Bibliography of the Geology of the Green River Formation, Colorado, Utah, and Wyoming, to March 1, 1977
Mullens, Marjorie C. .
(Geological Survey Circular 754)
Bibliography: p.
QE75.CS no. 754 [Z6033.S8] [QE692.2] 557.3'08s [016.55792'21] 77-9597

Free on application to Branch of Distribution, U.S. Geological Survey, 1200 South Eads Street, Arlington, VA 22202
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Geological Survey reports on the Green River Formation, Colorado, Utah, and Wyoming</td>
<td>2</td>
</tr>
<tr>
<td>Selected reports by non-U.S. Geological Survey authors on geology of the Green River Formation, Colorado, Utah, and Wyoming</td>
<td>22</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Green River Formation in northwestern Colorado, northeastern Utah and southwestern Wyoming contains thick and extensive deposits of oil shale. The richest oil-shale deposits underlie an area of 12,000 square kilometers in the Piceance Creek and Uinta Basins in northwestern Colorado and northeastern Utah. Cashion and Donnell (1968) reported that these basins contain about 105 billion metric tons of oil in beds which are more than 4.6 meters thick and which contain an average of 5.7 percent of oil by weight. Much additional oil is present in beds that contain less than 5.7 percent oil or are less than 4.6 meters thick in these basins and in other areas underlain by the Green River Formation. Duncan and Swanson (1965) estimated that the known recoverable and marginal resources of oil in the entire Green River Formation are about 280 billion metric tons. In early 1977, however, none of the oil shale was being mined for oil on a commercial basis.

The Green River Formation also contains gilsonite, bituminous sands, oil and gas, and sodium and aluminum minerals. Some of these minerals were being produced commercially in early 1977.

This bibliography, which contains 895 references, was compiled to aid studies on the geology and resources of the Green River Formation. References included are mainly on the areal geology, stratigraphy, paleontology, geochemistry, and mineralogy of the Green River Formation, but some concern development of the oil-shale deposits. Recent studies also concern the effects that an oil-shale industry will have on the environment.

The bibliography is arranged in three parts: U.S. Geological Survey reports on the Green River Formation, Colorado, Utah, and Wyoming; reports by U.S. Geological Survey authors on geology of the Green River Formation, Colorado, Utah, and Wyoming, in non-U.S. Geological Survey publications; and selected reports by non-U.S. Geological Survey authors on the geology of the Green River Formation, Colorado, Utah, and Wyoming. The two parts by Geological Survey authors are as complete as possible, but the other part includes only selected references. For reports in which mention of the Green River Formation is only incidental, brackets are used to indicate the pages pertinent to the Green River Formation.

Campbell, D. L., 1975, Schlumberger
electric soundings near Yellow Creek, Piceance Creek basin, Colorado: U.S. Geol. Survey Open-File Rept. 75-354, 28 p.

Culbertson, W. C., 1961, Stratigraphy

1961, Tertiary geology and oil-shale resources of the Piceance Creek Basin between the Colorado and White Rivers, northwestern

Duncan, D. C., and Belser, Carl, 1950, Geology and oil-shale resources of the eastern part of the Piceance Creek Basin, Rio Blanco and Garfield Counties, Colorado: U.S. Geol. Survey Oil and Gas Inv. Map OM-119.

Duncan, D. C., and Denson, N. M., 1949, Geology of Naval Oil Shale Reserves 1 and 3, Garfield County, Colorado: U.S. Geol. Survey Oil and Gas Inv. Prelim. Map 94.

____ 1870, From Green River Station, via Bridger’s Pass to Cheyenne, Wyoming Territory, Chap. 6, in U.S. Geol. and Geog. Survey Terr. 4th Ann. Rept.: 511 p. [p. 70-81] [1871].

Hosterman, J. W., and Dyni, J. R., 1972, Clay mineralogy of the Green River Formation, Piceance Creek basin, Colorado—a preliminary study, in Geological Survey

Keighin, C. W., Preliminary geologic map of the Burnt Timber Canyon quadrangle, Uintah County, Utah: U.S. Geol. Survey Misc. Field Studies Map. [In press]

Preliminary geologic map of the Cooper Canyon quadrangle, Uintah County, Utah: U.S. Geol. Survey Misc. Field Studies Map. [In press]

Preliminary geologic map of the Rainbow quadrangle, Uintah County, Utah: U.S. Geol. Survey Misc. Field Studies Map. [In press]

Masursky, Harold, and Pipiringos, G. N., 1959, Uranium-bearing coal in the Red Desert area, Sweetwater

______ 1878, Geological report on the Grand River district: U.S. Geol. and Geog. Survey Terr. (Hayden),

Pitman, J. K., 1974, Magnetic tape containing oil-shale Fischer assay data for coreholes in the Piceance Creek basin, Colorado: Available from NTIS as rept. PB-230 607/AS.

1974a, Average oil-yield tables for oil-shale sequences in core from the southern part (Tps. 5 S.-11 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and 40 gallons per ton: Available from NTIS as rept. PB-230-963/AS, 468 p.

1974b, Average oil-yield sequences in core from the central part (Tps. 3 S., and 4 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and 40 gallons per ton: Available from NTIS as rept. PB-230-962/AS, 432 p.

1974c, Average oil-yield table for oil-shale sequences in core from northern part (Tps. 1 N., 1 S., and 2 S.) of the Piceance Creek basin, Colorado, that average 15, 20, 25, 30, 35, and 40 gallons per ton: Available from NTIS as rept. PB 230-961/AS, 208 p.

Pitman, J. K., and Van Trump, George, 1975, Magnetic tape containing oil-shale Fischer assay data for coreholes in the Uinta Basin, Utah: Available from NTIS as PB-238 682/AS.

Rapp, J. R., 1962, Roll in a sandstone

___1975a, Computer program designed
to compute oil-shale thickness (ft), average value (gal. per ton), and resource (barrels per acre) from Fischer assay data: U.S. Geol. Survey Open-File Rept. 75-110, 18 p.

_____1975b, Computer program designed to draw bar graphs from oil-shale Fischer assay or saline mineral data: U.S. Geol. Survey Open-File Rept. 75-341, 8 p.

_____1975c, Computer program designed to draw a ternary diagram based on proportions of any three variables from oil-shale Fischer assay or saline mineral data: U.S. Geol. Survey Open-File Rept. 75-524, 10 p.

_____1923, Oil shale of the Rocky Mountain region: U.S. Geol. Survey Bull. 729, 204 p. [p. 34, 104, 121].

Wyant, D. G., Sharp, W. N., and Sheridan, D. M., 1956,

REPORTS BY U.S. GEOLOGICAL SURVEY AUTHORS ON GEOLOGY OF THE GREEN RIVER FORMATION, COLORADO, UTAH, AND WYOMING IN NON-U.S. GEOLOGICAL SURVEY PUBLICATIONS

Cashion, W. B., 1964a, Oil shale, in Mineral and water resources of Utah: Utah Geol. and Mineralog. Survey Bull. 73, p. 61-63.

Culbertson, W. C., 1971, Stratigraphy of the trona deposits in the Green River Formation, southwest Wyoming:

1974b, Significance of applied mineralogy to oil shale in the upper part of the Parachute Creek Member of the Green River Formation, Piceance Creek basin, Colorado, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mtn. Assoc. Geologists 25th Ann. Field Conf.: p. 81-89.

1957, At Piceance Creek [Colo.] 1,000 ft tests show new 30-gal. oil shale: Oil and Gas Jour., v. 55, no. 29, p.162.

Global oil-shale resources and costs: Presentation at the UNITAR-IIASA Conference on future supply of petroleum and natural gas, Vienna, Austria. [In press]

Glass, J. J., 1947, Sodium bicarbonate (nahcolite) from Garfield County, Colorado [abs.]: Am. Mineralogist, v. 32, nos. 3-4, p. 201.

Keighin, C. W., 1975, Resource appraisal of oil shale in the Green River Formation, Piceance Creek basin, Colorado: Colorado School Mines Quart., v. 70, no. 3, p. 57-68.

Milton, Charles, 1957, Authigenic minerals of the Green River
formation of the Uinta Basin, Utah, in Intermtn. Assoc.

_____1955, New mineral garrelsite (Ba0.65Ca0.29Mg0.06)4H6Si2B2O20) from the Green River formation, Utah [abs.]: Geol. Soc. America Bull., v. 66, no. 12, pt. 2, p. 1597.

— 1974, Depositional environments of rocks in the Piceance Creek

______1976, Ground water for oil shale development, Piceance Creek basin, Colorado [abs.]: Geol. Soc. America Abs. with Programs, v. 6, no. 7, p. 1003-1004.

SELECTED REPORTS BY NON-U.S. GEOLOGICAL SURVEY AUTHORS ON GEOLOGY OF THE GREEN RIVER FORMATION, COLORADO, UTAH, AND WYOMING

Apapito, J. F., 1974, Rock mechanics applications to the design of oil shale pillars: Mining Eng., v. 26, no. 5, p. 20-25.

Arnold, C., Jr., 1975, Effect of heating rate on the pyrolysis of oil shale: Available through NTIS as Doc. DA 81213-1.

Barb, C. F., and Ball, J. O., 1944, Hydrocarbons of the Uinta Basin of
Utah and Colorado: Colorado
School Mines Quart., v. 39, no. 1, 115 p.

Bayer, K., and Navarro, R., 1972, Refraction surveys at the Shell Oil Company's oil shale project--Piceance Creek basin, Colorado: Available from NTIS as rept. NVO-746-TM-5, 19 p.

Borg, I., 1973, Reconnaissance of the oil shale resources of the Piceance Creek basin, Colorado, from the standpoint of in situ retorting within a nuclear chimney: Available from NTIS as rept. UCRL-51329, 14 p.

_____1975, Primary and secondary sedimentary structures in oil shale and other fine-grained rocks, Green River Formation (Eocene), Utah and Colorado: Utah Geology, v. 2, no. 1, p. 49-67.

_____1976, Comparative X-ray mineralogy of nearshore and offshore lacustrine lithofacies, Green River Formation, Piceance Creek basin, Colorado, eastern Uinta Basin, Utah [abs.]: Geol. Soc. America Abs. with Programs, v. 8, no. 6, p. 817.

Geology, v. 11, no. 4, p. 321-324.

Cox, R. E., and Maxwell, J. R., 1971, Stereochemical determination of geological acyclic isoprenoid compounds [abs.]: Internat. Mtg. on Organic Geochemistry, Program abs. no. 5, 1 p.

Davis, C. A., 1915, On the fossil algae of the petroleum-yielding shales

Ertl, Tell, 1947, Sodium bicarbonate (nahcolite) from Colorado oil shale: Am. Mineralogist, v. 32,
no. 3-4, p. 117-120.

Ferris, B. J., 1948, Studies of soluble material in oil shales: Mines Mag., v. 38, no. 9, p. 19-22.

_____1950, Are oil shales natural source beds of petroleum?: World Oil, Pt. 1, v. 131, no. 3, p. 80, 82, 84, 86, 88; Pt. 2, v. 131, no. 5, p. 73-76, 78, 81.

Fischer, R. C., 1974, Colorado oil shale and water, in Oil Shale Symposium, 7th: Colorado School Mines Quart., v. 69, no. 2, p. 133-139.

Freeman, P. S., 1972, Shale dome

Glenn, W. E., 1974, Oil shale and the energy situation, in Oil Shale Symposium, 7th: Colorado School Mines Quart., v. 69, no. 2, p. 71-77.

Goodfellow, Lawrence, and Atwood, M.

Gray, S. L., 1974, Primary data on economic activity and water use in the prototype oil shale development areas of Colorado--an initial inquiry: Available from NTIS as Rept. PB-236 039/4ST, 12 p.

Halbouty, M. T., 1968, Shale oil--Will it ever be a reality?, in Fifth symposium on oil shale: Colorado School Mines Quart., v. 63, no. 4, p. 127-134.

Halbouty, M. T., 1968, Shale oil--Will it ever be a reality?, in Fifth symposium on oil shale: Colorado School Mines Quart., v. 63, no. 4, p. 127-134.

Gray, S. L., 1974, Primary data on economic activity and water use in the prototype oil shale development areas of Colorado--an initial inquiry: Available from NTIS as Rept. PB-236 039/4ST, 12 p.

Hubbard, A. S., and Fester, J. I., 1958, Hydrogenolysis of Colorado
oil-shale kerogen: Jour. Chem.

Huggins, C. W., and Green, T. E., 1973,
Thermal decomposition of

Huggins, C. W., Green, T. E., and
Turner, T. L., 1973, Evaluation of
methods for determining nahcolite
and dawsonite in oil shales: U.S.

Hundemann, A. S., 1975, Oil Shale--A
bibliography with abstracts:
Available from NTIS as rept.

Hunt, J. M., Stewart, Francis, and
Dickey, P. A., 1954, Origin of the
hydrocarbons of the Uinta Basin,
Utah: Am. Assoc. Petroleum
Geologists Bull., v. 38, no. 8, p.
1671-1698.

Iida, Takeo, Yoshii, Eiichi, and
Kitatsuji, Eitaro, 1966,
Identification of normal
paraffins, olefins, ketones and
nitriles from Colorado oil shale:
1224-1227.

Iijjima, Azuma, and Hay, R. L., 1968,
Analcime composition in tuffs of
the Green River of Wyoming: Am.
184-200.

Iovino, A. J., and Bradley, W. H.,
1969, The role of larval
Chironomidae in the production of
lacustrine copropel in Mud Lake,
Marion County, Florida: Limnology
and Oceanography, v. 14, no. 6, p.
898-905.

Jackson, L. P., and Decora, A. W.,
1975, Thermal reactions of shale
oil components: Plant pigments as
probable precursors of nitrogenous
compounds in shale deposits: U.S.
Bur. Mines Rept. Inv. 8018.

Jacob, A. F., 1969, Delta facies, Green
River Formation, Carbon and
Duchesne Counties, Utah [abs.]:
Geol. Soc. America Abs. with
Programs, 1969, pt. 5, p. 36-37.

1970, Delta facies of the Green
River Formation (Eocene), Carbon
and Duchesne Counties, Utah
[abs.]: Dissert. Abs. Internat.,
sec. B., Sci. and Engr., v. 30, no. 10, p. 4661B-4662B.

Jaffé, F. C., 1962, Geology and miner-
alogy of the oil shales of the
Green River formation, Colorado,
Utah, and Wyoming: Colorado
School Mines Mineral Industries
Bull., v. 5, no. 3, 15 p.

Jensen, H. B., Barnet, W. I., and
Murphy, W. I. R., 1953, The
thermal solution and hydrogenation
of Green River oil shale: U.S.

Jepsen, G. L., 1966, Early Eocene bat
from Wyoming: Science, v. 154,
no. 3754, p. 1333-1339.

1967, Notable geobiologic
moments: Geotimes, v. 12, no. 6,
p. 16-18.

Johnson, D. R., and Robb, W. A., 1973,
Gaylusite, thermal properties by
simultaneous thermal analysis:
Am. Mineralogist, v. 58, no. 7-8,
p. 778-784.

Johnson, D. R., Smith, J. W., and Robb,
W. A., 1974, Thermal
characteristics of shortite: U.S.

Johnson, D. R., Young, N. B., and Robb,
W. A., 1975, Thermal
characteristics of analcime and
its effect on heat requirements
for oil shale retorting: Fuel, v.
54, no. 4, p. 249-252.

Jones, D. J., 1957, Geosynclinal nature
of the Uinta Basin, in Intermt.
Assoc. Petroleum Geologists
Guidebook, 8th Ann. Field Conf.:
p. 30-34.

Jones, J. C., 1923, Suggestive evidence
on the origin of petroleum and oil
shale: Am. Asoc. Petroleum
67-72.

Livingston, C. W., 1974, Oil shale: A roadblock and a solution, in Oil Shale Symposium, 7th: Colorado School Mines Quart., v. 69, no. 2, p. 185-203.

1975, Trona and soda ash: Mining Eng., v. 27, no. 2, p. 86.

______1950b, Petrology of Green River oil shales: St. Louis Univ., M.S. thesis.

_____1976, Green River Formation of Utah and Colorado and playa lake deposition: Geology, v. 4, no. 6, p. 326, 382.

Murray, D. K., 1974a, Estimated shale oil reserves, Colorado federal oil shale lease tracts C-a and C-b, in Guidebook to the energy resources of the Piceance Creek basin, Colorado, Rocky Mtn. Assoc. Geologists, 25th Ann. Field Conf.:
p. 131-134.

Newton, V. C., Jr., and Lawson, P. F., 1974, Oil Shale: Ore Bin, v. 36, no. 8, p. 129-143.

Olson, R. W., 1974, Valley morphology and landslides, Roan Creek and Parachute Creek basins, western Colorado: Colorado State Univ. M.S. thesis.

Perkins, P. L., 1970, Equitability and trophic levels in an Eocene fish population: Lethaia, v. 3, no. 3,
Peterson, P. R., 1975, Lithologic logs and correlation of coreholes P. R. Spring and Hill Creek oil-impregnated sandstone deposits, Uintah County, Utah: Utah Geol. and Mineralog. Survey Rept. Inv. 100, 30 p.

Pfeffer, F. M., 1974, Pollutational problems and research needs for an oil shale industry: Available from NTIS as rept. PB 236 608/6SL, 44 p.

_____1972, Paleoenvironmental reconstructions in an area of rapid facies change, Parachute Creek Member of Green River Formation (Eocene), Uinta Basin, Utah: Geol. Soc. America Bull., v. 83, no. 9, p. 2689-2708.

Reed, P. R., and Warren, P. L., 1974, Rapid determination of recoverable oil in oil shale by thermal analysis, in Oil Shale Symposium, 7th: Colorado School Mines Quart., v. 69, no. 2, p. 221-231.

Robinson, W. E., and Cook, G. L., 1971, Compositional variations of the

Schmidt-Colerus, J. J., and Hollingshead, P. D., 1968, Investigations into the nature of dawsonite in the Green River forma-

1976, Relationship between rock density and volume of organic matter in oil shales: Available from NTIS as rept. LERC/RI-76/6.

Smith, J. W., and Trudell, L. G., 1968, Wyoming Corehole No. 1—A potential site for production of
shale oil in place, in Fifth symposium on oil shale: Colorado School Mines Quart., v. 63, no. 4, p. 55-69.

_____1975, Dawsonite: Its geochemistry, thermal behavior, and extraction from Green River oil shale: Colorado School Mines Quart., v. 70, no. 3, p. 69-93.

Smoot, J. P., 1976, Origin of the carbonate sediments in the Wilkins Peak Member, Green River Formation (Eocene), Wyoming [abs.]: Geol. Soc. America Abs. with Programs, v. 8, no. 6, p. 1113.

_____1957, Oil yields of sections of Green River oil shale in Colorado,

Thiessen, Reinhardt, 1921, Origin and composition of certain oil shales: Econ. Geology, v. 16, no. 4-5, p. 289-300.

Ward, J. C., and Reinecke, S. E., 1972, Water pollution potential of

Weaver, G. D., 1974, Possible impacts of oil shale development on land resources: Jour. Soil and Water Conserv., v. 29, no. 2, p. 73-76.

White, Elmer, 1967, Proposed stationary or mobile oil shale retorting system: Available from NTIS as UCRL-50380, 41 p.

Yen, T. F., ed., 1976, Science and

