap between the computed l a s t  n@nzero singular value and what should 
be ef fect ive ly  considered zero, when measurement noise i s  present. Possible 
sources o f  the noise can be at t r ibuted t o  the measurement signal, computer 
round-off and instrument imperfections. 

based on measurement errors incurred i n  estimating the elements o f  HrS(0) and/or 
round-off errors incurred i n  a previous computation t o  get them. If 6 i s  
chosen as "zero threshold" such t h a t  6 < dn, then the matrix Hrs(0) i s  
considered t o  have rank n. Unless information about the  cer ta in ty  o f  t h e  
measurement data are given, the nunber 6 i s  defined as a function o f  the 
precision l i m i t  i n  the computer machine. For example, 6 'dn/dl cannot exceed 
the precision l i m i t .  Further de ta i l s  are found i n  Ref. [ll]. 

A f t e r  the t e s t  o f  s i r  r l a r  values, assune tha t  the m a t r i x  [P$HrS(k)Q] has 
rank n. 

very.smal1, then one can easi ly recogn 1 ze tha t  the matrix Hrs(0) i s  not f a r  

Look a t  the singular value dn of  the matrix HrS(0). Choose a number 6 

Find the e i g e n v a h s  L and eigenvectors II, such tha t  

The modal damping rates and aanged natural frequencies are simply the real  and 
imaginary parts o f  s, a f t e r  transformation from the z- t o  the s- plane using 
the relat ionship 

where AT i s  the data sampling in terva l  and j i s  an integer. Note that  k i s  
generally chosen as 1 f o r  s impi ic i ty.  Although z and $ are i n  complex domain, 
con@utatlon o f  Eq.(40) can be performed i n  the rsa l  domain (Ref. 21) s i r c e  the 
state matrix real i zed fo r  most f l e x i b l e  structures has independent eigenvectors. 

S = [ ( lnz)  - + 2j11 ]/(kA.t) (41) 
1 .  

-1 T The t r i p l e  z, g Q Em, ] j s  obviously a minimum order o f  real iza- 
t i o n  s m l y  by observing Eq. ( E P J, i s  cal led Sensor modal displacements 
and g' t ' t  Q E,,, i n i t i a l  modal amplitudes.'T: quanti fy the system modes and noise 
modes, two indicators are developed as follows. 
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Modal Amplitude Coherence y 

If the infornet ion about the uncertaint ies o f  the measurement i s  minimum, 
the rank thus determined by the SVD beccnnes larger than the nmber o f  excited 
and observed system modes t o  represent the presence o f  noises i n  m a l  space. 
In modal parameter ident i f icat ion,  the ind icator  referred t o  as nodal amplitude 
coherence i s  developed t o  quant i tat ively dist inquish the  s y s t m  and noise 
modes. Based on the accuracy parmeter, t h e  degree o f  the modal exc i ta t ion 
( c o n t r o l l a b i l i t y )  i s  estimated. 

The modal amplitude coherence i s  done by calculat ing the coherence between 
each modal amplitude h is tory  and an idea one formed by extrapolat ing the i n i t i a l  
value of the h is tory  t o  l a t t e r  points using the i den t i f i ed  eigenvalue. Let 
the control input matrix ( i n i t i a l  condition) be expressed 

where * means transFclse and coaplex conjugate, and the 1 x m colmn vector b j  
corresponds t o  the  system eigenvalue s~(J=A,...,~) Consider the sequence 

which represents the ideal  modal amplitude i n  conplex domain Containing 
informations o f  the magnitude and phase angle with time step AT . W, define 
vectors q j  such tha t  

The complex vector qj represents the modal impll tude time h is tory  from the real  
measurement data obtained by the decmposition o f  ,ne Hankel matrix. Let y j  
be defined as the coherence parameter f o r  the j t h  mode, sat is fy ing the re la t i on  

where I I represents the absolute value. lhe parmeter y j  takes only the values 
between 0 and 1. Y -  + 1 as 1- + q j  indicates t h a t  the real lzed s y s t m  
eigenvalue S j  and the j n i t i a l  modal a w l i t u d e  b. are very close t o  the t rue  
values f o r  the j t h  mode o f  the system. On t i e  other.. hand, i f  y j  f s  far  
awdy from the value 1, the j t h  mode i s  a noise mode. However, t o  make a c lear 
cut between the system modes and noises requires fur ther  studies. obviously, 
the parameter y *  quant i f ies the degree t o  which the  modes were excited by 
a speci f ic  input, i.e. the degree o f  con t ro l l ab i l i t y .  

c 

Modal Phase Col l inear i ty p 

Ti? l i g h t l y  damped structure, normal mode behavior should be observed, An 
indicator referred t o  as the modal phase c o l l i n e a r i t y  i s  develo ed t o  measure 

imtginary pa r t  o f  the sensor nodal displacement (mode shape) f o r  each mode. 
Bwed OR the accuracy indicator, the degree o f  the modal observation I s  
estimated. & f i ne  

the strength o f  l i nea r  functional re lat ionship between the rea P par t  and the 
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where c . (j=1,2,. . . ,n) i s t h e  sensor modal displacement corresponding t o  the  
j t h  rea l i zed  mode. Let the  column vector o f  order p be 

LI 1 T  = [1,1,.. .,1] (47 1 
i n  which p i s  t he  number o f  sensors. Now compute t h e  fo l low ing  quan t i t i es  
f o r  t he  j t h  mode shape. 

- c j  = C J y P  

'rr = [Rea 1 ( c -Fj - 1 ) ] T[ Rea 1 ( c j  -zjJ ) 1 

'ri = CReal(~~-~~J)]~[Imag(c~-~~J)] 

e = ( c i i  - ~ r r ) / z ~ r j  (52) 

0 = arctance + sgn(e) ( l  + e2)1/2] (53) 

where Real( ) and hag(  ) respect ive ly  ar5 the  rea l  pa r t  and imaginary pa r t  o f  
t h e  complex vector ( ), and sgn( ) i s  m e  s ign  o f  t he  scalar  ( ). The modal 
phase c o l l i n e a r i t y  u j  f o r  t he  j t h  mode i s  then defined as (Ref.22) 

pj = I c rp  + c r j  C2(e*+i)sinZ(e)-13/e l / ( C r r + c i i )  ; j=l,?, ..., n (54) 

Th is  i nd i ca to r  checks t h e  dev iat ion from 00 - 180" behavior f o r  components of 
j t h  i d e n t i f i e d  sensor modal displacement. The parameter pj takes only t h e  
values between 0 and 1. D j  + 1 ind icates t h a t  t he  accuracy of t h e  modal 
displacement i s  high. (31 t h e  other hand, i f  p -  i s  away from 1, t h e  j t h  mode 
i s  e i t he r  a noise mode o r  high damping i s  preseni. 

Model Reduction 

The dynamiczl system i s  composed o f  an interconnection o f  a l l  t he  ERA 
i d e n t i f i e d  modes. lhe accuracy ind ica tors  a l low one t o  determine the  degree o f  
ind iv idua l  mode par t ic ipat ion.  Model reduction can then be made by t runcat ing 
a l l  the  modes w i th  low accuracy indicators. The accuracy o f  the  complete modal 
decomposition process can be examined by conparing a reconstruction o f  Y(k)  
formed by Eq.(35) w i th  t h e  org ina l  f r e e  decay response$, using t h e  reduced 
model . 

I V .  SUMMARY OF ERA 

A f lowchart o f  the  procedures t o  be followed t o  use ERA i n  system model 
The computational steps are sunmarized i d e n t i f i c a t i o n  i s  presented i n  f igure  1. 
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as follows: 

1. Construct a block-Hankel matr ix HTS(0) by arranging the masurement 
data i n t o  i t s  rows with given r, s, ti (i = 1, 2,..., s-1) and ji (1 = 1, Z , . . . ,  
r-1), (Eq. 16). 

2. kconpose Hrs(0) using singular value decomposition (Eq. 23). 

3. 

4. 

k termine the order o f  the system by examining the singular values o f  

Construct a minimum-order rea l izat ion (A, 6, C) using a sh i f ted block- 

the Hankel matrix Hrs(0) (Eq. 38). 

Hankel matrix (Eq. 34;. 

5. Find eigensolutions o f  the real ized s tate matrix (Eq. 40) and conpute 

. . 6. Calculate the coherence parameter (Eq. 45) and the c o l l i n e a r l i t y  

the modal damping rates and frequencies. 

parameter (Eq. 54) t o  quanti fy system modes and noise modes. 

(Eq. 41). 

7. Dtermine the  reduced system model based on accuracy indicators, 
reconstruct function Y(k) (Eq. 35) and conpare wi th  measurement data. 

Note that  the determination o f  r, s, ti and ji i n  Step 1 above requires 
fur ther developnent. This determination i s  related t o  the choice o f  the 
measurement data t o  minimize the size o f  the Hankel matrix Hrs(0) wi th the rank 
unchanged. 

V. EXAMPLES: SlMUlATNN AND EXPERIMENT RESULTS. 

To i l l u s t r a t e  the ERA method, two examples are given. First, a numerical 
problem w i l l  be posed and solved f o r  an assuned structure w i th  d i s t i n c t  and 
repeated frequencies. Second, experimental data f o r  a simple, tbtO-dimenSiORal, 
g r i d  structure as shown i n  Fig. 2 i s  used and rea l i ted. . in  terms o f  a l i nea r  
system. Experimental resul ts  are compared with those predicted by a f i n i t e  
element model. 

Numerical Simulation 

Figure 2 shows a representation o f  a t yp i ca l  f l e x i b l e  structure. The 
dynamical equation f o r  t h i s  typ ica l  structure w i th  init ial-state-response i n  
terms o f  system modes i n  moda? space can be wr i t ten as: 

dg/dt A g ( 5 5 )  

Y = b  (56) 

where A i s  a canonical matrix with the diagonal blocks { A i ,  ..., Ak). 
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g i s  the generalized modal anplitude and C i s  the generalized sensor influence 
matrix. The quasi-diagonal matrix A j  (j=l,---,k) has the matrix form 

The complex values 6 j  - + I w j  are the eigenvalue o f  the frame structure. 

Given a model described as i n  Eq. (55), resu l t s  of some numerical simulation 
using the  ERA scheme can be surmarized i n  the sequel. Two cases will be given 
including systems w i th  and without repeated eigenvalues. The numerical t e s t  i s  
performed by tak ing as “data” y the  output values o f  the so lut ion of a model 
w i th  the form (55) whose parameters A, C and i n i t i a l  condi t ion g(to) are 
known. I n  the analysi s o f  physical systems, experimental methods generate the  
measurement da ta  y. It i s  then desired t o  realdze a system by using the data y 
and compare with the known model. 

Case I: A model wi th  d i s t i n c t  eigenvalues 

coef f iL ient  of the assuned structure are adjusted t o  give 
Assume that  parameters such as bending r i g i d i t y ,  mass density and damping 

; j - 1, 2, 3, 4 ,  5 
-0.Olxj J I  r-0.01 x j 

Aj = -j 

To i l l u s t r a t e  appl icat ions of  ERA i n  a s ingle input and single output case, A 
sensor i s  chosen and located t o  give 

(59) 
- c = [l,0,l,O,l,O,l,O,l,U3 

Let the i n i t i a l  condit ion f o r  f ree decay responses be 

y ’ ( to \ ,  = ~0,1,0.1.0.1.0.1.0.11 

Then the functions y w i th  a sample time in te rva l  0.05 second generated 
from the model (55) w i th  known parameters (58), (59) and (60) are used as 
measurement data f o r  the ERA procedure. 

Using jj = ti= i and r=s=90 i n  Eq. 16, the ERA rea l i za t i on  o f  a dynamical 
system i s  

. ’  

C = [U.709,2.529,-0.347,-1.706,0.814,-1 .183,-l.382,-0.276,\ .129,1.257] (61) 

gT( to)=[0.103 ,O .X i7  ,-0 .I 14,-0 .563,0.395 ,-0.574 ,-0.696 ,-0.139,0.396 ,O .44O] (62) 

and A t s  ident ica l  t o  tha t  shown i n  Zq. (58) wi th  the accuracy close t o  the 
precision l i m i t  o f  the computer. In the process f real izat ion,  the number 

6 =d,/dl as defined i n  Eq. (38) i s  set t o  be IO-’’. The singular valaes of 
the generalized Hankel matrix HrS(0) are 
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0 = [49.86,44.84,33.69,27.64,23.69,21.04.13 . 57 .I 0.95.6.374.5 . 5083 (63) 

A l l  t he  values d -  (i =11,..., 90) which has the  number d - / d  less than loo1* 
are considered t d  be zero. The rank o f  the Hankel matriJHr:(0) i s  obviously 
ten which i s  i den t i ca l  t o  the order a p r i o r i  given i n  Eq.(58). lhe real ized 
s tate matr ix i s  a minimum order o f  10 and the eigensolutions are obtained from 
t h i s  10 x 10 matrix. A l l  the parameters f o r  modal amplitude coherence (Eq.45) 
and modal phase c o l l i n e a r i t y  (Eq. 54) are 100%. Although Eqs. (61) and (62) 
are a d i f f e r e n t  rea l i za t i on  from the system (59) and (60), they are equivalent 
i n  the sense t h a t  a un i tary  transformation and normalization w i l l  make them 
equal . 

By forming the matrices V i n  Eq. (5) and W i n  Eq. (9) wi th  the aids o f  
Eqs.(58)-(60). t he  reader can see t h a t  t h i s  rea l i za t i on  i s  cont ro l lab le and 
observable. 

Case 11: A model wi th  repeated eiqenvalues and independent e i g e n v e c + a  
.. 

Assume now tha t  the system model i s  represented by 

and 

-0.01 1.01 

- 0.01 1 
-0.Olxj 1 

A1- A2 = 
L 

w.0lxj j 1 
j =  3, 4, 5 % = 

Using the same process as l a s t  case, the ERA r e a l i z a t l o n  simply miss the repeated 
eigenvalue A i .  The resu l t  i s  expected since, by control  theory f o r  a l i n e a r  
system, s ing le input  o r  s ingle output does not make a system w i th  repeated 
eigenvalues and independent eigenvectors control  l ab1 e or observable. It can 
be v e r i f i e d  tha t  t he  matrices V i n  Eq. (5) and W i n  Eq. (9) formed by Eqs. 
(59). (60). (64) and (65) have rank 8. Mult i - input and mu\ti-output nust be 
used t o  rea l i ze  such a system. Let two  sensors be chosen and located such 
tha t  

and two i n i t i a l  conditions fa r  f ree decay responses 

Note that  the rows i n  Eqs. (66) and (67) are independent. For each i n i t i a l  
condition, a series o f  "measurement" funtLion y w i th  a sample time in te rva l  
0.05 second can be generated from the rmd,?l ( 5 5 )  where each y I n  t h i s  case i s  a 
vector wi th  two elements f o r  two d i f f e ren t  sensors. The f ree  decay function 
Y i n  Eq. j15) i s  then a 2 x 2 m a t r i x .  Using that  j i  ti = 1 and r - s = 45 
f o r  Eq. (16). the ERA rea l i za t i on  fo r  a dynamical system i s  then 
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C = 0.1 35,-1~686s~~155,-0,172,0.111 s-0.032,0.099,0.035,0.195s0.177 

L-O . 004 ,Ow 1 07 ,O. 1 42 s -O,d 1 36 s O .1 1 1 ,  -0.032, O .099 ,O .035, O. 1 95 ,O. 1 77 
I- ] (68) 

] (69) 
-0.014,-0~457s3.840,-3.692,8.338,-2~4~~,8.9~.,3.1~1,2.81~,2~5~~ [ -0.051 , 0 092,3 -605, -3.508,8.338, -2.406,8 . 956 3 . 181 ,2.818 ,2 554 

T 9 ( to )=  

where A i s  i den t i ca l  t o  t h a t  shown i n  Eqs.(64-65). The s ingu la r  values D are 

D = [7O.16,44.32,37.97,25.~5,11.18,9.050,7.950,3.873,0.127,0.026] (70) 

The s n e  e r r o r  window A l l  the  parameters f o r  modal 
amplitude coherence and modal phase c o l i n e a r i t y  are 100%. Again, Eqs. (68-69) 
and Eqs. (66-67) are equivalent i n  the sense t h a t  a un i ta ry  t ransformat ion and 
normal izat ion w i l l  make them equal. The reader can e a s i l y  v e r i f y  t h a t  t h i s  
r e a l i z a t i o n  i s  con t ro l l ab le  and observable. . . 

6=dn/dl as l a s t  i s  used. 

Sample Experiment61 Results 

A sample se t  o f  modal 1dent; f icat ion r e s u l t s  t h a t  have been obtained from 
laboratory ..est data using ERA are included i n  t b i s  section. The t e s t  a r t i c l e ,  
shown i n  Fig. 2, i s  a 7 f t  by 10 f t  f l e x i b l e  g r i d  s t ruc tu re  t h a t  w i l l  be used a t  
NASA Langl ey f o r  v i  b r a t i  on con: r o l  experimentatf on. It 1 s constructed o f  over- 
lapping aluminum Cars o f  1/4 in,  by 2 in. cross section, r i v e t e d  together a t  
one-foot in to rva ls .  Four r i v e ? s  are ussd a t  each j o i n t  t o  provide a t i g h t  
connection. The s t ruc tu re  i s  %-?ended from a s t i f f  overhead bean us ing two 
short  cables attached t o  t h e  top  hor izon ta l  member. The r e s u l t s  t o  be shown 
are from a prel iminary dynamics t e s t  o f  t he  gr id.  It was conducted by e x c i t i n g  
the s t ruc tu re  w i t h  an a i r j e t  and measurlng the  f r e e  v ib ra t i on  response using 
nine non-contacti ng prox imi ty  sensors. The response sensors were attached t o  
a s t i f f  f r a r e  located adjacent t o  the  g r i d  f o r  t he  measurement o f  out-of-plane 
motions. Eight d i f f e r e n t  e x c i t a t i o n  frequencies corresponding t o  resonant 
responses were used. The sampling r a t e  was 32 samples par second. 

The ERA analys is  was performed using a s ing le  matr ix  o f  data from a l l  
n ine response measurements and e igh t  i n i t i a l  conditions, Each response func- 
t i a n  Y as shown i n  Eq. (16) was thLs a 9 x 8 matrix. The hankel matr ix  Hrs 
of 72 rows by 400 columns was formed t o  perform the analysis. Table 1 provides 
5 comparison c f  t h e  ERA r e s u l t s  w i t h  ana ly t i ca l  p red ic t i on  from a NASTRRAN 
f in i te-e lement  wodel. The en t r i es  i n  t h e  center o f  t a b l e  a re  Corre la t ion 
coe f f i c i en ts  i n  percent between each ERA-identified mode shape and each NASTRAN 
mode shape. High co r re la t i on  values i n d i c c t e  good agreement between the  two 
shapes. The r e s u l t s  show reasonable agreement i n  both. f requencies and mode 
shapes, except f o r  t he  damping r e s u l t  o f  t he  f i r s t  mode. The main redson f o r  
the f f r s t  mode discrepancy i s  inadequate data length. Only 50 data points  were 
used which corresponds t o  less than one cyc le  of data f o r  the f i r s t  mode. The 
resu l t s  can be improved by using more data points.  Note t h a t  few high corre la-  
t i o n s  occur f o r  some modes w i t h  s i g n i f i c a n t l y  d i f f e r e n t  frequencies. This i s  
because only 9 sensors were used i n  comparison. More de ta i l ed  experimental 
resu l t s  f o r  a complex s t ruc tu re  are shcwn i n  Ref.[19]. 
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CONCLUDING REMARKS 

An Eiyensystem Realizat.ion 4lgori thm (ERA) i s  developed f o r  parameter 
i d e n t i f i c a t i o n  and model redvct ion f o r  djnamical sjstems. Twc developments 
are given i n  t h i s  paper. F i r s t ,  a new approach i s  developed t o  der ive the  
basic ERA formulation o f  minimum r e a l i z a t i o n  f o r  dynamical systems. As by- 
products o f  t h i s  approach, t w o  a l t e rna t i ve  less powerful algarithms, i d e n t i -  
f i e d  as A 1  a i d  A2, are derived. A special case o f  A1  Os shown t o  be equiva- 
l e n t  t o  an approach cu r ren t l y  i n  use i n  s t ruc tu ra l  dynamics. Second, accc- 
racy i nd i ca to rs  are developed t o  quant i f y  t h e  pa r t i pa t l op  of Systbll mcdes 
and noise modes i n  t h e  rea l i zed  system model. I n  other words, degrec o f  
c o n t r o l l a b i l i t y  and observab j l i t y  f o r  each par t i c ipa te0  mode i s  determined. 
A model reduction can then be made f o r  c o n t r o l l e r  deslcjn. 

important features o f  t h e  ERA algori thm are summarized as follows. 
(1) From t h e  computational staradpoint, t h e  a lgor i thm i s  a t t r x t i v e ,  since 
only simple numericdl operations are needed; ( 2 )  t h e  c m 3 t a t i o n a l  procedure 
i s  numerically stable; ( 3 )  t h e  s t ruc tu ra l  dynamics requirements f o r  Mwlal 
parameter i d e n t i f i c a t i o n  and the  cont ro l  design requirements f o r  a reduced 
s ta te  space model are sa t i s f i ed ;  (4) data from more than m e  t e s t  can be used 
simultaneously t a  e f f i c i e n t l y  i d e n t i f y  the  c losely  spzccsd eigcmvalues; (5) no 
rest r ic t i6 ; ;s  on nunber o f  measurements are imposed. 
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STATIC DISTRIBUTED SYSTEMS 
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M n a ,  CA 91 109 

ABSTRACT 

This Frpcr rdvarxes an approach for stat-e estimation and identification of spatinlly 
distributed parameters embed4ed in static distributed (elliptic) system models. 

The method of maximum likelihood 5 used to  .find parameter values that m u i m i z e  
a likelihood functional for the qstem model, or equivalentiy, that minimize the 
negative logarithm of this functional. To fiad the minimum, a Newton-Raphron search 
is conducted that from an hitid estimate generates a convergent sequence of 
parameter estimates. Central to the numerical search are a gradient functional and a 
Hessian operstor, which are respectively the f i r s t  and second function-space 
derivatives of the negative-log likelihood fpactionrl with respect to the parameter 
distributions being identified. For simplicityc a Gauss-Mar'rov approach irr used to  
approximate the Hessian in t e r m  of prodoctt of f i r s t  derivatives. The gradient and 
approximate Hessian are compnted by f i r s t  arraDdlzLg the negative-log likelihood 
functional into a form based on the -re-root factorization of the predicted 
covariance of the measurement process. The resulting data-processtisg approach, 
referred to here by the new term of predicted-data-corrrhnce rarun-root filterin& 
maker the gradient and rpproximete Hessian calculations very simple. Since the 
parameter estimates are only approximations to the actual parameter vaLOCs, there is A 
parameter estimation e m r  inherent in ohe estimation process. Ciamer-Rro bounds are 
obtained for the covariance of the estimation error in term8 of the informrtion 
operator associated with the likelihood functional. There error covariance boards are 
then used to outline methods for optimal input design. 

A closely related set of state estimates is also produced by the maximum likelihood 
method: rmocthed e s t b t e s  that are cptinul in a conditional mean tense and filtered 
estimates that emerge from the predicted-data-covrrhnce square-root filter. The 
terms 'smoothed' and "filtered" are used because the fonnrrlu which generate these 
estimates, when expressed in operator notation, are symbolically very similar to those 
used in filtering and smoothing for linear dynmnical rgstemr. A key sirrd.hrity is the 
presence of a predictor-corrector rtrocture conuinlag estimator gains that, as in a 
K a h n  filter, can be expressed in terms of the state estimation error covari.nces. In 
addition, a residual procem can be definedc in the usual way, as .the difference between 
the actual d r u  and the predicted data obtained from the filtered state estimate. The 
residu~b have properties nearty idattical to those of an hovationr process: the 
residuals are whits with a unit covariance; and the residuals and measurements can be 
obtained from each other by means of reciprocal linear transformrtionr. Because these 
tranrfonrutionr &re not Volterra (causaU, the residuala are not a boar fide bovrtions 
process. Even though they are not a true irpnovaUonr procem, the residuals are very 
useful- because they lead to itate a d  parameter estimathn scheme8 for elliptic 
systems that retain conceptually the rimpllcity of those obtained by the innovatiom 
approach to fllteriry, smoothing and identification for h e a r  dparmical systems. 
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1. INTRODtJCTION AND SUMMARY 

The elliptic models considered in thi8 paper can be cast a8 

where A is a formally 8elf-8djOht elliptic differential operator defined over the 8pati.l 
domain Q; B and C are approprhtely dimclruioned operaton that model the influence of 
the process e m r  o and the input f on the state w H is an operator that characterher 
the S U % ~ - ~ O - Q ~ ~ ~ ~ V ~ ~ . ~ O X U  nupi o and n are nhtte-nobe model errors formlag the model 
error vector t=[o,n]; a d  f is a deterministic iapPt. Bumpl6r of the application of rrrch 
models tc the problem of static ahape determirution of &me -ace renrcturer are 
contained in Ref. 111. 

The central aim here is *to develop n maximum-likelihood approacb to the 
estimation of the parameters 8 (there parameters could in general be spatially 
distributed) by using the data 9 and the qstem d e l  itdelf. It i s  awumed thrr the vpe 
vrhre eo of +he parameter 8 is a determinlrtic but poorly known quantity. The input f 
can be ralected to optimize the data generated for estkzation. A related but somewhat 
seconderg a h  it fo develop a m e t b d o l o ~  for compz#rtfon of the c o r r e m  8tAt.e 
estinuter. 

h Formula for the Negative-LoR L b U h o o d  Ram 

lt will be shown in Sec. 3 that thc neaative-lo8 likelihood functional is specified by 

when 

where 
Predicted-Drta-Cov~rhnce Sawre-Root Form of the Likelihood Ratio 

i d c a t e r  an innat product in the fixaction space to wbich the data belopllr. 

A number of alternative formal.? ior ths nS8atiVS-lOg likelihood functional are 
developed in Sec. 4. To wlve the above minimization problem, the mort convdenlt 
fonmP1. L: 
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(1.4) 

where 

Equation (1.5) can be viewed as specifying a filter, characterized by the operator L(8), 
that processes the data y and the suspected mean m(8) to  provide a ‘filtered’ state 
estimate de,. Thi8 filter L(8) wi l l  hereafter be referred t o  a8 the predicied 
data -covariance square-root filter because the key calculation required to  tptcify L(81, 
as in (1.61, is the evaluation of the square-root of the predicted-data-covariance 
operator [I+B(6)]. The equivalence between (1.3) m n d  (1.4) can be esublished by 
substitution of (1.5) and (1.6) into (1.4). 

Mcte for later reference that the definitions in (1.6) imply tbst K(8) and L(8) are 
related by 

[I+K(e)]-’ = I-L(8). (1.7) 

Furthermore, (1.7) implies that K(8) = Lle)+K(e)L48) = L(8)tL@)K(€3i. 

Gradient of the Likelihood Functional 

The gradient functional aJ /a ,  t o  be defined more completely in Secs. 5 and 6, is 
specified by 

where 

with 9 = y-m, and a L / a ,  am/* be@ the function-space Frechet derivatives of L and 
m. These equations can be obuined from (1.4) by faction-space differentiation with 
respect to  0. 

The gradient functional aJ(B;y)/a in (1.8) Ls the Frechet derivative [2) of the functional 
J with respect to the parameter 8. The derivative is a linear transformation (a8rumed 
to  be bounded) that map8 an adnxbaible parameter perturbation be into the 
corresponding perturbation 6J(0,be;y) of the likelihood functional by means of the 
equation 6 Jte,M;y) = [aJte;y)/a] be. Detailed computation of the function-space 
derivatives above i s  condncted in Sec. 6 arw a perturbation analysis of the 
eigemyatem of the covariance operator II - H@BB*O*H* obtained in Sec. 5. 
Note that in Sec. 7 it will be established that 
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so that the expected value of the gradient vanishes a t  the optim~l  parameter value 8,. 

Hessian of the Likelihood Functional 

Similarly, differentiation of (1.8) leads to 

tWae*taa/ ae), (1.11) 

and t o  its expected v r b  a t  &eo of M(0$ = B[a' J/a02]lexe , Le., 
0 

Furthermore, substitntion of (1.9) in the last term of (1.13) leads to 

Note that the expected valw of ?.he Hessian operator a'J/W2 evaluated at O=ec is a 

sum of two terms each of which is positive definite. Consequently, in 4 prababillrtic 
sense nude precbe by (1.131, the likelihood ftmctifmal is strictly convex in ths vfctnfto 
of the optimal value &eo. Note that by definit.bn Weo) in (1.13) is also the 
information operator arrocirted with the likelihuod functional. 

Newtori-R8~hson Search for the O ~ t i m r l  Parameter BSt iuute8  

Since the problem of minimhation of Jt0sy) in (1.4) has no clored-form solutio& it is 
nacesmry to consider iterative numerical search techuiques for o p t i d ~ ~ t i o n .  The 
following constitutes a function-upace Neuton-Paphtan iteratioa: 

(1.14) 

where 8n = aJ(#;y)/a is the gradient functional (1.8) evaluated a t  e=& and where 

i s  an approximation to the Hessian operator a a J / a 2  in (1.11). Thit approximation i s  
obtained from (1.12) by tsphcina the second term B[(aZ*/ae)@z/W)J with the rctrul 
value [CaZ*/a)tae/a)J obtained in a ri4sle realization. Under certain coaditiom, to be 
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examined in more detail in future work, the sequence en specified by (1.14) converges 
to  A 1 0 C d  InhbUXI of J(8;y), If the initid e s t h t e  used to  start the search 
sufficiently close to  the optimal value. 

Cramer- RAO Bounds and 0Ptimal Input Desim 

The above nametical search results in an estimate 8 of the actual parameter value eo. 
In Sec. 7, A C-R bound for the covariance B(8 8 *) of the estimation error €3 = 8-e0 is 
obtained from the inequality. 

P P  P 

where the information opera 31: M(80) is  specified in (1.131. The related mca-square 

estimation error is bounded by B(8 *8 1 L TrfM-'(e0)]. 
P P  

The informrtion operator M(eo) can a&o be wed t o  specify C i i t e r i A  for optimal input 
design. Perhaps the simplest optimal selection method to imglement i s  that which 
seeks to maximize Tt [M(e,)] with respect to  f ,  subject to  the constraint that f sati8fy 
Ihe normalization condition of f*f=l.  Thh method results in an optimrl f which is the 
eigenvector correspsnding t o  the largest eigenvaiue of a positive-definite matrix 
described in detail in Sec. 7. Other criteria for optimal selection based on calculation 
of M-'(80) may be more d i f f i d t  t o  implement but tmully lead t o  superior 
performance. 

mhe Corresponding State EIIthUteS 

Related to  the parameter es tSmsth  approach are the followiry two distinct state 
estimates (denoted by uo AM zo1: 

where C and g are Krlman-like gab2 (see Sec. 8) specified by 

G = 1 8in2%\@k*, g = (1-C08\)\@k*. (1.18) 

h these equtionr, Ot. are the eigenvectors of the operator EL - H@BB*QH*, so that 

Ai@k, with A; being the related eigenvalws. Also, \ and \ are defined by 

The #Ute  estimate uo s MWy) is defined as the conditional expectation of the state 
given the data y. Since uo is an optimal esttmrte of u base6 on the entire data set (as 
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opposed to a mbret), uo can be vieued a8 a best pnoothed ertimate. The other 
ertiuute, 2Q in (1.171, will be referred to u filtarea r u t e  eatbate. Th3 filtered 
ertim~te has no known probabilbtic intefpreution rimilrr to uo - B(W) above. 
However, in spite of the apparent lack of probaMllrtic mmlplt, thir ertirrute is rueful 

in Sec. 8 that zo in (1.17) .ob I, the estimate emerging from 
the predacted-data-covrrhnce 8 ~ 1 ~ r e - m o t  filter, are related by 3 - €bo. Hencel xo is 

a born fide estfnute of the entire state ,  whereas % - &o ir 8 parti.1 ertimate defined 

8@U9h# tb 8r-t A d  Hetrira Crk&tfW (1.8) md (1.11). It dl bo 8h- 

only a t  the observation locations. 

Kahaa-Ue Gains rad Error Covarhnces 

The 8riPr G a d  g in (1.17) can altemtively be specified in term8 of the 
covariance of the state ertirrstion error inherent in-uo and to, Le., 

G = PH*, 
where 

The corretponding mean-rqurre state ertiuution error is 

B[(u-uo~*(u-uo)] = Tr [PI, B[(u-xo)~u-aol] I Tr @pel. (1.211 

Pufthcrmore, Y a d  p are related by 

Since the term pHfHp io rum-negative, the mean-s~~rrs estimation e m r  auocirted 
with the smoothed e r t h t e  uo is 069er hreer than thrt of the ffltared estimate to. 

Pilterina a d  Smoothiq 

While uo a d  p0 have been defined s o w  that independently in (1.171, they are 
related by: 

u = Z  +pH*e, (1.23, 
0 0  

where 

k the residual process defined a8 the difference between the data 9 and the 
obreroad-state eotimrta fro. The symbol 9 in (1.34) denotes  the^ mean-centered data 
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process 9 = y - H W f .  It will be shown in Sec. 8 that (1.22) and (1.23) constitute a 
generalization to  elliptic rystemr of the forwrrd/backward weep m e W  for solution 
of smoothLng problem in linear dpnrmical rystemr. 

The Residuals as b Pseudo-humvations Process 

The residuals in Bq. (1.24) have two propexties that are rimil~r (but not identical) 
t o  those of an innovations process: 

E(ee*) = I, (1.25) 

e = (I - L) j jc f = (I + E)e. (1.26) 

Eq. (1.25) reflects W B ? -  *I8 Of the ~ 8 h d S .  Bq. (1.26) rate8 th.t th8 rS3idUal .nd 
mean-centered data pmccrser e and 9 can be obtained from each othbr by mea01 of 
reciDroca1 transfomtions, i.e., (I + ~ 1 - l  = (E. - L) as in (1.71. ~ ~ e n e s s  of the 
innovations and reciprocal rektionships between hnovatFonr and measurements are the 
two central features of the innovations approach to least-rqumrer estimation for linear 
dpLlmica1 systems. Bqs. (1,251 and (1.26) are similrr to these conditions. Howeverc 
there is a key difference: the transformation8 (I t XU md CI - L) in (1.26) are Predholm 
operators whose domain is the entire measurement space. Thlr is in contrast to the 
Volterra (causal) operators in the hnovatiorrr approach for h e a r  dpPImtca1 systems. 
The notion of causality ft not even used in this paper, although such a notion can be 
defined for certain classes of elliptic systems [L]. Becaore of thir difference the 
residual process it not a bo- fide inmovationr proceu. Emever, the resislul process is 
stili useful in 0 b t . W  the relatively simple foz'xdat in (1.8) - (1.26) for filter& 
smoothing and identification. 

Pwer Outlinq 

This section has a t  a su.nriury level addressed miry of the fundamental iur;er involved 
in the mrximum likeltaod approach *to est,imation. The mbsequent section€ of the 
prpar c o n t a i  a more coraglete dercr'rption of the above mdts. 

Sectiong. Development of the mrthemrtical framework -- inclnding integral 
operator models, a priori covrrbnce analysis with white-noise ?nodel erron, Fredholm 
resolvenu, and eigenfuaction expaarionr -- required to arrive at  formrrlr (1.3) f w  tho 
likelihood functional and t o  evaluate the corre8podxug ftmction+prce gradient in (1.8) 
b d  the rpproxim8te Htrrkn Ln (1.15). 

Section3. Deriv&oioa of the negative-log likelihood functional in (1.31. Thir 
functional is the negative logrrithn of the Ukem9d ratioc urociated with the 
detection of a Gaussian s-1 in additive Gaturkn mise, trditiok.lly encountered in 
the theory for cornmuaication and signal detection. 

Sectiou4. Development of alternative forxxmlas for the likelihod ratio, some of 
which are more convenient t o  use than (1.3) in implement4 the numerical search for 
optirnizatioa -- in p a t t i c S r ,  development of the predicted-dau-covrti*nce 
)auare-root filter form i1.4) upon which tha NsWton-Rapbr~ search L brsed. 
Add~tiltrul farm8 of the likelihood ratio which mre of interest in their own right 
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(although not subsequently used in the paper) are: a smoothing form exprerrred in terms 
of the best man-squats state estimrter an eigearprtem erpans!.n form bared on the 
eignenvalues and eigenvectors of the operator B-H@BB*@*H* in (1.3); a trigonometric 
operator form with which most of &e mrnipuhtionrr involved in the mrximum likelihood 
approach can be visualized using their similarities to simple trigonometric formulas fo- 
scalars. 

Sections. Development of a first-order perturbation annl9sis t o  evaluate the 
infinitesimal changes in the eigensystem of the operator R=H@BB*WH* in (1.3) due kr 
similarly small changes be in the parameter distributions bekrg identified. This is the 
central calculation required to compute the function-space gradients a J / a ,  Wa, 
a L / a  and a m / a  ‘JI (1.8) and (1.9). 

Section 6. Calc~~lation of the gradient functioml a d  approdmrte Hessian of the 
likelihood functional based on the pcrturbstion analysis of SCC. 5. There are the two 
calculations whlch are central to  Smplcmentatiod of the Nawton-Paphton search a d  
which have been used as a bash for computer programs to implement the mucmtUa 
likelihood approach. 

Section 7. Parameter estimtion error covariance ana&& a d  Cramer-Rao boundr 
based on explicit formulas for Zhe Hesrhn (informrtlon) operator in (1.13). Outline of 
un optimal input design approach based on us@ tbc! Crrmer-Rro l?ousid as &n OptiaUrUty 
criterion. 

Section8. Aarlyrir of the filtered and smoothed state enfmrter embedded h the 
parrrmeter estimation approach. Amlysir  of the predicted-dau -covaiirncc square-rtmt 
filter resulting in Kalmm-IlLe formula9 for the filter grin, esrhuticm of the sta te  
estimation error covariance, and rehtdoXUhip8 betwoen filtensd md smoothed e s ~ t 8 ~ .  

Section9. 
the n\\a.efical search for the optimal esthates.  

S w m a r y  a d  explanution of ca1culBtfonr required for hnp1exnentatiOn of 

Section 10. Conclusions and directions for future work in tba r x a a  of development of 
as: iptotk propeflies of the e r t h a t t s  a d  of optimal @ U t  de8igL 

The aim of this section is to dcvemp L set cf onircehneous results that will be useful in 
subsequent sections in conductw detailed derivation of: Zhe negative-log likelihood 
functional in (1.3) eo be minimiaed, the corresponding function-space #radiant in (1,8h 
and the approximate Hesrirn operator in (1.15). The main result8 of the section can be 
summarized as follows: 

e conversion of the pareid differential operator model in (1.1) to an 
equivalent integral operator formulation. TLnir in’cegrrl operator 
formulation is introduced because it simplifies the statement and solution 
of the estimation problem in (1.1) - (1.3). 
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0 evaluation of the observed state covariance operator B=H@BB*@*H* In 
(1.31, under the assumption that E = [c,n] is a spatially distributed 
white-noise process with a unit covariance operator. Related to evalurtim 
of this covrficrce operator B is the similar evaluati- of the mpacted 
mean m = d@Cf in (1.3). 

0 evaluation of the dual observed-state covariance operator Q=B*@*H*H@B 
- which can be vie;.;ad as &he covariance of the outrut of a system model 
dual to (1.11, unde the rrrmmption that t h i 8  dual apstem is driven by a 
white-noise process. 

e def*inition of two sets of eigenvectors qk and qk of R and Q above, with ).; 
being a set of common eigenvalues. 'ihese two sets of vecwrn can be used 
to  expand functions in the input space H1 and the outpm space Hg. 

* 
definition of i Y e  vectors \ and pi in the state rpace ti2 and its dual IT7., 

related to tJrk and 9, above by 5 = Xi14bBWk rile pk = XiL@*H%k. 
two sets of vectors \ and pt satisfy a boundorg-value problem 4hLar  t o  

those traditionally encountered as necessdlry and sufficient coxLdJ.ions for 
optimality in quat atic optimal control rad estimrtion problem subject GO 

linear constrair .I. 

8 analysis cf the basic relrti.onship betwsen R and Q above and thslr 

corresponding Fredholm resolvents 'P a d  S defined a8 P = I-(I+R1-A and 

s = I -(1+~)-'. BxpArrton of the operators EL, Q, P and s in terns  of a e  
eigenfunctions et qk defined above. 

0 development of trigonometric operator f o m  for B and P. There 
trigonometric forms allow dsvelopment of ir' westing trigonometric 
alternatives ta  (1.3) in evaluating the likelihood IP' ,tmul. 

W d e  the section concentrRtes on the development of a mathematical framework to be 
used kn subsequent sections, uuny of tine above result8 (such as tht trigommettic 
operrtor fannulns for the covarbnce operaton) are of interest in their OWD a h t ,  
sornewbt indepenlent!j cf thetr wbmquent epplication. 

Hilbert Space Notation 

There are three Hilbert aprcer of gximary interest: Lhe'lqFut llpscc HI to wMc% 
the process error o ~ n d  the aeterdnbt ic  hput  f b5long; the state space H2 conutning 

the state u; end the measurement space H3 where the data y a d  tho obsewrt i~n error 
n belong. The h e r  ptoduct between two arbitrary elements u a d  v Ln the space Hi is 
denoted by <u,v>i or by tho simpler notation u*v = <u,v>~. Similarly, uv* denotes a 

Hilbert space outer product. 
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Conversion to htenral Operator Mdcd 

It is convenient for subsequent developments to convert (1.1) to an equivalent 
integral operator formuhtion. 'Po this end, define the Green'r function #WE) of A at 
the sdution of 

wher.: 6 is the impulsi-!e deita function, and where the mbscript x in Ax donotes that 

the spatiril differentiations embedded in A are performed witb respect to x (a8 opposed 
t o  being performed with respect to I ) .  Define then the mcegral operator 9 whore 
kernel is the Green' 8 function, i.e., 

for all admissible functions v. Note that 9 is the integrrl operator such that A@ = I, 
-where I is the appropriately dimensioned identity. 

With these definitions a t  h.&, it is possible to recut  11.1) and (1.2) as 

where m(8) is the *suspected mean" 

Equation (2.3) can be c&st inro tte € c l l ~ - ~ i n g  even more compact no*c;stion 

Predicted-Data Mun unl Covariance 

The evalartion of the predicted mean rrd covariance of J ,  needed as a preliminary 
step to arrive at (1.3), k based on the key asmmption that the mode1 error vector t .I 
[o,n) is a zero-mean spatially distributed white-mise process whose covariance 
operator E(ct*) is the identity, i.e., 

where I is the appropriately clmsnrioned identity. Note tht tW dnunption tr not a t  
all rertrictiwe, because the more ~eneral  c u e  where the model emn t = [o,n] are 
correlated (with a nonidentity covfirirnce operator) can be hadled within the came 
formulation hv rebetion of the operator B in (1.1). It is assumed here that BB* is 
bounded a d  trace-clast, with kernel bWt)  s a t b f y ~  I, b(.hM. <-. 
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Remark 2.1 The process J is a random field with mean and covarhnce specified as 

E(y) = mW, E((p-m(8)] I(y-m(8)]*1 = I+ R(8), (2.7) 

where R ( 8 )  = H(8)~8)B(8)B*(8)9Y8)H*(8) .  Thrt E(y1 = m follows from (2.5) and the 
fact that E is zero-mean. The second of Bqs. (2.2) follows from the following sequence 
of operaticns: E[(y-m)(y-m)*] = B[hcc*b*] = hE(cclh* = hh* = I+B. A more detailed 
development of the above resuk is contained in Ref. 11). 

Remark 2.2 
field with mean and covariance tptcifiea by 

The process u in (1.11, r3preeenting the s u t e  of the system, ir a n d o m  

Note that the ttrte covariance 
(2.8) are related by 

and the 'observed-state" covariance B in (2.7) and 

Remark 2.2 The state covariance ii tatitfie8 the partial differential equation 

ARA* = BB*, (2.11) 

A result which can be established by pre-multiplication of # in f2.9) by A and 
subseqwtlt post-multiplication by A*. 

Bemark2.4 
integral operator 

The state covariance operator @ can be represented as the following 

Biv = I, rCx/f) V ( E h g ,  (2.12) 

where the kernel rW[) satirfies 

and where b(x/E) is the kernel of BB*. This result c m  be established by means of the 
following sequence of operations. Consider an admissible function P (adminible in the 
seme that i; can be operated on by the operaton A&A* and BB* in (2.11) 80 that 
ARA% = BB*V makes sense). In t e r n  of the corregonding kernels r and b, this last 
equation be comes 

(2.14) 

I '  where the f i r s t  eqwlity is valid because by definition A * is  the formal adjoint cf A 

Since 8q. (2.14) must be valid for all rdmirsible v, then (2.14) implies (2.13). 
c 
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Remark 2.5 The state covariance kernel r in (2.12) CUL be expremed u 

* 

c w PROCESS 

where @ t the Green's fwmioa of A, d b i s  the kernel ol BB*. Tbia redt can be 
established By -re- (2.9) in term of the operator kernat 9 amt b of 0 .ad BB* 
rrd by robsequent reverul of the order of integration. 

Hu SERVED 

(2.16) 

8 ERROR 

where the spmnution is taken over the dbmrbace locationt. 

Q, &E 
, i L 

5 D U M  '. 'STATE '' r! OBSERVATION, ,,. 
ERROR 

L - 
8. h BSERWD 

!UALsiAlE 
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The primal system model is based 00 (2.31, with o, u and €Io dmt ing  the process eftor, 
the system state, and the observed ata te  respectively. For this IILD4e1, = E(uuq i s  the 
covariance of the s t r t e ,  ui& R = HgH* is the correspodhq~ covariance of tht 
observed state. It  is assumed €or the sake of this dircpuion that the determfnirtic inpat 
f in (1.1) has been set to aero, SQ that the swpectd mbm rn in (2.3) i8 zero also. With 
this assumption, it i s  not necessary to show m in the block -am in PQ. 2.1, .ab tbe 
rehtionthig between the priMl and b 1  models is ilhwrated more easily. Ths bp.i 
system model is chancterittd by the dud operators If+, W and B*, by the &as1 or 
adjoint sta te  A, rad by the observed dud state B * L  It  i s  usumed that the &A model 
is  driven by a tmit-corarbnce nhite-noire process so that B(llpq = I. Thir lnppt process 
n drivhq :he dual model can be thou@a of u being the obrervation error process in 
(2.3:. For this dual model, 0 = B(hA*) a d  Q = B(B*XA*B) are respectireiy the 
covariances of the state h and the o'oreroed s t a t e  BfL Upon dtiplication of A in 
Fie. 2.1 by A*, the following p a w l  differential equation8 remlt to describe the dud 
model 

A*k = H%. (2.16) 

Note that the dual state covariance 0 = .ad the dnal obrerred-state 
covariance Q = BW*H*H@B are nkted by 

Q = B*QB. (2.19) 

In the same spirit used to rmve at (2.11)-(2.16), it is now possible t3 develop the 
folloning properties of the operator Q rod its corrtspodiq~ kernel q. 

Remark 2.7 The dual-state cotrrhnce oper8tot 0 ratbfier 

A*QA = H*Hl (2.20) 

a result which can be obtained from 0 = @*H'H@ in (2.17) upon maltiplicatioa 
by A*( *)A. 

Remark 2.8 In termt of its kernel q, the opentor 6 can be expressed 88 

& = I, cl(w'fMt'Mtr, (2.21) 

where q satisfies the differcn*&l equation 

and uhere h(f/x) i s  the kernel of H*H. Thsr nsolt can be established by an amroach 
quite 8imil.r to that used in arriviq at (2.13). Thc 8-1 v denotes a ~ a h  an 
admissible function defined to be admissible if (2.21) makes sense. 

EenurB 2.9 The kernel q ( E M  of can be expressed as 
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(2.24) 

where the muaxnation is  t.&m met the ret of tsnrorlocatiom. 

with % being the con- e&smectort. Note *ht, In cuas where H hu a 

finite-- * rat, the operator R is  an N-by-N xmtzix with a finite marrhrr of 
euenvectorr. In the more @merd c u b  u&re obs m e  of H k Mfnftalbimsarf0ll.L 
thm R is pmrlly compact a d  s+O u b-. In both of these cues, the f o m  
Mercer expansions bold for E and its kernel r 

Furthermore, the normalized eigemecton + form an ortbmrzml buL for the 

observation space %. Tbir impbt that C %%* - I, where I i a  the identity in %. 

Closeiy related to the buit @k abme us the dud racton vk defined u 

~euurk3.11 
obraned-state corerlance Q = BW%W@B, Le., 

n;C vectors qL defined by (2.27) are +.&e s~mvectoit of the dual 

W k  (2.28) 
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This result can be established by premultiplication of (2.27) by H@B and use of the 
condition R@k = '.:ek. Note that, if the dimentian of the 4 m t  space HI ir m a t e r  
than that of the output space Hg, then the qk do not span the input space. They do, 
however, span the ranee subspace of the operator BWrH*. Conrcqucntly, they curnot 
be used to expad vectors in the null space of HaB. 

Remark 2.12 The vectors *k are a t o  related to ak by the equ8t.i- 

(2.29) 

a nsalt that can be obtaiped from (2.27) upon pl'eomltipllc8tion the operrrtor H@B 
use of the condition R% = 

Remark2.13 
can be expressed as 

The dual-state corariurce operator Q .rd its corn- kernel q 

a set of equations which are 8rulog;Ou to (2.26). Thb redt can be obtained from the 

observation that Q = B*a*H*H@B = B W H *  (C *kqk*. Use has 
been nude of the condition E ek%* = L 

HaB = C 

The vectors +k span the ohsenration space %. while the vectors vk do not 
span the input space H1, they do span the range of B W .  So far, no at- hu 
been made to obtain vectors that can be used to e r p d  functions in the state space 5 
or in its dual space Ha*. To this d, define 

The Vector \ b b the $Ut& space thr, 8 d ) O b t  V8fbbh8 pk UC b th!! dorl 

space. In general, neither one of these two vectors however spuu the state space 'fa. 

EL-& 2.14 T b  vectors xL d p am oitborro-1 with m&Ct to H*H 8Ild BB* 
respectively, Le., 

%*H*Hx, = 0, 

= 1, 

- 0, 

- 1. 

(2.32) 

(2.33) 
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Then, substitution of (3.34) in (2.36) implies (2.35) 

Note the similarity between this problem a.3 those tnditFonrllp encmterud u 
necessary ( a d  at times sufficient) corditirJIpr for optimaliw in -tic optimal 
control and estimation problemr for lfneu ryrtams. 

In terms of the zorrespcding kernels r a d  p, tbase equation8 become 

(2.38) 

for the case with continuously dinributed data. In cases with discrete data, P and P. 
are matrices whose general elements P and Ptm are related by k.m 

(2.39) 
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In both cf there equations (2.38) a d  (2.39). the unknown i s  the Predholna rerolvent P, 
whereac the obrerved-rkte covariance kernel EL i.8 known. 

Remark 2.17 
result, which can be stated a8 

The integral operator EL and iu Predholm rarolvent P commute. This 

R P  = PR, (2.40) 

is a direct consequence of (2.37). 

Remark 2.18 Equations (2.37) also imply that 

P = ( I + R ) - ~ R  = R(I+R)-', R = (I-P)-'P = PGPI-'. (2.41) 

Remark2.19 (2.411, it is portible to define the 
resolvent S of the dual-state covariance operator Q by the rehtiomhip (I+Q)-' = L S  
which implies 

In a manner analogou8 to (2.37) 

Q = S + Q S ,  Q = S + SQ, SQ = QS, (2.42) 

and 

s = ~I+Q)-'Q = Q~I+Q)-', Q (I-SI-~S = sa-si-'. (2.43) 

Remark 2.20 The Fredholm rerolvent.8 P and S can be expressed at 

These expansion8 can be ertablbhed by 8 u b r t b ~  (2.26) and (2.30) into (2.37) and 
(2.4 1). 

TriRonometric Operator Fonnr 

Remark 2.21 The predicted-data-covariance operator (I+E) can Le exprerred br 

I + R = I +  TAN'a = SBC'a, 

where TAN'a and SBC2a are the operators 

(2.46) 

(2.4?) 
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and tan ~ 1 :  is defined by tan % - kk. Note aho for later teference that 

Proof: A # 8 c = & k n  'a @ @ < thereby e r t r b l i r ~  (2.47). Use 

of the formal expresrion I = & ekek*for the identity I implie8 tibat cf+JL) = & (l+flln2\) 
+k+k*, which leads to (2.46). B q u t i w  (2.48) are obkhed from (2.46) and (2.47) by 
performance of the square-root operation. 

Lecall that R = 

Pemvrk 2.22 
operator R can be expressed as 

;he Predholm resolvent defined as P = I - (I+R) -'of the covariance 

where SIN2a is the operator defined by the expaasion 

- Proof: This r e d t  can be established by substitution of tan2% = k: in (2.44). 

Remark 2.23 BqtmUoar (2.47) and (2.48) togethar i m ~ i y  that 

P = B(I+R)-' = TAN2a[I+TAN2a]-' = TAN2= [SBC'a]-' I SIN'a, (3.51) 

a trigonometric operator identity that can be viewed as a 8eneraUation of a h i l a r  
identity involving scakrr. 

3. DBPIVATION OF THB LIKBLXHOOD PUN c m o w  
Based on the ndt8 of the preview section, it is now pouible to derive the 

likelihood functioarl in (1.3) to be minimind. Since the development required to 
achieve this is fairly lengthy, it k convenient to SrUrpMrjre in advance the pivotal steps 
involved in the derivation: 

0 the integral operator mode! 7 = m + HBBo + n in (2.8) is f i r s t  coverted into an 
equivalent 'spectral" foxm yk - 5 + Akak + 'fr( ivhere yk - ek9, oL = 

wk+o, 5 = +k*' n are the correspaidirq wectral coefficients. 

the spectral coefficient8 pk of the d r u  y are a reqwnce of independent 

Gaursirn raudom vaxiables with muan B(yk) - a+ covariance CY; - 1 + A; and 

probability denrity pk(yk;8) - T 
-'/BCY-1 

8- [-(yk-tnQ"/2a;] 
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0 a "finite-dimensional' Ukelkhood ratio is then defined 88 the prduct  O f  8 
finite number N of terms involving the probability dsmities p (y ;e) above. k k  

an 'infinite-dimensional" likdihood ratio is Gbtained by let- the number N 
of spectral coefficients approach infinity. The related negative-lo8 
likelihood functieM1 in (1.3) is obuined by taking the negative logarithm of 
the functional that. results from the limiting process. Of come, 1 8  cases 
where the data b finite-dimensional (obtoitad by means of a finite number of 
discretely located measurements), the limiting procerr involved in this krt 
step is not necessary. In tBi, case, the 'finite-dimensional' likeUhood 
function obtained tE the previous step i s  the fumxion to be minirniaed to 
obtain the parameter estimates. 

The remaindc 
result& 

of this rection contains a more detailed derivation of the foregoing 

Recall that 

y = m t H @ B o + n ,  (3.1) 

where m = H@Cf and f ir tbe input. A8 outlined sbove, the f i n t  stpp toward evsfartfng 
the likelihood function ir to convert (3.1) into an eqnivalent 'spectral' form by wing .he 
eigenvectors +k a d  Wk, Le., 

Substitution of (3.2) and (3.1) and premultiplication of (3.1) by +k* lead8 to 

Result 3.1 s , % and % are independent Gau88hn random varlrbler with mean a d  
covriu*icc given by 

MEAN COVARIANCE 

where f = yk - 9 Hence, yk is a sequence of independent Gawrira random vafbbler 

with mea= p4: and covariance 1 t 1;. 
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N Let 9 J [yl, ...,yN] be an N-dimearionrl vector conriot&g of the f h t  N rpeetral 
coefficients yi ob the data 9. Becalue yk are independent Go an random variables 

with mean % and covariance a; = 1 + Lk, their corretpoodiqj probcbiUty dsaritSar 

pk(yk;B) = wJ%iAexp (-7;?2ai) can be dt ip! icd  to obtain the pnobaMlltg density 

p(y ;6) of tbe composite Ebdimemfonrl vector ]I , Le., 

a 

N N 

In order to obtain a likelihood funetionrl for ,ta4 identification problem with the 

would be in the Unit a probability density ftmcdoxul (PDF) for tha mcew p. 
Unfortuartely, thia limit -9 not erirt bccarrro the ri@it ride of (3.4) ma9 not comcqa 
as N*, and con8equently s PDF for tha procerr y csrmot be defined !a tbir nunnet. 

function-rpace ptoCe88 9 a8 the d8t.v it WOUld bt derirrble to &M W 8ad O h &  nzIt 

However, this can be circumvented by divibn# by 

This results in 

N which can be viewed 88 a likelihood ratio cOnrirtin8 of the PDF of the proceu 9 with 

the “8k3tu1BU ok and 5 nonzero, divided by the r i m h r  PDF of yN Vrith ?he 8-l8 ok 
and 5 set t o  zero. The term likelihood ratfa rrred to dercribs (3.6) i8 COarbtant with 

terminology common in the thecry for detection of Caorrtm rl~pult in additive 
Caurrirn noise [SI. 

bl N 
Uth0W.h the limit8 of p(9 ;e> m n d  p0(9 ;a) appsrriry rerpectivsiy in (3.4) and (3.5) -7 

not erirt when taken inde;.endcntly, the limit of their ratio in (8.6) ia a well-defined 
quantity npecified by 
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This Is the desired erpression for the l i k e b o d  ratio that the n w t m u m - k  h o d  
method seeb to maximize. It  can be interpreted as the likelihood ratio far the 
detection of the "slgnrl' m t H@Bo in (3.11, in the preeance of the noisy Gaussian signal 
n. Insteed of maximizing h(y;8) directly, it k more convenient to minimize the 
negrtive-log likelihood factional defined as J(8;y) - -log [h(yi(31], or, more a@licltly, 

Note thvt for the special case with no deternjnirtic bp&ti .=m=O in (3.11, and the 
negrtive-log likelihood in (3.8) r4ucer  to 

where P(8)  = I - [ItR(t))]-' is the previauly defmed (in Sec. 2) Fredholm resolvent uf 
the prcdicted-drta-covariance operator B. 

Tbe first tern. ib both of these h s t  two equations can be cart into an equivalent and 
somewhat more convenietlr form 'q -=e of the identity [4] 

Substitution of (3.10) in (3.9) leads to 

which has been recorded previourly a8 (1.3) a d  conatitutbr the central aim of thi8 
section. 

B eorientrtion 

The method of mximurn lihlihood, a8 defined here, results in cstinrtes that 
minimize J(8;y) in (3.11). Thb minimization problem can be viewed (IS A function-space 
nonlinear programming problem subject to the 8ystern model conatraint.8 that 

soiurion tG this problenl erlrt.8, it i8 nece8sary to u8e .numerical method8 for 
optimization. However, &ere o u t  alterartivs formulrs for the I l l e lbod  retio tlut 
are more convenient to w e  in the imgiementation of the wmericrl znethods. Such 
formulas are developed in the following section. 

~ ( 8 )  = M(e)9(e)*(e)B*(e)~*(e)~*(e) and m W  = ~(e )@(e)c (e ) f .  Since no closed- form 
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SPECTRAL 

SQUAPB-ROOT 
PILTBP 

TPIGONO&X3TPIC 
OPERATOR 

In the above table, the bas?c tonrmlr t expressed in termr of the suspected mean m a d  
covariance ItB = I t H@BB*@*H* of the data 9. The smmtthg form i s  specified in 
terms of the optimal smoothed estimate uo = E(P/y), representing the c o d i t b a d  mean 

of the statc u given the data y. The twctral fonmrlr ir obtdaed by mjbstitation in (1.3) 
of the eigensywm expamioar P = %ek*, y - zyk+ umi m = E%+ where 1; 
and % are the eigenvalues and ebeavactors of the obseired-state covariance operator 
B. The -re-root filter formalr, p r e w  recordsd in (l.4?, t b u d  on the 

frctorizrtion of the predicted-data-covariance operator u (I+B) - (I+PI%+R;’ and 

ô u the definitions z = Lp t (I-Lhn and (I+K)=(I-L)-’ - Q+P<”. P h U y ,  the 
trinmmetric werator formula ir obkiped from the square-noot filter expression by 
use of the identities ItR - SBC2a and L = I-COSa develogjd in Sec. 2. 

Although the derivation of the above erpreaioru ha& to 8ienific.nt insigh &Soat the 
structure of the likelihood functional, it ir not with3.n the $oops of the paper to 
inver’ig8te all of there alternrtivet to the same level of detail. The formula i m o w  
h e  predicted-data-covariance smare-mt filter appears to ba the most comuabnt to 
implement the numerical rearch for the mtimrl estimates. ’Llhir section, however, rimt 
to first develop the results suxmuriaed ahve. 

Formula8 Bued on the Optimal Smoothec %ate BsUmaea 

B c d t  4.1 The negrtiue-log likelihood function81 can be 4 premed 8s 
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where uo = E ( e )  is tbe ccOGitioru1 erpectrtion of the state u dven the data 9, and G is 

the estimator gain. 

Proof: It will be rrhoun in Sec. 8 that uo in (4.2) is the corditiot.1 meen .nd that G in 
(4.3) is the cornrpoxuling estimator gain. Therefore, for  the sake of the discussion 
here, a m m e  that (4.2) and (4.3) valid. Multiply uo in (4.3) by H and use (4.3) in the 
resulting equation u) obtain 

= HGy t ( I -HGh,  (4.4) 
H'O 

where m = H W f  is as before the suspected mean of the &A 9. However, recall the 
identity HG = HgHWtHEH*)-' = 1 - atH@H*)-' so that I-HG = (ItI3EHq-l - (XtR1-l. 
Hence, substitution of th is lrst identity in 14.5) le& to 

Thit is the central result required to establish the equivalence between (4.1) a d  23.11). 
To thir id, substitute (4.6) into the sccoad term on the at 8ide of (4.11, and observe 
the equivalence with (3.11) by irispeetion. 

where B ( d  I 9 C f  and B(o/p) are respectively the ~ p a c o n d i w  and coadiuarvl expected 
values of the state u. 

Proof: 
the last two t e r m  cm the tight side of (4.1) .ob use of the eqaritioa m = H W f .  

This re8ult can be establirh4d u a corobry to the Result 4.1 by combhhg 

Both of these results express the likelihood fum%.iorul in term of a q.rrmuty uo in (4.2) 
which ia the conditioar- arpectation B(Wy) of the state given the data yo This quantity 
L also known to be the best linear mean-square ert!xtuts as well as the optimal 
least-squarer s t inute .  The coincidence of  the best mean-square est!mte and the 
optinul least-squares est&te, both of which can be computed by the conditional 
expectation formu& (4.21, is explored at  length in Ref. 111. 
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-- Result 4.9 The negative-log likelihood functional c m  be expressed u 

where yk = tpk% and 5 = tpk% are the spectral coefficients of the data .rd thc 

suspected mean m, uu i  A i  a n  the eigenvduts of P. By substitution of \ - in 
(4.81, this equation can be c u t  u 

Proof: 
(3.6) a d  letting N-. Use of the identity Lk = y in (4.8) le& to (4.9). 

Bquation (4.8) can be established by taking the megatire log of MyN@) in 

R e d t  4.4 The negative-log likelihood ratio c m  be expressed u 

(4.10) 

(4.11) 

(4.12) 

as the difference between the data yk a d  the 'filtered' eaimate 9 Observe that ek = 

C O ~ Q L ( ~ ~ - ~ Q  by substitution of (4.11) k (4.12). sllb+titpte tbfr lut eqmtion into the 
second term on the right side of (4.9) to  obtain (4.10). 

The formdr for the likeellhood fpnctionrl in (4.10) can be viewed u the 'spectral' 
version of the predicted-data-corate quare-root formula described below. 
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where use has been made of the fact that (I+R)-' t (I-Lq (I-L). 

Result4.6The operators L .Ild K can be represented in t e r n  of the following 
eigensystem expansions: 

where "+ = tm-')ck. and ek are the eigenvectors of EL. 

(4.18) 

-'/a in and then evaluate the as yet undetermined coefficients \ from L = I - U+R) 
(4.15). To this end, premultiply L in (4.15) by %* and p0mnukipl.y by $bk to obtain 

L, = 1 - (1t)LL) 2 -va = l-co- which is  the desired remlt. 
A 

Similarly, to obtain the desired expansion for K, seek to determine thc coefficients 
in 

K =  1 $ek@k* vrfth \*$bk*K@k. (4.19) 

(4.20) 

where 
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Proof: Recognize that (4.17) implies that 

and use these identities in (4.13) ami (4.14) to obuin (4.20) .Id (4.21) respectively. 

(4.24) 

and as before uL = tan-’$ with $ be- the eigemdue8 of R. 

Selection of Preferred Formark for NIDDlhllc.1 S d -  tiom 

In principle, all of the above forrrmlu for the likellbood f imcthd  J(8v) can be OICd u 
a point of departure to compute the g.diant aJ/ae .ad the correspomlbg Hessian 
a’~/a ’  - .lpd to thereby obtain the necessary iugtedients to implemunt the 
Newton-Rapbon search for optimtutiap. Ths c.lcol.tionr finohed in the mrzlperical 
search can vary significantly, however, dapeadfry on nMch of the form8 i s  d u a 
%tam point. It it therefore of hterest to c h t  a det.ileb tmssc@tion cf the 
relative advant.8es a d  diudvurta8e8 of the vuioor method8 to implement the search 
that arise from the vrricms form of the likelihood functimd. Such an invertbation it 
currently in p r o 8 f i ~ ~  a d  will be mporttd on in future work. In thir paper hanever, the 
formula selected to compute the gradient .ab Hessian is  that bued on the 
predicted-data-covariance sQ\ure-tOot filter in (4.13). 

5. COVARIANCE BIGBNSYSTBM SBNSITlvrrr TO SMALL PA-R CHANGBS 
As a prelim(nrfy to the evaluation of aJ/ae .od a’ J/ae2 involved in the uumerical 

search for optimization, it is necessary to conduct an aztdyrir of the perturbationt 6kk 
~ n d  Mk of the eigenvalue8 and eigenvectors of R = H@BBWcH*, with rerpcct to 
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variations de of the parameter dirtribption 8. Such an uulysis will provide tbe 
mathematical tools that will be used in subsequent sections to evehate all26 .ob 

a‘J/a’. 

where the dependence on 8 of EL, % rod Ak hu been explicit. The u U x u t c  objective 
of this section is to develop udyt ica l  formnlu for c.lcpl.tiqj the first-order 

parameter distributions 8. 
wflarb8tiOllS 6Ak .pd % O f  )ck d $ with reSpt?Ct t0 tnUU C u e 8  68 fn the 

It is assumed here that the Prechet differential [Z] of \ at 8 and that it can 
be computed by 

nhen y it 8 8cal.r .ab 60 it admissible pertprbation of e. ~ q ~ r t i o o  (5.2) it .c- 
the formul. typically used for comppt.rion of the Gateaux differential. However, it ir 
assumed here that both of thew derivative8 exist .nd coincide .od that thcrefore (5.1) 
can be used to calculate the Prechet derivative. 

Since Ak is Prechet differentiable (admittedly by assumption, u an investigation of 
the technical conditions required for differentiability it not within the scope of this 
paper), its differential &hk(e;&O1 can be expremed u 

where ckk(81/aB is a W e d  h e a r  functional ref$& to a8 the Prechet derivative of 
)Ct at e. The t r a n r f o ~ . i o n  aA,/ae can a h  be viewed u a function space gradient of 
Lk at 8. Similarly, the eigenvector differential @ p ; E ” )  L defined a8 

where [a~$~(e)/aBJ is the Prechet derivative, assumed to be linear a d  m e d .  

Calculation of 6A. and aFL. 136 

Recall that the ek in (5.1) are orthononarl 80 that 
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which can t e  takeu u the point of departure fzr calculation of bAt uu i  a\-. 

Result 5.1 The Prechet differential 6 1  (8;60) can be expressed u 

where 6A(9;68) is the differential of A defined u ._ 

- Proof: Performance of first-order perturbation on (5.61, ard use of the colditFon 
f$k*& k= 0 leads to 

It can be observed from (5.10) th*t e v r h u t h  of 6@ ia the central calculation 
required to determine 69. In ofder to simplify aotatiapI without loss of generality, it 
has been assumed in ami- at  (5.10) that B .nb H do not dvperd on 8. In mort 
practical cases, this assumption ia satirPied because the poorly known parameters occur 
in the operator A. 

TO compott ti@, as nguited (s.10)~ mcau tht A(eme) = I, thet  AN + 
A(6cD) = 0, .ad 

Substitution of (5.11) fa (5.10) leerds to 
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Finally, use of the def'nitions p = A i A  and 5 = '.;'@13qk in (5.19), and 
substitution in (5.91, implies (5.7). In performiag this last step, it has been assumed that 
A = A* is formally self-aajoint, a c d t i o n  that is valid on most problems of practical 
interest. 

k 

Discussion and Additional Assurrr~tions on A 

The above result, although a step in the right direction, is s t i l l  ioII1cwh.t 
intermediate because the differential &Ak in (5.7) is expressed in term of the yet to be 
determined differential 6A. To proceed f-er, it is convenient tc make two additional 
assumptions (typicaliy satisfied in practice): 

0 A(8) is linear in 8 so that A(B1 + = Ate,, + for two admissible 

distributions e a d  e2. 1 

0 A(8) can be factored as Ate) = DW)D, where D .ad its correspondir@ formal 
adjoint D* ma9 in general be matrix differential operators. 

Based on these assumptions, it is now possible to derive the following more explicit 
formulas for &Ak and aAk/%. 

Result 5.2 The Prechet derivative a\ (e)/= of \ is 

Proof: Since A has been assumed to be linear and factoriz8ble 

where the last equality is a consequence of a process aarl0g0~8 to integration by parts. 

where a)Ck(8; *)/at3 is an element of X*(Q). Futhetmore, @Ak@; *)/a01 can be evaluated 

from 
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Proof: The -orour derivation of this reat is not as yet available. The remlt i s  
accepted somewhat formally on the bash Uut  a bounded h e a r  frmctioxul can be 
represented by an element in the dual *%o the qace  in which the functional is defined. 

Calculation of 4%. and *e 
Result 5.4 The Prechet differential % (8;68) of $ can be expressed as 

(5.18) 

m#k 

where 6P is the differenthi of the observed-state covariance operator B. 

Proof: Since Pak = Ai+k, 

( 6 2 j ~ $ ~  + R- = 2Ak(6Ak% + (5.19) 

Now, seek an expansion for &Pk in term8 of the orthononarl barb @m, Le., 

(5.20) 

where cLm are scalar coefficients to be determined. Note that the orthononarlity of 
@k implies that cLL = 0, so that hk does not have a component in the direction of % 
To evaluate cb, premultiply (5.20) by em* to obtain 

Use of the conditions @ m * ~  - \:em* and chn = +m *&k and rearrmement of terms 

leads to 

Substitution of (5.22) in (5.20) leads to (5.181, thereby establlrhiry the remlt. 

Equation (5.18) is similar in nature to (5.9) in that it expresses the desired 
differential in term8 of the yet to be determined quantity 6B. 

P e d t  5.5 The Prechet differential %(&be) of $ can be expre888d as 
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- Proof: Substitute (5.12) in (5.18) and use the definitionr for pk and 1 ~ .  

Bquation (5.23) i s  valid w i t b t  -Ling the rdditionrl urpmptioa that A(8) is 
linear in 8 and factorizable as A(8) = D*(8)D. If there two assumption8 are now made, 
the following result can be obtained. 

Result 5.6 The Prechet derivative aQI (e)/= is specified by 

(5.24) 

- Prodfi This result follows by rubstitution of bA(0) t DY6e)D in :5.23). 

Closely related to Mk is the differential 

of the outer product akak*. 'The corresponding Prechet derivative a(~@~@~*)/a is 
evaluated in the following result. 

Result 5.7 The Prechet derivative [a($$ *)/a] L specified by 

Proof: Use (5.24) to evaluate the r&ht ride of (5.25) m d  recall that 6(+k@k*l = 
[a@kfpk*)/aelae. 

Discussion 

The results obtained above provide the key tools required to evaluate the 

function-space gradient aJ/M and Hessian a2J/# of the likelihood functional. The 
most useful formulas are (5.17) for the derivative a A k / a  of the eigenvalue by, (5.24) 

for th,: derivative &#k/a of the eieenvector ek, and (5.26) for the derivrtire 

a(@k@k*)/a of the outer product (@ 9 *I. There formula8 wil l  be used repert.edly 2c 
k k  

the following rection. 
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6. SPECTRAL REPRESENTATIONS FOR THE GRADIBNT, AP PROXIMA TB HBSSIANL 
AND NEWTON-RAPHSON SEARCH 

Implementation of the modified N e ~ t ~ i ~ - R ~ p h r ~ n  rearch for the optimal parameter 
estim~ter requires calculatiom of the aJ/ae a d  of an apprordmrtion to the 

H ~ S S  I operator a 2 ~ / a 2 .  These calculaticnr are be8t achieved pra the 
predicted-data-covariance rm~are-mt filter in Remlt 4.5 that expreuer the likellhoal 
functional AS 

where z(8)  = L(&y t [I-L(8)] m(8). Function space differentiation of (6.1) with respect 
to  8 leads to the gradient functional 

and to the approximate Hersibn operator 

upon which the Newton-Raphson numerical rearch is to be bared. An updated estimate 
en+ 1 = en - is obtained by specification of the parameter change an defined as 

The min objective of this section is to replace the ophrator .:i'a+bzu (6.2) aml (6.3) 
with a set of equivalent tmtrfx eqp.tiaru mora c m e n h t  i:r cahhtlanr. Th4 
fundamental approach to bc used c m i r U  of reprerentin# the . c g ~ t i o n  space derivatives 
a L / a ,  am/= a d  a z / a  - which have oply been derived in t e r n  of operator symbols in 

of the obsented-state covariance operator R. 
(6.2) and (6.3) - h tr?m O f  specific O - m l  b a  defined by the abem?Cton @k 

SPectral Reorerentation for the @- 

Result 6.1 The Prechet derivative &/a of the predicted-6.u-covariance 
square-root filter L can be represented ss 

k m  
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Note that ab defhes a matrix whore diagonal elements are provided by (6.6) and 

whose corresponding nodiagonal elements are given by (6.7!. 

- Proof: Observe L = ( l - c o ~ a ~ h $ ~ @ ~ *  implies 

Substitution of thb equation in ah = +k*taL/Mwm and use of orthonormality of t$k 

lead to 

where a A , / a  and *k/= are the function-mace derivatives evaluated in (5.18) a d  
(5.25). Substitution of there two equations from ‘sec. 5 in (6.9) leads to (6.6) and (6.7) 
thereby establishing the result. 

Result 6.2 The Frechet derivative am/* of the suspected mean m(8) is reprerented by 

(6.10) 

a d  @Cf in (6.11) denotiq the suspected value of the r a t e  u. 

- Proof: Since m = H W f ,  then 6m = Hb@Cf = -H@A(:Q) @Cf, where the t r t  equality 
follows from the condition 5Q = -@A(68)@. Defhe now ‘6mIk a8 the k* rpectral 
coefficient of 6m, Le., 

where as before p = AiL@*H*@r Use of the identity pk*A(68)@Cf = -Dpk * D ( @ C W  

in (6.12) results in (t,mIk = (am/aelk 66. with (Walk given by (6.11). 
k 

Result 6.3 In the 8peckl :&IC in which the deterministic irrlprrt f ir asrmaed to be a 
k c t o r  f = [f .,..., f,] of M inputs applied a t  the dircrete locatbm E, ,  ALL rltenutive to 
(6.11) in evaluating (&I&@), id 

m= 1 
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where @(x/[I  is the Green's function of the system model operator A. 

Result 6.4 The gradient &/a = ( a L / S ) p t  (I-L) tam/ael of the filtered state e s t k u t e  z 
can bc represented as 

where the spectr.1 coefficients (&/a), = ak* (&/a) are given by 

(6.15) 

with ab specified in (6.6) m d  (6.7) a d  

Proof: Substitute a L / a  and WS lrom (6.5) a d  (6.10) into &/SI = ( a L / a q  t 
(1-L) (am/%) and then compute the spectrd coefficients (&/a), in 'C.14) from 

taz/ae,, = 9k*(az/ae). 

Result 6.5 The gradient g(e;y) in (6.2) can be represented AS 

where ex: = ak*e &re the spectral coefficients of the residual process e = y-z, a d  

(aZ/a), ate given by (6.15!. 

Prod: Substitute a L / a  in (6.51, &/a in (6.141, e u & ek$bk And I t = 

E secak+k@k* into (6.2) a d  use orthonormality of ak. 
Equation (6.17) provides ?.he means to  ewluate the likelihood fuacticnrl gradient, one of 
the key ingredients bf the Newton-Paphson iteration. Tb4 Approximate Hersha 
operator M(8;y), which . the other major element required to implement the search, 5s 
evaluated below. 

x e d t  6.6 The &pptuxiotc Herrhn M(e;y) in (6.3) is an integral operator whose kerne! 
M(rJ[) i8 specified by 

(6.18) 
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t h  where zlk = = @k*taz/a) is the k spectre1 coefficient nf &/a. 

Prcof: Substitute (2.26) and (6.14) into (6.3) aad use ?&e orthonomadty of e,. 

Implementation cf an iteration step in the Newton- 2aphson search requires calculktion 

of 68" = M-'d;y)g(Bn;y), representing the incremcntal change in the parameter 

estimate. Inversion of M(On;y) is therefore required a t  every steF of the -eerch. Thi3 
iinersion is achieved by solving an integral equation as outfined in the follcwing result. 

Result 6.7. 
of the following integral equation 

The incremental parameter change 60" can be computed as the so1ut;on 

where M is the approximate Hessian :.ernel in (6.181, and g (XI is Lhe value of the 

eradient a t  the spatial location x. The subscript n in Mn and gn denotes that the 

corresponding quantities are evaluated a t  the n 

n L 

t h  n parameter estimate 8=8 . 

Proof: Observe that 

in cermq of the kernel M to obrain (6.19). 

= M.ilgn implies Mnb# 1 gn, and express this last equation 

n 

7.  PARAMETEX ESTIMATIOK ERROR, CBAMBB-RAO BOUNDS AND OP-L 
INPUT DESIGN 

The objectives here are t o  obtain a C-I2 b o a  for the covariance of t?e pavmeter 
estimation error and to Segh an investigation of the problem of optimrl input detign by 
using the C-R bound as a criterion fgr optimrl input selection. 

Recall that the covariance of an unbiased estimate 9 satkfier the inequlitv 

whert M(Oo) t, the information opextor utiinrd as 

(7.2) 

The corn>sponding mean-square estimation error Et0 '@@ 1 sc.tu'*.;? i : 4 :  related 
inequality 

P P  
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It can be observed that the key calculation required to obtain the C-B bound is the 
computation of E[a'J/a'; as outlined below. 

-- Craxm,-Rao B ~ u n d  for the B s t m t i w  Bmr 

Result 7.1 The incormation operator M(e0 1 is specified by 

(7.4) 

where h = H@EE*@*H+ is the data-covariance operator, @LBO) is the derivative of 
L = I - (I+R)-''', and tam/a0) is the derivative of the datn mtan m=H@Cf. 

Proof: Differen-tiate g(@;y) in (6.2) to obtain 

Take the expecte+ '*E in (7.5) .bo-.+ evaluate a t  0 = eo, rod simplify to obkin 

Finally, use 

Result 7.2 In spectral form, the inform~tion operator M(e0 1 i s  specified by 

i )  in (7.6) to  amve a t  (7.4). 

(7.7) 

- PrcDf: 

Inspection of (7.4) reveals Jut the informatior operator Weo) consists of the sum of 
two terms bct5 of which are positive definite. In the f i n t  term, the daU-COV8il.nce 
operator (I+R) appears a8 m %ei&bting" that is multiplmd by the tenritiivty filter 
aL/=. Note parenthetically that in fact L b 8elf-adjokt 80 that L o C*. The recond 
tern-. on the other hand, will be shwm to be a quadretic ftmztion of the input f. 

"esult 7.3 Assume that f = [i , . . .&I i s  a vector G f  M inputs applied at  the 1VI discrete 
locations Cm. Tie inlormation c3eratsr M(Bo) b an integral operator whose kernel 
M(IC/€) can be e-mzased as 

Use an approach similar to  tbrt used :3 arrive a t  (6.18). 



(7.8) 

where 

T a d  where bk(E) is the M-dimensional vector 

(7.9) 

(7.10) 

(7.11) 

with being the Green's function of A in (1.11. 

Proof: 
t a L / a )  in (6.51, and for a m / a  in (6.10) into (7.4) to  obtain (7.3) and (7.13). 

Sutstitc?e the eigeruystern expansions for R in (2.261, for L in (4.171, for 

The second term in (7.8) b a qurrdratic form in the input sign~l f. This property can be 
used as a basis for optimal input der- 

Optimal  Input Design 

The La'ormcrtion operator can be used to state criteria for optimal input design. 
While several posrible criteria exist, the one that it easiest t o  use is perhaps the 
maximization of Tr M(e0): 

(7.12) 

where 

The optimal input fo. which is the solution to the above optimbrtLn pioblem, is the 
eigenvector corresponding to the largest eigenvalue of the M-by-M matrix V. 

Other criteria for optimrl input selcctim include: minimiaatim of Tr @I-'), which 
woulE, correspond to minimia h g  tht Cramer-Rao b d ;  and minimization of 

M-'), where A- fs &e m~ximum eigenvalue of M-'. While these k s t  two 
cnterir could be superior to  (7.121, they both have the dimdvantrrge of requirixlg 
inversion of the operator M( However, the requirement for such an b.rt.rsion may 

not be a reriou, additicorl dzawback because a similar calculation is required to 
implcment the Newton-Raphsoa search outlined in the previous sections. 

L a x  
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VanisWng Bias of the Gradient 

Closely related to the rbove analysis is an investigation of the bias in the 
parameter estimate 8. The central result is as follows. 

Result 7.4 The expected value of the gradient functional g(8;y) vanishes a t  8 = eo, Le., 

(7.14) 

Proof: Observ- that &/EX3 = taL/X3* + (I-L) tWXN, .nd recall that $ = (I+K)e. 
Substitute this in (6.2) and take the expected value. Finally, use the whiteness of the 
residual process, to be established in (8.46). 

8. FILTERING, SMOOTHING AND THE RESIDUAL PROCESS 

The central aim of this section is to con-uct an analysis of the smoothed estimate 
u and of the filtered state estimate zo that emerges from the 

predicted-data-covariance square-root filter. This analysis leads to the fobwing 
major results: 

0 

0 The smoothed estimate uo is opthml in a condition41 mean sense. 

0 The formulas that generate uo aud zo have a predictor-corrector ~tnrctpte in 
which the f b l  state estimate is the m m  of: a prediction term-bued on 
application of h c w n  inputs to the system model; and a comctiua term based 
on the difference between the actwl  and predictud data. The key ehment in 
these formulas k an estimator gain th.l provides the relative weigh- 
between the two terms. 

0 The covariance of the state estimation error inherent in both esthates can 
be evaluated by mean8 of equations which, if written in operator notation. 
resemble those encountered in tilte- a d  smoothin& for linear dprumicnl 
systems. 

0 Investeation of a residual process associated with the filtered state esUmste 
zb that has properties nearly identical to those of an innovations process: the 

residuals are a white noise process with a unit covariance; the residuals and 
the measurements can be obtained from each other. by means of recQrocal 
linear transformations. BecaLe these t r a n s f o m t i o ~ ~  are not the 
residuals are not a bonr fide innovaticma process. However, they are as 
useful in cierivinq filtering, smoothLng and identification sohtions for elliptic 
syst .ms e$ the innovatioar process is  in deriving simL1.r solution8 for h e a r  
dynamical systems. 
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Development of relationships between the filtering a d  smoothiag estimates 
thrt can be thought of as extensions to  elliptic systems of the 
forwrrdmackwrrd sweep method for solution of filtering a d  smoothing 
problems in linear dynrmical systems. 

Development of spectral representations for the predicted-data-covarirnce 
square-root filter rad the optimal smoother in terms of the eigenrpstem of 
the state covariance P = QBBW*. This leads to sixuple ways to implement 
filtering and smoothing solutions on a computer. 

Smoothed and Filtered Bstimates 

The smoothed and filtered s t a t e  estimates uo & x d  go have been defined in (1.17) as 

2 = @Cf.+ g(y-H@Cfl, (8.1) 
0 -  

u = OCf t G(y-HQCfl, 
0 

where G and g are Kalmm-like g a b  specified by 

The estimate uo it referred to as a smoothed estimate because it i s  the 
minimum-variance estimate of the s t a t e  given the entire data ret. This is established 
by the followinp resalt. 

Result 8.1 The smoothed estimate uo in (8.1) i s  the ccmiitional mean u t B(&y) of the 
state given the data. Purthermore, the estimator grin G in (8.2) can be expressed 
altermtively as 

G = RH*(I + H&H*)-', (8.3) 

in t e r n  of the state covarirace P = OBB*@'. 

- Pro3f: Recall the general form& 

derived in 141 for the conditioprl expected valae of a 2ero-mern random process D @wen 
the related zero-mean random procerr v. Note that thir formula require8 crlculatim of 
the *cross-covariance* operator B(m9 and the auto-cottlirfrace operator B(w*). 
Define now the meru-centered state 5 = u-@Cf = @Bo ard the mean-centered data f = 
Hii+n. By this definition, 6 and f are zero-mean. Therefore (8.4) can be used directlp 
to coapute u' = B(5/& Le., 

0 
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which indicates that to  evaluate $, it is necesstiry to first  evaluate the covariance 

operators B f i i * )  and BCm*:. These calcal.tions are: E(*-*) = B(QBoo*BW*) = 
@BB*@* and E(W) = E [(Hiitn) (Htitn)*] = I + HgH*. Use of this in (6.5) lea& to 

I 
. 5 G  ' l H  L 

This together with the definition of 0 .ad 9 in terms of P a d  y implies (8.1). The 
equivalence between the two different exprerrionr for G in (8.2) a d  (8.3) is established 
by use of the spectral expansion= in Sec. 2. In particular, use expuuLoar (2.46) - (2.47) 
for I + B and the definition for 3 in (2.311. 

As established by this result, the estimate no h.8 a very well defined probabilistic 

interpretation. I t  is not presently known if the Atered estimate a. has a similar 
interpretation. Nonethelex, this estimate phys a very si@ficant role ia the filte-, 
smoothing and identification methodology for elliptic t]lrtemr d e r  develcpmeat here. 
Its role is analogous to that of the filtered ertinute erne- from a X a b n  filter in 
the case of dynamical system. This is further invertipted below. 

Predictor- Corrector Structure 

To examine this structure, c-mtider the equation for uo in (8.1) am3 Wustrated in 

Fig. 8.1. Use of the deterministic inpat f"] and the system model @C"' leads to a 

predicted estimate "I. The difference procem y-HWf '41 ir then formed d operated 

on by the estimator grin C Is] to obtain the correction term G(y-H@Cfl 16'. F ~ P A ~ ,  
the correction term is added to the predicted estimate to obtain the Opumrl estimate 
u The equation for the filtered ertinutt zo in (8.1) also has a predictor-comctor 

struciure. The key difference between the twc equations in (8.1) is thst the e8thutor 
gains are different. A relatimh@ be'ween there two different 8 . h  C and 8 
explored later in this section. 

0' 

SYSTEM MODEL 

MEASUREMENT DATA DIFFERENCE 
PROCESS Y 

Fig. 8.1 Predfctor-Corrector Form of the Smoothed State Brtinutor 
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Estimation Error Covariance and Kalmm-lh  Gains: Smoothiq 

Since uo rad zo are only estimates of the actual state u, it ir of interest to  
investigate the inherent estimation error u = u-u and z = u-iO. In particular, the 
aim is to determine the estimation error covariance. d e r  the rsgumptim that the 
actual model errors o and n in (1.1) and (1.2) are white-noire processes. 

P e d t  8.2 

u-uo is specified by the folloning alternative formulrs: 

P 0 P 

The covariance 9 = P* - Mu u *) of the state estimation error u I 

P P  P 

T; = (1 - GHIPa - GH)* t GG*, (8.7) 

- Proof: To show (8.71, observe that u = OCf t @Bo and u0 = OCf + Gty - HWE) 
implythatu = u - u  i 8  P 0 

u = (I - GH)OBo - Sn. (8.11) 

Hence E(u u *) = B[T[-GHk#Boo*B~* (I-GH)* t Gnn*G*] = CI-GHI&(I-C,H)* t GG*, 

where w e  h ~ s  been made of the fact that t = [o,n] irr a white-noise process with 
covariance Nee*) = I. To show (8.81, observe that (8.7) implies 

I; = i$ - GHS - ~ H + W  t cc t H ~ H ~ G * .  

P 

P P  

f8.1:) 

Substitution of G = n'H* (I t HgH*)-' in (8.12) leads to (8.8). To show (8.91, observe 
that (8.8) can be expressed as P' = 6 (I-GHP = CI-GEnE by prbq G - RHWI t HPHq-' 
in the last two t e r n  of (8.12). To establish (8.101, substitute P = @BB*Q* in (8.8) and 

ut the identities B q * H *  atH@BB*O*H+)-'H@B = CI+B~*H*HQB)-'B*O*H*HQB = I - 
(I+ B*Q*H*HQB)'-'. 

Result 8.3 The operator HPH* is the Predhlm re80lVe~t of HgH* 80 thrt 

Proof: Compute HPH* from P' in (7.8) to obtain H@H* = HaH* [I - (I+HgH*)-'J. Use 
th? identity (ItHilH*)-'H&H* P I - (ItZIeH*)-' twice in thh kst equation to obtain 
(8.13). 

The rim now i s  to use (6.13) in (8.2) to obtain an alternative expression for the 
estimrtor gain. 
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Result 8.4 The estimator gain G = EH*(I+HgH*r' can also be expressed 8s 

G = FH*, (8.14) 

where P = E(u u *) is the covariance of the smoothed state estimation error u 
P P  P' 

Result 8.5 The mean-square smoothed state e s t h t i o n  error is given by 

E(u *u 1 = Tr [F]. 
P P  (8.15) 

Proof: This follows from the definition of P' as P = B(u u 4). P P  - 
Note that many of the above formulas are very similar in form to the ones 

traditionally encountered in K 8 h n  filtering for dyxumical systems. For instance, Bqs. 
(8.3) and (8.14) are very timilar to those used to Compute the grin G for a K a h n  filter 
in which R and are the covariances of the estimation error associateb_ with the 
predicted and corrected state estimates. Note also that (8.8) implies that P is always 
smaller than E, which implies that the covariance of the estimation error after the 
observation y has been accounted for i s  smaller than the emr  covariance before the 
estimate correction occurs. 

Estimation Error Covariance and Kahn-like Gains: Filteriq 

The aim here is to  obtain results similar to  result8 (8.2) - (8.5) above, but that are 
applicable to  the filtered estimate zo. 

0 
Result- 8.6 

is given by 
The covarhnce E(z z *I af the filtered sktc estimation error z = 0-2 P P  P 

E(z Z *I = (I-gH) Qia-gH)* + Bg*, (8.16) 
P P  

where R = @BB*@* is the state covariance, and 8 is the filter cain in (8.2). 

Proof: Note that u = 9 C f  + @Bo. This and (8.1) imply that 

z = (I-gH) @Bo-gn, (8.17) P .. 

w h w e  use has been made of y-H@Cf = HQBo + n in (8.1). Calcul-tion of B(z z *I, 
P P  

..,, rb .17)  and the conditions B(oo*) = 1 and B(nn*) = I, leads to (8.16). 

TIUS result applicable to  the filtered estimate is A I A A ~ O ~ O U S  to  (8.7) of the smoothed 
estimates. To obtcrin results that are analogous to (8.8) - (8.10) requires, howzver, a 
f + w  preliminary definitions and results. The need for these preliminaries arises fzom 

altimate desire t o  find A spectral decomposition for the state covariance R = 
'-, *a*. It is straightEorward to obtain the spectral representation for the 
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observ’d-state covariance H6H*. However, f- a 8im’l.r decompo8iUon of is not 
as simple. The primary reason for thir lack of simplicity ir that the vecton = I 
A?B*@*H*~P. may not necessarily span tbe entire space H. TMS is particularly true in 
cases in which the dimension of the input space HI is greater than the dimension of the 
obsenration space Hg. In order to consider this case, assame that the operator H@B has 
finite-dimensional range. Thi8 comtpondr to the situation where there are only a 
finite number hJ of se’3jors and the observed-state covariance P = HQBBW*H* is an 
N-by-N matrix. Asswne also that the input space is either infinite-dimensional or 
finite-dimensional with dimemion bl greater than N. This second assumption 
corresponds t c  cases where the uncertainty is distributed a t  M discrete locations or 
throughout the entire spatial domain Q. 

1 1 

Result 8.7 The identity operator I mapping HI into itself can be dtiompored as 

1 = 1  t I I ,  (8.18) 
0 

where 

= I - B*@*H+R-~H@B, I, = -J @*H*P-’H~B, (8.19) Io 

and B = H@BB*@*H* is the obsemed-state covariance. In addition, Io is in the 
null-space of the operator 

R ( - 1  = H@B(.)B*@*H*, (8.50) 

mappine the space of bounded linear traatfonnrtioat on H1x H1 into the space of 
N-by-N matricca. Furthermore, Io and I, are orthoroar1 comlements so that 

I * I I=Tr [ I  I ]PO. (6.21) 
0 0 1  

- Proof: This result and ita comrpolding proof are illustrated graphically in Fig. 8.2. 
Bq (8.18) follows from (8.19). Subrtitutb of Io in (8.19) into (8.20) shows that P (Iq) = 0 

so that Io is in the null space of EL(* 1. That Io and II are orthogonal complement8 
follows from substitution of (8.19) in (8.21) by calculation of Tr [Io I*] wing (8.19). 

-- B e d  8.8 The i - . y operator I mapping 5 into itrelf cab be expressed as 
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SPACB OF BOUNDBD LINBAP TRANSFORMATIONS 
FPOY INPUT SPACB INTO ITSBLP 

n 

.'NULL SPACE OF I \  R (  1-  HcDB ( 1 B W  H* 

Pig. 8.2 Orthogonal Complement Decomposition of the Identity in H1 x H1. 

- 
The above result simply reflects the fact that the do not span HI, because (by 

assumption) there are only a fiaite mznber of them, and this number is smaller than the 
dimension of the hput space. 

Result 8.9 The state covariance E = @BB*@* can be decomposed 80 

i 

where - 
uo = 9 1 3 1 ~ ~ 4 ~  6 

(8.23) 

(8.24) 

Furthermore, 

H B ~ H *  = 0, ~5~ = 0, i i o ~ *  = 0. (8.25) 

Proof: 

A-'@Bt) . To show (8.251, mbstitute I fmm (8.19) hto (8.24) a b  (8.25). 

To show (8.291, substitute I from (8.23) into P(1) = @B(DB*9*, a d  use x - 
j -- 

1 j 0 
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-- Besuit 8.10 The dual state covariance 0 = @*H*H@ can be expressed as 

N 
6 = 1 A2 p . p . *  

1 I 1  
j= 1 

where p. = AyLQ*H*@.. 
I I  J 

N Proof: Since the cp. span the observation space Hg = B , th-;l 
1 

(8.27) 

v:here IN denotes the identity in RN x RN. To obtain (8.261, substitute (8.27) in Q = 

@*H*I €I@ and use definition of p.. 
1 

N 

Define now the quantities 

N N 

j= 1 j= 1 
r = i? t (seca.-l) x.x.*, q = 1 (seca.-l) p.p;* 

0 1 1 1  1 1  
(8.28) 

and note the following key identities. 

Result 8.11 The state covadaoce a = @BB*@* and r defined in (8.28) are related by 

= r t r*trH*Hr. (8 .29)  

Furthermore, 

I t H s H *  = (ItHrH*) (I+Hr*H*). (8.30) 

- Proof: Substitute r from (8.28) and H from (8.231 into (8.29). Use the orthonormality 
of x. with respect to  H*H. This establishes (8.29). Equation (8.30) follows from (8.29) 
by forming ItHBH* from (8.29) and rearranging terms. 

Result 8.12 

1 

The dual state covariance 3 in (8.26) and q ’.? ,0.28) satisfy the identity 

6 = qtq* t qBB*q*. (8.311 

Furthermore, 

I t B*QE = (ItB*qB) (I+B*qB). (8.32) 
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f 
- Proof: 
with respect to BB*. This establishes (8.31). To establish (8.321, form I t B*QB using 
(8.31, and rearrange te rns  b the resulting equation. 

Substitute 6 in 13.26) and q in (8.28) into (8.31). Use the orthonormcrlity of p 

These are the preliminary resclts needed t o  evaluate the covariaace of the estimation 
error associated with the filtered state estimate zo. 

Result 8.13 T k  filter gain g defined in (8.2) can be expresssed alternatively as 

where r is defined in (8.28). 

Proof: Substitute r from (8.28) into (8.33) an$ use goH* = 0 .ad ej* -- rj*H*. T h i ~  

recovers g in (8.2). 

Note the simil~rity between (8.3) a d  (8.33). ThAe equation in (8.3) expresses the 
smoother gain G in tenns of the rta%e covariance R = (DBB*O. Bq. (8.33) i s  a similar 
equation for the filter gain in t e r n  of r. The operator n in G CAO be interpreted a8 the 
state covariance. No 8imll.r probaListic interpretation for r L known. However, its 
introduction L- very useful because it allows development of fotmulrs fo? the eatimotion 
error covariance AC; for the filter gain that very Cl08eiJ7 resemble those obtained for 
LiiS suloothing solutions. 

Result 8.14 
is 

The covariance Bfz z *) of the filtered state estim~tion crrw z = IS-z P P  P 

E(z 2 *) = p + p*, (8.34) 
P P  

where p = p* is s3acified by the 8lternrtive formul.8 

p = ( i -g~)r(~-gm* + gg* (8.35) 

p = r-rH* ( I t H r i W - k ,  (8.36) 

p = (1-gH)r = r (I-gH)*, (8.37) 

p = ( ~ 2 )  a' t (l-cosa x x *. (8.38) 

To establish (8.34) A& (8.351, substitute (8.29) in (8.16) and use the identity 

0 i ) i  

- Proof: 

(I-gH) rH* = tH* ,i t HrH*)-'= g. (8.39) 

To establish (8.361, observe that (8.35) implies that 

p = r-gHr - rH*g* t g(1 + HrHr)8*. ,d.40) 
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Substitute g = rH* (I 
the second term of 
(8.38), substitute t in 

+ HrH*)-& in (8.40) to obtain (8.36). To obtain (8.37) observe that 
'8.36) c a t  be exprerscd rltemtivdy a8 6th and rH'g*. To obtain 
(8.38) into (8.36) and we orthonorrmlity of 9 

j* 

Result 8.15 
estimate is given by 

The mean-square e s t j ~ . ~ t i o a  e m i  asrocirted with the filtered state 

N 

j= 1 

E(z *z 1 = Tr Ip t p*] = Tr 1s J + 2 1 (1-cora 1 x *x.. P P  0 j j l  
(8.41) 

- Proof: This result follows from (8.34) azid (8.38). 

Result 8.16 The filter grin 8 can be e~tprersed a8 

where p is related to the filtered state est im~t ion  error covariance by B(z z - p + p*. 
P P  

This equation is analogous tc (8.14) in that it exprewer an ertimrtor gain in t e r n  of 
the covariance of the state e s t h t i o n  error. 

Result 8.17 The operators 1 + HrH? and I -HpH* are reciprocal, i. e., 

- Proof: 
8 = pH*. 

Recall (1 + €IrH*)-' = I-Xg = I-HpH*, where the lwt eQpIUty bldr  becrtue 

Note that thfs r e d t  impUer that the operator HpH* is the Predhotnr resolvent of 
MrH*. The identify also Lmmedp.tely inrpltsr whitenerr of the reridwb process a8 
investigated in more detail below. 

Pseudo-Innovatiom Pro~ertios of the Re E i d W l 8  

Define the reridwl procsaa in the -1 WAY, AI the dffforsrr between the actual 
measurements and the predicted data emerging from the prsh-eted-dru-covrrirnce 
square-root filter, Le., 

= Y - H z ~  (8.44) 

Thfs ptocerr tunrs out to have two key propertSm8 that 8 n  marly identical to those of 
an inaovatixu pmcerrr: the reridub are white mtB a pnit covrri.ncei the tesidub 
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and the measurements can be obtained from each other by m01m of reciprocal 
relationships. Theac twa properties are estabbhed in the following rerults. 

Result 8.18 
i.e., 

The residual process defined in (8.44) k white with A unit covariance, 

-. Proof: Observe from (8.1) that  e = CI-Hg) (y-H@cfl. Hence, Nee*) = CI-Hg) (1; HqH*) 
(I-HgP = I. This last equality follow8 from B[(y-H@cf) (y-H@Zf)*] = I + HEH* and from 
(8.42; and (8.43). 

Result 8.19 The residuals e - y-Hzo and the tnern-centered measurement process 
ji =y-H9Cf can be obtained from each other by me- of mcigroc~! linear 
transformmiom, i.c., 

where 

(I t HrH*) -' = (I-HpH*). (8.47) 

- Proof: Eq. (8.47) has been ertrblbhed in (8.43) A& is  restated hem only to  
emphasize its relatiomhip to t h e  poperties of .;he nsidud procers. Bq. (8.1) WUes 
e = (1-Hg)y. 

W e  the smoothed rad Cutered ertimrter have bean defined s0medA.t independently 
of tach ather, these ebtim~ter &re h fact very Cl08eb related. f t  i s  possible to 'Wn 
one in terms of the other, a8 outlined io the followiry remlt. 

Bemlt 8.20 The smoothed and filtereo e8tbnAtes to and so are related by 

u = z o +  ee, 
0 

18.48) 

where 

e -y-Hzo (8.49) 

is the residual process, and 8 Ls the predicted-data-c~varirnce rqture--.obt filter gain. 

- Proof: Observe that (8.1) a b  (8.3) imply l a o =  @Cf + CH* (I + HPH*)'' (y-HOCtI. 

Use of (8.46) leads t o  uo = OCP + aH* (I*HrH*)-'e S U r l y ,  zo in (8.1) a d  n in (8.33) 

lead to zo I <bCf + rH*e. Hence, ~ ~ - 2 ~  = [&H* (I+LK*)- -rH*]e. Use of the identity 
(8.29) in ' i s  bznpUe8 that uU,-ao I l e ,  which ir the ds;ired result. Note that (8.481 can 
be r:* *: r n In the altenutive form 



Clcsaly related to  the above reltkonship between filtered and smoothed stote estimates 
is a relationship between the ccrresponding covariances of the state esthution errors. 
'This is developed below. 

Bemt 6.3& The filtered state estimation c -or  z = u-z a d  the residsal process 

e = y-Hz are related by 
P 0 

0 

P' 
e = n t H z  (8.51) 

where n is the measurement error. 

Proof: 

P5sult 8.22 

u = u-uo can be expressed as 

Note ttdt e = y-Hzo = Hu+n-Nzo = Htu-zo) *n = Hz + n 
P -- 

The covafiam-e 2 = B(u u *) of the smootbeci stqt? csti;nrUon error 
P P  

P 

where p + p* = E(z z *) ?? the covariance of the filtered state estimabon zrror z = 

u-z Furthermore, 
P U  P 

0' 

Proaf: Use (8.52) to obtain 

E(ez *) = B(nz *) t !iE(z, 7. *) = H h z  *) + H(p+g*). P P 3 P  P 

Now use (8.17) t o  compute B(nz *I, Le., 
F 

Nnz *) = -g*, 
9 

(8.54) 

(8.5:' 

since !Uno*) = 8 bj assumption. Substitution of (8.55! 1& (8.54) a d  use of 2 I 1 i P  leads 
to  

Since u - u-u the2 3 = z - ge from (8.48). Hence, P 0 P P  

Now use ,8341, (8.43, (8 45) and (8.C6) to  r%ta,itr (8.52). Eqiution (8.53)  follow^ 
immedirte!v from (8.52) by fohming I - HPH* am. rearranging tenas {TI %li-: temlting 
expressior. Nota that (8.52) implies that the g a b  C . ld 8 sre related by 
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The k s t  three resulk can be viewed as a generalization to elliptic systems of 
relationships encouatered in filterino, ax& smootbing for dylumical systems. For 
example, Bqmtion (8.481 is a generalization to elliptic system$ of the foxwardmrckward 
sweep methd for tolution of two-point boutxhrg-value problems. This method in 
general terms states that the smoothed states estimates can be obtained as a remlt of a 
two-stage process: fornard filteriq by means of a Kalmrs filter to obtain a filtered 
state estimate and a residua1 ptocew a d  backward smoothif16 to process the re8iduah 
and obtain a smoothed state estimate. This two-stage data procetricg approach has 
been extensively stadied for b e a r  dyn~mical systems. Bqs. (8.48) and (8.491 have 
exactly ?.he same structure. This structure is illustrated in Pig. 8.3. 

The o k ~ a l l  diagram illustrates how the data yl" and the detenninirtic inpnt +2J are 
processed t o  arrive at a smoothed estimate IS'". The estimation procem contirtr of two 

stages: a FILTERIN". stage that remlts in a filtered estimate z!' rtd a residual 

pro~ess'~]. This f i l t e m  stage ir characterized by a predictor-corrector structure 
where a predicted is f i r s t  produced and then corrected by a correctLon 

n e  results of the film- stage are then p r o c e d  by the SMOOTHING 
stage. Central to both the filum and smoothing sugar is the lain J81. ~ h 4  
foregoing structure b nearly idendcal to that of the forward/b.ckuud sweep method in 
linear dyrumical systems. There are, however, some key differences. One of the 
differences is that the filtem s t a ~ e  in the c u e  of d y n 8 d C . l  tystemr L bued on the 
Balmrn filter, whereas in the elliptic case under consideration here, thir filter i s  
replaced by the predicted-data-covariance -re-root filter. Another key difference 
is that  the K a h n  filter b causal whereas the predicted-data covariance square-mot 
filter is not, i.e., the filter gain g ir a Fredholm operator as opposed to be- a Qolter~a 
operator. In the same vein, the s m o o e  stage for dynamical ryrtemr is backward (in 
time) or anticaural. In the elliptic system case, however, the smoo- stale L also 
characterized by Predholm operators. The notion of causality ir not even introduced 
here althowh it is possible to do th is for cerufr c h w s  of elliptic rprtemr 111. 

- .  0 

Fig. 8.3 Filtering and Smoothing 
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Spectral B epresentatiaat: Smoothing, Piherim, and the Reriduh 

The a h  here are: to obtain spectral representations for the filtered and tnnoothed 
estimates uo and a. and the corresponding error covariances P and pi to explore the 
predictor-corrector structure of the spectral represenktiont of the filter ud 
smoother; a d  to investigate the pseudo-innovations properties of the spectral 
representation of the residul process. The term "spectral representation' meuu the 
use of an expansion in t e r m  of the eigeaspstem + of R and of the related function8 

j 

= AF'B*@*HWi, xi= AY'QBw. and p. = A?@*H*.. 
? I f  I 

Result 8.23 The smoothed state estimate uo can be represented u 

u = @Cf + sin'a. (9. - m.) x., (8.59) 
0 1 1  I f  

where 9. = a.9 and m. = @.*m are the spectral componentr of the &t. y .nd the 
. I  I I 1  

sup-cted mean m = H W f .  The related observed-state estixxute Huo is specified by 

= m + HG (y -d ,  Huo = (I-HG) m + HGy. (8.60) 
HuO 

i In spectral form, Hu = 1 P @. where 
0 0 1  

2 i = cor$j 9 + s i n h y  (8.61) nj = m. + sin ai (yj-?), uo i J' 0 1  

P = 3t + 1 sin'a x xi* HPH* = s i m ' ~ ~ q ~ p ~ * .  (8.62) 

Furthermore, the corn- mean-square ertimrticm erron B(u So 1 = TdF] and 
E'u *H*Hu 1 = Tr [HPH*] are 

0 i j 4  

P P  

P P 

B!u *u 1 t Tr [go] + sin'aj xj+Xj, B h  %*Hu 1 = rinaai (8.63) 
P P  P P 

Proof: To establish (8.591, substitute y = Zy Cp and m t C m p j  in (8.1). To show 

(8.60) mulitply uo in (8.1) by H and recall that m = H9Cf. To ert~bli3h 8.61, multiply 
(8.60) by tbj*. The equation for P in (8.621 follows by substitution of (8.23) iu (8.8) and 

use of the conditions H i o  I CoH* = HgoH* = 0, The equation for HFH* in (8.62) 
. Bq (8.69) follow8 from (8,621 a d  the orthoaorpuUty follows trr J: P axxi w e  of 

i f  - 

i-9 
of 4j. 
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Result 8.24 The filtered sta te  estimate a. can be represented by 

z = W f  + 1 (1-cosa.) (y.-m.) x., 
0 t I f t  

The related observed state estimate z = H z o  is 

z = m t Hg(y-m), z = a-H@ m + Hgy. 

(8.64) 

(8.65) 

In spectral form, z = 1 2.4. 
1 1  

ai = cosai 7 + (1-Cora v (8.66) f , j *  
2. = m. + (1-cosa.) (y.-mJ, 

1 1  1 1 1  

Let z = 2-zo denote the estimation error. The e&timrticn error covari.ncet B(2 z +) = 

p +, p* a d  MHz 2 *H*) = H(p + p*)H* can be represented as 
P P P  

P P  

p = (%) io + (l-cos~r 1 X.X *, HpH* = ( ~ - C O M  1 + *. (8.67) i l i  i i i  

Furthermore, the corn- mean-rquan estimation errors a n  

E(z *z 1 = Tdp + p*), B(2 *H*& 1 = Tr [H(p + p*)H+J, 
P P  P P 

where 
(8.68) 

Tr [p] = ('/a) Tr [go] + 1 (1-corn 1 x , Tr [HpH*] = 1 (I-cosa 1. (8.69) i 17 i 

- Proof: (8.1). Bq. (8.65) 
follows from multiplication of (8.64) by H and use of m = H W f .  Bq. (8.66) is  obtained 
from (8.65) upon multiplication by 4 *  and use of the orthonormrrlity of 4 The 
equation for p in (8.67) has be- tstabbhed in (6.38) and is repeated hem only for 
convenience. The r e c d  of Bq. t u )  follonr from PIC of the identity +j - 7. Bq. 

(8.68) follows from the definition of p = p* in (6.381. Bq. (8.69) is  establish& by 
perfonaing the trace operation on (8.67). 

To show (MI, substitute 9 = &y rn = Cm p )into 2 

j I' 

Result 8.25 The residual process e = y-Hz can be represented as 
0 

e = 1 ej+j, ei = ej*e. (8.70) 

The spectral components e. are independent random vrriibler with zero-mean and unit 
covariance, Le., 

f 
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Furthermore, the spectral components ei and yi of the residual and difference processes 
e = y-Hzo and J = 7-m are related by the reciprocal rel~tionsbips 

- 
e = cosa yi = seca. e.. (8.72) i i i' 1 1  

- Proof: To show (8.711, observe 
that Eke . )  = @i* %(e& @. and then use (8.45) and the orthono~l i ty  of @ Equations 

1 1  1 j- 
(8.72) are the spectral representations of the reciprocal relationships (8.47). Note that 
(8.72) can also be established by the simple trigonometric identity (l/cosai) = secai. 

Eq. (8.70) is valid because @ iare orthonoxmal in H 

9. NUMBRICAL SBAPCH CALCULATION SUMMARY 

Since the development of the estimation. approach is  rather l e e ,  it i s  
convenient to summ~rize the steps that are requited to implement the rmmerical search 

It is assumed that the process starts with a Lnown input f, a set of data y rad an 
initial parameter estimate en. TO conduct an itentiom in the nnmerical search requires 
that the following steps be performed: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Compute the suspected mean and covariance m = H@Cf ukd R = H@BBW*H*. 

Compute the eigenvalues 1; and ebenvecton +k of R. 

Conduct a spectral a ~ l y s i r  of the data and of the suspected mean to obtain the 
spectral coefficients yk = @k- and % = ak* 

Use Result 6.5 to evahaau the gradient a J / a  of the likelihood functiolul. 

Use Results 6.6 a d  6.7 to compute the Hessian Mn .Id to determine the 

incremental c b w e  wn of the parameter estimates. 

Obtain o new parameter estimate 8 n+l = en - 6e'L, mhvn to 8t8p 1 above, ard 
iterate t h r o w  steps 1 to 6 =til conver8ence is achieved. 

If Cramer-Rao bounds and/or an optimrl input are deshedhre (7.6) - (7.13). If the 
covariance of the s t a t e  ertimatiom em; L de&d w e  Pemlt 8.2 and/or 8.13. 

The calculations involved in condwting a single iteration in the nuximum-likelihood 
parameter estimation approach are summarized in block diagram form in Fig. 9.1 A 
single iteration consbu of all of the compuktiml step8 required to obtain an updated 

pwameter estimate @+'by procersing the avribrble data, the known deterministic 
input, a d  the curreat parameter estimate en. 

371 



Fig. 9.1 Calculations Required for S u e  Iteration in Modified Newton-Raphson Search 

To simplify the description of these computations, the steps performed in a single 
iteration have been grouped into the following four major blocks (delineated by the 
broken lines in the diagram): 

a SQUARE-ROOT FILTER block that processes the mearurernea data 9 and 
the external input f to obtain a filtered estimate 2 and a correrpoading 
residual process e, defined as the difference between the data and the 
filtered state estimate. The square-root filter implements the equations a = 
Ly + (I-L)m and e = 9-2. The central compnution in the square-root filter 

block is that provided by the operator L = I - CI+R)-'h defined in terms of the 
square-root of the predicted-data-ccuvariurce (f + R). ThcI operator appears 
in two disthct places in the diagram: in the data filter, wbae primrig 
function is t o  process the m%amrementr 9; and in the mean filter, whore 
main function Is to  process the suspected me- m. The suspected mean is in 
turn obtained from the known extenul input by meam of the input-output 
model. 
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0 a SQUARE-ROOT FILTER SBNSITMTY block that processes the 
measurement data y and the detenainistic input f to obtain the filtered 
estimate sensitivity &/a. Thit block implements the equation &/a = 
(aL/a)(y-m) + ( I - L H W a ) .  The computation of the sensitivity a L / a  is the 
main calculation performed in this block. 

a GRADIENT-HESSIAN SYNTHESIS block that forms: the function-space 
gradient a J / a  of the likelihood h c t i o r u l  by mean8 of the equation aJ/W = 
Tr((aL/aXI+K) - tWS)e*J; a d  the function-space approximate H e e n  by 
means of the equation M = Tr [(aL/aeWI+BWaL*/a)] + (&&Woa). Note 
that the qu~ntity that is actually evaluated in th is block is the kernel MWt) 
of the Hessian operator. This kernel is a fmrctiot of two spatial variables x 
and f defined over a "square" domain (r/f)cQ I Q, where Q is u before the 
spatial domain of definition of the system model. 

a NEWTON-RAPHSON ITERATION block-whose input is  the gradleat and the 
approximate Hessian and that generates as an output the updated parameter 
distribution 8'' for the next iteration. The central calculation in th is block 
is the solution of the integral equation M~& = that rernltr in the 

parameter estimate W t e  ti#. 

After specification of the parameter estimate en+', the square-root filter L& .pd its 

sensitivity a L t & / a  are redesigned by lettin# 8 4 , and the steps outlined above 
are repeated in order to conduct the next step in the iterative process for optimization. 

n n+l  

The predicted-data-covariance smare-root filter processes the data y and the 
suspected mean m to produce a filtered s t a t e  estimate 2 and a set of re-idruls e - y-2. 

This is done by mean8 of the equation a = Ly + ( I -Lh,  where L = A-(I+R)-'~. Thir 
equation, while providing a very succinct symbolic description of the splure-root filter, 
does not by itself provide a recipe to conduct comzmutfonr. In order to provide such a 
recipe, it is convenient to  use the corretpordky gpectral form 5 = (1-co-l~~ + 
COSQLPLL, which expresses the spectral amplitudes \ - ek% of the filtered state 
estimate z as a linear combbtiW of the &ta and suspected mean rpectral amplitudes 
yk and Such a spectral form of the predicted-6.u-covariance square-root filter is 
illustrated in Fig. 9.2. 

The diagram in the figure illustrates the main calculation8 involved in the square-root 
filter. On the upper branch of the diagram, a set of data"] y =.[yl,...,y J is assumed to 

be avahble at  N discrete location8. A spectral -lyrir[21 ir conducted on this data to 
obtaia the data spectral amplitudes'3J Iy' ,...a 1. These spectral amplitudes are 
then multiplied by the coefficients (1-cosq) in the data filteJ4], r ed -  in the t e r m  

(l-cosa$. On tho lower branch of the diagram, the detenainirtic inputs ft6] are 

N 

N 
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processed by e inputJoutput qstern to  obtain the suspected mean 
m = [m ,...,%] A The spectral amglitudet mk * m[g]of the suspected mean are 

then computed and subsequently multiplied by the coefficients C O ~  in the mean 

filter[''' t o  produce the terms cos(qmL Ill1. This last term is then added t o  

(1-cosap ' in"] red-  in the filtered state spectral amplitude8 #21 and the 

residuals e:']. Note that the physical state ertiaute a d the residual e can be 
recovered from at. and ek by means of the sumfmt.ion8 2 = &2 + and e = &eht$k, 

1 * *k 

k k  
akhough for SimpUCitJ? this h8t t r U h 8 f O ~ t . h  b nOt 8h- Oa the diagram. 

112 13 

Fig. 9.2 Spectral Form of Predicted-Data-Covariance Square-Boot Filter 

The foregoing remark8 have scmtinized the spectral form of the rqprre-root filter 
ct,wtion z = Ly t (I-Lhn. The immediate aim z~oyo Sr to conduct a 8imft.r detailed 
analysis of the spectral representation of the -re-root filter rmitivity equasiou 
WaS 5 (i3L/20b t ;I-L) Cam/ae,. The spectral form of t h i 8  eqtution ir m t e d  in Bq. 
(6.15) and illutrated in the block diagram in Pi& 9.3. The overall p h r y  
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function of the square-root filter sensitivity is to process the N mean-centered data 
spectral amplitudes"1 rad the M determinirtic inputs[21 in order to obtain the spectral 
amplitudes oft3] of the filtered state estimate sensitivity ad*. An intermediate 
calculation embedded within th is overall process involves processing of the 
mean-centered &U spectral amgUtuder y"] by means of the N-by-N matrix, with 

general elements ah, representing the data filtsr sensitivity ~L/w[']. Other 

intermediate steps involve: processing of the deterministic trrpatr fm [21 by the 

filter 17] to obtain the terms C O ~  tam/aeIk [el . 

input/output model sensitivity muir bb "1 to generate the suspectad mean spectral 

amplitudes (am/ae), I61; a d  dseqrrent processing of these coefficients by the mean 

Fig. 9.3 Spectral Form of Sqarre-Root Filter Sqitivity 

IO. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

The 'a of erthmtion for elliptic qsthrmr is so full of interests research 
problem that, in spite of all that this paper has covered, much more remains to be 
done. There are some of the problem that lie ahead: 

0 Conduct of an asymptotic statistical property analysis that explorer the 
convergence of the parameter estimates as the uumber of Obrtnratioar 
increases. 
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Development of approximation approaches thrt rQomusly urive a t  
f inite-dimensional approximations to  the infinite-dimensional solutiorvl 
advanced here. 

More complete investigation of the optimal input design problem. In 
particular, development of "spectral' domain design approaches which would 
do for elliptic systems what the frequency domain methods achieve for linear 
time - invariant dynamical systems. 

Development of more precise mrthemrtical arguments to  justify 
function-space differentiation, eigensystem expansions, covariance 
calculations, likelihood-ratio derivations, etc. 

Investigation of alternative (to the square-root) factorization of the 
pradicted-data-covariance that could result in easier calculation of the 
function-space derivatives necessary for the Newton-Raphson search. 

Numerical experimentation with the filtering, S~OO- and identification 
algorithms to gain further insight into the state and parameter estimation 
approaches and solutions [SI. 

As a final remark, this paper is a concrete example of the power of the functional 
analysis approach to estimation advanced in Ref.  [4]. Because of the conceptual 
simplicity of the method, it has been possible to  solve in th is  paper problem that would 
have defied solution by any other method. It has also made it possible to conceive areas 
for future research that would otherwise have been left unidentified. 
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1. INTRODUCTION 

Many important issuet in the control of large space stmctotcs are intimately 
related to the fundament.1 problem of parameter identification. Very often, a 
complicated structure can be adequately modeled for certain operationr by the 
fitting of a rather rimple model with a number of free parameten. Tblr simple 
model then can be referenced for necestary control operations. Important 
applications include the many tpace station design8 which are baaed on the amembly 
rrnd joining of discrete module* by crew mewem. Thiz crew-misted coartruction 
wi l l  result in a configurrtion -v nich t a Irrge-scale composite of wuy structural 
element8 and whore static and dyrumic chrracterlrtics cannot be abeqortely 
modeled in advance. In fact, any mode- will require periodic upflat- as more 
modules are added to the system and as the rtn;rctural properties of the element8 
rlowly change over the Wetime of the station. 

One might nl8o ask how well th i8  identification process can be carried out h the 
presence of noisy data since no sensor qstem is perfsct. With these conrideratiom 
in mind our algorithm are designed to treat both the case of uncertainties in the 
modeling and uncertaintier in the data. 

Thi8 paper aerves as a companion to [a] where the analptical arpect.8 of 
mrximum likelihood identification are considered in wme detail. Here we foctu on 
the questions relevant to the implemenution of these schemes, p3rticularI9 as ttray 
apply to models of lwge space structures. OPT emphriis will be ,-a the influence of 
the infinite-dimenrim1 character of the problem on finite-dimenrioPrl 
implementation8 of the 8lgorithm8. We highlight those areas of currev'- a d  fu tm 
an8lgsL which indicate the interplay between error analysis and possible truncation8 
of the rtate and parameter spacer. 

2. MODELS 

A8 in (61, we conrider the syrtemr of the form 

Here A it 8 formally self-adjoint elliptic dif€crenti&l operator defined over the 
spatial donuin n; the integral operator @ it related to A by 
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where I is the identity. B and C are appropriately dimeariooll operaton that model 
the influence of the procesr error o and the input f on the state u. H is an 
operator that chrracteriaer the 8t8te-tO-Ob8eW@th mapi o a d  9 are model 
erron that form the model error vector 

and f is a deterministic input. Conceptually the error vector E representa spatial 
white note a d  is characterized by the covarhnce operator 

uo and uq are non-negative scalar wemting parametem that respectively 
m e a m  the relative importance of the modem error a b  the meammm40t error. 
Thus, the limit uo + 0 corresponds to  the caw of perfect modeling while the limit 
u + 0 correqoads to the case of yerfect mearruemsnts. v 

8 is the porribty infidte-dimen8ional parameter which must be ettimated. For 
simplicity we shall generally contider cases where the parameter dependence is 
restricted to the operator A. potthhrmore, we astom4 a8 in [6) that the parametsr 
enters linearly into the expression for the potentirl energy of the system. Thru we 
assume 

where D* denotes the form81 rdioint of Di the corre8pod.q~ potential eXl6rm 
given in t e r n  of the appropriate state-rprce inner-product: 

And finally, the detenninfrtic a b  8tochartic forcings will be localized to 
discrete point8 which might correrpoad to actuator locrtkr .  Similarly, the 
obrenration mrp retimu a vector of obrervations at dircrete poinu which might 
correrpond to sensor locations. We a r m w d  that there are Ns point-rearom a t  
locations {[Q and N, point-actuations at  locationr {TJ. 

Became of there last assumption8, many of the relevant calculation8 m t b d  h 
[6] reduce t o  matrix and vector mraipulrtiofu. In thir paper the mution 3 will 

(k) refer t o  a finite-dimension4 vector whore k-th component 14 given by g . 
Similarly 
relevut dimemiom of vector AC matrix qurntitier will rlwayr be clear from the 
context. 

(hj). me is the notation for a matrix whom (i,j)-component .is given by G 

After t a w  formal limit8 in the system (2.1) we bye:  

AU = uo B 3 +  Cf 
(2.6) 
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where 

s 

w 

(2.76) 

(2.7e) 

(2.7D 

in the c u e  of more general senrin4 and rcturtin$j ryrtem, the oaodeliq 
requii,mentr for the system can be reduced to rolvin~~ equations OE the form 

AU = f .  (2.8) 

Thus the discussion in tu section will facut on how the infiniie-dimena!oml 
stm-ture of the ryrtem (2.8) influencer the choice of finite-dimensional 
approximations which ern be m d e .  In this paper we consider two specific 
structural rnodeb: a strirq under tefuion and a wrap-rib a t a x i a .  

Let be a distance coordinrt: ernved in meten along A of Length L which 
is aho given in meters. Let u(x 7 be the displacement in meters and let &&I Re the 
tension parameter given in upla of newtons. The forcirq dcnsity f&) in 
unit8 of newtondmetez. Then the energy potential [3! la @en by 

given 

(2.9) 
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Of come  the energy potential i s  given in units of newton-meten. The equations of 
motion can be derived immediately bared on the principbt of the calculus of 
varhpon8 but it will be convenient to first  transform to dimenrionlerr coordinates. 
Let a* be some chara~terirtlc value of the tension parameter. We introduce the 
dimemionless variables: 

A 
X 

.x = - 
L 
A at3 

a(x) = -fi- 

"* 

U(X) 

L 

A h  

& X I =  - 

%)L 

t4 

$(& 

%L 

f(x) = -- 

V(u) = --- 

and the potential expremion becomes 

(2.10) 

(2.11) 

For simplicity we prercribe boundary condition8 ,ontpolding to fixed end points: 

u(0) = dl) = 0 (2.12) 

Then arguments based on the calculua of v a r h t i m  give the mystem 

(a(xlu'(x))' - f ( x )  

u(0) = ull) = 0 O < x < l  
(2.13) 

This example has been studied many timer in the clardcal literature but m 
analogous approach @ver comparable upresrim for much moh complex systems. 

We consider now a planar model for I wrap-rib antem which is wed to study 
out-of-plane vibrations (sce P W e  1). The antenna model comprber N gores 
(subsections) modeled by *uterconne:ted rib8 and mesh. Since the tramformrtions 
are similar to  thore wed in the care of the string, we imm66i.tely write the 
potential expression with dimenrionlasr coodinater. Let the vector of rib 
dirplacemenu be ar) where the k-th component of zi8 u ~ ' ,  the di8placament of the 
k-th rib (0 < r < 1). Let the vector of merh dirplacementd bs%r,8) where the k-th 
component of ais v(') the displacement of the k-th merh rector (0 < r < 1 , 0  < 8 < 1). 
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Pig. 1 Simplified model for wrap-rib antenna 

Based on malyrk of actul antenna d e w ,  our model consists of N identical 
beams fixed at a central hub. Stretched between the beams are N identical 
anisotropic membranes. The potential eqyation k given by 

d'z d'u' dr 1 1 
2 V = -  I C 1  7 - 

0 dr' 

(2.14) 

Here the coefficients {GQ are related to the phyeical parameters of the beam 
8 d  memtranea thudy: 

G l =  --- 
UL 

Tr eo L' 
Ga = 

U 

T ~ L ~  
Gg = 

OB0 

(3.15) 
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E and Io are respectively the Youzy'~ modulus ud the moment of inertia of the 
beams. Tr and Te are rewctively the radial .nd circumferential tensions of the 
membrane. L is the radiw of the antenna d eo it the .Iytllar width of a rector, 
that is, we have 

2n 

N 
g = -  

0 
8 (2.16) 

where N is the number of gores. Pixully, u it lome convenient scaling parameter 
with the dimensions of energy (nt-m). We note that the phydcd f o r c a  densities rR and FM having retpective dimensions nt/m ami nUm3 were rescaled accozding to 

(2.17) 

Appropriate geometrical boundary cozditioar follow from fixing the center .nd 
attaching each of the ribs to its adjoining membranes: 

(2.18) 

Here is an N x N periodic matrix: 

C =  
N 
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As in the case of the s-, the equations now follow from .rgumeatr based on 
the C d C d U S  Of V8fhtiOlU: 

l a  

r &  

with the additiond natural boi..d.ry conditions: 

(2.20b) 

(2.31) 

One of the focuses of this study is the conrideration of nonm0d.l approaches in 
the finite-dimensional approximation schemes. In practice, tbir gene- wil l  mean 
directiy sol- a h e a r  system of equations rather tlun proceeding fron 30- 

finite modal synthesis. But the infhW-dimen$ional 8tructure of the 8y8tem (2.8) 
also can influence the particular finite-dimensional approrinution schemes d. 
Our approach is sufficiently generd so that any adeqgate finite el- aent model of 
the system (2.8) should yield adequate Eumerical approdnutim. Br me can often 
do much better for a particular model or a particular chrr of modelr. 

We use the antenna model to illortratr the point md make some observations 
that should influence the approximation scheolts regardless of which finite element 
or finite difference scheme is employed. We exkphmixe that these coaridentions 
also apply to much more complicated antenna model8 whkh rbrre 88lient features 
with the system (2.18) - (2.21). First we note that the rtnrcfurt is periodic in the 
9-direction. This cyclic symmetry leads to conriderable saving8 in the compukth 
of solutions to (2.8). This can be deduced from either the differentid equation or 
the energy expression (2.14). The periodic mrvix can be di.g&ed bY means of 
a finite Fourier transform [l]. That tr, let U be the N r N matrix whore (f,k) 
component has the form 

IC) 

(2.32) 
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We then h8ve: 

(2.23) 

This tr8nsfoxm8tion decouple8 the 8ystem 8ince the potentid exprc88ion (2.10) 
with 

= u =wu 
u 

(2.24) 

The brlurc@ of terrm in the equation also can influence the choice of 
discretization. Based on A report by Lockbed on the 8pecific8tionr for a SS-meter 
wnp-rib antenna with 48 ribs [2], the follo*riry n o m i d  parameter me8 were 
derive : 

- 1.31 10*m4 

B - 9.72 10'ont/nr' 

IO 

TR - 1.75 lO-'nt/m 

Te - 3.50 lo-' nt/m 

(2.25) 
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G - 2.29 
1 

G - 8.58 lo-' (2.26) 
1 

G - 1  
8 

This -ne- that the ndi.l terms of the mesh potantid ue comparatively I11D.u 
ucepr nhen the rrdi.l derivatives u e  large. How thir affects the stnrcture of the 
system is demonstrated in the follo- example (see Figure 2). 

RIB 2, 

F b .  2 Si@e antemu gore 

h thir example we rtudy the equationr for a rector of membrane where the 
prescribed boundary conditions depend on the adjoining rib ~ k c e x n e n t s  (fx(r) u x l  
fa(r)). For simplicity we take the forcing on the mesh to be zero although the more 
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general case could be handled in a similu fashion. We are of course interested in 
the case where 

0 < € < < 1  (3.28) 

which corresponds to the parameter ranges (2.26) in (2.30). Physically one expects 
that the radial terms contribute little to the sut ic  bch.vior except perhaps at the 
boundary when the gradients m y  become w e .  One is also interested in the 
behavior near the cornen (r,8) = (LO) and Cr,e) = (1,1) since some rinsplu behavior 
may be possible. Using the techniques of pcrturb.tion$, (see for example 
[a]), one can thou thrt as € approaches zero we have 

This expansicm could be continued to higher orbera, .od, u noted before, a more 
complicated expression wo-dd r e d t  from forcing8 on the membrane. One possible 
approach to &e numerical 801Uth of the 8y8tem (2.20) k-dd by the eUminltion of 
the mesh behavior entirely be mbstitu- an expre88ion'rimilu to (2.29) into the 
beam equations (2.90.). Then one would have only equations alone the beams to 
solve. If higher-order accuracy on the mesh is  required, one could then apply 
finite-element techniques to the system obtained after linearbation about the 
asymptotic expamion for the mesh behavior. Finally we note the appearance of 
logarithmic singularities in the mesh gradients (&re, ar tole cornem (r,8) = 
(1,O) and (r.8) = (1.1) are approached from the interior of the mesh. This 
consideration should also influence my finite element approximation of the me&. 

We emphasize that th is uulyris applies not only to the simplified antenna 
model we have considered but would hold for more elaborate configur8tion8 when 8 
similar structural balance of term8 govern the system. Thus, m8ny modeliYuJ 
options can be considered for parameter identification in important c lwes  of 
structures if one does not insist on a traditional 11106.1 churrcterization of the 
system. 

3. THE LIKELIHOOD FUNCTIONAL 

A detailed discussion of the likelihood pxinciple is given in (61. The functiond 
we consider is the negative logarithm of the likelihood ratio associated with the 
detection of a Ga-asian signal in additive Gaussian nobe; thir framework is 
traditional in the theory of communication and 8-1 detecticm. 

In accordmce with the diacusrion @veri in (61, md the notation discussed in 
Section 3 ,the log-likelihood functional is given by, 
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(3.1) 

Here Fl*q indicates the Euclidian inner product in the N*dtmbnriOo.l w e e  to 
which the obsemators belong. 

Prom the assumptions of Section 2, it is easy to see t&t 5 El is an N N lnutrix 
whose (i, j) component is given b9 

where g(xl<) is the point-source solution of the underlying elliptic -tern 

A u ~ ~ ( x -  E )  (3.4) 

with the appropriate boundary conditions. And likewise the expected observation 
has the form 

?a;,= g f- - (1; iN IT f = (f ,..., f a ) (3.5) 

We note that (3.1) also differs from (1.3) of [a] in accordance with the 
rntraductioa of the poritive weigh- parameters, uo and u,,, into the system (2.1). 
An equivalent form for the likelihood functional follow from a rearrangement of 
terms. 
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where 

(3.6) 

This form is useful since one can amve a t  the f u a c t i o d  given in [a] directly by 
the substitutions 

This correspondence rllows one to we the algorithms derived in [a] directly on the 
functional 

The goal is to find the parameter value 0 which minimizes the log-likelihood 
Eunctional; that is, we wish to solve 

-c 

min Jt0,$) , (3.10) 
e 

where 0 ranges over some appropriate infinite-bimenriorul qace. As- that 
the functional hr.s a Prechea; derivative rrad rati8fier UI appropriate convexity 
condition, one can restate the problem (3.10) as 

3 . I  

a J / S  (e,$) = 0 (3.11) 

Both problems (5.10) and (3.11) have been studied in a variety of contexts (See, for 
example, [SI). 

Since both th~, parameter space and the s t a t e  space are infinite-dimensional, 
one m w i  make dual approximations in order to achieve problem that are 
finite-dimensional and therefore computationally tractable. Thus in practice one 
solves a sequence of problems of the dorni 
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(3.12) 

or 

(3.13) 

where the state-space and parameter-space have been replaced by finite 
dimensiolul spaces. Then the problem reduces to a finite minimixation problem 
which can be treated numerically by a variety of techniques (see, for example, [1,5)). 

The state-space Can be approximated by a finite-element space which i s  
appropriate for approximating solutions to (9.41, and the parameter-space can be 
conveniently represented by a spline-based space. Let Nx be the dimeruion of the 
finite-ctimensiorul approximation to the state-space and let Ne be the dimensions of 
the finite-dimensional parameter space. This leads to the natural substitutions 

b 1  

k =1 
(3.14) 

(1) RJ )T u = [u I . . . )  u x ] s 

where the sets {tpd and give the basis elements for the skte and parameter 
spaces respectively. 

It wil l  also be convenient to consider the strte-space 
weighting given by the basis elements of the parameter -ace. 

< u,v >) = <u, r p >  

(i {la . . . ,  - 

inner-product with a 
Thus we define 

(3.15) 

Jn the following we restrict our attention to these finite-dimensional problem, 
and, when the context irr clear, we suppress the ^-notation. Questions concerning 
the convergence of the numerical schemes and the general relationship between the 
infinite-dimensional and firlite-dimensional problems will be discussed more fully in 
a future report. 
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Most nO&ear Opthhatiou teChniqlM8 reqube 80lVhg Uearfred 8y8tetXM 
iteratively, a d  conuequently one must solve system of the form (3.41, where the 
dimension Nx may be quite large. Since the complexity of 801- an m-dimenrionrl 
linear system is O(ma), the speed of convergence of the iterates is an impoxtant 
consideration. With this in mind, we emphasize the use of quasi-Newton methods 
for the solution of (3.13). Consequently much of the resulting effort is directed 
towards deriving adequate approximations for the Ne- dimemional Jacobian vector 
aJ/M and the Ne x Ne Hessian matrix aa J/a2. 

We briefly outline the procedure here; as noted previously, a more complete 
description is given in 16). In general for the finite problems, the dimension of the 
s t a t e  space (Nx) is much larger than the dimension of the parameter space Ne), the 
number of sensors Ws) or the number of actuator8 RJ.1, and so it is preferable to 
carry out. the necessary manipulations in spaces whose dimemions do not depend on 
the dimension of the state space. 

Therefore, as in [a] we represent calcrrlatim in term8 of the eigen-structure of 
the Ns x Ns matrix R. 

N 

(3.16) 
n Ak = tan ak (0 S a <-) r i  

From the spectral components of R we define useful quantitks a8 given in [a]. 
N 

From (3.2) we have the expected observation 

(3.175 

and also we define the filtered observation 

where the Ns x NS matrix L is given by 
N 

(3.18) 

(3.19) 

aad tl;e related matrix K is given by 
N 
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(3.20) 

Par algebraic convenience we also define the residual of the process: 
- - c -  
e = y - z  

ek = Tk* 'i' 
The gradient of L is represented by 

(3.21) 

(3.22) 
k m#k 

(3.23) 

i Pot later convenience we derive another form for the coefficient8 {ah]. us- 
standard trigonometric identities one can easily verify the relation 

cosak - cosa (cosa 3 '(cosa m) a 
= -  m (3.24) 

tuna k) a - (tanam la COSUm + Cos% 

This leads to an alternate form for the coefficients 

- ( Cos\)' [(kk)' <mk, % >j] k-m 

(9.25) 

- (cosak cosam)'/ (COS% + cosam) . 

[Am%.; Wp,, % >i + Ak ILL <Dpk, Dx > 1 m i  
, k # m 
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The point of this last derivation is that the bracketed terms reduce to rimpler 
expressions. Prom (2.2)’ (2.71, and (3.4) one can easily rhow: 

and also from (2.7) we have: 

x m -h;@B*p, 

By this we have: 

where the Ns x Ns matrix A has the form -1 

And similarly we have the useful relation 

’k<-k’ D3j = q * B  k -j f 
u = @Cf 
- 

where the Ns x N, matrix B is given by -i 

(3.26) 

(5.27) 

BPSrn)  = <Dg (xJEk), Dg (X,F~)>~ (3.311 
1 

We now give expressions for the gradient and the Hessian fn terms of the 
quantities given above. As in [a] the gradient can be represented as 
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(3.33) 

B u c t  expression8 for the H e 8 d U  are givca in [6]j in general, \owever, all 
terms need not be estimated to @ve an adequate approximation. In par'Jculrr, the 
crlculatfonr are much simpler if the terma With second-order derivative* CUI be 
ignored. The simplest approximation comes from only keeping thore terms which 
contribute to the expected V L  of the Hessian. Thua, from (1.12) of (41 the 
(i,j) - corzrponent of the N, x Ns Hearian approximation e i8 given by 

(3.34) 

where by (3.20) a d  (3.22) we have Vi ( m*k) a F s e c %  

This esti~natc is justified when the covariance 3s amall as one might expect if the 
number of measurements is large. This point will be inveatigated more rigorously i~ 
a future paper. 

We now ~utnmarh? the search procedure for the 8yrtem (2.6) where the 
Ns-dimensional obsenratian vector 7 is even and an WYa1 N e-dlm8tUid 
parameter estimate go is rvauable. 

Pint the expected observation a d  the covarhnct matrix E are dete&b from 
(3.3) snd (3.5). The spectral decomposition of E a9 well as the qpantkiear given by (b.17) 
- (3.33) then can be determined by standard matrix abebrr routher. Aab therefore 
from (3.921, (3.33) and (9.941 one obtains an N c - d i m r u h i  grdien t  spptoXimat3m 8 

an3 an Ns x N8 Het5au approximation ?$. 

The parameter eatinlate eo can then be updated by making the quasi-Newton 
correction: 

-1 -. - -  
e* = e o -  Y o 8  g (3.35) 

Here' yo i.8 an appropriate scalar choreo to  improve the updated parameter 
ertimrle. In accordance wl '1 the geueral ?.&eory of Ne.rton iteratiom in function 
spacer IS], one can repeat this procedure until the 8olntLoru of the Ilnowri2ed problems 
converge to  the rolutlon of the underlyw nonllnerr problem. 

This analyrir completes our o u t h e  of the marinrum Ueubood identification 
prOse88. h SSCtiOn 4 we give eXaf&~ple!J Which ub8w8U the 8 U C C g E i f d  
implementation of there schemes in useful applications. 
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+. 
previously discussed aborithms. 

BXAXPLBS: In this section we give examples of successful implementations of the 

We f i r s t  consider the string (cf (2.13) 

Au = - (ak) u'(1t))' 

do) = u(1) = 0 
(4.11 

For the case where the unknown tension parameter is constant, the point-source 
solution can be explicitly given: 

x< = min{x,El . 
And thus, as outlined in Section 2, all calculations could be given in terms of these 
quantities, without any uvncation of the state space or the parameter space. 

In general, however, truncat'ons in both spaces are necessary. For the s t r i n g  
problem we consider an Nx - dimensional state space of linear splines; the s t a t e  
variable then beccmes the vector of nodal values on the corresponding grid. For 
simplicity we take the grid to be uniform; thus, since the endpoints x = 0 and x = 1 
are fixed, we have: 

1 
Ax= -- 

Nx t 1 

The state-space elements are then given bv 

(i) NX 
U = U K.(X) 

1 
i= 1 

wherc, as illustrsted in Figure 3, the basis elements {r{x)) have the form 

x -(i-llAx 
- , (i-1) A x < x < (i) Llur 

Ax 

x -ti)Ax 
, (i) Ax < x  < (i+l)LLt 

Ax 

0 , otherwise 

KCI(X) = 

(4.3) 

(4.4) 

(4.52 



(i-l)AX (i)AX (i+l)AX 

0 AX 

Fig. 3 Linear spline elements 

A rimL1.r dircretizrtion of the parameter rprce k pO88ible. P i n t  we consider the 
augmented upline space 

where, ar illustrated by Figure 3, the endpoint-elements K~ and ‘ c ~  are given by 
X 
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(&I - x 

Ax 

0 , A x <  x < 1 

, o <  x <Ax ------ 
IC (XI = 
0 

Thus we have a corresponding parameter element 

(4.7) 

(4.8) 
i =o 

d 

which would give a parameter space {a with dimension N,t2. 

However, as previously noted, the resolutim of the pairmeter space often does 
not need to be as fine as the resolution of the state-space. We consider then the use 
of I) piecewise linear parameter space of lower dimension where the only 
requirement is that the nodal points must be a subset of the nodal points of the 
state-space. The new parameter space is then a subset of the (Nxt2)-dimemional 
space given by (4.6). Let a be an No -dimentional parameter element 'Ne 5 Nxt2). 
Then a identifies with an element Z of the larger (Nx+Z)-dimensioarl space a d  the 
relationship is given by 

- - *  
hr 

a = &a (4.9) 

where E is an ( r t 2 )  x Ne matrix. And correqmndingly, we have 

&==B - . (4.10) 

This relationship simplifies the algorithm as described below since B is easy to 
construct, a d  the more cumbersome calculations which are needed to determine 
partial deriV8tiVe8 with respect to the parameter space are *en specified in terms 
of the grid associated with the s t a t e  space. Thus we have: 

a /s :  a / s  (4.11) 
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We illustrate these points with a sample calculation (see Pig. 4). We consider 
the case where there are seven sensors a t  the locations 

A A A 
S S S S S S S 
I I I I I I 1 

0.0 0.25 0.5 0.75 1 

S: SENSOR LOCATION 
A: ACTUATOR LOCATION 

Fie. 4 S t r i n g  tension identific-tion: sensor and actuator locations 

and three actuators a t  the locations 
h 

E E (-258 -5, -75). 
The data vector was derived from a phnt  with specifications 

a ( x ) = 3  t x plant 

C F= 6(x-.25) +6(x-.S) + Mx-.75) 

u = .001 w 

(4.13) 

(4.14) 

u = .QO1 
rl 

For the s t a t e  space we take the seven-dimensid space of linear splines  fix)} 
with nodes corretporading to the sensor locations (4.121, and for the parameter space 
we take the five-dimensional subset of l h e u  sppllnes with nodes corre$pondbg to 
the set 

The relaxation parameter yo in (3.35) was chosen to speed up to the convergence of 
the iteration; these issues will be discussed more fully in a future report but we give 
the results nf the calculations Ln Fig. 5. There numerical experiment8 appear Lo be 
very encouraging although with a crude approximation to the Hessian the 
canvergence can be very slow. 
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Fig. 5 Distributed parameter identification via spline analysis 

In a similar way, the algorithm wa8 successfay applied to the wrap-rib antenna 
model (2.4). To simplify the calculation8, we assumed here that the stiffness 
parameters were scaler8 although one could introduce a spline-baed @ace ad in the 
previous example. 

Again for simplicity we consider the case where there are six gores (N = 61, 
where a sensor k placed on the o u t e ~  endpoht of each rib (r = 11, and where an 
actuator is placed a t  the midpoint of each rib (r =.SI. This scheme is outlined in 
Flgute 6.  

We introduce the set of N-dimeasional d t  vectora 

(4.16) 

- 
where the components of each ak are determined by 
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POiNT - SENSOR LOCATION 

POINT - ACTUATOR LOCATION 

Pig. 6 Rib stiffness identification: sensor and actuator locations 

(4.17) 

The parameters of the likelihood functional are then given by 

CYa = .001 

u = ,001 (4.18) 

cT= 1 < 6 (r - .SI 
rl 

And the stiffness parameters of the plb..,. are given by 

E1 = 1.25 .lo’ nt-m’ 

TR = 

(4.19.) 

1 ’ 5  .IO-’ at/m (4.19b) 

L = 2.75 .IO-’ m (4.196) 

We applied the algorithm then to  the case where the unknown parameter was E1 
while the other stiffness parameters were asawned to be kxiown. 
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To discntize the state-space eight equal mbdivisionr were made in the radial 
direction on each rib and in each mesh sector; in the circumferential direction five 
equal subdivision8 were xnade in each ae8h sector. The shape functions on the ribs 
were given by Hermite cubics while on the mesh the shape functiom were given by 
splines linear in r and 9. In test cases this discretization produced a t  least three 
digits of accuracy in solving problems of the form (3.4). In all calculations the 
principle of cyclic symmetry (cf. (2.24)) was exploited to reduce the number of 
calculations. 

4 

5 

Convergence of the likelihood algorithm was very fast (see Fig. 7) when the 
relaxation parameter was taken t o  be 

* 

1.13866 105 

1.23889 l@ 

yo = 2.5 . 

LIKELIHOOD FUNCTIONAL 

-0.0048 - 

- 
- 

-0.0052 - - 
i I 

0.1m 0.126 0.1 w 0.175 

RIB STIFFNESS X IO-‘ nwn2 

IT€ R I T ~ N  f STlMATED 
Nr .18€9 PAR AM ET ER 

I 1  I 1.75000- l@ 4.- 10-1 I 
2. 10-1 I 
3. 1oA2 ---I 2. 10-4 

Fig. 7 Distributed parameter identification of beam stif fnesa parameter 
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Numerical experimenu rho demonstrated an improvement in the sensitivity of the 
identification rrchemes a8 the number of rnerruremenu was increased. Thus, Figure 
8 illustrates how, for the antenna problem considered, an increase in the number of 
sensors led to a s t e w  of the likelihood functional. Here the curves mre 
shifted transversely for illu8trative purposes. We note that no corretpondhg 
improvement in the parameter estinute occurrcd in these trials, possit$ because of 
the lea8 favorable &pS-U-noire ratio which corresponds to renting in the interior 
of the ribs. 

LIKELIHOOD FUNCrlONAL 

I I I I 
0.125 0.150 0.175 0.100 

Fig. 8 

(a) One sensor per rib at r - 1.0 
(b) Two aensors per rib at r - 0.5, 1.0 

( c )  

Sensitivity of antenna etlffaese - phsameter ldtantiflca- 
tion according to number of k,eneors 

Three eensors per rib at r - 0.5, 0.75, 1.3 

More detailed numtricrl experiments with distributed antenna rtiffneu 
parameters will be given in a future report. But the resuits outlined in t&i8 report 
dernorutrrte already the great potential for these algorithmr. 
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DISCUSSION-FUTURE RESEARCH DIIWCTIONS 
Moderator: Heman A. Rediess, H. R. Textron, Inc. 

Panel Members: A. V. BaWrbbm, University of California, Los Angeles, 
R. F. Crviisk, NASA Headquarters, J. L. Lions, College de France 
and Institut National de Recherche en Informatique et en Automatique, 

R. E. Welton, Purdue University, and W, E. Vrrnder Velde, 
Massachusetts Institute of Technology 

SYNOPSIS 

The intent in thi8 session was to present several viewpoints on the direction of 
future research in identification and control of flexible space 8uUCtnres. The penel 
members were given the option of p r e p a m  formal papers or presenting informal 
comments. Professor Lions was unable to attend the meeting becau8e of a last Ininate 
change in plans but did submit a formal written paper which is printed in Session M of 
these proceedings, This synopsis attempts to capture the main points diacarred but has 
not been reviewed or endorsed by the speakers. 

Professor Vander Velde di3cussed uncertainty management methodology for large 
space structures. He identified six major types of ~x~certamties that are likely to exist 
in control system design and operation. After assessiag the present methodology for 
handling each type, he w e s t e d  the additional technology developments needed. 
Altogether, he su~~gerted specific research topics covering: remot nobe ir nonlinear 
situations; external or internal diaturbancer; modeling approrirrution8; model. parameter 
errors; component operational status a d  reliability; and, spacecraft c~-afiaurati.on 
changes. He introduced, and discasred to some extent, the concept of an on-line 
system diagnostic modtar for detecting certain types of fault8 or uncertainties, mch at 
model parameter errors, sewor failures or actuator failures. 

Professor Vander VeLde concluded that the dynamic cbracter of flexG'le qace  
structures and the likely complexity of their control rystema nuke them erpsqially 
likely to have uncertain component operatiag sktur. The problem of detec+iry 
component failures is coupled with the effects of modem error whether we ?LLe it or 
not. Perhaps this couplirq can be utilkad, or a t  least controlled, in the procerr of 
monitoring the health of the system by use of an integrated 8yprtem dhgnortic monitor. 

Professor BalaLrIshnan discussed the important research area of uncertainty 
modeling from a perspective of estimation and identification problems in random 
fields. Currant estimation and system, identification methods only consider noise with 
rational spectra. We need to  look a t  signals with non-rational spectra. One area iu 
which non-rational spectra appear naturally is in the area of random fields. Random 
fieldr are random processes in which the parameter is no longer time and arise on space 
structures in describing, for example, deformation in an antema or mirror. Yrofersor 
Btlakri8hn used a geophysical example of gravity anomalies to illustrate the 
effectiveness of random field theory in estimation problems when dealing with 
non-rational spectra. Although there extat.8 rubstantial research on the theory, there 
are only a few practical applicstim in the literature. Techniques are available that 
can be applied to practical large space structures problems. He suggested that more 
effort be made to apply these techniques. 
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Professor Skelton presented his views on the inseparability of the control and 
modeling problems. When a model is used to derive a control law, then :ne cannot say 
how good the model is without hawing what it will be used for and what the control 
will be. That means that one cannot evaluate the impact, of modeling errors until the 
control is specified. There is a challenge to  the community to develop techniques that 
do the complete model error estimation and compensation problem. 

M r .  Carlisle of NASA Headquarters discussed the challenges in controls for the 
Space Station. He views the problem of des- the S?ace Station as involving trades 
among "subsystems". For example, in trades between controls and structures, one uses 
all  of the technology options in both disciplines to  optimize the overall design. NASA's 
plan is for an evolutionary Space Station with the initial operating configuration to  be 
placed in orbit in 1992. Block changes in configuration and maybe in performance will 
be made subsequently. There is a challenge to the controls community to develop the 
technology that will provide the flexibility for changes and not be the limiting element 
in future expansion of the Space Station. There is a five year period to mature 
technology for the initial system. Periodic block changes will  provide opportunities for 
some later technology to be considered. 

Although the Space Station configuration has not yet been determined, it appears 
likely that it will involve large flexible structures because of the solar arrays, radiators, 
or even the bnsic structure as it evolves and grows over many years. Mr. Carlisle 
described several possible configurations and pointed out the controls challenges. One 
of the major challenges identified was to devise an affordable scheme for developing 
and validating the technology for control of flexible structures in view of the high cost 
of ful l  scale flight experiments. 

Dr. Rediess presented his thoughts on the role of txperim-nts ia the development 
of control technology for flexible space structures. The three main points covered 
were: why experiments are important for developing the technology; the need for a 
coordinated program from analysis to experiments; and the need for a cooperative 
program among the various participants to  make effective use of the relatively rare 
experimental data. It will become increasiagly more difficult if not impossible to 
perform ground vibration testing on large flexible space structures. Designers will have 
t o  rely more on analytical techniques to predict controVstructure interactions. A t  the 
same time, controlhtructure interactions are becoming mare important because of 
increased overlapping of the required controller bandwidth and the structural modes. 
Damping characteristics, important in the controller design, are probably the most 
difficult to predict. Even the properties of new materials, such as metal matrix 
composites, can islfluence the cantrol/structures design optimization. His conclusion 
was that experiments on the g r o w  and on-orbit will be necessary to develop and 
validate the analysis and design techniques. A well coordinated program is needed to 
bring together the promising analytical methods and the experiments 

Dr. Bediess' final point and recommendation was that NASA, the Air Force, and 
other organizations conducting an<i/or sponsoring major experimer'ts either in 
laboratories or on-orbit should establisL a cooperative data base with broad access to 
the technical community. Such experiments are costly and often difficult to get 
supported. It is imperative that the most effective use be made of these very limited 
experimental data. 
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Before opening the discussion t o  the general audience, Dr. Rediess invited Dr. R. V. 
Ramnath from Raytheon and an Adjunct Professor of Aeronautics and Astronautics a t  
MIT to present some remarks on the application of asymptotic techniques to controi of 
flexible space structures (to expand on some of the ideas in Professor Lions' paper). 

Asymptotic analysis is defined as a study of applied mathematical systems in 
limithg cases. The following are some of the benefits of usu it. In model reduction 
techniques, an asymptotic ordering of a complicated system into a hierarchical 
structure can be used in selecting the order of the model. The principle of minimal 
simplication gives a stopping rule for this process. In solving a complex linear 
differential equation, the domain of the independent parameter can be extended into a 
higher dimension. An ordinary differential equation is thus converted into a partial 
differential equation and solved asymptotically in the new space. The solution is made 
to coincide with the solution of the original system along certain trajectories. 
Asymptotic analysis yields a quasianalytic solution which can give insight into stability 
and controllability of the system. Approximation errors are generally smaller. Dr. 
Ramath gave two examples where asymptotic analysis was successfully used to  
generate the controls. He stressed the need of more applications in controi problems of 
large flexible space structures. These techniques have been used very effectively in 
other fields such as celestial mechanics and fluid dynamics, among others. 

The following are what appeared to be the most important comments and 
recommendations made during the open discussion period. 

Some people have suggested that Skylab controls techuolon will be adequate 
for Space Station. If so, there is no need for controls research to support the 
Space Station. 

0 If we rely on Skylab controls technology, we m y  seriously limit the 
evolutionary growth of the Space Station. 

0 It was mentioned earlier in the workshop that NASA cannot afford f1d.l scale 
on-orbit flight experiments. What evidence do we have to  say that we can 
afford not to conduct full scale flight experiments? 

If NASA cannot afford fu l l  scale flight experiments, then the project 
managers will not use the advanced controls terhology and will take a more 
comxvative approach. 

There seems to be A change in emphasis in NASA's program away from 
fundamezltal research on controls and towards large experiiiental programs. 
If that is tme, we msy be in danger of cutting off new innovative concepts. 

0 From the perspective of A user of advanced technology, it is necessary to 
periodically take advanced theory snd apply it to practical problerns in order 
to develop an adequate confidence for application to res1 systems. Without 
th t  confidence, the theory would never be used, and we would be reluctant 
t o  support more fundamental work. There needs to be a balance of 
theoretical and applied/experimental effor t  Ln NASA's program. 
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0 NASA is to  be complimented on the excellent program plrn for control of 
flexible structures that was presented by Mr. Russell a t  t*& workshop. It 
presents a balanced program and a truly integrated controls and structures 
technology plan. 

EDITOR'S NOTE: There follows a synopsis of the prepared remarks given by the 
panel members. 

H. A. REDIESS: I have a particular personal interest in this workshop. About three 
years ago, when 1 was a t  NASF Headquarters a n d  rozponsible for this technical area of 
NASA's R h D  program, 1 encouraged G. Rodricaez of JPL and L. W. Taylor, Jr. of 
Lnnglel Research Center to organize a workshop on control of flexible space 
structures. The first one was held about two years ago a t  JPL and was very effective. 
I'his, the second one, has been equally as successful, and I am pleased to  chair this final 
plenary session. One objective of this workshop is to provide some feedback to  NASA 
and J P L  on research opportunities in controls technology for flexible space structures. 
We have invited several noted technologists to  lead this discussion with you, the 
workshop participants, to  identify these reseaxh opportunities. After thc prepared 
remarks by the panelists, the audience will be invited to  join in the discussion. 
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W. le. VANDBB VRLDE. Unceruinty Mananemeat Methodology for Larne Space 
Structwes I think it is safe to cay that the majority of the p a p m  we have lirrt.ened to 
in the: last couple of days have deal; with one aspect or another *L: handling 
uncertamtie; in control systemss bazause, after all, it is one of tne f adamintal 
purposes of a feedback control system t o  accommodate disturbances, noise, and plant 
uncertainties in certain bandwidth ranges. That is really fundammtal in what we are 
doing. Our pupose here, in this pr'  ent tat ion t h i s  m o m ,  b to  summarize the nature 
of the uncertaintics that we need to  deal with, to summarize the technologies that we 
have availabk to us to deal with them, and to  iddentif9 where there are gaps. 

Now, suppose you were working onboard a space 8tation, and you gradueily became 
vaguely aware that there WAS some persistent oscillation going on. In fact, it WAS 
betting bigger and tigger, and very soon it was cleat to  you that you had a problem. 
The question is, w h t  would you do? Naybe more '~3 the point, would you have designed 
your control system in such c. w v  that it a h t  have monitored itcl o m  Sehrvior and 
taken some action when it observed tlut it had a problem? if ea. what would that 
action be? Well. this is one evidence of uncertsintfr in action, becrwc, of c o w  :, based 
upon our understanding of the dynamics of the system and environment, the tystcta 
should not behave in this frstrion. It L only because we are uncertain atout some- 
that we might conceivably get this Liud of behavior. But here we are oscillating along 
in the space station. WbAt are we go@ to do next? We need to tuve some fall-buck 
position which i s  as robust and r e h b i e  as p088ible. It is certrirly that the most 
robust system ycru can build is one that does not do anything. Altho-ph, in the context 
of spacecraft control, it may very Well be important t o  at least keep m e  r t e o a r  
pointed toward earth to  mdntain wideband commuaication8. Certainly, +he loop thnt 
accomphhes that pupose should be extremely l@w bandwit3. It should not attempt to  
control any flexible mode actively. It should just t ry  to do +it oa= Ctwction. Well, 
suppose we have indeed disengaged our uaakble spacs , *C*  . .em, or a t  m..t gone 
back to a truly robust feedback system. That would tm,, x ., little brecr'chizg 
room, and we wouid have time to  sit back a d  conts?n$ate whrr cuht bsve gone 
wrong. What are some of the uncertainties? What are the tools tb+, we n e d  in crrdcr 
to  handle these different types of uncertainties? whk? arc some of the research 
directions that we ought to recommend? I am gohg to addr-8s these qws?,iorL* in my 
discussion. The list of uncertaintier in control system deafgn a d  Gperation thAt 1 will 
discuss h l u d e s :  sensor noise, noire in other components; external or intern1 
disturbances; modeling approxLnzrtion8; model parameter erron; component operational 
8 t A t U S ;  a d  cOnfigWat&On C b I L @ S .  

sensor noise is A source of uncerkinty that has been addresred for a long time. As 
you well know, if you have A full9 linear situation, linear filtering in esttmation theory 
is complete. Even for sbht ly  nonlinear mea8urernent.8 or slightly noPUILdar dynamics, 
approximate extensions of the linear thewy, mch as various forms of extended K i h n  
filtering, work well. I t  is true that if  you have II si&nificantJy nonlinear problem, A 

nonlinzar set of measurements or dynamics, there ir a bod9 of theory which L 
AppkAble. Rut this i8 very cumbersome to implement. If you cannot assume from thc 
start that you have Gaussian distributions, you have to, in effect, estimate the entire 
probability density function for the state, given the measurements, and that is 
inherently an infinite dimensional problem. In the context of spacecraft contral, I do 
not think thrt the nonlinear situation will be important, unless there are certain types 
of sensors with nonlinear properties. The only additional technology required are some 
spcciahed techniques for handling state estimation for particular types of nonlinear 
situatioas. I do not think that it is fruitful to pursue general nonlinear estimation as 
much AS specific techniques that might be applicable to specific problems. 
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The second category of uncertainties 1 will discuss includes wise in other 
components of the system. This is a very important source of noise. There are may 
instances in which autopilots pick up electronic mise that, results in noisy actua+.oz 
operat,ion. Analytically, this appears AS an internal system disturbance. I have included 
that in my nexL category, which is internal a d  external disturbacces. Here again, if 
the system is fully linear, and if these disturbances can be modeled as randoin processes 
with rational spectra, then linear sysLem theory IS complete. I mention rational 
spectra, because, if one were to  design filters in the frcquen-;y domain, one would 
probably use spectral factorizrtim. This is only easy to do for rational spectre. In any 
case, for a significantly nonlinear system, the situation is just 4s it. is for sensor noise. 
Again, I would say it would be more f r u i t f d  to punwe specialized aarlysis tc  aiques 
that would apply to particular situaVons. 

I have mentioned one other topic M e r  additiorul technology requizements: 
intemal disturbances that are generated in oilc part of a spacecraft a d  propagated to  
orher parts. In fact, just vesterday, we h e a d  one presentrtion in which it was 
emphasized that, for multipurpose sprcecraft,' very often the most significant 
disturbances are those that one payload imparts t o  the other payloads. Fcr example, 
you might have a scanner, with an oscillating mirror or something similar, which is 
creating a disturbance to other pcrts of the spacecraft. So. why not try to  isohta tho-,. 
disturbances unthin the modules where *ey originate. I am (NTC Chat this is riot a new 
idea. I list it tere and emphasize the fact that active disturbance isolation m y  make it 
possible t o  do this even better then purely passive stnactim design can do. 

This next category is one that has received a great deal cf attenticn in th is 
workshop. This is warrreted because we art 8csured in advance that, in dealing with 
flexible sprcecraft godelixu ~~ncertaht ies ,  we are going to  be working witb an 
inaccurate model of r$e true dynamics. There a number of methodologies that we are 
all familicrr with t o  deal with the situation. One such method involves designing 1 
control system on tne brsis of a reduced-order model and then evaluating it with a 
higher fidelity madel. We know several approaches to  the problem of madel order 
reduction. Absolute stability theory is a way of dealing with stability of systems with a 
ntAzlinear operator confined ody t o  one sector. And finaL9, there is P very useful 
approrch ustag singular values for evaluation of robustness properties of multi-variable 
systems. There are seveirl additional techniques in model- approximatiom that 
would be very useful. The f h t  one has to do with 8-U but arbitrary damping 
characteristics cf space svstems. The characteristics of flexible structures wtrlch will 
be least uuderstood in advance will be their dampine ptoperties. But, if the damp@ is 
small, you have the impression that you should be able t o  design control system which 
does not realiy depend on what is the specific damping. I have not attempted to do 
this. It just seems to me that it might be possible. In a similar spirit, sright 
nonhearities and uncertrin stiffness properties in bigher order system may not be 
important under steady regulation. They might be important, for example, under slew 
maneuver;. The Mea of design procedures for control systems, in which modeling 
inaccwacies of an unspecified form are incorporated directly, is a highly desirable 
objective b i t  a difficult one to be sure. 

Model I arameter err- are a somewhat more structured Lsad of uncertainty in the 
plant. Our conception is that wc. have a model which is adequate in some scnse. We 
just do not know quite what the values of the parameters are. The standard approaches 
available to w include yrosivvely robust controllers and adaptive systems. There are two 
basic types of adaptive system: Ln one you explicitly identify parameters; in the other 



you do not. We have already heard some interesting thiags about adaptive systems rt 
this workshop. Under the heading of robust controllers, it is always my impression that 
robustness normally is bousht a t  the cost of some aspect of performance. It would be 
well t c  work on that trade-off and attempt to improve it. Under parameter 
identification, the isrruc cf how to efficiently model a system is important from the 
standpoint of the o r i g h !  design, as well AS from the standpoint of identifying the 
system. One of the thoughts in an earlier paper r t  this workshop appeals very much io 
me. The idea is to  model cert.in modules of the system as distributed parameter 
models and then piece them together at  the bomdaries. It strikes me that this might be 
an efficient way to handle some configurations a t  least. The idea of optimizw inputs 
for identification is nat a new thought by any meam. It  is true that, in order to identify 
all of the properties of the system, you have to  push on the system with potu own 
actuators a d  measure the effect on th9 output v8riables. You would *&e to  do it in a 
way that affords yau the best identification. In the context of flexible spacecrafts that 
has to be done carefully. I mention the problem of adjusting the controller foUowing 
identification of the plant simply because of the.fact that the design of the controller 
in the f i r s t  place is such a difficult chore in tht large space structure applications. If 
we indeed identify the plant, and find it to  be slightly different tha the model we have 
in the origlasl design process, then the controller h8s to be adjusted to  account for the 
differences. That may not be a trivial thing t o  do. In our present state of knowledge 
about the design of these systems, control design seems to be very tricky. The designs 
have to be tuned j u t  about =ight in order to perform well. 

Finally, under adaptive control we actually heard some interesting result8 on 
stability theory yesterday. It CS still true that it is somewhat of a risky business. The 
conditions for stability generally depend on the relative magnitude of things like 
disturbances relative to knowxi inputs. It  would be very well if we could use and depend 
upon adaptive controllers. Any research that can be done to clarify strbility properties 
of asaptive controllers would be helpful. 

Component operational status has to do with the fa- status of the components 
of the system. We do have a number of m e t h a  for failure detection and isclation 
(FL':'. Less work hrs been done on a e  problem of r e c o n f w  the system following 
the detection of a failure. h the area of computer8 and 8-1 tran8mission networks, 
there is ¶??rite a substrnzial background of work. Under additional technology, I mention 
the fact that PDI system concepts are needed that are less sentitive to  munodeled 
d p m i c s .  It is true that, if your PDI depends upon system dyn8mics modeling, then it 
suffers from unmodeled dynamics, jut like the controller design problem suffer8 from 
unmodeled dynamics - and maybe in an even more sensitive manner. Methods for 
reliable reconfiguration are cert.inly not settled a t  thix point. Ln effect, we have to do 

redesign of the system using o m  less component once we discover a failure. The 
redesign process is not all that simple because the design process is difficult in this 
application. 

i nentioned fad: tolerant atrembbr of 1ooseh coupled COmpUteg! or& to  suggest 
tbt the fault tolerant computer assemblies that we are der- with now, for the most 
part, are based upon vary- degrees of syncbronirm - very tight synchroni8m Ln some 
cases and looser in other cases. In a largo spacecraft - particularly one that has been 
assembled in space out of Y number of moduks, with each module controlled separBtely 
prior to its mssembly with the rest - y0-a nrfli have control 8ystems With a8ynchronous 
computers. You would like to be able to monitor those for their failure performance as 
well. And ffnally, a very important item is the validation of the operational software 
which is executed in the system. 
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The last category of uncertakti 't rmfkuration changes. This is very importm? 
for the space station, which is to  3c a .owing system. It does seem to me that we will 
need to use pre-programmed changes in the controllers to coincide with confQpr8tim 
changes. 1 suspect that we wil l  use a low bandwidth robust controller d- the p e r i d  
of a change. Someone observed yesterday that it would be nice to avoid *he need for 
that by us- adaptive controUers that were adequate to hand12 coafigur.tion changes. 
You certainly would have to suppress transients in the control system when a change in 
a controller is made, hat, I thixsk that is not hard t o  do. Another problem will be the 
isolation of the disturbance due to m~ting a new module with the e d t u  assembly. 
One should isolate the effect of that to  the local region, if possible, to  prevent the 
disturbance from propagating throughout the atmcture. 

These are some of the different types of uncertainties and the technology that we 
have to  deal with. But, what about the unstable spacecraft I mentioned a t  the 
beginning? We still b v e  it h the back14 mode and have mt yet figured out what is 
wrong. Do the methodologies that we taLked about answer this question? Are they 
adequate to help us discwer what bppened? Well, I wauld ray not really. Nothiag of 
what we spoke of k direct* applic8ble to the dirgnotk of a problem W e  W. So, it 
would be very nice to  have an additional tool, which I am calling here a spttem 
Diagnostic Monitor. A System Diagnostic Monitor has the propcfly that it monitors the 
health of the system. Not only does it monitor the health and give a go/no-go 
indication. When it is no-go, it isolates the f r h .  This is helpful in fisnrtag out what 
has happened. In particular, you might be able to  monitor parameter values in the 
model to detect changes 8s well as monitoring for failures in components. A desirable 
property of such a monitor would be that it can be reconfigured from time to ? h e  so 
that it can monitor different characteristics of the system. A suggested possible 
structure for such a system monitor is shown in Figure 1. The controller can either be 
in operation or not. It does not make any difference as far as the monitor is 
concerned. The lower part of the figure shows a frihxe detection filter which hrs the 
same structure as a K a h n  filter or an9 other Linear filter. In fact, if the gab matrix 
D which operates on the measurement residual were chosen to be the Xalm8n gain 

P-c 1. A Possible Structure for the System Diamostic Monitor 



matrix, this would be a K a h n  filter. But it is possible to design the gain matrix in 
different ways. In particular, it is possible to  design that ~ a i n  matrix such that, for 
certain selected events, the residual can be constrained a t  the output to lie in a fixed 
direction. This idea was f i rs t  proposed for the purpose of doing ccmponent failure 
detection, but it can A ~ S O  be used t o  detect iudiyidul parameters of a .nodal that have 
been mismatched I will just give you a quick illustration of this in Figure 2. 
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Figure 2. Simulation of the System Diagnostic Monitor 
(Actuator 2 P a w  off a t  1 Sec) 

Figure 2 shows a dynamic system modeled with this type of fUter or monitor 
designed to monitor two events: a failure is actuator mmber 2 (there are four 
actuators in this model); and a mismatch in the frequency of the first  kendm mode. 
The graph is a time history of two output indicator8 for the two events. Initially, 
everything is nominal, and the outputs are indiaingpio b b l e  from zero. But after one 
second, we simulate a failure in actuator 2. A t  that point, the output indicator of the 
f i r s t  event bzcomes non-zero, while the output indicator of the second event, which is 
related to  the frequency, still remaim zero. If the system were configured to monitor 
these two events, you could clearly say what was wrong. The other case would be if the 
value model of that first  bending mode frequency were wrong, as is shown in Figure 3. 
In that case, the monitoring system is being excited right from the start. The second 
event indicator is wnzero, where a8 the first-event indicator, corresponding to the 
actuator failure, stays zero. Again in this case, tha monitor would be helpful in 
discovering what had gone wrong. I do not claim that this is a closed book. In 
particular, the effect of m o d e m  b c c u r r c y  on this h a d  of a monitor has not been 
resolved and is very important. We have made other fuzls for the CASC where some 
additional bending modes, bcgond those that were involved in the design of the filter, 
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were simulated. That thoroughty confases the monitor became of the leakage of the 
unmode1e.i dynamics through the filter to  the indicator outputs. 

In conclusion, the management of uncertainty is certainly nothing new in control 
system work. BaSlCallp, controlling mceruinties is a fuxiamenttl reason for fred5ack 
in cootrollen. The large space structure problem is ewecia* sensitive to some of 
these uncertainties. It is especially susceptible to component failures. Now, whether 
we like it or not, the problem of trying t o  detect component. failures is coupled with the 
problems of modeling itaccuracies or model error parameter errors. I would suggest 
that if the couplixq cannot be used to our advantage, then at  least it could be used in 
monitoring of the health of the system. 
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Figure 3. Simulation of the System Diagnostic Monitor 
(First Bending Mod6 Frequency 10 Percent Low) 
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A. V. BALAKPISHNAN: Some Estimation a& Identification Problem in R.adoar  
Fields In this lecture, the urefdneerr of random field theory in the estimation a d  
control of large space rtrpctnres is  outllned. Random fiald theory tan be wed to 
cbaracterize the deformation of &aces of antems or of other flexible itnrctnres. 
Professor BalaLrisharn has developed a filtering technique for rmdom fields which 
pmcesses d i t .  to obtain estimates of the shape and model parameters. Most of the 
current f i l t e a  techniques exploit time dependency and the rational power density 
spectra of the signal. Random fields often generate a nonrationrl power spectral 
density of the signal a d  they do not have a time parameter. They have 2 or more 
parameters. Therefore, current filtering techniques cannot be used. Batch estimation 
is cumbersome to apply because it requires all the data to be processed a t  the s8me 
time. Hence, sca1ppip8 schemes are superior. In cwo-dimensions, if the data is scanned 
in certtrirr directions, the problem is converted to a one dtmensioacl problem, a~ 
Kahan filtering can be applied. Professor Balakrishnan has suggested an improved 
method. Instead of consideting one scan line a t  a time, consider scan lines 
sispultaneousfy. Thus, in a direction orthogoarl.to the scan line, a vector can be 
constructed consisting of states a t  points on thk scanring lines. Thut, the problem is 
converted into a vector filtering problen. If the spectral model sarifies certain 
sufficiency conditions, infinite-dimensicrd Katmm filters can be used. Necessary 
conditions are not known to date. However, the resultinjj K a h n  filter8 can be used to 
handle two dimensional data very efficiently. 
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R. E. SKELTON: Model Error Structure ~ ' I rd  the ImeParobility of the Control and 
Identiiication Problems This m o e  I would like to share with you my view; on some 
of tbe problems we all face in the modeling and control of large space :;tructures. 
Specifically, we will be reminded, in several different ways, that the mdeling and 
control problems are not indepedtzt, and that this fact has consequences i? the field 
of identification, a m ] o r  subject of this workshop. 

A Simple Emcrime& 

A graphic dzmcnstratioa of the inseparability of the model- and control problem 
is presented in [l]. The essence of this expetimmnt is as folhws. Let S1 deEote a model 

of the system S, but S1 # S due to m o d e m  errors. Le t  S2 be another model of the 

system S, but also S2 # S. In the experiment of 111, S was represented as the first  44 

elastic modes of A flexible spacecraft, S1 WAS on?: subset of these modes (1, 2, 5, 9, 

171, and S2 WAS anothez subset of these modes (1;2, 17, 4 io}. Now, let Scl denote the 

controller which is optimal with respect to the model SL, a d  let Sc2 denote the 

controller which is optimal with respect to model S2. Let the performance of these two 

controllers be evaluated when driving the 'real' ayttem S. Which model should be 
better for control design S or S2? Pig. 1 illustrates that the answer is that neither 

model is always best. Por a particular range of con*ml gains S is best, and for another 1 
range S is best. In other words, a t e  cannot say which model is best iadependeatly of 

some statement of the control l ~ w .  This reinforces the notion that 'one cannot say 
what is cb good model without s w i n g  (precisely) what the model is goinn to be used for". 

1 

2 

Pigure 1. Any given model not always best for control design 
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llow, if there exists a model S2 for which t h e  control der@ cannot be improved 
(Fy. 21, then the modeling and control problem can be called separable with resptct t o  
that model S2. Of course, such notions involve all possible (infinite in number) models, 
rud the question makes sense only with respect t o  4 given control design methodology 
(LQC in the case of Pi& I). 

Figure 2. Modem and control problems separable with respect to S2. 

Nonetheless, this inseparability of the modeling and conuol problems; holds without 
regard to the method of producing the model, whether thrt method be modeline from 
first principles (known physical hwr, P = MA, etc.), or whether t b t  method be 
modeling from on-line data, coxnfnonly called the identification problem. Our 
experience a t  PurBue has always produced the inseparability described in Fig. 1 and 
never the separability phenomenon of Fig. 2. 

The theorg of Root Locus requires the model to be the for all control gains. 
Hence, the Boor Locus method seems useful onlp when the rnodeli- a d  control 
problems are separable. Ln the o r i g h l  Root Lonu work of Bvuu [a], he tmrgfned that 
the most appropriate repreienution of the plant model remainub the same for all 
controls (as it tuma out, this is equivalent to  the assumption of no error in the plant 
representation). Since m o d e m  error creates such h v o c  with our textbook theories, it 
is worthwhile to  look more closely a t  the nature of modeling errors. 

Modal Error Structure 

Considering only linear system, let us label the state of our finite dimensional 
and the interconnection with the remaining states as representation of th2 plant as x 

5. Hence, the system rcturlly obeys equation8 (1) 
R 
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15J 
bzt the representation available to the control designer is 

P x = A X p t B u  y = cx B 

(19 

A B = A t A A ,  B R = B + A B ,  C E = C + A C  

subject to pararr,eter errors in AA, AB, AC. But, rewri- (1) using these definitions 

t 

e . = S  1 A A R T A k l e  ~ R ~ R ( u M o  = PixB 
0 

allows 5 to be eliminated in !l), yielding, 

x = A x t B u +  etW t e (x 1 + fl(u) i61 

y = c  x (7) 

B R B  B 1 B  

R B  

(8) A i -IA 
' i X A B ~ A T  TB e = P . x + e .  i = l ,  ..., oo, i i B i + 1  

( 9 )  
i - 1  

RT T BT i = 1, ..., 00, Qi = A A fi = Qiu t fit l  

where we have fixed the cocrdinates in (1) so that CT = 0. Such coordinates olways 
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e d s t  if dim y 5 dim xR. It  is also possible to  imagine coordinates for which ART = 0, 

CT f 0. la this case the error term of the sort (et t e + f l )  appears in the output cq. 

(7) instead of the state eq. (6 ) .  But, these variations do not alter the story, so I shall 
stick t o  the form ( 6 )  - (91, which is now a representation of the e u c t  modal errm 
svst2m. Comparing (2) and ( 6 )  - (71, it is clear that any model (2) which we may write 
fo r  a Linear system always has m associated model error vector of the form e = etW t 
e !x ) + f (u) t e , which is the sum of four types of modeling errors: et(t) = errors 
which are functions of time (we usurll9 call these external and internal disturbances), 
e (x 1 = errors in model order (an integral operator P on x R 1  1, f (u) = errors in model 
order (an integral operator Q on u), eA(M, AB) = errors in parameters = (AAxp + 
ABu). Note especially that due to fl(u), the i m a c t  of *he model error e = e + e + f t l l  

cacnot be determinL i indePendcntlp of the control inwt u The integral operator 
f l  = Qu is an explanation of the inseparability &f the modeling and contro! problem. 
Model reduction theories concern themselves with the term el+ fl .  Disturbance 
accommodation techniques concern themselves with e& There is 110 control theory 
which promises the simultaneous accommodation of all four types of mode- error. 

1 

1 R  1 a 

1 R  

+ =ti 

More importantly, note that the phrase 'parameter error' haz no precise meaning, 
since the sabmatrix Ag -- A t AA k coordinate dependent (even though we have a 

spcci.f,Flc A in mind) and, in fact, this coordinate choice affecta &l the four model error 
terms. Therefore, each term of the mcael error vector is nonunique. The challenge 
here is this: If we szlcceed (by c2nice of coordinates or by compensation) in reducing or 
eliminating one t-lrpe uf exmr, rno: ~ n r  type may get worse. 

In the future, I think we mut fin8 ways to  estimate the eJtLre model error vector 
and not j l i s t  certain terms in it. Because the subject of model error estimation 
embraces i. broader class of errorsc it has no substantfrl progress yet to report. One 
attempt 131 writes the model error systems (6 -9 )  in the form 

< 

; = A x  

y = cx 
(10) 

T ' I  T where x = ,e ,e ,..., fT,fT ,..., y 1. (The time dependent enor  e has for convenience 
been written in the form et = P (t), where the equality i s  only in a mean-squared sense 

and holds when the independent bark functions y !t) = (y,(t),y (t),...) form a complete 
set.) The matrix A has a specific form dictated by the agplregation of equations ( 6 - 9 )  t o  

form (101. The model error vector is estimrted if x is, since ( x i ,  e: f; 7's = xTC 

for some C1. The parameter A a d  *.he state x can be estimated under certain 
conditions 13 1. 

(xR 1 

Y 
T 

a 
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The dpamical system described by 
A A  A 

x = Ax + PCy - CX) 
(1 1) 

A -1  T A, *,'2 A = Q C Q(y - CX,X 

drives this Liapunov function downhill & 5 01, 

provided 

T T  T C ~ Q C ( A  - FC) + (A - PC) c QC + L L = o 

is satisfied for some L. 

l'he good news is that e s t b t o r s  of the form (111, when wed in the above spirit, 
embrace 8 broader class of model errors. The bad news is that condition (13) is 
unverifiable even when it is satisfied (A is unknown). Paititionad parts of (13) yield 
certain specialized results, reported in [4]. Most adapthe control and estimation 
algorithms can be explained in terms of simplicatioas of problem (11-13). Adaptive 
control ignores (ei, fi, y) in the x of (10). Orthogonal filter8 [4] ignore (ei, fi) in the x 

of (10). 

A more direct approach to model error estimation was posed by Rodriguez [5,6]. 
By lumping e + f l  t et into one term ex = e + f + et, a d  allowing error terms also in 

the output equation, y = CxR + e 
1 1 1  

the model error system (6-9) can be written Y' 

xB = AxR + Bu + ex 

y = C x  + e  R Y  

or in operator notation (as- zero initial conditions) 

[;] y = K u + K e + e = Klu + [KzI] 

where the operhtors are defined by 

1 2 x  Y 
(15) 
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Hence (15) may be written 

&L A 
y = y - K1u = Ke , K = [Kz, I! 

TA T T e =(ex e 1 Y (17) 

and has the minimum nom solution 

e = K*y. (18) 

The good news is that the model error estimation (18) requires no decomposition of the 
model error vector as in (6). (This is an advantage due to  the nonuniqueness of the 
decomposition.) 'ihe bad -1ews is that the pseudo inverse of an integral operator E* is 
required, and this is not an on-line calculation. Some numerical examples are given in 
161. 

Identifying Structures Under Control 

We now look a t  the parameter identification problem as a modeling method. 
Having already reminded ourselves that the m o d e m  and control problems are not 
independent, we certainly expect that the identified model will be dependent upon the 
control inputs. Suppose that the closed loon system of P&. 3 is "identified' as G'W. 
&en, since the controller H(s) is known, the identified plant is recovered from 
knowledge of G'W and H(d, 

Now, the interestiag ob86 - 4 o n  hem is the "identi€kd plant' G'(0  is a function of the 
controller HW. Hence, if the controller H(r) is clmged, the plant as the controiler 3ecs 
& is different. The fmct that the plant look8 different with erch controller (hence with 
and without control) has not penetrated the identification research, ] u d g u  from a 
sparsity of papers on the subject of identification under feedback. 

I 

I 

Pigut* 3. Identifying stnrctures under control 
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Since the identified closed loop system G'(si is obviously a function of the feedback 
law H(s), let us write C'(H(s),s). Then, it is clear that the :den ification and control 
problems are separable iff CYs) h invariant under HW; that is, iff 

But this can happen only if there are no modeling errors (G'(s) is Zxsctly correct). 
Hence, the inevit;ble modeling errors force the inseparability of the modeling and 
control problems. 

The conclusion her6 is that it is verg difficult to  define a meaningful identificrtiun 
experiment, one that propides improved knowledge with which to design a control kw. 
One logic81 approach t o  this dilemma is to reject any identif!.cotion result which does 
not produce the correct Hh). That is, apply an identification method to  the C I O ~ C ~  loop 
system treating both plant and controller as unknowns. Then reject the "ident;fied' 
plant unless the "identified" controller matches the known zovtroller This is not a 
sufficient condition for a successful identification experiment, however. The problems 
involved in such a unified identilication plan include: 

1. One identification approach m y  satisfy these conditions and anotiicr may not, 
even though both methods may hrve convergence *proofs* (which are eased upon 
the assumption that parameter e m r s  are present in the rr;odel error vector). 

2. Even sfter identification, the math-mtical techniques used to  separate the 
identification of the p l a t  a d  cortroller subsystems will cffect the results rlad 
conclusions. 

3. Convergence criteric need to be established to  determine when identification under 
feedback is successful. 

Conclusions _.- 

Dotb dynamics and control textbooks are wfkten as thowh the m o d e r n  problexE 
and the control problem are separable. However, due to inevikblc ztodellng errors, 
they are not separable. Moreover, since the m o d e b  and control problems are not 
separable, neither are the identificrtion and control problems. Beserrcb is needed to  
identify stnactures under feedback control. Otherwise, it is not clear that open loop 
identification experiments will be uaeful for proVLdian model8 €or c o n l r ~ l  design. EL. A. 
Frosch put it well this morning in hi8 ACC plenary talk when he said, "We are not m e  
of what we are doing when we abstract the rerl world". 
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R .  F. CABLISLB: Future Research TechnoIoror Directions for Space S t a t e  What we 
are attempting to do, using the Available literature dnli expertise, is to get a soiutioa 
that can optimize the station by further application of controls. In the world of 
spacecraft systems, when the power subsystem fellows tell me t o  bring on-line 
improvements in power, I tcU them t o  forgst it. Thiz is an expense that I do not tBinsc 
t\e system can afford. We will go back to the user and reduce the power requirements 
by applying other techniques. We are dealing with trades in the integration of 
subsystems. Thus, when a control system aesigner says I Cannot solve your problem. I 
go back 50 structures. We just have to beef it up and fly it anyway. When I cannot 
afford the structure and the weight t o  do that, then I go back t o  the cor trol people and 
say how can YOU help me. That h the world t h t  W e  airc dealing with. 

On the space station, AS you how, we have A planned approval for the program. 
We are all ~ n x i o ~ l g  waiting for the approved budget this year. If successful this year, 
we are looking for A flight date approximately in the 1992 time frame. In the world of 
research and technology and advanced development and des@, that means we can 
expedite some promisizq hings in the piseke.  This will be done by increasing funding 
for certain technologies and bringing them to itate of m t w i t y  and readiness that 
perhaps can improve the initial space station design. Let me share with you some of 
the things that I see in the design profile. 

First, we have a ground d e  that say3 the space station is going to be an 
evolutionary design. That means it is going to grow and change with time. There will 
be block change= in configuration, and maybe block changes in perfomncz.  Therefore, 
it behooves us to do the best we can in the initial design, so that we can evolve 
gracefully and economically to meet those challenges. If we lock ourselves in with a 
design that does not h v e  flexibility and growth potential, then the control system may 
be one of the things that tourids the extent of evolution that we could hope to  achieve. 
AU of the sub-systems are trying to bring robustness, flexibility, and evolution of 
growth, so that they itre D C t  the ones to  bound the potential for space station 
evolution. Another interesting thing in space, as opposed :.o A~I-OIUU~~CS,  is that the 
spacc station is essentially the f i r s t  time (really the shuttle was) we can repair 
on-orbit. We are asking for 20 years continuous life with on-orbit mrintearnce. That 
gets into the practical world of hardware and failure analyais. I t  also gets into the 
question of how we accept fahurer in tke most ecouomical way, and whether we want 
to have built-in redundancy and fault tolerance or repair on-orbit. Repairing on-orbit 
means we need test2 a d  analysis in order to locate failures, and a means of 
accomplis- the repairs. Thus, we are l o o w  a t  extremely interest- challenges 
with the space station. Bssentially, we have 5 years to  mature promising technolop 
and applications. But in an evolut.iowry senre, promising rerearch that could be made 
into a block change is also an opportunity. Overall, it is a world of opportunity that I do 
not think I have ever seen before. Thus, I want to illrstrate just 8 little more what I 
think the problem is, and review with you whmt I understund of where NASA has gone 
with their fundirq that is applicable t o  space station. Pin~Uy, want to leave with vou 
our definition of what we are looking for that, is in the spirit of .ppomm.ities for future 
research. 

*The 8pCAker refers to slides used in the oral presentation that were not ~ v a i l ~ h l e  lor 
inclusion ih this wtfttcn report; however, the major points are evident even without the 
Slides. 
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If this were our initial space station-and it is not, it is just typical-each one of 
these would be a payload f'Sght for the shuttle. So you place one of these ia orbit a d  
leave it there, and then you bring the shuttle up and bring another module to it. Now, I 
think this is fairly complex for the initial opera- configuration, but let us just armme 
that for now and walk through the control problems. You Lave to be able to ttab*&e 
something like this. You h ~ v e  to be eble t o  hold it well enough in attitude SO you can 
mate to it, and mate to it with only the rerolution of what the shuttle can do, or what 
this can do. As that changes, there are obviourly major shifts in m~ss  diftribution. 
Maybe two modules hooked together can s t i l l  be considered a rigid body. But, as it 
grows in size, as the whole stmcture gets Ilrger, then you begin to wonder whrt the 
relative rigidity of these joints is. The initial space s t ~ t i o n  has a requirement for 75 kw 
useful on-board power. lhat is A solar array of about 20,000 square feet, half an acre 
and about 20,000 pounds. So, it is not trivial. There are significant distributed 
low-frequency appendages on this structure. This is the radiator, which damps the 
waste heat. Because of the efficiency of a closed cycle like this, then is almost 75 kw 
being radiated out. So, this is not A t r iv i~ l  sppendage either. 

This is another illustration of a larger space station. Now lGok what we have done 
to  ourselves. If these were rigid bodies with cl~ssical control, and then romehow this 
whole matrix grew t o  this configuration with these appendages, then I wonder if that 
original classical control design would stand some graceful economic evolution to 
control that cluster as it is shown there. I would say that is reasonably raalistic as to 
what the evolution would be. Gcing A bit further, this is a collection of conceptPrl 
drawings of what it m y  grow t o  eventually. I cannot define anyone of those as being 
realistic, but an9 of them could be. We would like to  drive in that direction. The 
challenge t o  you is that control systems of the oxi@ml configuration should not 
constrain us, if that is 8 reasonable r e w s t .  1 do not know whether it is or Pat. 

Let me go back rhea to a very quick review of where we have been in NASA 
funding for control of large flexibk structures. ID rbout 1978, we started worLing on a 
large structures program. Initially, we homed it on antennas. There are two antenna 
configurations: the hoop column and the map rib, representing Harris Corporation .ad 
Lockheed designs. In the control %rei, we dealt with the problem of maintainhqg the 
relationship between critical points of the feed and the reflector. We also dealt with 
the probEem of srziace coatrol. This program started as a structures program. As we 
got into the progism, we recotmimd *h t  we were not der- with o system tml~sr we 
addressee iae contrn! ;:cLiem and the BP characteristics. We had a grouxtrl test 
program that built up fuil-size segment8 of there antennas. Here is a section of four 
gores of the hcop column. This shows it built up on rhe around and spreading the mesh. 
These are srdall reflectors that are nut on the mesh for h m g  up the mcrh. They can 
also be uszd t o  close the loop around to measure and control the surface conditions. 
This is P. f u l l  scale model of the wrap rib, with the mesh deployed. The ribs cannot 
support themselves in one G. They are hung from spring rpsemblies attached t o  tbe 
ceiling and to  the floor. We hoped when we started that we could measure some 
dynamic ChArACtCriStiCS. Ir: retrospect, 1 hove to say that it was succersful research 
since we learned that we failed. We could not get significant resolution of any 
importance to measure dynamics. We did not spend enough money or time to get the 
precision of realistic measurenients for dynamics. This led ua to conclude that since we 
did not know what t o  do on th t  ground anymore, we were soing to  have to  fly. We 
proposed a flight program planning exercise in-house. We recognized the expense in 
U n d e r t a w  such ambitious planning, but we felt it had to  be done. The 
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plan grew to the point that we killed it with economics. W2 ended up with an in-house 
es tha te  of approximately 350 million dollars to nm perhaps a flight that would 
only learn something about control dymmicr. P m  *-he system no-dd not s t u x l  that 
mucn expense, we decided try to get a paylord to share expenses with us. We couldn't 
find 8 payload wllliry to take the risk of committing to an nnproven stmcture. Stace 
nobody wanted to go with us, ud we could not afford it alme, we stopped that program 
and faced the fact *that we do not know how to go full size in flight. We are st i l l  
working on the problem. I think, and several others agree, that we are developixq 
powerful technology. We want to  achieve that plateau of technology where we CIS 
handle control of low frqacncy interactive modes. We are now p k a  an exhaustive 
ground test on a much suuller article. The westion is how do we proceed to validate 
that design. Can we get sufficient meamrements on the gromd, with inatnuaentation 
and fixturing errom to have the confidence to fly full scale, k q e r  vehicles? Or do we 
need a flight test to validate the ground t e s t ?  If we have to have a m h t  test, how do 
we scale? If we use a small grooDd sample and fly that ume sample, to get the 
relationship between the on-orbit a d  g f ~ ~ ~ d .  characteristics, do we gain enough 
confiience to fly fa-size structure:?  hose are the things thrt we are rea* worrying 

The real configuration has nat been decided. The eight contlrctorr that have been 
worLing with us all r e c o m e  that controllability is a critical isme fer confidence in the 
origin~l design. Thit configuration, called thz delta, has a ri,gid structure. It L UI 
inherently stiff design, with the modules b e d  up at the ends of the of a 
pyramid. It is the most rigid design. It is also probabiy the m e  with the least growth 
potential. These two are quite similar, with the modales gathered in 8 fairlp stiff 
arrangement and with a flexible appendage. This design offers the 0pportPrrity aad 
advantage that the sb t t l e  can come in am3 berth to it away from the solar arrays; but 
it can, if it grows in evolution, significant!.! charge and complicate the control 
problem. The question that I pore is: how can you help IU with the tough decisions that 
we have to make in *he next five yeus? wh.t is the or&inrl cont=o1 configuration that 
can meet most of the desirable features that I mentioned earller? Our problem mry be 
summarized as evolutionary growth, size and complexity, possible need for on-orbit 
test, and c long-life r-quirement. We have the opportunity for solving it with control 
technology or wirh structures technology or by some combirutioc of each. No matter 
what that combination is, we s t i l l  have chalhge of how the hithi design shonld give US 
the most options. 

about. h the C U t t e i l t  p h w  Of the Space there SeVCd C O d - t i m .  
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H. A. REDIBSS: The Role of BltPertments in the Develmment of Control Technolo=* 
Experiments, both h Irmratories on the gruund and flight experiments on-orbit, a n  
necessary in the development end validation of controls technology for large flexible 
space structures. I was pleased to see that it was recognized in thir workshop, and that 
there were so many papers that touched on experiments. I have not prepared a formal 
paper on this subject, .od for the most part I am ringing to the chcir. However, there 
are three points that I would like to discuss: 

Why experiments are important for developing the technoioE 

0 The need for a coordinated program to validate techniques from analysis to 
simple experiments to complex experiments. 

The need for a coopentive pmgr8m among govexnment, UdVersity uui 
induttry to m ~ k e  the most effecthe use of experimental data. 

Why Broeriments are Inrso runt. We a n  belrinnidp a new e n  with hrge space systems 
that will tu our c m t  method. of developing spacecraft- We a n  coatiderirb space 
systems that are sufficiently Irqe that they must be developed in space in sections a d  
assembled. The systems will be designed for the aero-g vacuum envltopmc1Dt of space, 
and we wi l l  not be able to fully assemble .ad test the entire system on the ground 
before deployment. We will not be able to do complete g r a d  vibntion testing. 

Ground vibration testing has been an important u p e c t  of developing control 
systems for aerospace vehicles nhen there are significant stlOCtures and controls 
interactions. We curmntly do the best job we can in tnodellng the stmctunl dyncmics 
of a vehicle, but we have 8n opportnnity to fine-trme oot madeis d, in tUrXA, the 
control systems with g r o d  vibration data. 

If we cannot test the complete space symm, we ueed to have a higher degree of 
confidence in our modeling and design methods than we currently have. We may have 
to do on-orbit systems iden+Xicatloa of the complete space system, or even as it is 
being constmctcd in the case of a space sutlon, before the attitode control system can 
be operated. We must have confidence in our systems identification method8 before we 
get to operational sys-.ems. 

There are other factors thrt further complicate the problem of having confidence 
in our an~lysis and der- methods. Three significant met are: 

1. Structural modes will be overlapping the required controller bandwidth. 

2. Uncertainties in predicting damping. 

3. Introduction of new composite arterials. 

Figure 1 points out the trend we expect to see in the control a d  structure 
Lnterrctions of future spacecraft, a8 they get much larger and hence more flexible. In 
today's spacecraft, the rtmctural modes are sufficiently separated from the controller 
bandwidth tht relatively simple filterin# L adeqarite to deal with the interaction. In 
future flexible spacecraft, the structural modes are expected to overlap the required 

*Several of the charts used by H. A. Rediess are from a NASA presentation on Can :?I 
of Flexible Structures a d  were used with NASA permission. 
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cotxroller bandwidth. Requirements for rapid slewing, precise pointing, and very 
accurate shape control will force the designer t o  c o d e r  the control rad structure 
interactions. Active stmctural mode suppression -9 be necessary to  achieve effective 
and affordable designs. We need a higher degree of confidence in our structural 
modeling and control design technic, for active controls. 

Figure 1. Trends in spacecraft control and structures interactions 
(Prom R. A. Russell of NASA HeAdqrurters). 

The second factor that complicates the problem is  the mcertainty in predicfJng the 
inherent damping of space structures. ProZessor Vandcr Velde mentimed earlier that 
damp- characteristics are probably the most difficult to predict and yet are very 
important in control design problems. Damp- charactertStic8 of complicated 
structures, such as a large tetrahedral mass auteap. with a long offset feed, can be 
very different in the space envircmment than on the groud. Figure 3 shows 
experiments1 data on simple-joint damping obtained by Proferror Meul of South 
Hampton University. Test results are shown for a no-joint specimen .ad for a joint 
specimen in air and in a vacuum. Note that joint damping in vacuum is about me-third 
that in air. These data are for one simple type of joint, for one type of material 
(aluminum), and for the fundamental vibration mode in osclltrting tension and 
compression. Considering the multitude of types of joints, matel-hls, a d  vibration 
modes, one can see the difficulty in predictinq damping of large comlp'ex space 
structures. There Ls a need for A series of experiments on small and full scale 
specimens. If possible, these experimenu shonld be conducted in the space environment 
to develop an adequate data base and prediction techniques. 

The third factor i s  due to the introduction of new composite materials, such AS 
m e a l  matrix composites (MMC). MMC have several characteristics which make them 
particularly well suited for spacecraft applications. They have a high strength to 
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Figure 2. Joint damping &t. for oscillating tensidcompreasion tests 
(Prom Prof - Mead of South Hampton University). 

weight ratio, excellent dimensional stability, and low coefficients of expansion. 
Cert.in important characteristics, such as stiffness and damping, can be chrnged a d  
triiored by the way the MMC is made. The effect of material characteristics could 
have on spacecraft ,oerfornunce is illustrated in Figure 3. It depicts the elements of a 
study being conducted by 98 Tearon for the Naval Ser Systems Comm~nd. The 
spacecraft is a hypothetical ~ - e i l l . n c e  system that is required t o  Lp.ILcover for 
survivability and yet s e c t  stringent pointing and shape control requirements evenwhile 
maneuvering. The chart in the center illustrates the effect of one material parameter, 
stiffness, on line-of-right error a t  various maneuver acceleration levels. I t  is necessary 
to characterize there new materials in laboratory tests in order to  assess the effects on 
spacecraft perfonnmce. That would, in turn, improve the ability to  predict the 
structural dynamics characteristics. Control and structural interactions wil l  become 

damping characteristics is imponant for effective conmller design. Chracterization 
of MBlC properties could lead to  optimization of new materials, structures, and cGntrols 
for flexible space structures. These and other factors will nq.uire a V~I .  :y of 
experiments in 1aboratories in space to develop the technology with confidence. 

Need for a Coordinated Program The second major point I wanted t o  make was the 
need for a well coordiarred program t o  validate techniques from ArAlysis t o  simple 
experiments to complex experiments. The final report of the NASA Space Systems 
Technology Advisory Committee, ad hoc Subcommittee on Controls/Structures 
k l t C f A C t i O I l S ,  dated Tune 8, 1983, strongly supported the need for ground and on-orbit 
testing for developing control/rtructures interaction (CSn technologp. Figure 4 is from 
that report and shows the ad hoc Subcommittee's recommendation for a coordinated 

more S i g n i f i C A Z t  in fnture large space Stmct-S. The a b u t 9  to predict ACClXAtely the 
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a d  the Air Force develop a national cooperative data base for these major ground and 
on-orbit experiments. The coatrolr/strrrctures technical commmity - includh 
universities, industry, a d  government laboratories - should be involved in establishing 
the experiment a d  dak requiremenu. A data base should be established so that many 
of the different techniques for modeliq and controm of itNcture& could be tested 
and validated. There must b v e  been a t  least 50 different one8 discussed a t  thh 
workshop alone. The data base should be devised in such a manner that it can be easily 
accessed and used without extra progrsmming by each user. It should be available a t  a 
low enough cost that universities could use the &k in relatively sm4U research grants. 
If these requirements are conridered and incMed at  the outset. there should be 
minimll impact on cost and schedule of the programs. 

I Ill rfZ3?3Et I 

Figure 6. Test model descriptions for NASA's control of flexible 
structures propsm (Prom R. H. Russell of NASA Headquarters). 

E t  wil l  not be 1possibLe to rem there experiments with each new analysis technique 
or c x m !  concept. It also gets very expensive to re-amlyxe elpartmanu1 data with a 
scceak 0 .  third researcher, i€ the &ta are not alreuly k a 8Oob user format. With 
cppmpri :-:e pre-planning and setting trp of a rnulti-user data base, the cost for 
r.d&iourl andysir by alternate researchers should be qnite small. 

In t:onclusion, my three min points were thrt: ground a d  flight test experiment8 
wil l  be necesuarp to have bigh confidence in our systems identification and 
controldstructures interaction desipa techniques; a well coordinated program L needed 
that h O l V e 8  atulysis, ground t e s t a  a d  flight testingi and, l.st!y, an interagency 
cooperative data base should be set up for all major ground and €light test programs to 
achieve the most effective use of the very rare experimental data. I would like t o  
coinmhod NASA on constructing an excellent program plan for developu and 
vdidatiug the techno&gy for control of flexible rtnretures a8 presented in Mr. Ru18cU's 
paper. 

BDITOq'S NOTE: Thir concMe8 the formal remarks made by the panel members. 
There follows 4 discusion period between the panel members and audience participants. 
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8 .  V. RAMNATH: I would like to share with 90u some of my experiences, Fnterests, and 
aspirations in the area of asymptotic anrlysk. Asymptotic methods have been wed 

celestial mechacics, mecbnics, etc. It is my feeling that asymptotic m e t h a  have not 
been used as well as the9 rhoald have been in the areas of large space structures, 
structural dynamics, and control. There b v e  been a rprinklhg of papen using 
perturbation methods and asymptotic amlysis in the last ten or twenty yean. Professor 
Lions’ paper highlights some of the issuer. We have been working in this area for 
sometime. I would like to tell 9012 about our experience. 

W i t h  grert =Cess in m8ny branches of the phy8iC.l IcieLLCCI, XXUthtXt l8 t iC8,  phydC& 

Asymptotic h b s i s .  We all agree that real physical problems arc very hard to pose 
exactly, mud, even if the9 can be pored, they will result in highl9 POPUDCar coupled 
equations, for which closed € o m  analytical solutions are hard to obtain. For example, 
large flexible space stnrctates are described by partial differential e p t i o n s  with 
variable parameters. Bven worse, these panmeterr may be nodhear functions. For 
such problems, it is very hard to obtain closed f0.m solutions. So what we do is try to 
get some kind of an approxix~tion. Hirtorically, approdnutionr have been tried as 

approximating the problems, a d  we have used it fairly successfully. 
long a8 people have been a-bahg real problem. AIpmpfotic aXl&ly8b OOc Way of 

I would like t o  define asymptotic ~ufys is  as a study of applied mathematical 
systems in limiting cares. There seem to be a little bit of confusion in the literature 
about the convergence a d  the asymptoticity of eqprtionr. These two wordr are wet! 
interchangeably. We can discuss the difference in the context of a s w l e  example. 
Consider a slowly decaying exponential function exp (-at), where L is a small 
parameter. The series representation of th is function is convergent within an infinite 
radius of convergence. But, in order to get the approximation by uPIlcatiag the series, 
one ius to be careful. If the argument is very largec while the series converges, it 
converges very, very slowiy. Thus, if one taker a few terms to represent the series, m e  
gets v ~ r y  poor results. Thus, this is an eumple of a ccwergent series that is not 
asymptotic in certain domains. Also, there are other function8 which diverge 
everywhere, but for certain valuer are known to be asymptotic. 

Asymptotic analysis is considered a8 an art ami science by practitlonen. The 
science is what mathematicians worry about. For example, they worry about how to 
calcuhte these faxlctioar, etc. On the other had, engineer8 are faced with UuknOWn 
parameters, so that there is some k i d  of w e m e n t  requjred. Thb is the art aide of 
the problem. 

Asymptotic amlyrb csn be used in simplifying complicated problem. The 
principle of simplification states that in the asymptotic limit the system simplifies. 
Professor Liont talks about the need for rnom asymptotic onrlpsir in his paper, mainly 
because it lead8 t o  simple dercri@tims of very complicated ryrtem8. 

The principle of miainnrm 8impUficatFon or maximum balance rtrter that there 
exis28 a representation of the problem which r a t a h  mort of the prominent features of 
the problem, while it is simple enough to obtnia a closed form solution t o  it. The real 
problem may not be amenable to a clorod form solution. There two prfnciples are not 
theorem but give a guideline for approrimrting problem which I have found very 
tueful. 
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We have Applied this to model the gace  rhuttle. It har A bO-rt~te differential 
equation dercr ib~q~ rigid body motion, fledble body motion, control actuator dynadcr, 
ctc. The hierarchical rtnrcture coold be obtained becaw we could differentiate by 
time scaling. Thio approach is called the multiple scale appro~ch. 

Multiple Scale Awroac4 This approacb. consists of taw an independent vrrhble in 
the differential equation and extandinp, it8 domain into a @ace of higher bsmsruion. 
When the problem is rest~ted in this new 8pacer the problem 8 e k  rimplitied 
considerably. 

For eumple ,  a dynamic phaaotneaon which exhibits qualitatively different 
behavior, such as fast xnotion combined with rlow motion, can be converted into two 
problem. The independent variable, tirne, ni?l have two rcale8, one for the fast motion 
and the other for the slow motion. With there two new fobepeadent vatiabler, two 
partial differential eqpatlonr can be d t t e n  h the p&ce of one differential eqtutbn. 

Phy8iCAw~ it Of htUm8t to thlnL Of t b  f0- Cnrge-t. hUgh8 them 
observer8 with clock8 obrerdq a phapomeasn. Back clock count8 time oil a different 

be different from the othen. The obrerrer with the f a t  clock obrerper tbs fart 
chnget of the dynamics whcle the observer with the rlovr clock obremer only 8 l o u  

together to get a composite type of rapmrsntrtion. Now, ow 801Ve8 th i8 new problem 
in higher dimensions rrymptotically and reqphr the wlution to match wi?h the 8 0 h t h  
of the original problem along certain h e 8  wMh are c a b d  trajectorier. Thor, we are 
able to get back to the origin81 problem. 

8 C A k .  Thus, each obrerver Obren788 e ceruin A8peCU Of phSnOmmol0 nhich nUy 

ChAge8. ThU, it h pO88ibh t0 reparat8 th4 ftWuOQ8 aod than Cod- ai0 

AmUcatioru_. The multiple 8C.k approach war rued to rolve the problem of 
electrortaticai.€y controlling the membrane mirror ob a apace antenna which would be 
used in radio artnnromy expeitmsau. A meznbrane &e of m & r  is preferable bscm~88 
it ir light and can be folded. Thar, it ia convenient to crny in rprce. Tha rbpe of t h i 8  
membrane it to be controlled by an e tc t ro r t~ t i c  field #enerrtub by elecuobes. Bosn 
though the electroder we finite, the electrostatic field fr contirnrotu. Thus, A 
contboua membrane is to be coatrolled by a bircontktUOU8 force. If the rhrpe of the 
membrane it a perfect circle, the mode rhrpsr are #ive by Bema1 .mctioDI. But when 

eSper&nce tell8 UI that thir fr whom rrt comer into pby. The independent variable can 

Beriel functions can be obtained, whore argument8 are there nodhear functions. Thw, 
one obtains an asymptotic 80lUtbn for the mode rhaper af the membrane. 

the 8hApe But, out 

be 8put hr0 two V A d b b 8  tht are nonlinear f U Z l C t h U .  Then, A 8OlUtiOn h t e r n  Of 

M)t Ci rcu lAr ,  80lVbg f O t  th8 mode 8hApe8 b Vr?- difficult. 
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" L e  payoff of thir asymptotic solution b that we can understand the dylumicr of 
the model asymptotically. "he error is  not aero, but it it not large. We are able to 
think of a feedback sohtion for the control problem The 8OlUtions have a Bersel 
function of A different Liad with the feedback gain embedded in ita arguments. Also, 
we can study its subility rad controKabUty oud come up with a conrtructive procedure 
to calculate feedback @ a b  and rtrbLUty. 

Conchwiom: It i s  my fee- tht more and more studies would indicate the usefulness 
of approximations using argmptotic methods for problem8 which are very difficult to  
solve analytically. The advantages ~f ssymptotic methodr are that one obufnt 
anrlytical or quasi-analytical solutions to these problems. Thir helps in studying the 
properties of the system, mch as 8tabWty a d  controllability. Also, the methods can be 
used to  solve control problems. Even though the erron are not aero, they are rather 
small compared to other methods. So I want to reiterate Professor Lions' suggestion of 
looking a t  asymptotic solutions of distributed parameter systemr. 

QUESTION: There are a range of opinions on Space-Station controls, some of which say 
that it k just another Skylab. If that L true, why can't we merely use th. control hwr 
from that program? 

RBMNATH: I want to  paraphrase what R. A. b08Ch said, 'We are not ran of what we 
are doing when we abstract the real world.' When we develop models for these things, 
we cannot know the importance of modem error8 until we fly. T).erein lies the rub. It 
depends oa the performance requirement8 of the Space Station. If the performcnce 
requirement8 are benign, we can u8e Skylpb technology. If you are as- for 
complicated requirementt, that require control system8 bandwidth8 less than the order 
of hours, then we should worry about flexibility. 

CARLISLE: I think it it reasonable to assume that experiments that require very 
precise pointing would have some control system just as they did in Skylab. What 
concerns me the most L that we have to  be rble to hold a hrgs sta t ion  stable enough to 
rendezvous and dock with birtuaLt)r aero energy transfer. Then we want to be able to  
evolve. The evolution L 'to be determined'. We jwt do not kww what ita nature L. 
The question is: what can we put bn the f i r s t  one as A control ryrtem architecture that 
will give us flexibility to evolve in the future? I think if we 80 with Skylab technology, 
the control system is goiiy to bound the evolutionary growth prematurr'v. 

RBDiBSS: I think that the availrble controls technology hac got to  be self-fiplf(llinn in 
terms of the type of space station one might have. For example, if we relv on the 
technology that presently exists, which was adequate for Skylab, we are g o u  to be 
limited to  a type of space station that k compatible with that or suffer very expemive 
modifications in space a t  some later time when we want to expand that caprbuty. 

.'KELTON: It WAS mentioned earlier that we cannot afford to do fu l l  scale testing in 
space. What evidence do we have that we can afford not to -- in other wozds, it m y  
turn out to be 2esr e%'pcxuiVe in the long run. 

CARLISLB: The problem is: if we have to have f u l l  scale testing in space t o  validate 
new technology, and the system says we cannot afford it, then we are bound to live with 
something less than the potential tech.ology that control analyrk &nd research shows i8 
very promiring. 
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QUESTION: In various meetings in which I have participated recently, I hrve sensed an 
opinion that we have had a lot of effort on theoretical development directed toward 
large space structures. There reems t o  be an unjustified hnytti . with theoretical 
developments, and a concern that researchers are going oPf in *,ne wild blue yonder 
trying to address problems that may not exist. The impression is that it is more 
appropriate to  develop an extensive experimental plan and defer further ,~mphasis 031 

theoretical activities. I would like to  get the panel t o  comment ca this. 

CARLISLE: I think research is ver j  Fromising. However, in the world of Frogram 
management, unless we validate the research, it witi never get used. The question is, 
how do you get your kicks? In pure research, you can get your kicb by doins; analysis 
and identifying a promising application. Then, you get bored with it and w v f  to  take 
on another new idea. If nobody ebe p i c b  it up, develops feasibility, a.ui validates your 
first idea, that idea wil l  never get usad. I think there is a necessity far all phases of 
research. I think it is terrific to  do fundrmenul work. X think it more imporant that 
research be develcped to  the point that there is enough confidence in it t o  be used. 
That is A tough decision. I have had some experience with pmgrrm management. 1 can 
tell you that, when I was nmnitq a major program, I was not interested in rsssarcb 
unless I had a critical problem. When I ha4 a critical problem, I needed all tue help 1 
could get. I would take as many chancer as I had to, t o  meet my obligation s,c program 
manager. Unlerq I had that critical need, I did not have any incentive to  add complexity 
in maturing an experimental technology. A program mmager has no hcent've to do 
that. It has to be done in the pre-development phase. Thb relat=.r to my COIACCIQ m 
Space Station. We have five years to  mature pmmfsing ideas. I am not sa*&f i that 
we are pa7ing enough attention to sort out which are the u ost prombizrg view ... With 
an evolutionary approach to the Space Station, we should not gc with last year's 
~echnology, we should 80 with next year's technology, with a plan to evolvz to  the 
future -- do something even better. I feel quite strongly that there is a necersity for 
several views and that we need to coordinate all those in some complementary way. I 
also believe that there i s  a xsonrlity clash between the types of people with original 
ideas and those required to carry oat the ~pplicatiom. We have to  do something as a 
community to  improve the communicraon and cooperation, so that we can sort out the 
really promising idear a d  get them uaed. The more new ideas get used, the more the 
whole discipline will proceed. Soon the rest of the Space Station wi l l  be doing things 
with structures that we never did before, because *be control system technology is 
needed. I do not think we are really up to  rpeed now in that area, and I would like to 
encourage it. 

QUESTION: As program manager of a Space Station proBram, would you be satisfied to 
incorporate methodology in control systems or operations Ut you tu6 not 
demonstrated in some kind of space experiment? 

CARLISLE: It depends. T&t is a point I Vied to touch on earlier today. If the 
technology is too expensive to mrture full-scale in orbit, theq the problem is to gain 
confidence to use it the first time ful l  rcale. We flew the shuttle, end we did not do as 
much flight testirq on the shuttle as we do on aircraft. When the f i r s t  Shuttle flew, it 
WAS a brand new thing in space. We had enough maturity, confidence, and experience, 
so that was a good decision. 1 also think that the decision to use new technology varies 
with the experience of the decision maker. You think of your own field. If somebody 
suggests a new technology to you, you get comfortable based on your own expsrience. 
If somebody aiiggests something in a held foreign t o  you, and you are a good researcht: 
or engineer, you Will have all kinds of doubts, without the experience t o  back them up, 
and you wiil never buy the proposal. 
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SKELTc"V_: I would just like to a k e  a point about the problem with waiting until there 
is a need for a new method tefor.. we start, worrying about it. We dc uot have a 
continuity that  sewes as a baris for & continuow flcw of ideas into the sys~em. O m  of 
the things LhaL striker me a8 odd is at in thir country, snd in the western world, there 
is no Lmstit9te of significant rize that focuses on control and system science irraes, PA 
there is ~ i l  the Soviet Union. The Soviets have more trun a dosea iust~tutes, spotuored 
by the Academy of Sciences, each one employing 3 to  4 tbGuand eogineert with 
advanced degrees. They have the resppoasibility to carry 012 research all the way from 
thc very theoretical t o  the applied a d  experimental in -stem topics such 88 control, 
identification, artificial intelligence, a d  all of their intar*ctioxu. It seem to  me, if 
you look at  our organization charts, we find guidmce a d  control bloc& sosewhere 
along the line. That narrow vlew of it m y  have covered the subject 30 yews ago. I do 
not think it does today nor tt wil l  tomorrow. I am wondering, where in the wester-r 
world it should be covered, whether i t  should in the Air Force, in NASA, or somewhere 
else. I think evcrybody I, e l lpec tu  the other guy t o  do it. P m e  ir ILO consirtent 
substantial support of the size a d  focus required. to addr-ss *Le i. me8 tbut we deal 
with. When we launched the Sc sp V vehicle, we had interr Ation problem between 
propul;ion systems and control. The?, we had hteraction problems between the 
structural dynamics rad controls. We can name r number of instances and eumgler 
where we defined the control concept too naowl.; We ,iought of it a8 a little black 
box to be added t u  the system rfter e v e i m  ehe wa3 3one. I think the cuntroh 
community has a much brooder view today than it did 10 Yean ago. However, in tenus 
of the organization8 that sponsor rerecrch, there i8 still only a very 8-U se~ment  that 
understands this brcrder view. 

SKBLTON: One concern is  this. We should determine whether or not to  create an 
institute on systems science or control syst :ms itrues, or whatever you waat to  crU k. 
There m y  be good reasons for not creating such an iastitute, but there should be a 
study to  decide. The decision not t o  do it should be a conmiour effc-t. Let us not lose 
the ,ethnological leadership by default. 

VANDBB VELDB: I would like to comment on your concern about combining conti01 
theory with other discipliner. We see &is pbnomerum a t  MIT (I asrurne you do r h o  a t  
Purdue): the graosrte 8tJdents today very commoal.)i 8tudy quite 8 good deal in control 
and structiual dynamics. This interest has been r t h u h t e d  by the problem of hrgc 
spacecraft control, which they look upon as an interesting challclge. It was very 
uncommon a number of years ago for out student8 to sttdy those two areas veq' much. 

CABLISLB: I would like to  comment that in the &st, four or five years, within the 
sphere of NASA we have made a significant change. Funding for controls has gone up 
by a factor of 10 G r  mc;e. We have thia visibility that wa8 talked about -- the 
aecessity of addressing the problem of strxtures and control dynamics interactions. 
We holve visibility in the badget md are l o o w  for furthbr expansion. I think that we 
have a thing going now because of this recognition. This is a powerful tool and can 
make a big difference b Space Station. We should try to pay rttrqtior, to it and take 
advant, qe of that exposure. 

-- SKBLTGN: I agree there ir progress. 
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BALAKRISHNAN: I just wafri to  make a comment on an earlier statement mahtainiq~ 
that structures students have discovered control theory. Actually, the number of 
students going into controls is much more .;mailer than it used to  be. A t  UCLA, many 
more are going into communications. I have a question regarding the evolutiomry 
design concept. Xs this somethilg new for NASA, or b s  NASA had any expc .ience doirr 
something like that before? What kind of comments from university, industry and 
scientific coaamuOities are taken before such decisions are d e ?  Is there any formal 
mechani-m, or does somebody just make the decision? 

CARLISLE: I think the opportunity for permanent presence in space just spontaneonrk, 
developed the evolutionary idea among those of us who have worked on it. The only 
way to achtwe permanent presence is by service and maintenance. The Shuttle @vet us 
the opportunity to evolve. I think we are in the infancy of even undent.nding what we 
mean when we say that. I do not know of any formal wa9 that we consulted with 
anybody. 1% was just  handled spo~taneously, with a very preliminary plan which could go 
in any direction. The system engineering a d  integration task on the Space S t a t i o n  has 
been planned to  be done within the agency with contractor support. Though the 
program is very new, we hwe 3een planning technology Tor a couple of years. But we 
are really in an infancy state. I meant what I said. I do not think we know what we 
mean when we say evolutionary design, except th8t we know we do not want to  be 
b o d e 4  with last year's ;echnologp. We want t o  open it up t o  take advantage of the 
Shuttle and logistics end have it grow. 

QUESTION: Is the project pretty definite? 

CARLISLE: It is definite that we did not yet win a vote in Congress, but we did win the 
vote of the President. In bb speech of last January, it was one of the thbgr that he 
quoted as b c ' q  one of the future commitment in space for thir country. 

-- BBDIESS: I would like t o  go back to  the point R. E. Skelton raised about the institute in 
control. In part, it relates to my experience within NASA, particularly in the controls 
area. I think there is a long term fnab.ment.l outlock within NASA of not really having 
treated controls as a science and discipline. It has been treated more as an engineerhg 
area. It takes quite a bit of effort for an orguriaatloa like NASA to turn that a m .  
There are times where we have received rabttanthl &reare8 Lo support in the area. I t  
is due largely t o  program managers mch as R .  S. Carlizle, who udantands c o k m b  and 
its -361 difficulties and conccrn8, and who provides perronrl mpport. When W j O r  
projects come along that clearly require some new technoloSg in controls, there is tin 
OppOrtUdty to increase the SUppOrt for developing the teChOlOg)t, P A r t i C U h r l Y  tOWrfd8 
the mote costly end of it. I think there still is a difficulty in really recognizing controls 
AS an equal disciptinrry area with some 2 the more well established disciphes, which 
have had decades of support with NASA. There are a number of people who are aware 
of that within NASA. It  k just a duficult institutional thing t o  t&n around. 

QUESTION: Do you think it ** a reflection of th, t evaluation of the relative 
importance of the rubjcct? 

BBDIESS: No, I think :.he problem i8 that it is often treated as an engineering problem 
which can be solved thnugh a good engineelring approach-as compared with developing 
the fundamental concept), methods, and took a8 a discipline, such as we do in 
aercdynamics, matetirk and other disciplines. 
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LANDER VBLDE: La aeronautics, we are all frrmlirr with the term c o n t r o l - c o n f * e  
aircraft. In fict ,  N4SA has done work in-house and has sponsored a certain amouat of 
work in that area. You never hear the term control-configsred spacecraft, even though 
you mentioned the requirement this morning for integrated des-. It seems as if there 
may be perhaps more to be gained in the lam6 spacecraft area through the integrated 
design of the configuration, assuming from the m e t  t&t t t z r e  be tome form of 
control. That would really be a control confipred spacecraft. 

CARLISLE: I think aeronautics is ahead of space technology in the integration of 
structures a d  controls. 

SKBLTON: I think the universities should take some b l a u  for this problem. In the 
past, students would take dysmks c m ~ e ,  4 they were told: this is whrt p 3 p  want 
to model, a d  this is how you model it. They take a c o n t r ~ h  course, and they hear: if 
that is a model of a system, then this Q wlut yo3 do with it. However, there is a big 
world in-between for uhich we are here utembltd. I think the universities have to 
raise a new breed that understands integration of the dbciplines. A t  Purdne, n e  are 
really concerned abaut the integration of discipliner, ami we are now reviring our 
curriculum accordingly. Structures and dpnrmics have had a 150-pear history of 
development of very sqhisticated method8 to answer specific needs. Even though 
controls is in its infancy be- only a 50-year old t-Aject), it has grown very rapidly 
and has achieved some sophisticated level. On the other hmd, the premise8 upon which 
each of these two disciplines arc based fall apart when put together. I do not think it is 
possible to take formally trained structural designers and rtk them to understand 
enough about "controlsm to do the job. Conversely, it i8 not porrPle to ask formally 
trained control engineers to learn enouh about structures to do the job. I think you 
need the universities to take it upon themselves to merge thote disciplines a t  the 
fundamental educational level. 

BBDIESS: I would like to come back to one other point. There was a presentation by 8. 
A. Russell from NASA Headquarters on a program plan for the control of dedble 
structures. I do not know how many of you hul an opportunity to hear him, but it is in 
part responding to P special ad hrc subcommittee that was esubliahed by NASA to  look 
a t  the control of flexible space rtrrrctures. That particalrr mbcoxnmittee was n 
combination of controls and rtructurez experts. I personally feel they did a very good 
job of reviewing NASA's program and -Ling some tecommeab.tlonr. I al8o fird tJut 
t h e  particuL- plan put together in retponding to  that it an excellent plan. I have had 
involvement for two pean it trying to put together them types of plans for NASA. I 
think the people who did th:; should be coIILmended, because they present an ap3roach 
that really couples the dtscipher of control8 and 8tructurer. Often, when we have 
tried to put together such a program, we ended up pack~gbg Ln one plan, a controls 
program a d  separate structura: dylrrrmics program. I think this plan b-8 the tw3 
discipline8 together. I would like to encourage thbt NASA implement 8s mpch of it. as 
possible. I undentaad that it hat been favorably received up to thir point. I fully 
understand the problems of funding these program, since they get to be extremtly 
expensive. I would encourage them to proczed and accomF1~h as much as pottiblc. 

_I- CARCISLB: I do not k n , ~  i f  you are aware, but that was one of two specific new 
thrusts for next year's budget. So, we in NASA are tryu to proceed. I q g e s t  that 
the urrtversitier lelp. If the government and univerritiet can get together to recognize 
the problem, it might help. 
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BBDIBSS: The plan proposed was Weed a combination of & ~ l y t i c a l  rod theoreticd 
work up through significant groard and flight testing. I think it real€y is responsive to 
the community's needs for technology. 

BALAKRISHNAN: I just wanted to sa9 that we must not forget the scale of things. In 
microelectronics, we have projects a t  the level of $20 million in the univentities. As 
you mentioned, you- NASA project is CO- along. However, if each group is given 
only $1OK to carry on and participate, yon wil l  not get major results. That kixxi of t h g  
h8s to change if you want hrge scale involvement. 

SKELTON: I would like to  turn the question around to the audience. I am on the 
Aeronautics and Space Engineering Board (ASBS) of the National Research Council. A 
ccmmittee of the ASBB i s  loo- a t  the rektioasbips between faculty, WUSW, *nd 
universities. I would appreciate those of yon nho have specific concerns or i d e a  00 
how those relationships can be improped to drop me a note, or somehow register those 
thoughts, so that I might take them into accuunt. The concern is that in the 
universities a lot of our potential graduate students ue not goin& on to higher 
educ8tion. If you have concerns thar would help tc broaden my own perspective in 
formulating ideas and getting pohts of WW, I wopld certainly appreci~te hearing them. 
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TECHNICAL EVALUATION REPORT OF THE 
WORKSHOP ON IDENTIFICATION AND CONTROL 

OF FLEXIBLE SPACE STRUCTURES 
H. A. Rcdicss an4 N. Nay& 

H. R. Textron, Inc. 
Imine, CA 92714 

INTRODUCTION 

The main objectives of the workshop were: 

- to provide a forum for exchnging ideas and thoughts on how to effectively 
control large flexible multibody spacecraft; .9d 

- to identify the important unsolved problems of c m t  a d  future interest 
leading to possible future collaborative NASA/University/Industq efforts. 

The workshop was organized with several sessions addre88aing the major technical 
a d  theoretical issues through invited and contributed papers, three panel &CU%~~OPS,  
and a final wrap-up session. The workshop age- is presented in AppenGix A. The List 
of attendees is presented ia AppeediX B. The purpo8e of thb report is to present 8 
technical evaluation of the workshop that -theshes the most important results, 
couclusions, and recommendations for future research. 

The workshop covered a wide spectrum of issues involved in t b c  dentification and 
control of flexible space s t ~ ~ ~ t u r e s .  Many different concepts, ideas, and novel solutions 
were presented in this workshop. A new tread in the workshop was visible. There was a 
consensus that an integrated approach be adopted to solve the complex and challenging 
problem of control of large flexible space stiucttues. A mt - -g of control theory, 
structural design, a d  materials among others can produce k znt solution to the 
problem. 

Since NASA is planning for the deployment of krge space structures, such as 8pace 
station a d  antennas, it was felt that much of the theory that has been developed h.s to 
be validated by doing laboratory experiments both on the ground and anboard in 8pace. 
Of course, t k - 9  is 8 continuing need for more basic research in many areas t o  refine 
the ideas and concepts and to develop new solutions. 
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The recommendations outlined below are believed to  represent a c o n s e m  view 
from the workshop and draw heavily on the results of the panel discussions and the 
papels presented. One should not conclude, nor is there any intent to  imply, that all 
participants of the workshop or the wrap-up panel discussion endorsed these 
re commendations. 

MAJOR RECOMMENDATION FOR AREAS OF FUTURE RESEARCH 

1. 
structures 

An integrated approach to modeling, control law design, and optimization of space 

R 8 t i O M b :  Future space stnrctures will be verp. large and complex with stringent 
performance requirements. Tim, the control requirements for slewing and rubilizing 
the structure, and for providing shape control .nd vibration rpgpreuion, necessitate 
careful review. To minimiae control problems, these control requirements must be an 
integral part of the structure design process. Since a fa--proof control strategy 
sa t i s fy4  these requirements does not exist, it is important that .ddiLional research be 
focused on structural modeling and de- problems from a controls viewpoint. 

2. Model reduction a d  robustness 

Rational: Because of the large size and light weight, the space structure will exhibit a 
very large number of flexible mode shapes with low frequencies that will interact with 
the controllers. To control such stnrctures, it is impesative to model the s t m c t u r e  very 
carefully. To keep the model reasonably tractable from a compautioml point of view, 
A reduced order model has to be obtained. Some new results are now available to give 
guidelines in obtaining reduced order models, but good definitions and techniques are 
needed t o  measure robustness. 

3. Interdisciplinary approach in the control of flexible structures 

Rationale: The control of a large flexible space stnrctare is a complex .rd challenging 
problem. In order to keep the control simple, fmrctional, and tractable, all the 
available adjustable parameten mrmt be exploited. For example, by charyiiy certain 
material properties, the amount of power required for control can be d e c r e d .  Ttmr, 
by considering options offered through the material and structural ptoptdes  involved, 
the control problem can be ~llevirted coaribcrably. Researchen and engineen are 
recognizing the potentid of this interbirciphary approach. 

4. Adaptive control, estimation and identificatbn 

Rationale: Some large space structures, such as space station, will &ergo changes in 
their be dynamic characteristics. Adaptive control is potentially suitable under tach 
conditions, but there i8 a need for extensive research. In addition, for adaptive coattol 
to be effective, a good estimation and i.lentL=i:ation scheme i s  needed. 
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5. Control of distributed systems 

Rrtiorule: Since &e proposed space structure will be large, it can \e viewed as a 
distributed parameter system. Results obtained in a distributed parameter setting can 
give A good understanding and insight into choosu  a proper control strategy. Control 
of distributed systems can be viewed as a limiw case of rPmped parameter rystem 
control. Thus, one can exploit the strong theoretical results of distributed parameter 
systems theory to  study the limiting behavior of lnmped parameter systems. 

Rationale: There w e n  a considerable number of laboratory experimental results 
presented a t  the workshop. These experiments are necruarg to valid~te theory. There 
should be me or more benchmark tea articles ret up w h e n  various 
contmYestimatiodidentification algorithm can be tested .ab compand to provide a 
better understanding of the overall control problem. Carefully selected and well 
designed on-orbit experiments should be coldpc&l to further validate identification 
and control techniques. Particular emphasis should be placed on validating grad 
t e s t e  techniqozs and techniques for estrapohting g r m d  t e s t  data to the space 
environment. The 2rogram should be well coordiruted 80hg from arulysb, to simple 
experiments, and to full-blown realistic experiments. 

7. Sensor/Actartor placement a d  development 

Ratiolule: A proper sensor/actutor set on a f l e a l e  space svuctute can be hidhly 
effective in controlling the structure. Large and unique space structures will  probabiy 
need different types of sensors a d  actuators. 

8. Control system fault detection and tolerance research 

Rationale: It k img0it.n: to detect the faults and failures of sensors and actuators in 
time to control flexible space structures properly. This is particularly critical for 
stnngent performance criteri.. After fault detection, the coxtrol must be able to  
recjnfigure to f i e  new and smaller set of senson actuators. 

9 .  Norlinear control 

Bhtionde: Because of th2 complex nature of the flexible stnrcture, nonlinearity may 
be a pirt  of designing A good control Irw. More attention nee& to be paid to this area 
to develop a more mature and practical theory. 

OTHER BBCOMMENDATIONS 

1. Real-time processor control Irwr 

High speed of computation (10 to 100 million opevtions per second) 

High reliability and durability 

Software langruger, verification, validation, And fault tolerance 

2. Nonlinear state estimation 
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3. Active disturbance isolation for Space Sta t ion  

4. Analysis of high order structural systems with slightly nodinear stiffness properties 

5.  Theory of asymptotic properties of system 

6.  Applications of random field theory to estimation 8nd system identification 

7. Combined treatment of identification and control problem a c c o u u u  for modeling 
errors 

8. h cooperative program among NASA, DoD, dversitiet and industry to make the 
most effective use of limited data from -)or gmpad and flight experiments 
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