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1. Introduction 

The aerospace community has significant interest in the accurate numerical prediction of shock-
boundary layer interaction (SBLI) using computational fluid dynamics (CFD). SBLI occurs in 
both external and internal aerodynamic problems, including flow over airfoils, wings, rotors, 
ballistic projectiles, turbomachinery blades, and high-speed inlets and combustors. To facilitate 
the design and analysis of such aerospace systems, the SBLI phenomena must be isolated, 
modeled, and studied.  

Figure 1 provides a simple illustration of SBLI on a wind tunnel wall induced by supersonic flow 
over a flat plate. When the supersonic flow encounters the leading edge of the plate, a shock 
wave propagates towards the lower wall where it interacts with the boundary layer, inducing an 
abrupt pressure gradient. Capturing detailed flow physics—such as the location of incident shock 
wave, boundary layer recirculation and separation, increase in boundary layer displacement and 
momentum thicknesses, corner flow influence, and unsteadiness of the reflected shock wave, 
among others—has proven to be a challenge (1, 7–10, 15, 19, 22). 

 

Figure 1.  Schematic showing the shock-boundary layer interaction in an  
internal flowpath (9).  

Recognizing the need to study SBLI, the U.S. Air Force Research Laboratory (AFRL) hosted a 
workshop in January 2010 at the AIAA Aerospace Sciences Meeting in Orlando, Florida, where 
current high-fidelity physics-based computational methods were assessed for prediction of SBLI 
phenomena (3, 4, 6, 13). While the impetus of the workshop was to study SBLI in relation to 
inlets for supersonic vehicles, SBLI is also of interest to the U.S. Army Research Laboratory 
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(ARL) in the study of external aerodynamics of supersonic projectiles and missiles. A variety of 
computational approaches was presented at the SBLI Workshop to include Reynolds-averaged 
Navier-Stokes (RANS) methods; Large Eddy Simulation (LES); hybrid RANS/LES, structured, 
unstructured, and adaptive gridding techniques; various upwind numerical schemes; and various 
turbulence models. 

An experimental database for comparison purposes was derived from two wind tunnel facilities, 
viz, (i) the Institut Universitaire des Systèmes Thermiques Industriels Wind Tunnel (IUSTI) in 
Marseille, France (this data was furnished by UFAST (4, 9), a European Union consortium 
sponsoring SBLI research); and (ii) the University of Michigan Wind Tunnel (UMICH) (4, 14), 

working with the Collaborative Center for Aeronautical Sciences (CCAS). 

The experimental database was comprised of four SBLI test cases—one from UFAST and three 
from UMICH. Table 1 summarizes these test cases. Results for all four cases were presented by 
the authors at the SBLI Workshop. For case 1, additional simulations and analyses were 
completed following the workshop; for case 2, no additional simulations, only further analyses, 
were completed. 

Table 1.  Test cases for SBLI workshop. 

Case # Mach Shock Generator Angle Data Source 
1 2.25 8.0 UFAST 
2 2.75 7.75 UMICH 
3 2.75 10.0 UMICH 
4 2.75 12.0 UMICH 

 

Figure 2 shows a 2-D schematic of the UFAST wind tunnel, in which supersonic flow at Mach 
2.25 (test case 1) is delivered to a 122.1 mm × 170 mm (height × span) test section where a flat 
plate shock generator is located. The flow is fully turbulent as it approaches the test section with 
a boundary layer thickness of about 10 mm. The plate is 4 mm thick, has a sharp leading edge, is 
inclined at 8º to the tunnel axis, and spans the width of a test section. The tunnel walls have a 
0.28º divergence for a boundary layer correction. Streamwise particle image velocimetry (PIV) 
data for mean and fluctuating velocity components in the SBLI region was obtained on the 
tunnel centerline. Stereo-PIV (SPIV) data was also obtained on a plane 2 mm above and parallel 
to the tunnel lower wall. 

Figure 3 shows a 2-D schematic of the UMICH wind tunnel, in which supersonic flow at Mach 
2.75 is delivered to a 70 mm × 57 mm (height × span) test section where a wedge-shaped shock 
generator is located. The flow is fully turbulent as it approaches the test section with a boundary 
layer thickness of about 10 mm. The wedge is centered in the test section, supported by a strut, 
and spans half the tunnel. The bottom wall of the wedge is inclined at 7.75º, 10º, and 12º (test 
cases 2, 3, and 4) to the tunnel axis. SPIV data for mean and fluctuating velocity components 
was obtained on the centerline streamwise plane and several spanwise planes in the SBLI region. 
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SPIV inflow data was also obtained on two planes upstream of the SBLI region, one providing 
core flow data and the other boundary layer data.  

All simulations used steady-state, RANS methods and were conducted using a CFD++ v8.1.1 
flow solver—a commercial fluid flow solver by Metacomp Technologies, Inc (18). The effect of 
several turbulence models was investigated. The influence of grid resolution on the results was 
also addressed. 

 

Figure 2.  UFAST wind tunnel flowpath. 

 

Figure 3.  UMICH wind tunnel flowpath. 

2. Simulation Methodology 

The computational domains were three-dimensional and consisted of half the wind tunnel 
geometries, since they were symmetrical about the vertical centerline plane (or z=0 plane). The 
UFAST and UMICH computational domains, respectively, consisted of 20.4M and 18.0M 
structured, hexahedral cells generated using Pointwise v16.04R1 and Gambit v2.4.6 (see figures 
4 and 5). The UMICH grid additionally contained prism elements to facilitate gridding between 
the half-span shock generator and the tunnel side wall. To capture wall boundary layer effects, 
the initial grid wall spacing was 5x10–6 m (0.005 mm) in both cases. This ensured y+ values of 
less than 0.5 along the wind tunnel test section walls, and less than 1.0 otherwise, for 
compatibility with a solve-to-the-wall strategy. The UFAST and UMICH grids were decomposed 
for parallel processing on 136 and 120 processors, respectively. Computations were performed 
on “Harold,” a SGI Altix ICE 8200 Supercomputer, and “MJM,”a Linux Networx Advanced 
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Technology Cluster, both housed and managed by the ARL DoD Supercomputing Resource 
Center (DSRC) at Aberdeen Proving Ground (APG), MD. 

 

Figure 4.  UFAST computational domain: (a) full length view, ~20.4M cells, (b) 3-D grid detail in test-section, 
and (c) 2-D grid detail in test-section. Grids generated in Pointwise v16.04R1. Note: only half the 
geometry was gridded. 

(c) 

Blue region 
where grid 
points were 
doubled to 
produce the 
fine grid 

Plate Shock Generator 

(a) 

Plate Shock Generator 

Symmetry Plane 

Lower Wall 

Inflow Plane 

Outflow Plane 

(b) 
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Figure 5.  UMICH computational domain: (a) full length view, ~18M cells, (b) 3-D grid detail in test-section, and 
(c) 2-D grid detail in test-section. Grids generated in Gambit v2.4.6. Note: only half the geometry was 
gridded. 

A grid independence study was conducted for the UFAST case using the SST turbulence model, 
where the baseline grid, termed the “medium” grid, consisted of 20.4M cells. The number of grid 
points in each x, y, z direction were halved (including the initial wall spacing) to produce the 
“coarse” grid consisting of 2.5M cells. The grid points were then doubled in each x, y, z 
direction (including the initial wall spacing), but only for a rectangular region enveloping the 
predicted SBLI zone (rendered in blue in figure 4c). This resulted in the “fine” grid that 
consisted of 47.4M cells. 

Stagnation pressure and temperature conditions, as specified by the experiments, were imposed 
at the tunnel inlets (see table 2), while a centroidal extrapolation boundary condition was used at 
the outflow planes. The symmetry planes were modeled as inviscid walls (i.e., the “symmetry” 
boundary condition in CFD++). A viscous wall function boundary was used to model the strut 

(c) 

Wedge Shock Generator

(b) 

(a) 

Wedge Shock Generator

Symmetry Plane 

Lower Wall 

Outflow Plane 

Inflow Plane 
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that supported the wedge-shaped shock generator in the UMICH tunnel; this maintains the same 
wall grid spacing on the symmetry plane and strut, thereby conserving grid size. All other walls 
were modeled as viscous, adiabatic walls with an initial y+ spacing of less than 1. 

Table 2.  Summary of simulation parameters. 

PARAMETER UFAST UMICH 

Shock Generator Angle 8.0º 7.75º, 10º, 12º 

Mach # 2.25 2.75 

Air Inlet Total 
Conditions 

P0=50.5 kPa,  T0=293 K P0=101 kPa,  T0=293 K 

Outflow Centroidal Extrapolation 

Wall Boundaries Viscous, No-Slip, Adiabatic, except UMICH support strut 

Numerics 

3-D, compressible, steady-state, RANS; finite volume method; point-implicit time 
integration w/ local CFL ramped from 1–40; multigrid W-cycle method; implicit 
temporal smoothing; second-order inviscid spatial discretization; upwind HLLC 

scheme; TVD continuous flux limiter 

Turbulence Models 

(i) Menter’s Shear Stress Transport (SST) 
(ii) Spalart-Allmaras (SA) 
(iii) Realizable k-ε (RKE) 

(iv) Cubic k-ε (CKE) 
(v) Goldberg’s Rt Model (RT) 
(vi) Goldberg's k-ε-R (KER) 

(vii) Reynolds Stress Transport (RSM) 

(i) Menter’s Shear Stress Transport (SST) 
(ii) Spalart-Allmaras (SA) 
(iii) Realizable k-ε (RKE) 

 

Inlet Turbulence Intensity 0.1% 
Turbulence Length Scale 0.15175 m 

Inlet Turbulence Intensity 1%; 
Turbulence Length Scale 0.08935 m 

Computational Domain 
(Baseline Grids) 

~20.4M Hexahedral Cells; ½ Geometry 
136 Processors 

Pointwise v16.04R1 

~18M Hexahedral Cells; ½ Geometry 
120 Processors 
Gambit v2.4.6 

Δswall= 0.005 mm → y+ < 1 

Computing 
Hardware 

“Harold” SGI Altix ICE 8200 
10,752 2.8-GHz Intel Xeon Nehalem Cores 

1344 Nodes, 24 GB RAM/ Node 
4x DDR Infiniband Interconnect 

“MJM” Linux Networx Advanced Tech Cluster 
4400 3.0-GHz Intel Woodcrest Cores 

1100 Nodes, 8 GB RAM/ Node 
4x DDR Infiniband Interconnect 

 
CFD++ v8.1.1 (18), a commercial fluid flow solver, was used to solve the 3-D, compressible, 
steady-state, RANS equations using a finite volume method. A point-implicit time integration 
scheme with local time-stepping, defined by the CFL (Courant-Friedrichs-Lewy) number, was 
used to advance the solutions towards steady-state. The CFL number was ramped typically from 
1 to 40 over the first few hundred iterations, and remained at 40 until convergence. The multigrid 
W-cycle method with a maximum of four cycles and a maximum of 20 coarse grid levels was 
used to accelerate convergence. Implicit temporal smoothing was applied for increased stability. 
First-order spatial discretization was used for the first few hundred iterations, which then blended 
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over 100 iterations to second-order discretization. The inviscid flux function was an upwind 
scheme using a Harten-Lax-van Leer-Contact (HLLC) Riemann solver and Metacomp’s multi-
dimensional Total-Variation-Diminishing (TVD) continuous flux limiter. 

Convergence was partially monitored by the reduction in the right-hand side residuals of the 
Navier-Stokes equations averaged over all cells at each iteration. The UFAST and UMICH cases 
typically demonstrated 8 and 4–5 orders of magnitude reduction in the residuals, respectively 
(see figure 6). Convergence for the UMICH case was more restricted, likely due to the prism 
elements in the test section grid. For the UFAST case, the exception was the seven-equation 
RSM turbulence model, which demonstrated only a 2–3 order of magnitude reduction in 
residuals. Also, it was ensured that the net mass and energy fluxes through the computational 
domain were driven to zero to satisfy mass and energy conservation laws. 

 

Figure 6.  Sample residual histories of the right-hand side equations: (a) UFAST – SST and (b) UMICH – SST. 

The simulations were sensitive to the choice of turbulence model, as will be shown in section 3. 
Therefore, several turbulence models were investigated. Although some models are known to 
produce better results than others for internal flows, the authors tested almost all turbulence 
models available within CFD++ for the UFAST case, mainly for the purpose of completeness 
and future referencing.  

For the UFAST case, the turbulence models tested were the: 

1. Menter’s Shear Stress Transport (SST) 2-equation model (16, 17, 20) 

2. Spalart-Allmaras’s (SA) 1-equation model (20, 21) 

3. Realizable k-ε (RKE) 2-equation model (5, 20) 

4. Cubic k-ε (CKE) non-linear, 2-equation model (11) 

5. Goldberg’s Rt (RT) 1-equation model (11) 

6. Goldberg's k-ε-R (KER) 3-equation model (12) 

(a) (b) 
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7. Reynolds Stress Transport (RSM) 2nd moment closure, 7-equation model (2) 

For the UMICH case, only the first three of the aforementioned models were used. (See table 2). 
The flows were assumed to be fully turbulent— i.e., no transition modeling was used. 

The inlet turbulence intensity was chosen as 0.1% for the UFAST case (as determined by the 
experiment) and 1% for the UMICH case (as typically used for similar internal flows). The 
turbulent length scale was taken to be the square root of the cross-sectional area (as 
recommended by Metacomp (18)) of the inflow plane for the UFAST tunnel—i.e., 0.15175 m—
and the test section for the UMICH tunnel—i.e., 0.08935 m. The laminar-to-turbulent Prandtl 
number ratio was chosen as default value 0.8. Metacomp’s wall-bounded compressibility 
correction (18) was applied to realize diffusive mixing in the turbulent regions, which would 
otherwise be under-predicted in compressible flows. 

3. Results 

The following compares experimental and numerical data for the UFAST (section 3.1) and 
UMICH (section 3.2) wind tunnels. Plots include 3-D flowfield contours, numerical oil flow 
visualizations, and 2-D and 1-D velocity and perturbation velocity profiles for several turbulence 
models. Grid sensitivity is also demonstrated for the UFAST case. Except where turbulence 
models and grid densities are compared, the results are for the SST turbulence model using the 
“medium” grid, as this was the assumed baseline case. For the 2-D contour plots, the end-values 
on the legends are not necessarily the min/max values of the plotted flow variable; the legend 
end-values were, instead, altered for best visual rendering. All length scales are in meters, unless 
otherwise stated. 

3.1 UFAST Wind Tunnel 

Figure 7 provides a 3-D perspective of the flow in the tunnel test section, with Mach number 
contours on the symmetry plane and oil flow streamlines on the lower wall. Figure 8 compares 
experimental (9) and numerical oil flow streamlines on a plane 0.002 m above the lower wall. 
The adverse pressure gradient imposed by the incident shock induces a region of recirculation on 
the lower wall and thickens the boundary layer. The influence of the corner flow on the 
centerline core flow is very evident in both experiment and CFD, implying that the flow is highly 
three-dimensional. This was purported to be the result of shock waves thickening and possibly 
separating the corner flow boundary layers, which then pushes flow away from the walls towards 
the centerline, therefore altering the strength of the centerline SBLI (3). This effect will also be 
shown in the UMICH case in section 3.2. The coupling of the centerline and corner SBLIs, 
therefore, necessitates simultaneous accurate numerical prediction of both flows. However, due 
to the lack of experimental corner flow data, the CFD numerical modeling of the corner flow 
could not be verified; this, in turn, adds a source of uncertainty in predicting the centerline flow. 
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Note that the scales of the experimental and numerical plots in figure 8 are different. For the 
region z = –0.06–0.06 m, in the vicinity of x = 0.320 m, the centerline SBLI flow structure 
obtained via CFD (figure 8b) compares very well with that obtained via experiment (figure 8a). 

 

Figure 7.  Three-dimensional rendering of UFAST numerical flowfield for SST turbulence model showing Mach 
number contours on the tunnel symmetry plane and oil flow streamlines on the tunnel lower wall. 

 

 

Figure 8.  Transverse profile in the interaction zone showing centerline and corner SBLIs: (a) experimental SPIV data 
(9) on a plane 2 mm above the lower wall (scale units in mm), (b) CFD streamline data using SST 
turbulence model on a plane 2 mm above the lower wall (scale units in m), and (c) CFD streamline data 
using SST turbulence model on the lower wall (scale units in m). 

Although seven turbulence models were simulated (see table 2), the contour plots of figures 9 
and 10 depict only the “best” four, while the line plots of figures 11–13 depict all seven. The 
“best” turbulence models refer to those that compared best with experiment. In no particular 
order, these were the RSM, SA, Menter’s SST and Goldberg’s Rt models. 

Figure 9 compares u-velocity and the numerical Schlieren (density gradient in the axial 
direction) between different turbulence models. The plots show the shock structure—a sequence 

(a) (b) (c) 

z 

x 

Oil Flow 
Streamlines 
on Lower 

Wall 

Symmetry 
Plane Mach 

No. Contours 

Plate Incident 
Shock Wave 

Reflected 
Shock Wave

Corner
SBLI 

Flow 
Direction 

Centerline 
SBLI 
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of oblique shock and expansion waves—induced by the plate in the wind tunnel test section. The 
different turbulence models produce slightly different characteristics, especially where the waves 
interact with the flow near the walls. The shock emanating from the leading edge of the plate 
impinges the boundary-layer on the bottom wall in the vicinity of x≈0.3–0.35 m (the SBLI zone). 
Typical aerodynamic SBLI characteristics consistent with that observed in the experiment can be 
identified (particularly from the Schlieren plots), such as the incident and reflected shocks, a λ-
shock, an expansion fan, and increased boundary layer thickness due to adverse pressures. 

 

Figure 9.  Turbulence model comparison on symmetry plane: (a) u-velocity and (b) numerical Schlieren.  

Figure 10 compares u- and v-velocities in the SBLI zone between the experimental and 
numerical results. The SA and RSM models best capture the size and shape of the boundary 
layer in the interaction region, as well as the location of the interaction. The SST and RT models 
slightly over-predict the size of the interaction region; they also predict the interaction to occur 
slightly more upstream than that of the experiment.   

(a) (b) 
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Figure 10.  Experiment vs. CFD on symmetry plane in SBLI region: (a) u-velocity and (b) v-velocity. 

Figures 11–13 compare 1-D axial profiles of u-velocity, v-velocity, and uʹvʹ Reynolds stress in 
the SBLI region. Upstream of the shock-induced pressure gradients, the velocity and perturbation 
velocity profiles are reasonably captured by all turbulence models. Progressing downstream, the 
disparity increases through the main interaction region, after which the agreement is again 
reasonable. There is increased sensitivity to turbulence modeling for the v-velocity and uʹvʹ 
Reynolds stress components. The observed discrepancies in figures 11–13 are partially due to the 
variation in the prediction of the SBLI location, as shown in figure 10. This error would be 
reflected as a translation of the numerical data along the x-axis. 

 

(a) (b) 



 

 

 

Figure 11.  Turbulence model sensitivity: u-velocity axial profiles on the symmetry plane in the SBLI region. 
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Figure 12.  Turbulence model sensitivity: v-velocity axial profiles on the symmetry plane in the SBLI region. 
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Figure 13.  Turbulence model sensitivity: uʹvʹ axial profiles on the symmetry plane in the SBLI region. 
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Figures 14–17 show the results of a grid density study using the SST turbulence model (the 
aforementioned baseline model), where the coarse, medium, and fine grids consisted of 2.5, 20.4, 
and 47.4 million cells, respectively (as described in section 2). Figure 14 shows u- and v-velocity 
contour plots on the symmetry plane for each grid level. While the medium and fine grid results 
show qualitatively similar results, it is apparent that higher resolution of the shock-boundary 
layer interactions is obtained with each increase in grid density. 

 

Figure 14.  Grid sensitivity: (a) u-velocity and (b) v-velocity symmetry plane contours in SBLI region, SST model. 

Figures 15–17 compare 1-D axial profiles of u-velocity, v-velocity, and uʹvʹ Reynolds stress on 
the symmetry plane for the three grid levels. For the u-velocity variable, the medium and fine 
grid plots overlay each other, while for the v-velocity and uʹvʹ Reynolds stress, the medium and 
fine grids very closely match. This indicates that grid independence was achieved with the 
medium grid and was, therefore, deemed sufficient for all other UFAST computations. 

 
 

(a) (b) 



 

 

 

Figure 15.  Grid sensitivity: u-velocity axial profiles on the symmetry plane in the SBLI region, SST model.  

Note that the fine grid results (green) overlay that of the medium grid (blue). 
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Figure 16.  Grid sensitivity: v-velocity axial profiles on the symmetry plane in the SBLI region, SST model. 
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Figure 17.  Grid sensitivity: uʹvʹ axial profiles on the symmetry plane in the SBLI region, SST model. 
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For a symmetric duct with a uniform symmetric inflow (as is the case here), it is expected that 
the flowfield downstream of the inflow would also be symmetric. This would normally be true 
for both experimental and numerical flowpaths. However, it was briefly discussed at the SBLI 
Workshop that flow asymmetries were observed in some of the UFAST experiments; these 
experiments may or may not have included the one simulated in this study, but were performed 
using the same wind tunnel. It was also suggested that this may also occur in numerical 
simulations and that the results may be physically real. Recall that all simulation results 
presented so far were for half of the UFAST flowpath, since a symmetric flowfield was assumed. 
To explore possible flow asymmetries, the baseline medium level “half” grid was mirrored to 
produce the “full” grid, and the simulation was re-run (using the SST turbulence model). 
Mirroring the grid eliminates the possibility of an asymmetric flowfield developing because of 
an asymmetric grid. These results also provide some qualitative insight into the spanwise 
flowfield profiles. 

Figure 18 compares pressure contours on the lower wall (where the SBLI occurs) for the full grid 
and half grid. The contour plot for the half grid is mirrored for better visual comparison. Figures 
19–21 compare pressure, skin friction, and u-velocity at three axial locations—x=0.20, 0.32, and 
0.40 m. The pressure and skin friction line data were extracted from the lower wall across the 
span (z-direction) of the tunnel. To verify symmetry using the line plots, the +z and –z data were 
superimposed on each other, i.e., the -z data was mirrored about the z=0 axis. All results indicate 
that, from a numerical standpoint, the flowfield using the full grid is very symmetric and 
produces the same results as the half grid. It is possible that asymmetries observed in the 
experiment may be due to spanwise asymmetries in the tunnel hardware and/or inflow 
conditions.  

 

Figure 18.  Pressure contours on the lower wall for the (a) full grid and (b) mirrored half grid, SST model. 
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Figure 19.  Spanwise profiles of pressure, skin friction and velocity using full grid, X=0.20 m, SST model. 
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Figure 20.  Spanwise profiles of pressure, skin friction and velocity using full grid, X=0.32 m, SST model. 
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Figure 21.  Spanwise profiles of pressure, skin friction and velocity using full grid, X=0.40 m, SST model. 

3.2 UMICH Wind Tunnel 

As described in section 1—Introduction, the results presented here were those presented at the 
AIAA SBLI Workshop. No further simulations, other than additional post-processing of the data, 
were completed after the Workshop. The UMICH results include three shock-generator wedge 
angles, viz, 7.75°, 10°, and 12° (test cases 2, 3, and 4). Results are first presented for the 7.75° 
case, which includes comparisons of three turbulence models, viz, SST, SA, and RKE. The effect 
of wedge angle on the flowfield is then compared via numerical contour plots in the tunnel 
section. All experimental and numerical test conditions and run parameters were the same for 
each wedge angle case. All UMICH simulations were conducted using a single grid level. 

Figure 22 provides a 3-D perspective of the flow in the tunnel test section, with Mach number 
contours on the symmetry plane and oil flow streamlines on the lower wall. Although this result 
is for the SST turbulence model with wedge angle 7.75°, it represents the general flowfield of all 
the UMICH cases. The adverse pressure gradient imposed by the incident shock induces a region 
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of recirculation on the lower wall and thickens the boundary layer. Similar to the UFAST case, 
the influence of the corner flow on the centerline core flow is very evident in the CFD results, 
implying that the flow is highly three-dimensional. This flow structure is due to the coupling of 
the corner and centerline SBLIs, as described in the UFAST case (section 3.1). As previously 
stated, lack of corner flow data lends to a source of uncertainty in numerically predicting the 
centerline flow. 

 

Figure 22.  Three-dimensional rendering of UMICH numerical flowfield showing Mach number contours on the 
tunnel symmetry plane and oil flow streamlines on the tunnel lower wall, SST model, 7.75° case. 

Figure 23 compares u-velocity and the numerical Schlieren (density gradient in the axial 
direction) between different turbulence models for the 7.75° case. The plots show the shock 
structure, a sequence of oblique shock and expansion waves induced by the wedge-shaped shock 
generator in the wind tunnel test section. The different turbulence models produce slightly 
different characteristics, especially where the waves interact with the flow near the walls. The 
choice of turbulence model seems to have a more subtle effect on the overall flowfield than for 
the UFAST case, possibly because of a higher inflow Mach number and resulting stronger shock 
waves in the test section. The shock emanating from the leading edge of the plate impinges the 
boundary-layer on the bottom wall in the vicinity of x≈0.03–0.04 m (the SBLI zone). 
Aerodynamic flow structures similar to that of the UFAST case can be identified in the SBLI 
region. 
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Factors such as grid resolution and corner flow influence may be partially responsible for the 
discrepancies. Future studies may include a grid density study, additional turbulence models, and 
data comparison for other flow variables (such as the Reynolds stress). 

 

Figure 23.  Turbulence model comparison on symmetry plane: (a) u-velocity and (b) numerical Schlieren, 7.75° case. 

Figure 24 compares u- and v-velocity contours in the SBLI zone between the experimental and 
numerical results for the 7.75° case. Although the extent of the interaction is under-predicted by 
the SST model, this model best captures the size and shape of the recirculation region in the 
boundary layer, as well as the location of the interaction. The SA and RKE models show smaller 
interaction regions that occur slightly more downstream (~0.002–0.003 m) than in the 
experiment. 

 
 

(a) (b) 
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Figure 24.  Experiment vs. CFD on symmetry plane in SBLI region: (a) u-velocity and (b) v-velocity. 

Figures 25 and 26 compare 1-D axial profiles of u- and v-velocity in the SBLI zone between the 
experimental and numerical results for the 7.75° case. The CFD u-velocity profiles match very 
well with that of the experiment for the SST and SA models, and fairly so for the RKE model. 
Like the UFAST case, the v-velocity profiles are more sensitive to turbulence modeling. There is 
a larger discrepancy between the numerical and experimental results for this variable. Again, the 
SST and SA models are favored since the RKE model provides the worst comparison with 
experiment. However, improved prediction of the v-velocity variable is needed. 

(a) (b) 



 

 

 

Figure 25.  Turbulence model sensitivity: u-velocity axial profiles on the symmetry plane in the SBLI region. 
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Figure 26.  Turbulence model sensitivity: v-velocity axial profiles on the symmetry plane in the SBLI region. 
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The following results compare the effect of the shock-generator wedge angle on the test section 
flowfield and the SBLI zone. These wedge angles include 7.75°, 10°, and 12°, which comprise 
test cases 2, 3, and 4 (see section 1). Figure 27 shows Mach number contours and the numerical 
Schlieren on the test section symmetry plane for each wedge angle. While the shock structures 
are similar, it is observed that a larger wedge angle induces a leading edge shock that is stronger 
and has a larger angle of incidence (angle between the shock plane and the tunnel axis). The 
Mach number contours of figure 28 shows that this incurs stronger adverse pressure gradients at 
the lower wall, producing the observed larger recirculation region.  

A larger incident shock angle, induced by a larger wedge angle, is expected to move the SBLI 
location further upstream. However, note that the leading edge of the wedge is further 
downstream for the larger wedge angles (figure 27). The net effect is to, instead, move the SBLI 
location further downstream (figure 28). 
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(a)  

(b)  

Figure 27.  Effect of shock-generator wedge angle on the test section flowfield – symmetry plane numerical 
contours of: (a) Mach number and (b) numerical Schlieren. Plots are in mm. 



 

30 

 

Figure 28.  Effect of shock-generator wedge angle on the SBLI: Mach number numerical  
contours on the symmetry plane near the lower wall. Plots are in mm. 

4. Summary and Conclusions 

Shock-boundary layer interaction has been numerically simulated using steady-state RANS 
methods in two wind tunnel facilities, viz, UFAST and UMICH. Typical flow characteristics 
were identified, such as the recirculation region, incident, reflected, and λ shocks, and increase in 
boundary layer thickness. The accuracy of the numerical predictions in the shock-boundary layer 
interaction region was good in some cases and poor in others, and highly dependent on 
turbulence model chosen. The prediction of the v-velocity component and Reynolds stresses 
were more sensitive than the prediction of the u-velocity component. Observed inaccuracies may 
be the result of one or more factors. Inflow turbulence conditions may not have been adequately 
modeled due to lack of data from the experiments. Also, inadequacies in the turbulence model 
formulation, such as their inherent empiricisms, can lead to errors that are difficult to 
characterize. A lack of experimental corner flow data, which was shown to be coupled to the 
centerline flow, also adds a measure of uncertainty in the numerical results. Future studies will 
attempt to address some of these issues. 

A suite of RANS turbulence models was studied, particularly for the UFAST case. Based on 
these studies, it appears that four of these models are best for internal flows where shock-
boundary layer interaction phenomena occur. These were the Menter’s SST, the SA, the 
Goldberg RT, and the RSM models. However, the choice of turbulence model is contingent upon 
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the type of problem being solved, as well as time/computing constraints. For the instance, the 
SST model is a two-equation model that takes about twice as long to produce a converged 
solution as compared to the one-equation SA or RT models. Therefore, the SA and RT models 
may be more desirable where rapid solutions are needed, as is the case in industrial applications. 
The RSM model—because it is a seven-equation model and requires very fine grid spacing near 
viscous walls, resulting in larger grid sizes—demands far more computational resources, and 
may also be less stable. Hybrid RANS/LES will be used in a future study, not only for 
comparison purposes, but to also resolve possible unsteady effects, such as resonance of the 
reflected shock wave from the boundary layer, as observed in the UFAST experiment. 

Given the large grid sizes required to quantitatively resolve the flow in the SBLI region, an 
adaptive gridding technique may offer improved accuracy, while minimizing grid sizes. In such a 
case, grid points would be concentrated in high gradient regions via an automated procedure. 

The results of this study conform to the general conclusions derived from the AIAA SBLI 
Workshop (3, 6, 13). Error margins observed in the numerical solutions submitted by all 
participants indicated that, for a single simulation methodology, good prediction of one flow 
variable does not guarantee good prediction of another. Therefore, no discernable trends could be 
elicited from the collective results of the participants. However, it was agreed that the dominant 
factors in the RANS prediction of SBLI were the choice of turbulence model and grid density. 
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List of Symbols, Abbreviations, and Acronyms 

AFRL U.S. Air Force Research Laboratory 

APG Aberdeen Proving Ground 

ARL U.S. Army Research Laboratory 

CCAS Collaborative Center for Aeronautical Sciences 

CFD computational fluid dynamics 

CKE cubic k-ε 

DoD Department of Defense 

DSRC DoD Supercomputing Resource Center 

HLLC Harten-Lax-van Leer-Contact 

IUSTI Institut Universitaire des Systèmes Thermiques Industriels Wind Tunnel 

KER k-ε-R 

LES Large Eddy Simulation 

PIV particle image velocimetry 

RANS Reynolds-averaged Navier-Stokes 

RKE realizable k-ε 

RSM Reynolds Stress Transport 

RT Rt 

SA Spalart-Allmaras 

SBLI shock-boundary layer interaction 

SPIV Stereo-PIV 

SST Shear Stress Transport 

TVD Total-Variation-Diminishing 

UMICH University of Michigan Wind Tunnel 
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