Recent Updates about the Absolute Cavity Pyrgeometer (ACP), InfraRed Integrating Sphere (IRIS), and Atmospheric Emitted Radiance Interferometer (AERI) Comparisons

Ibrahim Reda, Julian Gröbner, and Dave Turner
BSRN 2018 Workshop
July 19, 2018
Overview

• Results of five comparisons between ACPs and IRISs.
• Difference between the longwave irradiance measured by the ACPs and IRISs versus the irradiance measured by the WISG.
• The longwave irradiance measured by the ACPs, IRISs, and AERI versus the irradiance measured by the WISG.
Results of First Comparison between ACPs and IRISs-Davos

Average Irradiance of Two IRISs&ACP95F3 or 96F3 versus the WISG Average Irradiance at night on Feb. 5, 2013 (~8 mm H₂O vapor column)
Results of Second Comparison between ACPs and IRISs-Davos

Average Irradiance of Two IRISs&ACP96F3 versus the WISG Average Irradiance on Oct. 2&3, 2013 (~15 mm H₂O vapor column)
Results of Third Comparison between ACPs and IRISs-Davos

Average Irradiance of Four IRISs&ACP95F3 or ACP96F3 versus the WISG
Average From September 28 to October 16, 2015
(~10 mm H₂O vapor column)
Results of Fourth Comparison between ACPs and IRISs-SGP-Phase 1

Average of Three IRISs & Two ACPs Versus PIR-31197F3 with traceability to WISG on October 16, 17, 18, 24, 25, 26, 2017
Results of Fifth Comparison between ACPs and IRISs-SGP-Phase 2

Average of Three IRISs and Two ACPs Versus PIR-30475F3 with traceability to WISG on November 28, 2017
Summary of the Five comparisons

<table>
<thead>
<tr>
<th>W/m²</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
<th>Fifth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average difference between ACPs&IRISs</td>
<td>0.10</td>
<td>0.31</td>
<td>-1.17</td>
<td>-1.58</td>
<td>-1.77</td>
</tr>
<tr>
<td>StDev of Difference</td>
<td>0.08</td>
<td>0.65</td>
<td>0.70</td>
<td>1.15</td>
<td>0.88</td>
</tr>
<tr>
<td>Difference within 95%</td>
<td>0.19</td>
<td>1.34</td>
<td>1.82</td>
<td>2.79</td>
<td>2.50</td>
</tr>
<tr>
<td>Average of ACPs&IRISs - WISG</td>
<td>3.93</td>
<td>6.14</td>
<td>3.82</td>
<td>3.50</td>
<td>6.50</td>
</tr>
<tr>
<td>StDev of Difference</td>
<td>0.97</td>
<td>0.76</td>
<td>0.67</td>
<td>0.81</td>
<td>0.66</td>
</tr>
<tr>
<td>Difference within 95%</td>
<td>4.38</td>
<td>6.33</td>
<td>4.05</td>
<td>3.86</td>
<td>6.63</td>
</tr>
</tbody>
</table>
Results of Comparison between ACPs, IRISs, and AERI at SGP
Results of Comparison between ACPs, IRISs, and AERI at SGP
Results of Comparison between ACPs, IRISs, and AERI at SGP

26 October 2017

[Graph showing time series data for different instruments with labels such as IRISm, PIR_WISG, AERI, ACP1, and ACP2]
Results of Comparison between ACPs, IRISs, and AERI at SGP
Results of Comparison between ACPs, IRISs, and AERI at SGP
Results of Comparison between ACPs, IRISs, and AERI at SGP
Water Vapor effect on Irradiance difference (WISG minus IRIS) at PMOD

From J. Gröbner et al., JGR, 2014

Results

Average Offset (IWV>10)
-4.1 ± 1.5 Wm⁻²

Gradient (IWV<10)
-0.45 ± 0.1 Wm⁻²mm⁻¹

IWV

WISG 1 Night averages

WISG 2

WISG 3

IRIS u₉₅

WISG 4
Conclusions

- The difference between the irradiance measured by the ACPs, IRISs, and AERI varied from 0.2 W/m² to 2.5 W/m² based on the atmospheric conditions, which is within the stated uncertainties of ±3 W/m².

- The irradiance measured by the WISG is lower than the average irradiance measured by ACPs and IRISs, magnitude of the difference varied from 4.4 W/m² to 6.6 W/m² depending on the integrated water vapor.
WMO CIMO Task Team on Radiation References

• The first session of the World Meteorological Organization (WMO) Commission for Instruments and Methods of Observation Commission (CIMO) Task Team on Radiation References (TT) was held in the National Physical Laboratory (NPL) from November 15 to 17, 2017 in Teddington, United Kingdom.
• The meeting focused on the traceability of terrestrial radiation measurements. It reviewed and evaluated recent developments of reference instruments for terrestrial radiation, and developed recommendations to the attention of CIMO on the appropriateness, requirements and timeliness for a possible future modification of the current reference.
• Relevant recommendations from the TT will be submitted to the CIMO MG (26-29 March 2018), and most likely to CIMO-17 session (12-16 October 2018, Amsterdam) for endorsement. The report of the TT meeting will encompass all the recommendations.
Newton’s Apple Tree in National Physical Laboratory, UK, London-November 2017

Nigel, Reda, Isabelle, Bruce, Julian, Peter, Alison, Nozumo
Thank You

Contact:
Ibrahim Reda
Ibrahim.Reda@nrel.gov

www.nrel.gov
NREL/PR-1900-71819

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.