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Hydrologic Assessment of Three Drainage Basins in the
Pinelands of Southern New Jersey, 2004-06

By Richard L. Walker, Robert S. Nicholson, and Donald A. Storck

Abstract

The New Jersey Pinelands is an ecologically diverse
area in the southern New Jersey Coastal Plain, most of which
overlies the Kirkwood-Cohansey aquifer system. The demand
for groundwater from this aquifer system is increasing as local
development increases. Because any increase in groundwater
withdrawals has the potential to affect streamflows and wet-
land water levels, and ultimately threaten the ecological health
and diversity of the Pinelands ecosystem, the U.S. Geological
Survey, in cooperation with the New Jersey Pinelands Com-
mission, began a multi-phase hydrologic investigation in 2004
to characterize the hydrologic system supporting the aquatic
and wetland communities of the New Jersey Pinelands area
(Pinelands). The current investigation of the hydrology of
three representative drainage basins in the Pinelands (Alb-
ertson Brook, McDonalds Branch, and Morses Mill Stream
basins) included a compilation of existing data; collection of
water-level and streamflow data; mapping of the water-table
altitude and depth to the water table; and analyses of water-
level and streamflow variability, subsurface gradients and flow
patterns, and water budgets.

During 2004—06, a hydrologic database of existing and
new data from wells and stream sites was compiled. Meth-
ods of data collection and analysis were defined, and data
networks consisting of 471 wells and 106 surface-water sites
were established. Hydrographs from 26 water-level-monitor-
ing wells and four streamflow-gaging stations were analyzed
to show the response of water levels and streamflow to pre-
cipitation and recharge with respect to the locations of these
wells and streams within each basin. Water-level hydrographs
show varying hydraulic gradients and flow potentials, and
indicate that responses to recharge events vary with well depth
and proximity to recharge and discharge areas.

Results of the investigation provide a detailed char-
acterization of hydrologic conditions, processes, and rela-
tions among the components of the hydrologic cycle in the
Pinelands. In the Pinelands, recharge replenishes the aquifer
system and contributes to groundwater flow, most of which
moves to wetlands and surface water where natural discharge
occurs. Some groundwater flow is intercepted by supply wells.
Recharge rates generally are highest during the non-growing

season and are inversely related to evapotranspiration. Analy-
sis of subsurface hydraulic gradients, water-table fluctuations,
and streamflow variability indicates a strong linkage between
groundwater and wetlands, lakes and streams. Gradient analy-
sis indicates that most wetlands are in groundwater discharge
areas, but some wetlands are in groundwater recharge areas.
The depth to the water table ranges from zero at surface-water
features up to about 10 meters in topographically high areas.
Depth to water fluctuates seasonally, and the magnitude of
these fluctuations generally increases with distance from
surface water. Variations in the permeability of the soils and
sediments of the aquifer system strongly affect patterns of
water movement through the subsurface and the interaction of
groundwater with wetlands, lakes and streams.

Mean annual streamflow during 2004—06 ranged from 83
to 106 percent of the long-term mean annual discharge, indi-
cating that the data-collection period can be considered repre-
sentative of average conditions. Measurements of groundwater
levels, stream stage, and stream discharge and locations of
start-of-flow are illustrated in basin-wide maps of water-table
altitude, depth to the water table, and stream base flow during
the period.

Water-level data collected along 15 hydrologic transects
that span the range of environments from uplands through
wetlands to surface water were used to determine hydraulic
gradients, potential flow directions, and areas of recharge and
discharge. These data provide information about the local-
ized interactions of groundwater with wetlands and surface
water. Wetlands were categorized with respect to whether
they lie in groundwater recharge or groundwater discharge
areas. Recharge-area wetlands and nearby surface water are
supported by local precipitation and groundwater that moves
along short flow paths; therefore, they are sensitive to drought
conditions. Discharge-area wetlands and surface water also
receive local groundwater but also benefit from more persis-
tent regional groundwater flow, which continues to support the
wetlands and surface water during dry periods when the more
localized, shallow groundwater flow is reduced or has ceased.

Geologic characteristics of sediments overlying and
within the unconfined aquifer can limit infiltration and
recharge rates and affect the flow of groundwater that sup-
ports wetland water levels and streamflow. Low-permeability
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sediments, common in the Kirkwood-Cohansey aquifer sys-
tem, were identified as the cause of localized mounding of the
water table and, therefore, support local wetlands and stream-
flow. The extent and effectiveness of the low-permeability
layers varied considerably in the areas studied; this variability
may directly affect interactions among the groundwater, wet-
lands, and surface water.

Water budgets, a means of hydrologic accounting in
which system inflows are balanced by outflows and changes in
storage, were developed to quantify major components of the
hydrologic cycle in the three basins. Water-budget components
were evaluated monthly to examine seasonal variations in,
and relations among, them. Monthly recharge to the aquifer
system, estimated as a residual, was as much as 20 centimeters
during “wet” months when the sum of inflows (primarily pre-
cipitation) exceeded the sum of outflows plus the net change
in storage. Recharge was occasionally negative (as small as
-5 centimeters) during “dry” months when the sum of outflows
(primarily evapotranspiration) exceeded the sum of inflows
plus the net change in storage. The water-budget analysis
shows that the hydrologic system supporting the Pinelands
wetland and aquatic habitats is dynamic and is potentially sen-
sitive to variations in components of the hydrologic budget.

Introduction

The New Jersey Pinelands area (Pinelands) (fig.1) is
a 3,797-km? portion of the 4,450-km? Pinelands National
Reserve in southern New Jersey that overlies the Kirkwood-
Cohansey aquifer system in the Atlantic Coastal Plain (New
Jersey Pinelands Commission, 1981). This ecologically
diverse area supports a variety of habitats and is home to
many threatened and endangered species. The landscape is a
patchwork of forested uplands, agricultural areas, and devel-
oped residential and commercial land, in addition to forested
lowlands that encompass areas of wetlands and surface water.
In the Pinelands, wetlands have been delineated by several
factors including the seasonal depth to the water table (a criti-
cal determinant of viable wetland habitat), soil conditions, and
the presence of plants recognized as wetland species. In this
report, the term “wetlands” includes (1) those areas delineated
as such by the New Jersey Department of Environmental Pro-
tection (NJDEP, 1999) and (2) areas of standing water, herein
called swamps.

Demand for water from the Kirkwood-Cohansey aquifer
system is increasing in response to growth within the Pine-
lands and nearby areas. New Jersey Public Law 2001, chapter
165, directs the Pinelands Commission and named cooperating
partners to “assess and prepare a report on the key hydrologic
and ecological information necessary to determine how the
current and future water supply needs within the Pinelands
area may be met while protecting the Kirkwood-Cohansey
aquifer system and while avoiding any adverse ecological
impact on the Pinelands area.” The relation between key

hydrologic and ecological attributes, therefore, needed to

be characterized to (1) assess the effects of groundwater
diversions from the Kirkwood-Cohansey aquifer system on
streamflow and wetland water levels within the Pinelands and
(2) determine the potential ecological effects of altered hydrol-
ogy on aquatic and wetland communities. To help address this
need, the U.S. Geological Survey (USGS), in cooperation with
the Pinelands Commission, began a multi-phase hydrologic
investigation in 2004 to characterize the hydrologic system
supporting the Pinelands aquatic and wetland communities.
This investigation is part of a multidisciplinary study referred
to as “the Kirkwood-Cohansey Project” (New Jersey Pine-
lands Commission, 2003).

Three Pinelands drainage basins—the Albertson Brook,
McDonalds Branch, and Morses Mill Stream basins—were
selected for a detailed hydrologic assessment to provide the
information needed to develop groundwater flow models
that can be used to predict hydrologic responses to increased
groundwater withdrawals. The first part of the hydrologic
assessment was a comprehensive hydrogeologic investigation
of each basin-oriented study area to characterize its hydro-
geologic framework and prepare a hydrostratigraphic model
of each study area (Walker and others, 2008). The second part
of the assessment, which is the subject of this report, was an
evaluation and quantification of the groundwater and surface-
water hydrologic processes in, and characteristics of, the three
basins. This evaluation included water-table mapping and
gradient analyses, streamflow measurements, development of
water budgets, and characterization of wetland/groundwater/
surface-water interactions under unstressed conditions for each
basin. The approach included (1) compiling available hydro-
logic data; (2) collecting additional hydrologic data needed to
improve the conceptual understanding of the hydrologic sys-
tem supporting aquatic and wetland habitat; (3) characterizing
the functioning of the hydrologic system within the physical
framework of the Kirkwood-Cohansey aquifer system, includ-
ing its connection to the wetlands and surface-water bodies;
and (4) estimating the values of the water-budget components
required to develop groundwater-flow models that can be used
to predict hydrologic responses to withdrawal stresses.

Purpose and Scope

This report characterizes the function of the hydrologic
system in supporting wetlands and streamflow within each of
the three study areas, utilizing previously available and new
information to identify and document hydrogeologic charac-
teristics that control groundwater/surface-water interactions.
The methods used to establish data-collection sites, collect and
analyze data from these sites, prepare maps of and sections
through wetlands, and prepare monthly water budgets are
described.

The methods of data collection included compiling exist-
ing hydrologic information, installing 122 wells and shallow
piezometers, equipping 26 wells for continuous monitoring,
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installing 3 streamflow-gaging stations and installing 15
stream staff gages. Data collection also included continuous
monitoring of groundwater levels, stream stage, and periodic
measurements of discharge to maintain up-to-date rating
curves for the streamflow-gaging stations. The report also
describes the methods used to make two synoptic ground-
water-level, stream-stage, and streamflow measurements at
numerous sites, one in spring and one in late summer 2005,
using a network of new and existing sites, including 471 wells
and 106 surface-water sites.

The hydrologic characteristics that control the natural
interactions of groundwater with the overlying wetlands and
surface-water bodies are described for each basin. Hydro-
graphs of groundwater levels and streamflow are used to
illustrate responses to precipitation events and provide insights
about recharge, potential groundwater-flow directions, and
vertical and horizontal hydraulic gradients in the aquifer sys-
tem in upland areas and near wetlands and streams. Maps of
the water table during spring and late summer 2005 are used
to illustrate potential groundwater-flow directions during these
two periods. Maps showing depth to the water table, a criti-
cal determinant of a viable wetland habitat, are presented for
spring 2005, a period considered to represent average wetland
water-table conditions in the three basins. Site-specific water-
level and hydraulic-gradient data for 15 hydrologic transects
are used to examine and describe the hydrologic characteris-
tics controlling groundwater flow and discharge to wetlands
and streams. In addition, maps showing the distribution of
stream-discharge measurements that illustrate the intermittent
and perennial stream reaches as defined during the two synop-
tic measurements in 2005 are presented for each study area.

Monthly water budgets are developed for each study area
from values of precipitation, evapotranspiration, groundwater
and surface-water withdrawals, and stream discharge. These
water budgets provide information needed to develop and cali-
brate groundwater-flow models for each of the study areas.

Description of Study Areas

The study areas include three drainage basins—Alb-
ertson Brook, McDonalds Branch, and Morses Mill Stream
(fig. 1)—that were selected from 39 candidate basins for the
coordinated study of hydrology and ecology because they
represent a range of typical hydrologic, geologic, and eco-
logical conditions and landscape characteristics common to
the Pinelands. Key hydrologic criteria for selection included
aquifer thickness, drainage area, stream length, drainage
density, accessibility for field work, past and current hydro-
logic monitoring and modeling, and current and potential
future groundwater withdrawals from the Kirkwood-Cohansey
aquifer system. Major landscape characteristics such as land
use, soil type, and landscape cover also were considered.

For the purpose of this report, each study area consists of the
drainage basin surrounded by a buffer area containing por-
tions of the adjacent drainage basins. The study-area boundary
is generally defined by the most distant basin divides of the

adjacent drainage basins or some other hydrologic boundary
in the adjacent drainage basin, such as a perennial stream.
Using the larger area ensured that the hydrologic data set was
sufficient to represent each study area such that conditions at
and beyond the subject basin boundaries could be understood.
In particular, the study areas may include areas where substan-
tial groundwater withdrawals are made just outside the basin
boundary, locations where groundwater and surface-water
divides do not coincide, where groundwater may be leav-

ing or entering the basin. Wetlands delineated by the NJDEP
indicate areas of favorable wetland habitat as defined by soils,
wetland species, and seasonal water levels. Wetlands in the
Pinelands typically are in lowland areas and represent a transi-
tion between uplands and surface water. In this report, lowland
environments that are temporarily or permanently inundated
with shallow standing water either seasonally or historically
are referred to as swamps that lie within wetlands.

The Albertson Brook study area totals 219.4 km?
and consists of the Albertson Brook basin (fig. 2), which
includes all of the Pump Branch and Blue Anchor Brook
drainage basins and Albertson Brook; the combined area is
52.27 km?, and the surrounding buffer area is 167.13 km? The
Albertson Brook study area lies predominantly in Winslow
Township, in Camden County, New Jersey. The easternmost
part of the study area lies in the Town of Hammonton, Atlantic
County, and is bordered to the south by Gloucester County and
to the north by Burlington County. Portions of the Albertson
Brook study area are within State Forest land in Atlantic and
Camden Counties, New Jersey. The dominant forest cover
in the uplands consists of mixed pine and oak forests. In the
lowlands, pitch pine, hardwoods, shrubs, and white cedar are
common. Agricultural land is common throughout the basin
but is nearly continuous south of Albertson Brook. Residen-
tial development is most dense in the upper part of the basin
in Winslow Township and along the highway corridors with
only lightly developed residential areas in the lower part of the
basin, which is largely agricultural or part of the State Forest.

The McDonalds Branch study area (fig. 3) occupies
72.73 km?, including the buffer area surrounding the McDon-
alds Branch basin. The study area is located principally on
State Forest land in Burlington County, New Jersey, and
therefore is only minimally developed. McDonalds Branch
basin (fig. 3) covers the upper 14.3 km? of the upper Rancocas
Creek basin. The McDonalds Branch basin is a predominantly
forested watershed, containing a mix of pine and oak forests,
pitch pine lowland, and hardwood and cedar swamps (Johns-
son and Barringer, 1993). In the downstream part of the basin,
the McDonalds Branch flows through a small commercial
cranberry bog before reaching a recreational lake and dam in a
lightly developed residential area.

The Morses Mill Stream study area (including the buffer
area) occupies 91.38 km? (fig. 4) surrounding the relatively
small (21.63 km?) segment of watershed referred to herein as
the Morses Mill Stream basin, which for this study excludes
the lower reaches of the Morses Mill Stream drainage area.
The study area lies in Atlantic County, and most of the Morses



Mill Stream basin is in Galloway Township. Part of Egg
Harbor, Hamilton, and Port Republic Townships, along with
Richard Stockton College, are all within the study-area bound-
ary. The eastern part of the study area, including both the
buffer area and the basin, is outside the New Jersey Pinelands
Area boundary.

Developed and agricultural land is prominent in the
Albertson Brook and Morses Mill Stream study areas,
whereas the McDonalds Branch study area is largely undevel-
oped. Information on water use in the three study areas was
obtained from the USGS Site-Specific Water Use Data System
(SWUDS) database. SWUDS contains water-use data from
wells with capacities that exceed 378.5 m*/d that are reported
to the New Jersey Bureau of Water Allocation. Excluding
domestic and other low-capacity wells that may exist, the
number of wells that extract water from the Kirkwood-Cohan-
sey aquifer system within each study area are listed below by
water use:

 Albertson Brook study area
* 12 commercial and industrial wells
* 31 public-supply and institutional wells
* 169 irrigation wells
* Morses Mill Stream study area
* 23 commercial and industrial wells
* 19 public-supply and institutional wells
» 37 irrigation wells
* McDonalds Branch study area
» 2 public-supply wells

2 irrigation wells

The three study areas are underlain by the sediments of
the Kirkwood-Cohansey aquifer system in the central and
southern Coastal Plain of New Jersey. The Kirkwood-Cohan-
sey aquifer system is the uppermost hydrogeologic unit in a
wedge-shaped sequence of Coastal Plain sediments that over-
lie pre-Cretaceous bedrock (Zapecza, 1989). The Coastal Plain
sediments are composed of gravel, sand, silt, and clay layers
that thicken and dip from the Coastal Plain’s western limit at
the Fall Line (fig. 1) to the southeast, reaching a maximum
thickness of more than 1,980 m at Cape May, New Jersey (Gill
and Farlekas, 1976). The sands and gravels that compose the
Kirkwood-Cohansey aquifer system extend from the updip
limit of the outcrop of the Kirkwood Formation (fig.1) to the
Atlantic Coast. The aquifer system generally is considered to
be an unconfined (water-table) aquifer, although extensive clay
layers that can cause perched or semi-confined conditions do
exist locally (Zapecza, 1989, p. B19).

The Kirkwood-Cohansey aquifer system is composed
principally of sands, silts, and clays of the Miocene-age
Kirkwood Formation and the overlying gravels, sands, and
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clays of the Cohansey Sand, also of Miocene age. Depending
on location, the surficial sediments may include the Miocene-
age Bridgeton Formation and (or) Pleistocene and Holocene
sediments that may overlie the Cohansey Sand in the vicinity
of the study areas. Where present, these surficial sediments are
considered to be part of the Kirkwood-Cohansey aquifer sys-
tem. The Cohansey Sand is typically coarser grained than the
underlying Kirkwood Formation, which grades to clay near its
base (Zapecza, 1989). Carter (1978) interpreted the Cohansey
Sand as a sequence of regressive barrier and barrier-protected
deposits ranging from surf zones to back bays and marshes, a
depositional environment that contributes to the formation of
discontinuous lenses of sand, silt, and clay.

In the updip part of the Kirkwood-Cohansey aquifer
system, and beneath the Albertson Brook and McDonalds
Branch study areas, the base of the aquifer system is a basal
clay bed in the lower part of Kirkwood Formation, which is
likely equivalent to the Alloway Clay Member of the Kirk-
wood Formation (Nemickas and Carswell, 1976) and is part of
the extensive composite confining unit described by Zapecza
(1989). About 13 km west of the Morses Mill Stream study
area, this basal clay dips below a thick, diatomaceous clay
bed, which forms an extensive confining unit in the upper part
of the Kirkwood Formation (Zapecza, 1989, p. B18-B19). This
clay does not crop out and locally separates the sediments of
the Kirkwood Formation into upper and lower sands. From its
updip extent, this diatomaceous clay dips and thickens toward
the east to approximately 70 m in the vicinity of the Morses
Mill Stream study area (Zapecza, 1989, pl. 22, 23), locally
forming the basal clay confining layer of the Kirkwood-
Cohansey aquifer system. In the vicinity of the Morses Mill
Stream study area, the upper sands of the Kirkwood Formation
remain hydraulically connected to the Cohansey Sand and also
are considered part of the Kirkwood-Cohansey aquifer system.
Sand units in the lower part of the Kirkwood Formation that
lie beneath the diatomaceous clay locally are referred to as
the Atlantic City 800-foot Sand (Zapezca, 1989). A detailed
description of the hydrogeologic framework of each of the
three study areas, including hydrogeologic sections and maps
of structure tops and thicknesses of layers, can be found in
Walker and others (2008).

Previous Investigations

Rhodehamel (1970, 1973, 1979) describes the geol-
ogy and hydrology of the Kirkwood and Cohansey Forma-
tions in the Pinelands in the vicinity of southern Burlington
County and adjacent parts of Atlantic and Camden Counties.
Rhodehamel describes the Cohansey Sand and upper part of
the Kirkwood Formation as a single aquifer. Zapecza (1989)
describes the Kirkwood-Cohansey aquifer system in the
context of the entire New Jersey Coastal Plain as generally
unconfined and locally semi-confined.

The soils of Burlington County are described by Markley
(1971) and the geology and soils of the McDonalds Branch
basin are summarized by Lord and others (1990) and Johnsson
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and Barringer (1993). Soils of the Albertson Brook study area
are described by Markley (1965) in Camden County and by
Johnson (1978) in Atlantic County, where both the down-
stream part of the Albertson Brook study area and the entire
Morses Mill Stream study are located.

The hydrology and water resources of the unconfined
aquifer system in and adjacent to the study areas are docu-
mented in a series of basin area reports for the Rancocas Creek
(Watt and others, 2003) in Burlington County and the Mullica
River (Johnson and Watt, 1996) and Great Egg Harbor River
basins in Atlantic, Burlington, and Camden Counties (Watt
and Johnson, 1992). The status of the landscape and selected
aquatic and wetland resources in the Mullica and Rancocas
River basins are described by Zampella and others (2001a and
2003, respectively).

Modica (1998) describes the head relations and hydrau-
lic gradients in the McDonalds Branch basin and an adjacent
basin, Mount Misery Brook. Modica and others (1997) simu-
lated groundwater flow in a generic stream-aquifer system
similar to those in the three study areas to characterize the
relation of shallow substream flow systems and their relation
to deeper groundwater flow. Sloto and Buxton (2005) devel-
oped water budgets for five tributary basins to the Delaware
River Basin, including a water budget for the Greenwood
Branch drainage basin of the Rancocas Creek, which includes
the McDonalds Branch. Water levels at continuous-record
streamflow-gaging stations and wells are published annually
by the USGS and are stored in its National Water Information
System (NWIS) database (http.//waterdata.usgs.gov/nj/nwis).

Many ecological studies have related Pinelands vegeta-
tion patterns and specific wetland, wetland-transitional, and
aquatic communities to hydrologic regimes and gradients. For
example, Zampella and others (1992) related water-table depth
and other factors to pitch pine lowland community gradients.
Recent studies that were part of the Kirkwood-Cohansey
Project examined the potential effects of hydrologic change
on forested wetlands (Laidig and others, 2010), intermittent-
pond vegetation (Laidig, 2010), aquatic habitats (Kennen and
Riskin, 2010; Procopio, 2010), and pond-breeding frogs (Bun-
nell and Ciraolo, 2010). Other relevant ecological studies are
highlighted in reviews by McCormick (1979) and Zampella
and others (2008).

Well-Numbering System

Records of selected wells included in this study
(table 1 at end of report) are in the USGS NWIS database
(http://waterdata.usgs.gov/nj/nwis). Sites in the NWIS data-
base are identified in this report by a site identifier (USGS well
number, or UID (unique identifier)) consisting of a two-digit
county code number followed by a four-digit sequence num-
ber. Some well sites listed in table 1 (at end of report) are not
in NWIS and therefore do not have a UID as a site identifier.
These wells are identified by their local identifier assigned
by the New Jersey Pinelands Commission, which installed,

maintained, and is the source of all data for those wells. The
county code numbers used in this report are 01 for Atlantic
County, 05 for Burlington County, and 07 for Camden County.
Records of selected surface-water sites included in this
study (table 2 at end of report) are identified by site codes that
use one of four different naming conventions. Most com-
mon is the stream-site station number, which consists of an
8- to 10-digit number beginning with 01. Other stream-site
site codes not assigned a station number consist of 15-digit
numerical codes that indicate the site’s latitude and longi-
tude expressed in degrees, minutes, and seconds. Some sites
established by previous investigators (Johnson and Watt, 1996;
Watt and others, 2003) are referred to in this study as “stream
points,” and are identified by a code beginning with “STM”
followed by a sequence number (for example, STM60). The
fourth type of site code listed in table 2 represents stream-
point sites established during this study. This site code is
composed of a two-letter study-area code followed by “STM”
and a sequence number. Study-area codes used in this study
are AB for Albertson Brook, MB for McDonalds Branch, and
MM for Morses Mill Stream. Using these conventions, a new
stream point in the Albertson Brook study area would have a
site code such as ABSTMS.

Methods of Investigation

This section describes the methods used to establish
data-network sites and to obtain and analyze data to describe
the hydrologic characteristics and groundwater/surface-water
interactions that affect wetland and stream habitat. The data
networks discussed in this section are based on the conceptual
data-network model described in the Kirkwood-Cohansey
Project Work Plan (New Jersey Pinelands Commission, 2003).
These networks include continuous-record and periodically
measured groundwater and surface-water sites.

Data-collection methods used for all groundwater-level,
stream-stage, and streamflow measurements made during the
study also are presented in this section. These measurements
included those manual measurements required to calibrate
continuous-record groundwater-level and streamflow data,
in addition to the manual water-level measurements made at
all sites included in the two synoptic measurements in 2005.
Synoptic measurements were made at both continuously and
periodically measured sites, including stream sites and the
extensive network of wells described previously. Methods
used to examine the results of the synoptic measurements are
described, including determining the relation of water levels
and hydraulic gradients as indicators of potential groundwater
flow both locally, such as along 15 hydrologic transects, and
sub-regionally, through study-area-wide mapping of the water
table. Methods used to prepare maps showing the altitude of
the water table and to draw contours representing the water
table are discussed. This section also describes the approach
used to prepare detailed depth-to-water maps, and documents



the approach used to prepare a monthly water budget for each
study area.

All altitude data presented in this report are referenced to
the North American Vertical Datum of 1988 (NAVD 88). The
methods of determining altitude and the accuracy of these data
are listed in tables 1 and 2. Horizontal coordinate informa-
tion is referenced to the North American Datum of 1983
(NAD 83).

Data Network

The data network includes all groundwater and surface-
water sites used to analyze the hydrology of the three study
areas. Among the wells measured are those installed and moni-
tored by the New Jersey Pinelands Commission.

Wells and Well-Installation Methods

The groundwater data network included a total of 471
wells, 139 of which are considered network sites that include
the following well types (figs. 2—4, table 1 at end of report):

* 18 continuous-record basin-monitoring wells
+ 8 continuous-record wetland-monitoring wells
* 15 upland observation wells

* 98 hydrologic-transect wells (excludes 5 of the
wetland-monitoring wells listed above)

* 332 other existing and newly installed wells also used
for synoptic measurements

Eighteen basin-monitoring wells (16 newly installed and
2 existing) were instrumented for continuous monitoring of
water levels in the three study areas. The basin-monitoring
wells were established in each of the three study areas, in two
clusters of three wells each, with one well cluster located in
the upper part of a basin and the other cluster in the lower part
(figs. 2—4). Wells in each cluster were screened in major water-
bearing units near the top, middle, and bottom of the Kirk-
wood-Cohansey aquifer system (Walker and others, 2008).

A total of eight wetland-monitoring wells also were
installed at selected locations (figs. 2—4) and were instru-
mented for continuous monitoring of the water-table altitude.
Six of these wells were installed; two in each of the three
basins, with one of those wells in a cedar-swamp wetland and
the other near the upland limits of the wetlands. The other two
wetland-monitoring wells were installed in the McDonalds
Branch basin for specific purposes; one was collocated with
another wetland well to compare water levels and examine
vertical hydraulic gradients across a thin low-permeability
zone, and the second was used in the hydrologic transect
MBHT-5 (fig. 3) so that water-level fluctuations could be
compared with continuous records of evapotranspiration (£7)
collected at the same location. (The hydrologic transects are
described farther on in this report.)

Methods of Investigation 7

Fifteen upland-well sites also were used to collect water-
level data in the three study areas during the two synoptic
measurements. At three sites, one in the Albertson Brook basin
and two in the Morses Mill Stream basin, existing wells met
the criteria for water-table wells in the uplands near the basin
divides. Twelve additional upland wells were installed to fill
data gaps in the existing well network. The locations of the
upland wells are shown in figures 2—4, associated site informa-
tion is listed in table 1 (at end of report).

Fifteen hydrologic transects (5 per study area), composed
of 103 wells (figs. 2—4), were established to examine potential
groundwater flow and discharge resulting from groundwater
hydraulic gradients and their interaction with wetlands and
streams. Of the 103 wells, 12 were installed prior to this study
(see Lord and others, 1990), and 91, including 5 of the 8
wetland-monitoring wells listed above, were installed during
this study. Each hydrologic transect was composed of at least
six wells arranged in three clusters of at least two wells each.
Typically, transect wells were distributed along generalized
paths of shallow groundwater flow, which are approximately
normal to the streams. The well locations along the general-
ized paths of flow describe the hydrologic transects that extend
from near the upland limit of the wetlands to the stream where
the staff gages were installed. Two of the three well clusters
were located at opposite ends of each transect, and the third
well cluster was positioned between them, generally near
the middle of each transect, where topography sloped uni-
formly, or near the wetland edges or at significant breaks in
slope, such as where seepage may occur during seasonal high
groundwater levels.

Precise vertical control was established by differential
leveling methods for each hydrologic transect, such that the
small differences in water levels between the well locations
and the stream could be compared. The precise differential
leveling survey resulted in a relative altitude accuracy for
wells and staff gages in a given transect that ranged from
0.003 to 0.03 m. Because the datum, altitude accuracy, and
method used to obtain the source data were used as the origin
for each leveling survey, the site altitude datum, accuracy, and
method for all wells in a given transect listed in table 1 (at end
of report) reflect those of the origin, even though the well-to-
well accuracy was more precise.

The 332-well data network (table 1 at end of report)
included wells installed for this study, additional wells
selected from the USGS National Water Data Information
System (NWIS) database (http.//waterdata.usgs.gov/nj/nwis),
other shallow water-table wells installed and monitored by the
N.J. Pinelands Commission, and additional wells that were
identified prior to the synoptic measurements to fill remaining
data gaps. Data for these additional wells were entered into the
NWIS database. A total of 122 wells were installed in the three
study areas by using one of the following three methods. Wells
exceeding 3 m in depth were installed by or under the direc-
tion of a New Jersey licensed well driller, using either the stan-
dard hydraulic rotary or the Geoprobe® direct push method.
Rotary-drilled wells were constructed of 50.8-mm-diameter
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Location of selected groundwater and surface-water network sites and hydrologic transects, McDonalds Branch study area,
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PVC casing with 3.048-m-long, 0.254-mm slotted well
screen. Wells installed using the Geoprobe® method were
constructed of 19-mm-diameter flush joint PVC casings with
3.048-m-long, 0.254-mm slotted well screen. All of these
wells were finished at the surface with 101.6-mm-diameter
protective casing with lockable cap.

Wells with depths of less than 3 m, including hydrologic-
transect and wetland-monitoring wells, were driven by hand.
Hydraulic-transect wells were constructed of 13-mm-diameter
steel casing with 0.3-m-long slotted screen, driven to a depth
of at least 0.3 m below the estimated annual minimum water
level, and capped at the surface to deter tampering. Wetland-
monitoring wells were constructed of 32-mm-diameter steel
well casing with 0.3-m-long stainless steel 0.254-mm slotted
well screen, driven to the required depth with a drive weight,
and finished at the surface with a 76-mm-diameter steel casing
with lockable cap to house the recording equipment.

Following installation, all wells were developed by using
pumping and surging methods until a sustained sediment-
free discharge was achieved to ensure that the well had a
good hydraulic connection with the aquifer. Records of wells
installed during this study are given in table 1 (at end of
report).

Surface-Water Sites

The surface-water data network includes 106 sites where
stream discharge and (or) stage was measured. Data collected
at these sites include one or more of the following types of
data:

+ 27 network surface-water sites
* 4 continuous-record streamflow-gaging stations
15 staff gages at hydrologic transects

» 24 seepage sites where streamflow and stage mea-
surements were made synoptically; included are
8 partial-record stations, the 4 streamflow-gaging
stations, and 12 of the 15 hydrologic-transect staff

gages

* 79 miscellaneous surface-water sites, including
partial-record stations where stage and discharge
are measured periodically, staff-gage sites, and
stream-point sites where surface-water level
(stage) was measured during the synoptic mea-
surements

* in addition to the 106 established surface-water
sites, 26 locations where start-of-flow of streams
was observed during the synoptic measurements

The four continuous-record streamflow-gaging stations
used in this study included an existing streamflow-gaging
station in the McDonalds Branch basin, two streamflow-
gaging stations installed in the Albertson Brook basin, and
one streamflow-gage installed in the Morses Mill Stream
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basin. In the Albertson Brook basin, a streamflow-gaging sta-
tion was installed on the Pump Branch near Elm, NJ (station
0140980810), about 1,200 m upstream from its confluence
with Blue Anchor Brook. The combined flow of Pump Branch
and Blue Anchor Brook forms Albertson Brook; however,
streamflow from Blue Anchor Brook was not monitored.

A second streamflow-gaging station, Albertson Brook near
Hammonton, NJ (station 01409410), was installed on Alb-
ertson Brook near the downstream limit of the study area at
Route 206 northeast of Hammonton. A third streamflow-gag-
ing station was established on the lower reaches of the Morses
Mill Stream at Port Republic, NJ (station 01410225). Stream-
stage data were collected at these streamflow-gaging stations,
and precipitation data were collected at Albertson Brook near
Hammonton. Surface-water site information for the stream-
flow-gaging stations is given in table 2, (at end of report) and
the locations are shown in figures 2 to 4.

Fifteen staff gages, 14 of which were installed for this
study, were used to measure stream stage at each of the 15
hydrologic transects during the synoptic measurements.
Several existing staff gages installed during previous inves-
tigations also were used to measure stream stage at selected
surface-water sites. Some existing and newly established
surface-water sites, referred to in this report as “stream
points,” were used to measure stream stage during the synoptic
measurements.

Data Collection

Groundwater and surface-water data were collected dur-
ing this study to characterize the hydrology of the Kirkwood-
Cohansey aquifer system. More than 2 years of continuous
groundwater-level, stream-stage, and streamflow data were
collected. Continuous monitoring of groundwater levels began
at six wetland-monitoring wells in April 2004. Two addi-
tional wetland-monitoring wells were added to the network
in May and November 2004. By October 1, 2004, continu-
ous groundwater-level data collection was begun in the 18
basin-monitoring wells, and data collection also was begun
at the three new streamflow-gaging stations. Data collection
continued through the 2-year period ending September 30,
2006. The existing streamflow gage in the McDonalds Branch
basin continued to operate throughout the period of study. This
station is maintained by the USGS, New Jersey Water Sci-
ence Center (NJWSC), as part of the nationwide Hydrologic
Benchmark Network and has been in continuous operation
since October 1953.

In addition to the continuous monitoring, short-duration
synoptic measurements were made in each study area dur-
ing two periods, one in spring (April 13-May 13) and one in
late summer (September 8—15) 2005. Each synoptic mea-
surement involved manual measurements of groundwater
levels, stream stage, and stream base-flow discharge, and a
determination of start-of-flow locations in the upper reaches
of each basin. All data are stored in the NWIS database
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(http://waterdata.usgs.gov/nj/nwis) and (or) at the USGS
NJWSC in West Trenton, NJ.

Groundwater Levels

Groundwater levels were measured manually using either
the wetted steel-tape method or with an electric tape that
sounds an alert when the probe contacts water. To ensure accu-
racy, water-level measurements were repeated until at least
two measurements were reproducible within 6 mm. These
measurements were referenced to a fixed measuring point of
known altitude at a measured distance above or below land
surface.

Silicon strain-gage pressure transducers with data loggers
recorded water levels at hourly intervals in all basin- and wet-
land-monitoring wells for their respective periods of record.
The pressure- transducer readings were calibrated using
manual water-level measurements with a steel tape at the start
of record, and the recording position was verified bi-monthly
and again at the end of data collection. If these measure-
ments revealed a drift in the recording position, corrections
were applied to the record. All water levels from continuous
recorders are stored in the NWIS database and are available at
http://waterdata.usgs.gov/nj/nwis.

Streamflow

Streamflow was measured during this study to deter-
mine discharge at the continuous-record streamflow-gaging
stations and at various partial-record stations during the two
synoptic measurements in 2005. Stream stage was recorded
at streamflow-gaging stations every 15 minutes, and the stage
values were converted to discharge on the basis of a graphi-
cal rating of stage and discharge developed for each station
using manual stage and discharge measurements made at
various stream stages. Throughout the station period of record,
measurements of stage and discharge were made to verify
the stage-discharge rating or to adjust published discharges
for changes that could affect the established rating. All
records for streamflow-gaging stations and partial-record-
stations are stored in the NWIS database and are available at
http://waterdata.usgs.gov/nj/nwis.

Synoptic Measurements

In each basin, synoptic measurements of groundwater
levels, stream stage, and stream discharge were made during
two brief periods (several days) in spring and late summer
2005. Synoptic measurements were initiated in each study area
after extended periods of little or no precipitation that resulted
in stream base-flow conditions. Base flow in streams consists
only of groundwater discharge and usually occurs about 5 to
7 days after precipitation events, once runoff has ceased and
the normally unsaturated soils and sediments have drained.
The synoptic measurement periods were planned following

a thorough review of rainfall records, weather forecasts, and
groundwater-level and streamflow hydrographs to determine
the best time to make synoptic measurements that would coin-
cide with surface-water base flow.

During the spring synoptic measurements, water-level
and streamflow measurements were made at all network wells
(figs. 2-4), including all newly selected pre-existing wells,
and surface-water sites within each of the three study areas
(tables 1 and 2). During the late summer synoptic measure-
ments, water-level measurements were limited to fewer wells,
including network sites and other selected sites within and
near the drainage-basin boundaries. Each of the two synoptic
measurements was coordinated with and included the monthly
water-level measurements in shallow wells conducted by the
New Jersey Pinelands Commission. The measured sites also
included the wells and stream sites that make up the 15 hydro-
logic transects.

The altitudes of groundwater levels were used to describe
the slope of the water table along the hydrologic transects.
Vertical hydraulic gradients also were determined as an indica-
tor of the potential direction and magnitude of groundwater
flow supporting wetlands and streams. These assessments of
groundwater flow at the hydrologic transects are based solely
on the observed hydraulic gradient between measured water
levels. They do not account for the limits on groundwater
flow that might be caused by the hydraulic conductivity (K)
of geologic sediments along a given flow path because K
was not determined. Therefore, as described in this report the
hydraulic gradients indicate a potential for groundwater flow.
Vertical hydraulic gradients were determined by measuring
differences in water levels between wells or between wells
and surface water and then dividing those differences by the
minimum distance separating them hydraulically, such as that
between the well-screen intervals, or between a piezometer
screen and the streambed. The small differences in water
levels common in the water table typically were determined
by a direct differential measurement using a manometer to
avoid the limitations of measuring with a wetted-steel tape.

At sites where a manometer differential measurement was not
possible or at some locations where water-level differences
were large, wetted-tape measurements were either necessary
or appropriate for determining water-level differences. In this
study, upward hydraulic gradients were considered positive,
and downward hydraulic gradients were considered negative.
The measured groundwater levels and hydraulic gradients for
each of the 15 hydrologic transects are compared graphically
for each study area in the “Hydrologic Assessment” section of
this report.

During each synoptic measurement, surface-water stage
and discharge were measured at streamflow-gaging stations
and at partial-record stations, such as staff gages and stream
points. At a few locations a dam or culvert maintains the stage
of a lake or pond well above the stream stage downstream
from a dam or culvert, creating substantial, but localized,
hydraulic gradients in the local groundwater. To represent
these conditions on the water-table maps, some surface-water



levels were measured both in the lake or pond above the dam
or culvert and in the stream below; these measurements are
identified in table 3 (at end of report).

Locations of start-of-flow in each stream and (or) its
tributaries also were determined by locating the point farthest
upstream at which surface-water flow could be identified,
which included water flowing within the channel, near-stream
groundwater seeps, or, in some cases, water pooled in swamps
or in flat reaches of the stream channel that did not appear to
be a result of accumulated runoff. Locations of all new mea-
suring sites were determined with a global positioning system
(GPS), and the location coordinates were used to determine
the altitude of the land surface from the 10-m digital elevation
model (DEM). The height of points used to measure depth to
water level were referenced to the altitude of the local land
surface by manual measurements of their distance above or
below land surface.

Water-Table Mapping

Maps of the water-table altitude were prepared for the
spring and summer 2005 synoptic measurements, and depth-
to-water-table maps were prepared for spring 2005. Both
manual and computational methods were used to develop the
water-table maps; these methods are described farther on.
Water levels in the shallowest available wells, which could
best represent the water table, and surface-water levels from
streamflow-gaging stations, staff gages, partial-record stations,
stream points, and, in the absence of those data, stream and
topographic-contour intersections were used to construct the
water-table maps.

The water-table-altitude maps were prepared manually,
principally using the extensive well and surface-water data set
that was compiled during the synoptic measurements (table 3
at end of report). The water-table-altitude contours were drawn
using linear interpolation between data points. The contours
were shaped to represent the measured water levels while con-
forming as much as possible to the slope of the local topogra-
phy and the logical direction of groundwater flow. Water-table
contours that cross surface-water bodies were positioned on
the basis of the topographic altitude contours where those con-
tours intersected the surface water. The position of the water-
table contours at the basin boundaries was determined by
considering nearby groundwater levels, land-surface altitudes,
and surface-water altitudes.

The effectiveness of the water-table contouring methods
relies on the density and location of data points, the accuracy
of vertical control, and how closely the slope of the water table
resembles the topography. The reliability of these factors also
can be affected by the precision of physical measurements,
the accuracy of available altitude data, and the effect of soils,
aquifer sediments, and the regional groundwater-flow system
on the altitude of the water table beneath any given topo-
graphic surface. Locally, water levels can be affected by varia-
tions in soil type, or aquifer sediment texture can contribute
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to transient water levels and long-term mounding of the water
table above low-permeability sediments such as clays. Such
variations in sediment texture also can alter the effects of
hydraulic stresses induced by groundwater withdrawals.

The methods described above also were used to prepare
water-table-altitude maps for summer 2005. These maps
were based on a data set that included water levels at most
of the sites in the basin that were measured during the spring
synoptic measurement period and a limited number of those
sites surrounding the basin that were measured in the spring.
Once the initial contouring was completed, all of the altitude
maps were reviewed for accuracy and any anomalies were
resolved. The maps for spring and late summer 2005 were
compared with each other and with the work of previous
investigators (Watt and others, 2003; Johnson and Watt, 1996).
The independent analyses of the water table conducted for this
study were found to compare well with those of the previous
investigations. Once the water-table-altitude contours were
considered final, they were digitized and a uniform grid-based
data set (DEM) was created.

Water-table depth below land surface is one of the critical
determinants of the suitability of an area to support wetland
habitat in the Pinelands (Roman and others, 1985; Ehrenfeld
and Schneider, 1991; Zampella and others, 1992; Laidig and
Zampella, 1999). Consequently, the characterization of this
particular hydrologic variable was a focus of this assessment
and of the Kirkwood-Cohansey Project (New Jersey Pinelands
Commission, 2003). Of particular concern is the determination
of the variability of mean water-table depth within the range
of zero to 2 m below land surface, as areas with water-table
depths in this range correspond to most areas that potentially
support wetland habitats in the Pinelands. To meet project
objectives, the accuracy of estimates of the depth to the water
table within this range needed to be on the order of tenths of
meters. Water levels measured during spring 2005 approxi-
mate a mean annual water-level condition, and therefore,
measurements made during this time period were selected for
use in preparing maps of the depth to the water table.

Spatial variability in depth to the water table is a function
of both the water-table configuration and land-surface topog-
raphy. Matson and Fels (1996) describe various deterministic,
statistical, and landscape classification approaches to mapping
water-table depth and the complexities involved in mapping
the water table on a regional basis. Such regional analyses
have been conducted to estimate the water-table depth over
wide ranges of conditions and settings, such as those spanning
the State of North Carolina (Fels and Matson, 1996). Because
the water-table-mapping accuracy requirements for the pres-
ent study exceed those of regional analyses, a combination of
approaches was needed to provide greater accuracy within and
near wetlands areas at the scale of the present study.

Maps of the water-table depth below land surface were
prepared for the three study areas using a combination of
methods. The methods used in and near wetland areas were
different from those used in upland areas; however, because
the methods used in and near wetlands did not provide realistic
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results in upland areas, a different method was needed in

the upland areas. To support mapping at a higher accuracy,
high-resolution LiDAR (LIght Detection And Ranging) land-
surface altitude data were used for some areas (where avail-
able), whereas 10-m DEM data were used where LiDAR data
were unavailable. LIDAR data were available for Camden
and Burlington Counties but were not available for Atlantic
County (The National Map Seamless Server, 2008). In upland
areas 75 m or more from mapped wetlands, depth to water
was mapped as the difference between the 10-m DEM and
the water-table altitude grid. The accuracy of mapped water-
table depth in these areas was limited by the accuracy of the
10-m DEM, which was one-half the contour interval of the
source-map topographic contours. In the McDonalds Branch
and Albertson Brook basins, the source-map contour interval
is 10 ft; therefore, the DEM accuracy is +/- 5 ft, or 1.5 m. In
the Morses Mill basin, the source-map contour interval is 5 ft;
therefore, the DEM accuracy is +/- 2.5 ft, or 0.76 m.

A variety of approaches for determining depth to water
in and near wetland areas was evaluated to determine which
provided the most accurate results. The methods evaluated
include

1. interpolation: This method involved interpolating
between boundary values at mapped hydrologic
features where depth to the water table was known
or could be estimated. These features included wet-
lands, lakes, and streams. Depth to water at streams
and lakes was assumed to be zero; depth to water at
the limits of wetland areas was assumed to be equal
to a specified, representative value based on water
levels measured near boundaries of mapped wet-
lands;

2. topographic deviation: Local variations in depth to
water can result from local variations in topography.
A topographic deviation from a local mean altitude
at a point can be characterized by determining the
mean altitude within some fixed radius (in geo-
graphic information system (GIS) terminology, an
“n-cell neighborhood”) of a given point and compar-
ing this mean value with the altitude at that point.
This method was used to adjust the values deter-
mined using method 1 by adding the topographic
deviation from the mean altitude in n-cell neighbor-
hoods; and

3. relative altitude: In this method, measured depth to
water was related statistically to the altitude of the
local receiving surface-water body. This method is
similar to the statistical model approach described by
Matson and Fels (1996) and that used by Sepulveda
(2002) to estimate water-table altitude in Florida.
Values of measured depth to water in shallow
observation wells were related to values of relative
altitude at the well (land-surface altitude relative to
that of the local receiving-water body) to determine

an equation using simple linear regression. The form
of the resulting predictive equation is

Y=g,+px , )
where
Y = water-table depth, in meters;
fB, = regression line intercept, in meters;
B, = regression line slope, in meters; and
X = relative land-surface altitude (altitude

relative to that of the local receiving-water
body), in meters.

The equation was used to predict water-table depth from
the value of relative altitude. This method was evaluated using
altitude values determined from 3-m LiDAR data and from
10-m DEM data.

These three approaches were tested in the McDonalds
Branch basin and were assessed for accuracy by comparing
estimated values of water-table depth with values of water-
table depth observed in monitoring wells in wetlands and
within 50 m of wetlands during spring 2005. Results of this
evaluation demonstrated that the relative altitude approach
(method 3) using LiDAR data provided the most accurate
results. The mean absolute error of 41 values estimated using
this approach in the McDonalds Branch basin was 0.18 m
(18 cm). This approach was applied to areas in which gridded
LiDAR data were readily available. These areas included the
McDonalds Branch basin and the part of the Albertson Brook
basin in Camden County. In areas where gridded LiDAR data
were not readily available, the same method was applied using
the 10-m DEM data. These areas included the Morses Mill
Stream basin and the part of the Albertson Brook basin in
Atlantic County.

Regression analysis of relative land-surface altitude
and observed water-table depth below land surface indicated
that the relation between these two variables differed among
the study areas, resulting in a different predictive equation
for each area. Land-surface altitude data sources, regression
coefficients, and method error for each of the three basins are
summarized in the table on page 15.

Values of mean absolute error provide an indication
of the method’s predictive accuracy, and reflect the relative
accuracy of the altitude data used. The highest mean absolute
error is associated with the 10-m DEM data, and the lowest
mean absolute error is associated with the 3-m LiDAR data.
In general, the water table is nearly horizontal in wetland
areas; therefore, when the equations above are examined,
the regression-line intercept values are expected to be near
zero, and correlation coefficients are expected to be reason-
ably high (greater than 0.6), as is the case in the McDonalds
Branch study area, the Morses Mill Stream study area, and
the Camden County part of the Albertson Brook study area.
The relatively large regression-line intercept value (0.33)
and the relatively small correlation coefficient (0.22) for the
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Land-surface altitude Regr_e_ssmn Regfe_ssmn Number of Mean absolute Correlation
Study area coefficient coefficient § . error _
data source . . ! 0 ohservations coefficient
(dimensionless) (meters) (meters)
McDonalds Branch 3-meter LIDAR 0.278 0.03 41 0.18 0.72
Albertson Brook 3-meter LIDAR 0.262 0.08 13 0.12 0.71
(Camden County)
Albertson Brook 10-meter DEM 0.276 0.33 18 0.27 0.22
(Atlantic County)
Morses Mill Stream 10-m DEM 0.552 0.02 30 0.21 0.73

method using the 10-m DEM in the Atlantic County part of
the Albertson Brook study area indicates that, in this case, the
10-m DEM values in the vicinity of streams are not well dis-
tinguished from those of the surrounding areas. Consequently,
the accuracy of the method when used with 10-m DEM data
is limited, especially in the Albertson Brook study area, where
the DEM accuracy is relatively poor.

The relative-altitude method described above was applied
in areas within mapped wetlands and areas within 50 m of
mapped wetlands, using the respective altitude data described
above. Depth to the water table was estimated in areas from
50 to 75 m from mapped wetlands by interpolating between
values estimated at these two boundaries.

Water Budgets

A water budget is an equation that represents the relation
among the components of the hydrologic cycle in a given area
(the “budget area”) and accounts for water gains to and losses
from the area for a given time period. A water budget can be
used to determine groundwater recharge, which is difficult to
measure directly, by summing the values of the components
of the equation that can be measured directly or estimated
accurately. Variables in the budget represent components of
the hydrologic cycle; in the equation, inflows are balanced by
outflows and changes in storage. Human activities that affect
the natural system, such as groundwater withdrawals and arti-
ficial discharge, also are included in the budget. Rhodehamel
(1970, 1979) developed a water budget for the New Jersey
Pinelands that included Brendan T. Byrne State Forest (Leba-
non State Forest) and Wharton State Forest (Wharton Tract).
Annual water budgets were developed as part of previous
USGS studies that include all of the three basins, including the
Mullica River basin (Johnson and Watt, 1996) and the Ranco-
cas Creek and adjacent basins (Watt and others, 2003).

Monthly water budgets were developed for each of the
three drainage basins (fig. 5) for the period October 2004
through September 2006. (The drainage basins should not
be confused with the larger study areas.) Two equations
were used to evaluate the water budget: a land-surface-based

equation that describes gains and losses to and from the land
surface, and a groundwater-based equation that describes gains
and losses to and from the underlying Kirkwood-Cohansey
aquifer system. Land-surface and groundwater equations were
used to provide independent estimates of recharge and to pro-
vide a basis for comparing the relative importance of the vari-
ous budget components in the overall budget. Recharge was
determined as a residual in each of the equations, and monthly
values were compared. In theory, the value of recharge deter-
mined by using the land-surface equation should be equal to
the value of recharge determined by using the groundwater
equation.

The equation used to calculate the land-surface-based
water budget is

P+D _+AS +AS =0, +ET+W +R_, 2)
where
P = precipitation,
D, = artificial discharge to surface-water bodies,
AS = change in surface-water storage,
AS = change in soil-moisture storage,
0, = direct runoff,
ET = evapotranspiration,
W = surface-water withdrawals/diversions, and
R = recharge to the aquifer system.

The equation used to calculate the groundwater-based
water budget is

R +D, +R =0, +W £L+£AS_, 3)
where
R, = recharge to the aquifer system,
D, = artificial discharge to the aquifer system,
R, = groundwater inflow to/outflow from
adjacent basins,
0, = base flow,
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w, = groundwater withdrawals,
L = leakage to confined aquifers, and
ASgw = change in groundwater storage.

The budget area includes the extent of the surface-water
drainage basin of each of the three basins and the thickness of
the Kirkwood-Cohansey aquifer system from land surface to
the underlying confining unit. Most of the water-budget terms
were estimated using robust data collected in and near the
study areas, or in the case of leakage to confined aquifers (L),
a calibrated regional model (Martin, 1998; Voronin, 2004).
Exceptions were changes in soil-moisture storage (AS, ),
changes in groundwater storage (ASW), and groundwater
inflow to/outflow from adjacent basins (R)), for which less
robust indicators were used. Initial estimates of these terms
were adjusted using an optimization routine to improve the
agreement between the recharge estimates determined with the
two equations. The optimization routine was formulated using
the Microsoft Office Excel Solver® tool.

Streamflow (@, and Q,)

Streamflow data for four continuous-record streamflow-
gaging stations in the basins were compiled as part of this
study (fig. 5). Records of daily mean streamflow for the
2005-06 water years at three of the four stations (listed in the
table below) were retrieved from the USGS NWIS database.
These data were then used to estimate streamflow at the
farthest downstream point in each basin, where little or no
information on streamflow is available. Streamflow, base flow,
and direct runoff at this point in each basin were estimated by
using one or a combination of the methods described below.

Continuous-record streamflow-gaging stations used to
calculate base flow and direct runoff.

Station Drainage area

number Station name (square Method(s)
. used
used kilometers)

01409410  Albertson Brook near  50.00 MOVEL, Part
Hammonton, NJ

01466500 McDonalds Branchin ~ 6.09 Part, MOVEI,
Byrne State Forest DAR

01410225 Morses Mill Stream at  21.37 Part, DAR

Port Republic, NJ

Streamflow records at partial-record stations and at the
basin boundaries were estimated with standard USGS tech-
niques by using values from the nearby continuous-record
streamflow-gaging stations. Daily streamflow records were
estimated by using the following techniques: (1) Maintenance
of Variance Extension, Type 1 (MOVE1) (Hirsch, 1982) and
(2) drainage-area ratio (DAR) (Hirsch, 1979). Monthly base

flow and direct runoff were estimated with the computer
program PART (Rutledge, 1998, p. 33-38). For the Albertson
Brook and McDonalds Branch, both MOVEI and DAR meth-
ods were used to estimate streamflow records. For the Morses
Mill Stream, only the DAR method was used. Daily stream-
flow values were then used to calculate monthly mean stream-
flow records. The partial-record stations used to calculate base
flow and direct runoff are listed in the table below.

Station . Drainage area
Station name :
number (square kilometers)
0140941020  Albertson Brook above 52.32
Great Swamp Branch near
Hammonton, NJ
01466550 McDonalds Branch near 8.91

Presidential Lakes, NJ

The MOVE] method correlates instantaneous low-flow
measurements at the partial-record stations with concurrent
daily mean discharge at a nearby continuous-record gaging
station to estimate streamflow at the partial-record stations.
This method is a modification of linear least squares regres-
sion, in which values are set to maintain the sample mean
and variance rather than to minimize squared errors (Hirsch,
1982). The best-fit line is drawn through data points that rep-
resent discharge at a partial-record station with respect to daily
mean discharge at a continuous-record station. The equation of
this line is then used to estimate discharge at the partial-record
station on the basis of discharge measured at the continuous-
record station.

In the DAR method, streamflow at partial-record stations
is estimated from streamflow at an adjacent continuous-record
station with similar basin characteristics. Values at the contin-
uous-record stations were adjusted to account for differences
in the drainage areas of the two stations by multiplying each
value from the continuous-record station by a coefficient that
represents the difference in the size of the drainage basins to
determine streamflow at the partial-record station.

Land-Surface Water-Budget Terms

Determination of the other land-surface-based water
budget terms are described below.

Precipitation (P)

Precipitation data were compiled for 14 sites in or near
the basins for the 2005-06 water years. Precipitation sites
(fig. 5) included one site operated by the National Atmo-
spheric Deposition Program (NADP), five sites operated by
the National Climatic Data Center (NCDC), two sites operated
by the South Jersey Resource Conservation and Development
Council (SJRCD), and six sites operated by the USGS. These
sites are listed below. Missing daily values were estimated
from values for several adjacent sites with complete data.
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Daily precipitation values and estimated values were summed
to obtain the monthly values needed for the water budget.
Precipitation sites used to calculate monthly precipitation
within each basin are listed in the table below.

Precipitation sites.

i desnltti‘:ier Operator Source of data

NJOO NADP  http://nadp.sws.uiuc.edu/

280311 NCDC  http://www7.ncde.noaa.gov/IPS/lcd/led.html
283662 NCDC  http://www7.ncde.noaa.gov/IPS/lcd/lcd.html
284229 NCDC  http://www7.ncdc.noaa.gov/IPS/lcd/lcd.html
285346 NCDC  http://www7.ncde.noaa.gov/IPS/lcd/led.html
288899 NCDC  http://www7.ncde.noaa.gov/IPS/lcd/lcd.html
ET Tower USGS http://waterdata.usgs.gov/nj/nwis/nwis
HAMOT SJRDC  http://www.sjrcd.org/

CCVOT  SIRDC  http://www.sjrcd.org/

01465880 USGS http://waterdata.usgs.gov/nj/nwis/nwis
01466900 USGS http://waterdata.usgs.gov/nj/nwis/nwis
01409410 USGS http://waterdata.usgs.gov/nj/nwis/nwis
01410600 USGS http://waterdata.usgs.gov/nj/nwis/nwis
01411000 USGS  http://waterdata.usgs.gov/nj/nwis/nwis

Monthly precipitation values for each basin were calcu-
lated using GIS. The inverse-distance weight method (IDW)
was used to estimate precipitation for each cell in a grid that
represented each basin based on measured precipitation at
sites near the basins. The IDW method calculates values for a
given cell by interpolating values between precipitation sites
by weighting the values in proportion to the inverse distance
between the site and the cell, with more weight being given to
values from sites near the cell and less weight being given to
values from sites far from the cell. The mean monthly precipi-
tation of all cells within each basin was then determined.

Artificial Discharge to Surface-Water Bodies (D)

Facilities that discharge water to a surface-water body
(such as a lake, stream, or ocean) must apply for a National
Pollutant Discharge Elimination System (NPDES) permit. In
New Jersey, this Federal program is administered by the New
Jersey Department of Environmental Protection (NJDEP).
Each State agency collects data on wastewater discharges and
transfers this information to the U.S. Environmental Protection
Agency (USEPA) Permit Compliance System (PCS) database,
which is used to track data on the quantity and quality of
wastewater discharges. Available point-source discharge data
for sites within each basin were obtained from the NJDEP.
NPDES permits were matched with data on monthly wastewa-
ter discharges.

Change in Storage (Surface Water, AS_ )

To accurately balance all variables used in the water-
budget equations, changes in storage in surface-water bodies

must be calculated if the change is substantial over time. For
the most part, surface-water storage changed little from month
to month. During the study period, storage in one lake in the
Morses Mill Stream basin changed substantially. Lake Fred at
Richard Stockton College in Pomona, NJ, was lowered during
August 2005 to allow for the repair of the dam; the lake was
refilled in March 2006 when repairs were complete.

Change in Soil Moisture (AS_ )

Initial attempts to determine the monthly water balance
did not take into account changes in soil-moisture storage.
Results of these attempts, however, indicated that changes in
soil moisture storage could not be ignored. In order to pro-
vide a basis for estimating these changes, data collected at
a climatological station in the McDonalds Branch basin for
the concurrent study of evapotranspiration were used. Soil
moisture was monitored using a Campbell Scientific CS615
water content reflectometer probe installed to measure an
averaged volumetric soil-moisture content within the upper
30 cm of the soil profile. The measured soil-moisture values
at this single location are not necessarily representative of the
watershed but are presumed to be correlated with generalized
wetting and drying conditions across the region. Soil-moisture
measurements were made and recorded on the data logger
every 30 minutes. Soil-moisture values from the McDonalds
Branch climatological station provided a rough indication of
soil-moisture changes for all three basins.

Changes in soil moisture were calculated by using end-
of-month values from the McDonalds Branch climatologi-
cal station. End-of-month values were subtracted from the
previous month’s end-of-month value, such that a negative
result represents an increase in soil moisture. This value was
used as an index of the change in soil-moisture storage for the
given month. For each of the three basins, the monthly soil-
moisture-storage index values were adjusted using a scaling
factor, such that the differences between calculated monthly
land-surface recharge and calculated groundwater recharge
values were minimized. Scaling factors used for the Albertson
Brook, McDonalds Branch, and Morses Mill Stream basins
were 25.3, 18.2, and 22.6 cm, respectively.

Evapotranspiration (ET)

The rate of evapotranspiration can vary widely depend-
ing on land use, vegetation, soil moisture, wind speed, solar
radiation, and other factors. ET from wetland areas is expected
to be greater than £7 from upland areas because wetland soils
are wetter and water is more readily available for £7" (Ballard
and Buell, 1975; Ballard, 1979). Prior to this study, ET data
from sites in or near the basins were limited. In response to
this data gap, the USGS installed a climatological station at
the McDonalds Branch basin (“E7 Tower” in figure 5) at a site
where the source of £7 is primarily wetlands. Concurrent E7
data were available from a climatological station operated by
the U.S. Forest Service (USFS) at a nearby uplands site at the
Silas Little Experimental Forest (SLEF) (Ameriflux, 2008).



Data from these two sites were used to determine £7 rate indi-
ces for representative wetland and upland areas, respectively,
and these indices were used to estimate total £7 in each of the
three study areas.

Evapotranspiration values at the USGS station were
determined by methods described by Nicholson and Sumner
(2006). ET measurement methods at the USFS SLEF sta-
tion are documented by Ameriflux (2008). A comparison of
concurrent £7 measurements made at the two sites during
2005—-06 showed that ET at the upland site averaged about
66 percent of ET at the wetland site.

To determine the total evapotranspiration from each
basin, total monthly ET values from the USGS McDonalds
Branch station were used to represent the £7 rate from wet-
land areas within each basin. The same total monthly £7 val-
ues from the McDonalds Branch station were multiplied by a
factor of 66 percent and used to represent the £7 rate in upland
areas. These rates were multiplied by the area of wetlands and
uplands, respectively, in each study area. Estimated values
of ET from wetland and upland areas were then summed to
estimate total £7 for each basin.

Water Use (Surface-Water Diversions, V)

Estimates of water use, including surface-water diver-
sions, were compiled for each of the three basins for the 2005
and 2006 water years. A GIS with locations of intakes for
surface-water diversions was used to determine which intakes
were within each basin. All water-use data were obtained
from the USGS’s Site-Specific Water Use System (SSWUDS)
database. Water use for intakes with incomplete or unreported
data was estimated by using data from the most recent year for
which reported values were available.

In New Jersey, high-volume water users (378.5 m*/d,
or 100,000 gal/d or greater) report their monthly withdraw-
als to NJDEP; reporting is either on an annual or a quarterly
basis. New Jersey data include metered withdrawals for many
categories of use (public supply, commercial, industrial, min-
ing, and thermoelectric power), reported to NJDEP as monthly
values. Low-volume water users (less than 378.5 m*/d or
100,000 gal/d) must submit reports of monthly metered with-
drawals. Agricultural/horticultural certification water users
must submit monthly withdrawal data; however, withdrawals
are rarely metered and, for the most part, are estimated by
multiplying the number of hours of use by the pump capacity
(Nawyn, 1998).The withdrawal data are entered in the NJDEP
Bureau of Water Allocations (BWA) database and transferred
electronically to the USGS as part of the USGS/NJDEP Coop-
erative Water-Use Program. The USGS reconfigures and tests
the withdrawal and site data before they are entered into the
SSWUDS database.

Recharge (R_and Rg)

In both the land-surface- and groundwater-based equa-
tions, recharge is determined as a residual of the other water-
budget terms; therefore, recharge estimates carry with them an
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accumulation of any net error associated with the estimates for
the other terms. The uncertainty associated with estimates of
changes in soil-moisture storage may be large, as the estimates
of this term reflect a highly simplified understanding of com-
plex processes occurring in the unsaturated zone.

Soil moisture within the unsaturated zone varies through-
out the year depending on rainfall patterns, changes in evapo-
ration and transpiration rates, temperature, and other factors.
During winter and spring, when soil moisture is above field
capacity, recharge typically is much higher than during sum-
mer and fall. If soil moisture is less than field capacity, which
commonly occurs during summer months, a soil-moisture
deficit may exist. Although some macropore flow through soils
may occur following rainfall under soil-moisture deficit condi-
tions, recharge to the groundwater system is assumed to occur
only after the deficit is made up (Nicholson and Watt, 1997;
Alley, 1984).

The time that elapses between a precipitation event,
when water begins to infiltrate into the unsaturated zone, and
the onset of recharge to the underlying aquifer system can
vary greatly depending on the thickness of, and conditions in,
the unsaturated zone. In areas where the water table is near
the land surface, such as in and near wetlands, recharge can
occur almost immediately. In areas where the water table is far
below land surface, such as in upland areas near basin divides,
however, recharge may take weeks or more. The presence
of silt or clay layers in the unsaturated zone also can delay
recharge or change the direction of flow in the unsaturated
zone (Nicholson and Watt, 1997; Alley, 1984). This delay may
be accentuated during winter months when some water may
be stored as snow or ice on the land or frozen in the shallow
part of the unsaturated zone and not immediately available
for infiltration. A consequence of any delay in recharge is that
some of the recharge estimated using the groundwater-based
equation will tend to lag behind the recharge estimated using
the land-surface-based equation. In practical application of
recharge estimates, some of the recharge estimated for a given
month using the land-based equation could be carried forward
to the following month.

Groundwater-Budget Terms

The determination of the other water budget terms for
groundwater are described below.

Artificial Discharge to the Aquifer System (D, )

Like facilities that discharge water to surface-water
bodies, facilities that discharge water to groundwater through
septic systems or other wastewater systems must apply for a
NPDES permit. Point-source discharge data for sites within
each basin were obtained from NJDEP, and NPDES permits
were matched with data on monthly wastewater discharges.
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Groundwater Inflow/Outflow (R)

Horizontal groundwater inflow or outflow between the
basin and adjacent basins can occur in areas where ground-
water divides do not coincide with surface-water divides and
where large-capacity wells are located near the basin divide.
Estimation of horizontal flow to or from a basin from field
data alone is difficult; these flow rates are best estimated using
groundwater flow models. Pre-calibration steady-state models
being developed as part of another phase of the Kirkwood-
Cohansey project were used to provide a preliminary indica-
tion of the direction and magnitude of horizontal flow across
basin boundaries. These initial estimates helped to improve the
agreement between recharge values determined by using the
land-surface water-budget equation and those determined by
using the groundwater-budget equation. Values of horizontal
groundwater inflow or outflow also were adjusted in the bud-
get equation by using the optimization routine described ear-
lier to minimize the sum of the differences between monthly
land-surface recharge (R ) and groundwater recharge (Rg).

Water Use (Groundwater Withdrawals, Wg)

Estimates of water use, including groundwater withdraw-
als, were compiled for each of the three basins for the 2005
and 2006 water years. A GIS with well locations was used to
determine which wells were within each basin. All water-use
data were obtained from the SSWUDS database. Water use
for wells with incomplete or unreported data was estimated by
using data from the most recent year for which reported values
were available.

Leakage (L)

Groundwater leaks from the Kirkwood-Cohansey aquifer
system to underlying confined aquifers in response to head
gradients across the confining units. Mapped water-level alti-
tudes in the underlying confined aquifers in 2003 (DePaul and
others, 2009) were examined and compared with water-level
altitudes presented in this report. Because water-level differ-
ences across the confining units underlying the Kirkwood-
Cohansey aquifer system in the three study areas (typically
greater than 20 m) are generally larger than the range of
observed seasonal variations in water levels in the unconfined
system (generally less than 2 m), the seasonality in both verti-
cal gradients and vertical leakage was expected to be minor.
A flow model (Martin, 1998; Voronin, 2004) developed as
part of the USGS Regional Aquifer-System Analysis (RASA)
program was used to determine the volume of water leaking
to underlying layers (E.G. Charles, U.S. Geological Survey,
written commun., 2007). The model can be used to simulate
vertical flow through confining units for each grid cell of the
model. Leakage values from each model cell within a basin
were averaged to determine net flow out of the Kirkwood-
Cohansey aquifer system. Flow rates were assumed to be con-
stant throughout the study period; therefore, only one leakage
value was used for each basin.

Change in Storage (Groundwater, AS )

Changes in groundwater storage were calculated by
using end-of-month depth-to-water values at basin-monitoring
and wetland-monitoring wells. Basin-monitoring wells were
used to represent change in water level in upland areas and
wetland-monitoring wells were used to represent change in
water level in wetlands. The water level in the shallowest well
at each basin-monitoring well cluster was used in the calcu-
lation (table 1 at end of report). End-of-month values were
subtracted from the previous month’s values so that a negative
value represents a decline in the water level and a negative
change (net loss) in storage. An average value for each basin
was determined by first summing the area-weighted changes
in water level in upland and wetland areas, then multiplying
the resulting value by an estimate of specific yield for each
basin to determine the change in storage. Values of specific
yield were initially estimated on the basis of values previously
reported for similar sediments in the Kirkwood-Cohansey
aquifer system (Rhodehamel, 1973; Freeze and Cherry, 1979;
Fetter, 1994) and then were refined in the budget calculations
using the optimization routine described earlier to minimize
the sum of differences between the monthly land-surface
water-budget recharge (R ) and groundwater-budget recharge
(Rg) values. The estimated specific yields used in the budget
calculations were 0.17 for the Albertson Brook basin, 0.31 for
the McDonalds Branch basin, and 0.11 for the Morses Mill
Stream basin. These estimates are considered rough approxi-
mations and are likely influenced by differences among
the basins in the degree of dependence between changes in
groundwater storage and recharge determined as a residual of
computations based on other budget components. For exam-
ple, relatively large changes in monthly groundwater storage
in the McDonalds Branch basin resulted in better agreement
between estimated monthly values of R and R for this basin
than for the other two basins so the estimated specific yield for
the McDonalds Branch basin is larger than that for the other
drainage basins.

Hydrologic Assessment

In the following sections, organized by study area, the
hydrologic data collected in the three Pinelands study areas
are described and interpreted. Included are descriptions of the
geohydrologic, hydrologic, and climatologic conditions under
which the groundwater and surface-water data were collected.
Hydrographs of water levels, streamflow, and precipitation
records provide a continuous record of the transient hydrologic
conditions during the data-collection period. Groundwater and
surface-water data collected during the two synoptic measure-
ment periods were examined in the context of these records.
Maps and graphs are used to illustrate an area-wide analysis
of water-table altitude, depth to groundwater, and localized
hydraulic-gradient data that characterize the hydrologic inter-
actions among groundwater, wetlands, and streams. Spring



and late summer 2005 base-flow measurements are compared,
and start-of-flow locations observed during each of the synop-
tic measurements are reported.

Albertson Brook Study Area

The Albertson Brook study area represents a range of
hydrologic features typical of the Pinelands, with the upper
and lower parts of the basin each containing different propor-
tions of developed and undeveloped land. In the upper part
of the basin, stream channels are flanked by narrow swamps,
wetlands, and forests surrounded by agricultural land, some of
which is unused and some that has undergone various forms
of development. Several man-made lakes on the Pump Branch
and Blue Anchor Brook tributaries to the Albertson Brook may
affect the runoff characteristics in the basin by attenuating
peak flows during periods of heavy rainfall. In contrast, the
lower part of the basin is less developed, with the exception of
active agriculture. In this area the Albertson Brook is flanked
mostly by broad wetlands, some nearly 300 m wide that are
composed largely of pine, cedar, and hardwood and abut
forested uplands. In some areas on the south side of Albertson
Brook, the upland forests transition to a patchwork of mostly
agricultural land. The Albertson Brook basin narrows sub-
stantially in a downstream direction, an area where the basin
is flanked by forest. All network wells and streamflow sites in
the study area are shown in figure 2, and site information is
listed in tables 1 and 2 (at end of report).

Groundwater Levels

The hydrographs of daily mean water levels measured
over the period of record (fig. 6) indicate that groundwater
levels fluctuated over a maximum range of about 0.95 m at the
upper-basin monitoring wells and about 0.78 m at the lower-
basin monitoring wells. The three wells that make up each
cluster represent three aquifer layers that lie between the water
table and the base of the Kirkwood-Cohansey aquifer system
(Walker and others, 2008). Seasonal water-level extremes in
the upper part of the basin (recharge area) lagged behind those
in the lower part of the basin (discharge area). Water levels
in the upper-basin monitoring-well cluster responded only
minimally to the precipitation in the latter part of 2005. These
hydrographs illustrate downward hydraulic gradients indica-
tive of a recharge area in the upper-basin wells (fig. 6A) and
upward hydraulic gradients indicative of a discharge area in
the lower-basin wells (fig. 6B).

The shallowest well (070744—PZ 5) in the upper-basin
well cluster is screened in the unconfined (water-table) aquifer
(hydrogeologic layer AB A1-B; Walker and others, 2008)
and has the highest water level of the wells there. The water
level in well 070744—PZ 5 fluctuated over a range of about
0.95 m during the period of record, whereas the water level
in the middle well (071091-AB-OW M) and the deep well
(071092—-AB-OW1D), screened in the AB A-2 and AB A-3
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aquifer layers, respectively (Walker and others, 2008), fluctu-
ated over a range of about 0.7 m during the same period. Water
levels in both the middle and deep wells were as much as 1 m
lower than that in the shallow well, and the hydrographs for
the middle and deep wells are nearly identical (fig. 6A). The
deeper wells show frequent and regular small fluctuations in
daily mean water levels throughout the period of record that
indicate effects of variable stresses typical of groundwater
withdrawals. These fluctuations most likely are induced by
pumping from one or more of the nearby public-supply wells,
which are screened in the lower part of the aquifer system.
These water-level fluctuations also were apparent in the shal-
low well, but their range was smaller than those in the deeper
wells. The differences between the groundwater levels in the
unconfined aquifer and those in the deeper aquifers probably
can be attributed to the combined effects of local pumping
and the influence of a more than 5-m-thick leaky confining
layer referred to as AB C-1 (Walker and others, 2008), which
separates the unconfined aquifer from the middle aquifer in
this area. A thin, leaky confining layer referred to as AB C-2
(Walker and others, 2008) also separates the middle and lower
aquifers but, on the basis of their nearly identical water levels
(fig. 6A) and the geophysical records for this site, this leaky
confining layer appears to be ineffective at isolating these
aquifers hydraulically (Walker and others, 2008). These condi-
tions indicate that man-made or natural hydraulic stresses
applied to the aquifer system may affect water levels differ-
ently in the three aquifer layers depending on differences in
geologic structure, hydrology, and the location of the stresses
applied.

Although a downward hydraulic gradient may be
expected in upper-basin areas, the observed difference in water
levels of as much as 1 m between the unconfined and deeper
aquifers may be attributable, in part, to local pumping from
the aquifer system’s lower layers. In contrast, the lower-basin
wells, located more than 3 km from any possible groundwater
withdrawal, show an upward hydraulic gradient, no short-
term fluctuations that would indicate effects of groundwater
withdrawals nearby, and a uniform difference in water levels
with depth (less than 0.3 m overall), indicating a likely area of
groundwater discharge where the natural vertical gradient is
unaffected by local stresses.

The effects of precipitation on groundwater levels can
vary with location and depth. The location and depths repre-
sented by the two basin-monitoring well clusters generally
cover the range of conditions to be found in the basin and
effects of precipitation on groundwater levels. Water levels in
the three wells in the upper-basin recharge area vary season-
ally but do not respond promptly to precipitation events,
whereas water levels in wells in the lower-basin discharge
area respond rapidly (fig. 6). This difference likely results, in
part, from the presence of a much thicker unsaturated zone
(about 8.5 m thick) at the upper-basin site than at the lower-
basin site, where the unsaturated zone is less than 1 m thick.
In addition, the unsaturated sediments at the lower-basin site
are sandy, whereas those at the upper-basin site vary in texture
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from gravel to sand with some clay layers (Walker and others,
2008), and their moisture content varies with depth and time.
All of these factors act to slow the rate of advance of a wetting
front before it reaches the water table. Consequently, there was
no definitive time during the period of record at the upper-
basin site when infiltration resulted in a rapid rise of the water
table (fig. 6A).

In contrast, water levels in all the wells in the lower-
basin cluster responded rapidly to substantial precipitation
induced recharge throughout the period of record (fig. 6B).
Such a response is common in the shallow aquifer layer,
but water levels in the wells screened in the middle and
deep layers (011506-AB OW-2M and 011504-AB OW-2D)
appear to respond simultaneously and to the same magni-
tude as that of the shallow well (011505—AB OW-2S) when
recharge occurs. As shown in figure 6B, water levels in wells
011506-ABOW-2M and 011504-ABOW-2D also increase
with depth. When the water table begins to rise in response to
precipitation, this change is immediately reflected as a change
in water levels in the lower aquifer layers, indicating that these
deeper aquifers are hydraulically connected to the water table.
This observation confirms that the aquifer layers at this loca-
tion are unconfined, as described by Walker and others (2008).

Water-level data were recorded continually in two
wetland-monitoring wells in the Albertson Brook study
area (figs. 2, 7A, and 7B) during the study. These data indi-
cate that the water table fluctuated over a range of 0.91 m
near the upland edge of the wetlands (pitch pine uplands) at
well 011459—Albertson Brook 2 (fig. 7B) and 0.51 m in the
wetlands (cedar swamp) at well 071081—Albertson Brook 1
(fig.7A). Groundwater levels in the uplands were affected
more by precipitation than those in the wetlands beneath the
cedar swamp. During periods of high water levels, groundwa-
ter levels beneath the swamp were affected by surface-water
levels in the Albertson Brook. When the swamp became dry as
water levels declined, the groundwater levels were less influ-
enced by surface-water levels, and the response to precipita-
tion was larger and more rapid (fig. 7). Major or sustained
precipitation produced rapid responses in both wells, but the
response was always smaller beneath the cedar swamp as a
result of its proximity to the Albertson Brook.

Streamflow

Streamflow data recorded at the two gaging stations in the
Albertson Brook study area (fig. 2) during the period of record
indicate that daily mean discharge ranged from 0.06 m*/s
to 1.90 m?/s at the Pump Branch station (0140940810) and
from 0.26 m?/s to 2.49 m?/s at the Albertson Brook station
(01409410) (fig. 8).

During the summer low-flow periods of 2005 and 2006,
stream stage at the Pump Branch gaging station (0140940810)
was affected by backwater from vegetation growth in the
channel, which raised the apparent stream stage while dis-
charge remained unaffected. The stage shown on the hydro-
graph (fig. 8) indicates the actual stage during those backwater
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periods. The discharge hydrograph was adjusted for the
periods of backwater by applying an adjustment to the stage
record for these periods before determining the daily mean
discharges. These adjustments were determined on the basis
of manual stage and discharge measurements made dur-

ing the periods of backwater. Discharge records for station
0140940810 were considered fair (fair indicates 95 percent of
the record is within 15 percent of the true value), except for
discharges above 1.13 m?/s, which are considered poor (less
accurate than fair). With the exception of periods when stage
at the Pump Branch gaging station was affected by back-
water, the recorded stream stage compares well with nearby
groundwater-level hydrographs, an indication of the strong
hydrologic relation between groundwater and surface water
in the Pinelands. The stage and discharge hydrographs for

the Albertson Brook and Pump Branch gaging stations show
characteristically similar responses to precipitation throughout
the period of record. In the lower part of the Albertson Brook
basin, a low divide separates the Albertson Brook from the
adjacent Gun Branch basin to the north (fig. 2). Gun Branch
joins the Albertson Brook downstream from the study area;
however, on April 22, 2004, water from Gun Branch was
observed flowing to the Albertson Brook through a ditch along
State Route 206, indicating that inter-basin surface-water flow
to the Albertson Brook upstream from the streamflow-gaging
station (01409410) can occur. Given the observed inter-basin
flow conditions, it is reasonable to assume that groundwater
also can enter the Albertson Brook basin beneath the low
divide between these two basins during periods of high water
levels.

As no long-term historical streamflow records were
available for the Albertson Brook basin prior to this study, a
comparison with conditions observed in the adjacent Great
Egg Harbor River basin helps to place the streamflow data
collected during the 2-year period of this study in hydrologic
context. Mean annual discharge for the streamflow-gaging sta-
tion 01411000, Great Egg Harbor River at Folsom, NJ, located
about 12 km southwest of the Albertson Brook study area, for
2005 and 2006 was 101 and 105 percent, respectively, of the
long-term mean annual discharge determined from 82 years of
record (U.S. Geological Survey, 2009).

Synoptic Measurements

Synoptic measurements were made in the Albertson
Brook study area during two low-flow periods—one in spring
(April 13-25, 2005) and one in late summer (September 9—15,
2005). Water-level data collected during these periods are
presented in table 3 (at end of report), and the locations of the
selected sites where measurements were made are shown in
figure 9. Because long-term groundwater and surface-water
records for the Albertson Brook study area were unavail-
able, statistics calculated using data from nearby sites with
similar hydrologic characteristics provided long-term daily
mean groundwater-level and streamflow data with which to
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Figure 7. Groundwater levels in (A) Albertson Brook 1 (B) Albertson Brook 2, wetland-monitoring wells and (C) precipitation, Albertson
Brook study area, New Jersey Pinelands, 2004—06.
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compare the state of the hydrologic system during the synoptic
measurements.

During the April 2005 synoptic measurement, groundwa-
ter levels in the vicinity of the study area were slightly above
the mean daily water-level statistic for the month of April
as determined from 16 years of record for the well, Wash-
ington Township 1 Obs (well 151033) located about 13 km
west of the Albertson Brook study area in Gloucester County
(http://waterdata.usgs.gov/nj/nwis). Streamflow at the gag-
ing station in the adjacent Great Egg Harbor River basin at
Folsom, NJ (01411000), during the same period was slightly
lower than the long-term mean daily discharge statistic for the
month of April as determined from 82 years of record (U.S.
Geological Survey, 2009). Groundwater levels vary spatially
at any point in time as demonstrated by the lag in the sea-
sonal water-level extremes described previously. Streamflow
integrates groundwater discharge along the length of the basin,
making it a better overall indicator of the hydrologic state of
the basin.

The April synoptic measurement was begun 5 days after
the end of a 2-week period of frequent precipitation, with
rainfall amounts typically less than 4 cm per event (figs. 6-8).
Light precipitation during the last 3 days of the spring mea-
surements totaled 0.41 cm, although the hydrographs in fig-
ures 6 through 8 show that those precipitation events did not
significantly influence groundwater levels or stream stage. As
a result of the time lag in seasonal extremes described previ-
ously, hydrographs for the two basin monitoring-well clus-
ters showed different water-level trends prior to and during
the synoptic measurements. Water levels in the upper-basin
monitoring wells (fig. 6A) rose prior to and during the spring
synoptic measurement period, whereas those at the lower-
basin monitoring-well cluster declined.

During the September synoptic measurement, groundwa-
ter levels were lower than the 16-year long-term mean daily
water-level statistics for the month of September, as indicated
by the Washington Township 1 Obs, observation well. Stream-
flow in the Great Egg Harbor River at Folsom, NJ, was lower
than the 82-year long-term mean daily discharge during the
month of September. The September synoptic measurement
was begun after an extended downward trend in both ground-
water levels and streamflow, resulting from more than a month
without substantial precipitation (figs. 6—8). As mentioned
previously, stage at the Pump Branch gaging station prior to
and during the September measurement appears higher than
expected as a result of backwater caused by vegetation growth
in the channel below the gage (fig. 8).

Water levels at selected wells and stream sites and at
the intersections of surface-water and topographic contours
were used to prepare water-table-altitude maps for April and
September 2005 (figs. 10 and 11, respectively). Groundwater
flows through the permeable aquifer sediments from areas
where water levels are highest to areas where water levels are
lowest, where it discharges to wetlands, the Albertson Brook,
and its tributaries. The water-level altitude slopes along the
length of the basin, decreasing more than 30 m from the upper

drainage-basin boundary to the lower drainage-basin boundary
for this study (figs. 10 and 11).

Fetter (1994) observes that the boundaries of surface-
water basins and groundwater basins do not necessarily coin-
cide, and this condition was observed in several parts of the
Albertson Brook basin. One of these areas is in the upper part
of the basin, along its southwestern boundary, where water-
table contours for both spring and summer measurements indi-
cate groundwater leaving the basin, with hydraulic gradients
toward the adjacent Great Egg Harbor River basin. Water-level
contours in the northernmost extent of the basin also indicate
a potential for groundwater leaving the basin toward the east,
northeast, and other tributaries of the Mullica River basin.
Water-level contours in the lower part of the basin, along the
northern basin divide between the Albertson Brook and Gun
Branch, indicate potential groundwater flow into the Albertson
Brook basin during both April and September. The basin nar-
rows substantially in this area, and the topography across the
divide is relatively flat. Along the southern basin divide in the
lower part of the basin, water-level contours indicate another
small area where groundwater probably enters the basin from
an agricultural area to the south. This condition persisted dur-
ing both the April and September measurements. Farther east
along the southern boundary, the 18-m-altitude contour indi-
cates that groundwater may have been flowing out of the basin
in April, but no such flow potential was apparent in September.

Depth to the water table (DTW) in the Albertson Brook
basin in April 2005 (fig. 12) ranged spatially from zero at
points of groundwater discharge, such as ponds, streams, and
wetlands, to a maximum of more than 10 m in upland areas
at the northern and western limits of the basin. A histogram
showing the distribution of DTW throughout the basin
(fig. 13) provides a basin profile of the hydrologic setting
for habitats that depend on different ranges of DTW. DTW
is less than 0.5 m over 18 percent of the basin, resulting in a
relatively small percentage of the basin being hydrologically
suitable for wetland habitats. In comparison with the Pinelands
as a whole, the basin has a smaller percentage of mapped
wetlands areas; 13 percent of the basin is mapped as wetlands,
whereas wetlands covered 27 percent of the entire Pinelands
area in 2002 (Zampella and others, 2008). Most of the mapped
wetlands are found in the downstream half of the basin. In
mapped wetlands within the basin, DTW ranges from zero to
2.1 m, with a mean depth of 0.21 m. Following the relatively
higher water levels in April, the water table declined through-
out the basin, falling as much as 1.2 m by the time of the
September measurement. These changes generally were small-
est near the areas of discharge to surface water and greatest in
the upland recharge areas near groundwater divides but varied
locally throughout the basin as a result of local conditions.

Water level and hydraulic gradient data from five hydro-
logic transects in the Albertson Brook basin (fig. 2) describe
the interaction of groundwater with wetlands and surface
water during the two synoptic measurements in 2005. These
data characterize the seasonal range in water-table altitude in
and near wetlands and the changes in hydraulic gradients and



potential groundwater flow leading to groundwater discharge
to the wetlands and surface water between April and Septem-
ber 2005 (fig. 14). Site conditions and associated findings are
described below.

The hydrologic transect site that is farthest upstream
(ABHT1) is situated on the northeastern side of the Pump
Branch tributary to the Albertson Brook near its headwaters.
At this site, the land surface slopes for 230 m from the uplands
into a narrow wetland (about 30 m wide) that flanks the stream
channel. The slope in the water table was uniform during both
synoptic measurements (fig. 14) with downward hydraulic
gradients in the upland wells, representing an area of recharge,
that transition to upward hydraulic gradients beneath the wet-
lands and the Pump Branch, indicating a hydraulic potential
for groundwater discharge.

Transect ABHT?2 is about 9 km downstream from transect
ABHT]1, on the northern side of the Pump Branch (figs. 2 and
14), where the channel broadens and is flanked by wetlands.
Transect ABHT?2 is about 175 m long and originates in the
uplands, where the land surface slopes gently toward the
Pump Branch and then steeply at the weathered bank of an
ancient stream channel. This steep slope marks the transition
from uplands to wetlands and the beginning of dry white cedar
lowlands. From the edge of the wetlands to the stream, the
topography is relatively flat for a distance of about 75 m. Dur-
ing both April and September, vertical hydraulic gradients in
the uplands indicated potential downward groundwater flow.
From the uplands, the water table slopes gently toward the
middle well cluster, where hydraulic gradients were upward
during both synoptic measurements. The upward gradient in
the middle cluster was smaller in April than in September,
probably because water levels were higher in April as a result
of frequent rainfall preceding the April measurement. Small
but similar upward hydraulic gradients in the near-stream
well pair and substantially larger upward hydraulic gradients
beneath the Pump Branch during both synoptic measurements
indicate a strong potential for groundwater discharge to the
Pump Branch in this area. The persistent upward hydraulic
gradients beneath the wetlands and stream indicate that much
of the groundwater discharge reaching the stream at this loca-
tion is probably from the deeper groundwater-flow system.

Conditions at hydrologic transect ABHT3 (fig. 14)
located on the Albertson Brook about 1.6 km below the
confluence of the Pump Branch with Blue Anchor Brook are
similar to those described for ABHT?2. This transect is about
105 m long with a moderate slope in the land surface from the
uplands to the predominantly hardwood and pine wetlands
that lie along the northern side of the Albertson Brook. These
wetlands, about 50 m wide, are relatively flat from near the
upland/wetland boundary to the stream. The water table sloped
gently from the uplands to the stream in April; in September
the slope was similar, but the horizontal hydraulic gradient
was smaller. The upland well pair shows a slight downward
hydraulic gradient in April and no vertical gradient in Sep-
tember, indicating that most shallow groundwater flow from
the uplands in this area probably is horizontal, toward the
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Albertson Brook. Beneath the wetlands and the Albertson
Brook, hydraulic gradients were upward during both synoptic
measurements, indicating a strong potential for discharge of
groundwater to the stream in this area. In September, after
more than a month without rain, shallow water levels were
lower, but upward gradients near and beneath the Albertson
Brook were greater than in April, reflecting the influence of
groundwater flow that discharges to the stream along longer
and deeper flow paths.

Transect ABHT4 is located about 350 m downstream
from ABHT3 on the south side of the Albertson Brook. The
transect is about 400 m long, nearly 300 m of which traverses
wetlands and swamp containing pine, hardwoods, and cedars
that flank Albertson Brook in this area. The upland end of
this transect originates at the location of Albertson Brook 2,

a wetland-monitoring well described previously. The water
table along the transect slopes with a uniform horizontal
gradient from the uplands through the wetlands and swamp

to the stream (fig. 14). In contrast to the upstream transects,
hydraulic gradients at the upland end of transect ABHT4 were
downward in April but upward in September. Although the
reason for the upward gradient in September is not well under-
stood, it could indicate the occurrence of sub-regional ground-
water flow discharging toward the surface. This condition

was documented at the lower-basin monitoring-well cluster
(AB OW-2) located about 1,100 m downstream from this area,
where water-level hydrographs (fig. 6 B) illustrate uniform
upward hydraulic gradients from deep in the aquifer system

to the water table. At the middle well cluster of the ABHT4
transect, located in the wetlands near the edge of the swamp,
the hydraulic gradient was upward in April, indicating a poten-
tial for groundwater discharge to the wetlands and swamp in
this area. Water levels in these wells were equal in September,
indicating that local groundwater discharge likely had ceased
and that shallow flow probably was horizontal toward the
swamp and stream in this area. The hydraulic gradients at the
near-stream well pair and beneath the stream were upward
during both periods, indicating probable persistent groundwa-
ter discharge to the Albertson Brook in that area.

Transect ABHTS, on the northeasterly side of the Albert-
son Brook near the lower basin boundary, extends more than
120 m from the uplands through the wetlands to the stream.
The well cluster that is farthest upland is near a low topo-
graphic divide separating the Albertson Brook basin from the
Gun Branch basin (fig. 2). Previous descriptions of the hydro-
logic relation between these basins indicated that Gun Branch
could be losing water to Albertson Brook in some areas.

The farthest upland well cluster in this transect showed
a large downward hydraulic gradient in April and a small
upward gradient in September (fig. 14). The April 2005 water
levels describe a water table that slopes gently toward the
Albertson Brook with upward hydraulic gradients near and
beneath the stream, which indicate that groundwater probably
was discharging to the wetland and stream in this area.

By the time of the September synoptic measurement,
the Gun Branch was dry and water levels in the transect wells
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Figure 10. Altitude of water table, Albertson Brook study area, New Jersey Pinelands, April 2005.
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Figure 11. Altitude of water table, Albertson Brook study area, New Jersey Pinelands, September 2005.
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had declined about 0.5 m, resulting in no apparent horizontal
hydraulic gradient from the uplands to the middle well cluster
(fig. 14), indicating little or no horizontal groundwater flow
toward the stream in this area. The vertical hydraulic gradient
at the middle well cluster also was only slightly downward in
April, and there was no vertical gradient in September, indicat-
ing that groundwater flow at this location if any, probably

was largely horizontal toward the stream during both periods.
Between the middle well cluster and the wetlands, the appar-
ent horizontal hydraulic gradient in September was similar

to that in April. Substantial vertical hydraulic gradients were
measured in the wetlands and beneath the stream during both
months, indicating that deep groundwater flow that originated
farther upstream in the basin probably begins to discharge to
the surface in the wetlands and likely increases toward the
stream. The upward hydraulic gradients near the stream were
smaller in September than in April, but the upward gradient
beneath the stream was slightly larger in September, indicating
that the strongest hydraulic potential for groundwater dis-
charge along this transect probably was beneath the stream. A
regionally extensive but discontinuous, leaky confining layer
identified by Walker and others (2008) at a depth of almost

13 m beneath transect ABHTS could act to isolate the water
table locally from the deeper groundwater. The extent to which
this layer may affect groundwater discharge to the stream
cannot be ascertained from the available data. During periods
of high water levels, however, most groundwater discharge to

the wetlands and stream at this location appears to be from the
shallow part of the aquifer system and likely includes water
from the Gun Branch basin. The larger upward hydraulic
gradients measured beneath the stream in September prob-
ably indicate the influence of water levels in the deeper part of
aquifer system, either directly through upward vertical leak-
age, or indirectly at locations where the leaky confining layer
may be absent locally or hydraulically more conductive.
Stream base-flow measurements and the observed start-
of-flow locations for both the April and September 2005
synoptic measurements show that base flow ranged from
0.003 to 0.031m?/s at the uppermost measuring site on the
Pump Branch and from 0.275 to 1.10 m?/s at the lowermost
measuring site on the Albertson Brook in September and
April 2005. During September, the base-flow measurements
indicated that discharge increased downstream, except at sta-
tion 0140940990, the third site above the lower drainage-basin
boundary (figs. 2 and 15). A comparison of this discharge with
that at the site immediately upstream (0140940972) reveals a
possible losing reach, as discharge declined 0.026 m*/s (from
0.261 to 0.235 m?/s) between the two sites (fig. 15, table 4).
This apparent loss in streamflow, although not well under-
stood, may be attributable to a local groundwater withdrawal
in the area or to a discharge-measurement error, or a combi-
nation of factors. Groundwater withdrawal for agricultural
irrigation, however, is known to occur during the spring and
summer growing season at locations upstream from station
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0140940990 and more than 300 m south of Albertson Brook.
This water use might have contributed to the apparent reduc-
tion in stream discharge, but the apparent streamflow loss also
is approximately equal to the acceptable percent error for the
discharge measurement.

Locations of start-of-flow observed in surface water
during the April and September 2005 synoptic measurements
(fig. 15) are shown with a dashed line indicating the possible
range of the seasonally intermittent stream channel defined by
the two field observations. Base-flow discharge ratios
(spring streamflow/summer streamflow) were calculated for
the April and September 2005 synoptic measurements in the
Albertson Brook basin (table 4). Base-flow discharge ratios
in the upper basin areas (12 and 14) of the Albertson Brook
basin were three to four times greater than those in the lower
basin, respectively. Base-flow discharge ratios were largest
where the contributing drainage areas were small and small-
est where drainage areas were the largest, providing a rela-
tive indication of the size of the drainage area contributing
to streamflow via groundwater discharge at a given location.
Groundwater that discharges to the surface in upper-basin
areas, which are mostly recharge areas, typically flows along
localized, relatively short flow paths when water levels are
high. As groundwater levels decline, discharge to surface
water at a given location may cease entirely, causing ground-
water to follow longer flow paths to points of discharge farther
downstream. Because stream reaches in the lower basin areas
receive groundwater discharge that travels along both local,
shorter flow paths and deeper, longer flow paths, however,
base flow is more persistent, and discharge ratios are smaller
than in upper-basin areas.

Water Budget

The water budget below includes values for all appli-
cable components of the hydrologic cycle in the Albertson
Brook drainage basin and accounts for all known gains and
losses to or from the system. The basin water budget was
developed on a monthly basis. The period of this analysis is
October 2004—September 2006.

The following equations were used to calculate the water
budget for the Albertson Brook drainage basin.

Land-surface components:

R =P=xAS -Q, -ET-W_, @)
where

R = recharge to the aquifer system,

P = precipitation,

- = change in soil moisture,
Q, = direct runoff,
ET = evapotranspiration,

4 = surface-water withdrawals/diversions, and
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Groundwater components:

R,=Q,+W £L+AS _-D, +R , )
where

R, = recharge to the aquifer system,

0, = base flow,

w, = groundwater withdrawals,

L = leakage to confined aquifers,

ASgw = change in groundwater storage,

D, = artificial discharge to the aquifer system,

R, = groundwater inflow to/outflow from

adjacent basins. (There were no known
artificial discharges to surface water (D)
or changes in surface-water storage (AS )
in the Albertson Brook drainage basin
during the study period.)

Average annual precipitation in the Albertson Brook
drainage basin during the study period was 114 cm (table 5).
Monthly precipitation typically is fairly uniform through the
year and is evenly distributed throughout the basin. Monthly
precipitation averaged 9.5 cm and ranged from 1.04 cm in
September 2005 to 25.2 cm in October 2005 (fig. 16, table 5).

Average annual ET in the Albertson Brook drainage basin
during the study period was 56.1 cm—the smallest value
among the three basins—probably because the Albertson Brook
basin has the smallest percentage of wetlands. Monthly ET
averaged 4.7 cm and ranged from 0.5 cm in December 2004
to 11.0 cm in July 2006. ET from the basin was equivalent
to 49 percent of precipitation on an annual basis. This loss,
however, varied widely throughout the year. In winter, when
ET was minimal, it was less than one-tenth the precipitation.
During some summer months, nearly all precipitation was lost
to ET, and recharge to the underlying aquifer was minimal. ET
exceeded precipitation during May, June, August, and Septem-
ber 2005 and May 2006.

Direct runoff of precipitation in the basin was relatively
small, averaging 0.5 cm/mo during the study period. Monthly
values ranged from zero cm in September 2005 to 3.1 cm in
October 2005. Direct recharge of the aquifer system through
infiltration of precipitation averaged 52.3 cm annually and
typically was greatest during the winter months when E7 was
minimal.

During the study period, recharge during winter months
(December-February) averaged about 6.4 cm/mo. During
summer months (July-September) when ET was greatest
recharge averaged about 1.9 cm/mo. Annual base flow in the
basin during the study period represented 89 percent of annual
streamflow. In September 2005, the month with the least
precipitation during the study period, base flow accounted for
100 percent of streamflow. In October 2005, the wettest month
during the 2-year period, base flow represented 46 percent
of streamflow. Changes in storage of soil moisture during
the study period had a moderate effect on the water budget.
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Table 5. Basin water budget for Albertson Brook, Atlantic and Camden Counties, New Jersey Pinelands, 2005-06.

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Land-surface budget

Discharge Change in Change in . Surface-
Date Precipitation to surface- surface- soil-moisture Direct Eva_pot!'an- water with-  Recharge
water water storage runoff spiration drawals
storage
Oct-04 8.2 0 0 0.5 0.3 3.7 0 4.7
Nov-04 12.1 0 0 2.1 0.5 1.9 0 7.6
Dec-04 7.7 0 0 1.2 0.4 0.5 0 8
Jan-05 8.2 0 0 -0.4 0.3 0.5 0 7
Feb-05 5.4 0 0 -0.5 0.2 1.3 0 3.5
Mar-05 9.9 0 0 -0.5 0.5 1.9 0 7
Apr-05 10.8 0 0 1.4 0.5 4.6 0.01 7
May-05 6.5 0 0 1 0.3 6.6 0.02 0.6
Jun-05 6.4 0 0 1 0.1 9.3 0.02 2.1
Jul-05 13.3 0 0 2.3 1.1 10.5 0.02 4
Aug-05 8.5 0 0 2 0.1 9.4 0.02 1
Sep-05 1 0 0 1 0 6.6 0.02 -4.5
Oct-05 252 0 0 -7.2 3.2 35 0.02 11.4
Nov-05 9.9 0 0 -1.1 0.4 1.9 0 6.4
Dec-05 8.6 0 0 0.4 0.4 0.6 0 8
Jan-06 11.6 0 0 0.2 0.7 1.6 0 9.5
Feb-06 3.6 0 0 0.1 0.1 1 0 2.6
Mar-06 22 0 0 3.2 0 1.7 0.01 3.6
Apr-06 7.9 0 0 -0.4 0.2 4.1 0.02 3.1
May-06 6.2 0 0 2 0.2 6.6 0.02 1.4
Jun-06 16.1 0 0 -3.5 0.4 8.4 0.02 3.8
Jul-06 13.9 0 0 4 1.1 11 0.02 5.8
Aug-06 8.7 0 0 -0.7 0.3 8.7 0.03 -1
Sep-06 15.9 0 0 2.7 0.9 6.2 0.01 6.1
Monthly average 9.5 0 0 0.05 0.5 4.7 0.01 4.4
Annual average 113.8 0 0 0.6 6 56.1 0.1 523
Groundwater budget
Date Base Gr_o undwater Leakage gﬁ)ltla:ll:i?::er Artificial weg::l::fdlow Recharge
flow withdrawals storage recharge or outflow
Oct-04 3.9 0.4 0.06 -1 0.07 -0.03 3.4
Nov-04 43 0.3 0.06 0.5 0.07 -0.03 5.2
Dec-04 5.3 0.4 0.06 -1.6 0.07 -0.03 4.1
Jan-05 5.1 0.4 0.06 -0.2 0.07 -0.03 53
Feb-05 4.5 0.3 0.06 1.1 0.07 -0.03 6
Mar-05 5.5 0.4 0.06 1.4 0.07 -0.03 7.2
Apr-05 6.7 0.5 0.06 1.9 0.07 -0.03 9.1
May-05 5.2 0.5 0.06 -0.3 0.07 -0.03 5.5
Jun-05 33 0.7 0.06 -1.2 0.06 -0.03 2.8

Jul-05 3.5 0.8 0.06 -1.5 0.07 -0.03 2.8
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Table 5. Basin water budget for Albertson Brook, Atlantic and Camden Counties, New Jersey Pinelands, 2005-06.—Continued

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Groundwater budget—Continued

Date Base Gr_o undwater Leakage gﬁ)lllzizlg;a:rer Artificial waﬁtraorl;:;ilow Recharge
flow withdrawals storage recharge or outflow
Aug-05 2.4 0.8 0.06 -1.7 0.07 -0.03 1.5
Sep-05 1.4 0.6 0.06 -3.3 0.06 -0.03 -1.3
Oct-05 2.6 0.5 0.06 4.2 0.07 -0.03 7.4
Nov-05 3.7 0.4 0.06 0 0.06 -0.03 4.1
Dec-05 5 0.4 0.06 -1.4 0.07 -0.03 4.1
Jan-06 6.1 0.4 0.06 2 0.07 -0.03 8.5
Feb-06 5 0.4 0.06 0.9 0.06 -0.03 6.3
Mar-06 43 0.4 0.06 -0.2 0.07 -0.03 4.5
Apr-06 3.9 0.4 0.06 -0.3 0.06 -0.03 4.1
May-06 3.1 0.6 0.06 2.1 0.07 -0.03 1.6
Jun-06 3 0.6 0.06 0.9 0.07 -0.03 4.5
Jul-06 3.7 0.6 0.06 0.4 0.07 -0.03 4.8
Aug-06 2.5 0.7 0.06 -0.8 0.07 -0.03 2.5
Sep-06 4.7 0.6 0.06 -0.2 0.07 -0.03 5.1
Monthly average 4.1 0.5 0.06 -0.1 0.07 -0.03 4.5
Annual average 49.3 6 0.7 -1.2 0.8 -0.4 54.4

Monthly changes in soil-moisture storage ranged from 4.0 cm
in July 2006 (a decrease in soil moisture) to -7.2 cm in Octo-
ber 2005 (an increase in soil moisture). Average annual change
in storage during the 2-year study period was 0.6 cm, indicat-
ing a slight decrease in soil moisture over the study period.
During this period, groundwater levels declined slightly, rep-
resenting a net loss in storage of 1.2 cm/yr. Monthly changes
in groundwater storage ranged from -3.3 cm in September
2005 (a decline in water level) to 4.2 cm in October 2005

(an increase in water level) (fig.17, table 5).

In general, groundwater withdrawals and surface-water
diversions in the Albertson Brook basin are small, as are arti-
ficial discharges to groundwater and surface water. Annually,
groundwater withdrawals and surface-water diversions com-
bined account for about 5 percent of the total precipitation,
and groundwater withdrawals account for about 11 percent of
recharge (fig. 17). Withdrawals in the basin typically are great-
est in summer, when withdrawals for irrigation are greatest.
Although there are few public-supply wells in the basin, they
account for most of the withdrawals.

Estimated net vertical leakage to underlying confined
aquifers was 0.06 cm/mo, and estimated net horizontal
groundwater outflow to adjacent basins was 0.03 cm/mo. To
evaluate the agreement between the land-surface and ground-
water components of the water-budget calculations, recharge
values calculated using the land-surface equation were

compared to those calculated using the groundwater equation
(fig. 18). Estimates were generally in fairly close agreement,
to within a few centimeters. Differences in monthly recharge
estimates ranged from -5.0 cm in June 2005 to +4.1 cm in
October 2005. The average difference was -0.2 cm.
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Figure 16. Components of the land-surface water budget by month, Albertson Brook basin, New Jersey Pinelands, water years 2005-06.
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Figure 18. Comparison of monthly land-surface and groundwater recharge, Albertson Brook basin, New Jersey Pinelands, water years

2005-06.

McDonalds Branch Study Area

The McDonalds Branch study area represents a range of
hydrologic and geologic features that are found in other areas
of the Pinelands. Most of the basin and study area is composed
of Brendan Byrne State Forest land and is largely undevel-
oped. The headwaters of the McDonalds Branch basin lie on
the western side of the topographic divide between the Dela-
ware River and Atlantic Coastal basins. Hardwood and pine
wetlands and cedar swamps surround the McDonalds Branch,
and most of the drainage basin currently is largely undisturbed
by human activity. In the headwaters of the drainage basin,

a large wetland is supported by an extensive shallow clay
layer (Walker and others, 2008). This wetland contributes
both surface-water and groundwater to the streamflow in the
upper part of McDonalds Branch. Farther downstream, the
McDonalds Branch broadens to an open channel surrounded
by mixed pine and hardwood wetlands and eventually flows
into the large cedar swamp where USGS streamflow-gaging
station 01466500 is located (fig. 3). A weir just upstream from
a narrow paved road provides a stable control for the gaging
station and maintains the water level in the cedar swamp at a
relatively natural level. Below the weir, a box culvert passes
beneath the road and empties into a manmade channel that was
constructed prior to 1964 (R. Schopp, U.S. Geological Sur-
vey, New Jersey Water Science Center, oral communication,

August 20, 2010) to a depth of about 1 m below the natural
cedar-swamp altitude. The lowered stream channel probably
altered the natural flow paths of groundwater that originally
discharged to the stream in this area. Farther downstream, a
patchwork of cedar and hardwood wetlands extends into the
lower part of the McDonalds Branch basin. Still farther on, the
McDonalds Branch flows through an active cranberry bog that
occupies Brendan Byrne State Forest land that is leased for
commercial cranberry production.

During the spring and summer months, operation of
the cranberry bog involves accumulating and maintaining a
reservoir of water adjacent to, and at the upstream limit of, the
bog. In the fall, this upstream reservoir is released to flood the
bogs for the harvest. A similar high water level was main-
tained during the winter to protect the cranberry plants from
freezing. After the danger of frost has passed, usually some-
time in April, the bog is drained and a controlled lower level
is maintained during the growing season while the upstream
reservoir is replenished. Below the active cranberry bogs, the
McDonalds Branch flows through additional long-abandoned
and unused bogs that are no longer managed to retain or alter
the streamflow. The drainage basin ends just downstream from
the unused bogs at the confluence of the McDonalds Branch
with an adjacent tributary that drains areas southwest of
McDonalds Branch.



Groundwater Levels

During the period October 1, 2004, to September 30,
20006, water-level data were recorded continuously in six
basin-monitoring wells arranged in two three-well clusters
located in upland areas in the upper and lower parts of the
McDonalds Branch basin (fig. 3). Each of the three wells
in each cluster is screened in one of the three aquifers that
lie between the water table and the base of the Kirkwood-
Cohansey aquifer system (Walker and others, 2008). The
hydrographs for these wells (fig. 19) show that daily mean
water levels fluctuated up to 0.8 m in the upper-basin monitor-
ing wells and about 0.5 m in the lower-basin monitoring wells.
As in the Albertson Brook basin, the seasonal water-level
extremes in the upper part of the McDonalds Branch basin
tend to lag behind those in the lower part of the basin. Hydrau-
lic gradients generally are downward at the upper-basin well
cluster, indicating recharge conditions at this location, and
upward at the lower-basin well cluster, indicating a potential
for upward groundwater flow toward nearby discharge areas
(fig. 19).

At the upper-basin monitoring-well cluster, the water
level in well 050689—Lebanon SF 23-D OBS-screened in the
unconfined aquifer layer MB A-1 was more than 0.3 m higher
than that in basin-monitoring well 051557-MB OW-1M
screened in the middle aquifer layer MB A-2 (Walker and
others, 2008). The deepest monitoring well in the upper-
basin cluster, 051556-MB OW-1D, was screened in the lower
aquifer layer, MB A-3 (Walker and others, 2008). Water levels
in these middle and lower aquifer wells were nearly identical
(fig. 19A) even though their screened intervals are separated
by a dense clay layer more than 15 m thick, referred to as layer
MB C-2, that is part of an extensive, locally discontinuous
leaky confining layer (Walker and others, 2008). The similar-
ity in these water levels likely results from well screens being
positioned in an area where flow is close to horizontal.

The maximum DTW values at the upper- and lower-basin
monitoring-well sites during this study were 7.4 and 6.5 m,
respectively. At both of these sites, the thick unsaturated zone
contains sand and gravel with some thin clay layers (Walker
and others, 2008). In the Kirkwood-Cohansey aquifer system,
thick unsaturated zones commonly exhibit a wide range of
sediment textures, which result in indirect pathways through
the unsaturated zone that can retard the advance of a wet-
ting front toward the water table. These conditions affect the
rates of infiltration and recharge at both sites and are often
reflected on the hydrographs as a delayed or minimal water-
level rise following precipitation events (fig.19). Upper-basin
monitoring-well hydrographs (fig.19A) show a delayed
response to major precipitation events but also the magnitude
of the change typically is larger than the lower basin monitor-
ing wells. Comparing fluctuations from the two deeper upper
basin well hydrographs with 050689—Lebanon SF 23-D Obs
reveals larger and more responsive effects of precipitation in
the deeper wells, suggesting a lateral hydraulic connection
with other areas, perhaps less affected by a thick unsaturated
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zone; lower-basin monitoring-well hydrographs show a small
and slightly delayed response to precipitation of a sufficient
magnitude and (or) duration (fig.19B).

At the lower-basin monitoring-well cluster, water
levels in the two deep wells 051558-MB OW-2M and
051560-MB OW-2D, screened in the MB A-2 and MB A-3
layers, respectively, were nearly identical during April 2005,
and a slight downward hydraulic gradient between them was
indicated during September 2005 (fig. 19B). The similarity in
water levels in these two wells results in part from the local
discontinuity of the lower leaky confining layer, MB C-2
(described above) and confirms that the middle and deep aqui-
fer layers are well connected hydraulically in this area. The
difference in water levels between well 051559-MB OW-28,
screened in the unconfined aquifer (layer MB A-1B) and either
of the two deeper wells at this site was only about 0.02 m
throughout the period of record. This small difference prob-
ably also can be attributed to the ineffectiveness of another
leaky confining layer referred to as the middle leaky confining
layer (MB C-1) (Walker and others, 2008). During both peri-
ods, however, the water level in well 051559-MB OW-2S was
lowest, indicating a prevailing, but small, upward hydraulic
gradient and the potential for upward groundwater flow in the
vicinity of the wells. The absence of any substantial vertical
hydraulic gradient between the two deeper wells indicates
that local groundwater flow in the deep part of the aquifer
system probably is largely horizontal and that a sub-regional
zone of transition between downward and upward gradients
where the vertical gradient is near zero likely exists. Ground-
water flow in the deepest part of the aquifer is presumed
to discharge downstream from these wells. On the basis of
the recorded water levels, groundwater probably begins to
move upward, toward the stream, at an unknown depth in
the vertical section between the two screened intervals of
wells 051559-MBOW-2S and 051558—MBOW-2M (tab. 1), in
the MB A-1B and MB A-2 aquifers. These gradients and flow
potentials may result from the proximity of these wells to the
northeastern lateral basin boundary, limited nearby ground-
water discharge, and (or) the limited effectiveness of the
leaky confining layer in this area (Walker and others, 2008).
Although the upward gradient at the lower-basin monitoring-
well cluster is small, it nevertheless indicates a head relation
that effects a simultaneous response to precipitation in water
levels in all three aquifers from the water table to the base
of the aquifer system. This response to precipitation, like
that observed in the lower part of the Albertson Brook basin
(figs. 6B, 19B), is likely caused by the absence of an effective
confining layer and the resulting hydraulic connection among
the aquifers at this location.

Hydrographs (fig. 20) were prepared from continu-
ous water-level records collected during April 2, 2004, to
September 30, 2006, from four wetland-monitoring wells
screened in the unconfined aquifer at three locations in the
McDonalds Branch basin (fig. 3). The range in water lev-
els and their response to precipitation differed among the
wells as a result of local hydrologic conditions. At well
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0501529-McDonalds Branch 1, located in a cedar swamp
about 340 m upstream from the gaging station, groundwater
levels beneath the swamp fluctuated about 0.47 m during the
same period of record (fig. 20A). Groundwater levels beneath
the cedar swamp are controlled to some extent by the level

of surface water in the swamp and the McDonalds Branch,
limiting fluctuations during periods of higher water levels and
streamflow. During low-flow periods when the swamp is dry,
groundwater levels fluctuate more because they are influenced
less by surface-water levels. Although the other wetland-
monitoring wells are not in swamps, their hydrographs also
show a smaller range in water-level fluctuations during periods
of high water levels and a greater range during dry periods,
indicating that the nearby surface-water bodies probably also
influence wetland water levels at some locations. Although
hydrographs of water levels in wetland-monitoring wells are
similar (figs. 20A, 20B), water levels fluctuated most in well
051528-McDonalds Branch 2, with a range of about 0.93 m
during 2004-06.

Field observations in March 2004 revealed that the water
level in a shallow borehole at the site of McDonalds Branch 2
was higher than the water level measured in the well. This
observation prompted the installation of an additional well
(051538—- MCDONALDS BR 2 SHALLOW) to examine the
lithology and water levels at the site. The higher water level
apparently was supported by a thin, low-permeability zone of
oxidized sand containing clay in its interstitial matrix (clayey
sand). This zone was encountered at a depth of about 1 m and
extended to a depth of about 1.4 m, the approximate depth of
the seasonal low water level in this area. Rhodehamel (1973)
describes the formation of similar soils in the Mullica River
basin as a common occurrence during soil development,
resulting from the transport of silt and clay particles from
the A soil horizon to the underlying B horizon, where they
accumulate as grain coatings or an interstitial matrix of silt
or clay. The shallow well screen was installed in hydric soils
to a depth of 0.91 m below land surface, which is just above
the top of the clayey sand zone and only 0.61 m above the
top of the well screen of the deeper well, 051528—-McDonalds
Branch 2, which is screened in sediments beneath the clayey
sand (fig. 3, table 1 at end of report).

Hydrographs of water levels in these two wells (fig. 20B)
for the period June 2004 to November 2005 show that water
levels in the shallow well responded to precipitation events
more quickly and to a greater extent than those in the deeper
well. Water levels in the shallow well also remained sub-
stantially (0—0.3 m) higher than those in the deeper well
during most of this period. The hydrographs also show that
these conditions are transient and that water-level differences
increased when the water table rose in response to infiltration
and then slowly decreased until the next precipitation event
or, in the absence of precipitation, until the water levels above
and below the clayey sand layer had equilibrated (fig. 20B).
The clayey sand layer acted to impede vertical transport of
recharge until groundwater either moved laterally to a local
point of discharge in the wetland or stream, moved through the

layer, or was removed by E7. Depending on the season, all of
these conditions probably contributed to the transient nature of
the water levels above the clayey sand at this site.

The water-level conditions indicate that the water table
can be affected locally by the variable permeability of the
soils and sediments common to the Pinelands. It is likely that
similar conditions affect other wetlands, but their extent and
distribution is unknown. Therefore, a regionalized approach
to mapping the water table may not account for those areas
where wetland habitat is supported by localized mounding.

Water levels in another wetland-monitoring well
(051604-MBHTS5-1D), part of hydrologic transect MBHTS,
were measured (figs. 3 and 20C) so that water levels beneath
a wetland could be correlated with £7 measured at the same
location. (The results of the E7 monitoring are part of a
related study and are not presented here.) Water levels in well
051604-MBHTS-1D fluctuated about 0.89 m and responded
to precipitation in a similar manner as did those in well
051528-McDonalds Branch 2.

Streamflow

Streamflow data were recorded during this study at the
USGS streamflow-gaging station at McDonalds Branch, a
network surface-water monitoring site having 54 years of
record. A concrete weir, described previously, provided a
stable control for the gaging station, which is near the lower
end of a large cedar swamp on the McDonalds Branch (fig. 3).
Published discharge values for the McDonalds Branch include
surface water that flows over the weir and any additional
discharge of groundwater that enters the manmade channel
between the weir and the location where manual discharge
measurements are made about 240 m downstream from the
gaging station. The lower than natural altitude of the man-
made channel probably has altered the hydrologic rela-
tion between groundwater and the stream, locally inducing
additional groundwater discharge to the McDonalds Branch
below the gaging station. These and other variables that affect
the quality of the record resulted in discharge records that are
generally considered to be fair (95 percent of the records are
within 10 percent of actual discharge (U.S. Geological Survey,
2009)).

Daily mean discharge during October 1, 2004, to Septem-
ber 30, 2006, ranged from 0.04 to 0.35 m?*/s (fig. 21). On the
basis of 54 years of record for the McDonalds Branch in Bren-
dan T. Byrne State Forest streamflow-gaging station, values
of mean annual discharge for water years 2005 and 2006 were
101 percent and 87 percent, respectively, of the mean annual
discharge for the period of record (U.S. Geological Survey,
2009).

The stream-stage hydrograph for the McDonalds Branch
(fig. 21) has a similar character to the water-level hydro-
graph for the wetland well, 0501529-McDonalds Branch 1
(fig. 20A) in the cedar swamp about 340 m upstream from the
gaging station, indicating that groundwater levels and stream
stage are closely linked at this site. Zampella and others
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Figure 21. (A) Surface-water stage and discharge at McDonalds Branch and (B) precipitation, McDonalds Branch study area, New
Jersey Pinelands, 2004-06.

(2001b) also report high correlations between streamflow at During the April synoptic measurement, groundwater lev-
this gaging station and water levels in wells both in this area els were slightly higher than the period-of-record daily mean
and more distant (up to 25 km) from the gaging station. water levels determined on the basis of 25 years of record

for observation well 050689—Lebanon SF 23-D Obs. (U.S.
Geological Survey, 2009). Daily mean discharge determined
on the basis of 54 years of record for the McDonalds Branch
(01466500) indicated that streamflow during the April 2005
synoptic was slightly lower than the period-of record daily
mean discharges for the duration of the April measurement
(U.S. Geological Survey, 2009).

The April synoptic measurements were made at well
and stream sites (figs. 3, 19-21) 5 or more days following
a 2-week period of frequent precipitation. On days when

Synoptic Measurements

Two synoptic measurements were made in the McDon-
alds Branch study area: one during base-flow conditions in
spring (April 13-25) and another during late summer (Septem-
ber 8—15) 2005. Water-level data collected during these peri-
ods are presented in table 3 (at end of report) and the locations
of the sites selected for analysis are shown in figure 22.
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precipitation occurred during this 2-week period, daily totals
were less than 4 cm, and daily precipitation totals on the

final 2 days of the 2-week period were 0.56 cm and 2.9 cm,
respectively. The last 4 days of the April measurement also
were marked by light precipitation totaling 1.04 cm, although
these precipitation events did not cause substantial changes in
water levels or streamflow (figs. 19-21). Hydrographs from
the basin-monitoring wells (fig. 19) showed an upward water-
level trend in the upper basin prior to and during the synoptic
measurements. In the lower-basin monitoring wells, a rainfall-
induced peak in groundwater levels preceded a downward
trend when the synoptic measurements were made. Wetland
water levels and streamflow also were declining during the
April measurement (figs. 20, 21). The commercial cranberry
bogs were maintained at their winter flooded level during the
April streamflow and water-level measurements in the area.
The static winter water-level condition in the bog ensured
that the streamflow measurement made downstream from the
bog and the surrounding groundwater levels were not affected
by changes in storage that would have occurred if the water
stored in the bog during the winter had been released.

The September synoptic measurements were begun after
almost 1 month without substantial precipitation and dur-
ing an extended downward trend in both groundwater levels
and streamflow (figs. 19-21). Groundwater levels during
the September measurements were lower than the 25-year
period-of-record daily mean water levels for the duration of
the September measurement on the basis of records for the
050689—Lebanon SF 23-D observation well (U.S. Geologi-
cal Survey, 2009). Streamflow records for the McDonalds
Branch (01466500) indicate that the daily mean discharge for
the duration of the September measurement also was lower
than the period-of-record daily mean discharge for September
on the basis of 54 years of record for the McDonalds Branch
(U.S. Geological Survey, 2009).

The water-table-altitude maps for the two synoptic-mea-
surement periods (figs. 23 and 24) show that the water table
slopes along the length of the basin decreased about 15 m
from the upper basin boundary to the lower basin boundary.
By the time of the September measurement, and depending on
location, the water table had declined from as little as 0.069 m
to as much as 1.41 m. These changes generally were small-
est near the areas of discharge to surface-water and greatest
in the upland recharge areas near the groundwater divides.
Local variability does exist throughout the basin, however, as
affected by local conditions. Typically, areas near the topo-
graphic basin divides can be expected to show the greatest
changes in seasonal water levels and those where altitudes
are lower typically show smaller changes. In the McDonalds
Branch basin, however, the areas near the upper basin divide
between the Atlantic Coastal and Delaware River basins show
uncharacteristically small water-level changes (about 0.07 m
—0.20 m) during the period between the two synoptic measure-
ments. The reason that water-level changes are smaller near
the upper basin divide is not well understood but may be the
timing and relatively short duration of synoptic measurements

in relation to the substantial lag observed in the seasonal
water-level extremes at the upper-basin monitoring wells dis-
cussed previously. Another factor that may affect the observed
range of water-level extremes in this area is the large volume
of water in storage in two nearby areas, one an extensive wet-
land in the headwaters of the McDonalds Branch and the other
a large commercial gravel pit that is partly filled with ground-
water and that is directly on and east of the Atlantic Coastal
and Delaware River basin divide about 1,400 m east of the
upper-basin monitoring-well cluster (fig. 3).

Groundwater flow in the basin generally follows the
McDonalds Branch stream channel from areas of highest to
areas of lowest water levels. As in the Albertson Brook basin,
topographic divides (basin boundaries) do not necessarily
coincide with groundwater divides; this is true in at least three
areas in the McDonalds Branch basin (figs. 23 and 24). Along
the southwestern basin boundary, water-table contours indicate
that groundwater is probably leaving the basin beneath a low
topographic divide that separates the drainage basin from a
narrow adjacent basin that joins the McDonalds Branch basin
at the downstream basin boundary. The water-table contours
also indicate the potential for groundwater to leave the lower
part of the basin along its northern boundary. In a third area,
groundwater probably is leaving the basin toward the north-
east from a large wetland in the headwaters of the McDonalds
Branch, an important feature discussed farther on.

A locally extensive shallow clay layer supports the large
wetland in the headwaters of the McDonalds Branch, where
the water table is substantially (3 m) higher than water levels
beneath the clay, and in the area immediately surrounding
the wetland. The northeastern basin boundary crosses this
wetland, indicating a potential for flow into the adjacent basin
as described above. Stratigraphic and water-level informa-
tion from three two-well pairs (wells 051072-QWH-5A and
051073-QWH-5B; wells 05086 1-QWH-7A Shallow Well and
050862—-QWH- 7B; and wells 050863—-QWH-8A and
050864—QWH-8B) (tables land 3) was used to understand
how the wetland and the underlying clay affect nearby water
levels and groundwater flow. In each well pair, one well was
screened above the clay and the other was screened below it.
Water levels above the clay were higher than those below it,
confirming the downward hydraulic gradients across the clay
layer at the three locations. The difference between water
levels above and below the clay ranged from about 1.5 to
3 m, depending on location and seasonal water-level condi-
tions. Water levels in wells screened below the clay rise above
its top, indicating that the water table above the clay is not
perched and that the clay is fully saturated. The mounded
water table above the clay causes localized radial groundwa-
ter flow; some shallow groundwater likely crosses the low
topographic divide to the northeast, as indicated by the water-
level contours at the basin boundary. The potentiometric water
levels beneath the clay are given in table 3 (at end of report).
The vertical water-level differences across the clay probably
decreases near its limits, and the water levels above equilibrate
with those below, eventually reaching zero at the clay’s edge.



The water-table contours also indicate that groundwater
was bypassing the McDonalds Branch streamflow-gaging sta-
tion downgradient from the headwaters wetland, where a shal-
low, broad, open channel develops on the McDonalds Branch
during periods of high water levels. The open channel forms
due to the topography and damming effects of a cedar swamp
downstream from the open channel. Precise water-level-
altitude data based on differential leveling for wells on both
sides of the McDonalds Branch in this area confirm a horizon-
tal hydraulic gradient supporting groundwater flow normal to
and beneath the broad, open channel. These data indicate a
potential for surface-water losses and groundwater flow that
bypasses the open channel and probably discharges to small
tributaries that join the McDonalds Branch downstream from
the streamflow-gaging station (figs. 23 and 24).

Depth to the water table (DTW) in spring 2005 in the
McDonalds Branch basin (fig. 25) ranges spatially from zero
at points of groundwater discharge such as ponds, streams, and
swamps to more than 10 m in upland areas at the southeastern
limit of the basin. DTW is greatest at the major divide between
the Delaware River and Atlantic Coastal basins. A histogram
showing the distribution of DTW throughout the McDonalds
Branch basin (fig. 26) provides a basin profile of the hydro-
logic settings for habitats that depend on different ranges of
water-table depth. DTW is less than 0.5 m over 48 percent of
the basin, resulting in a relatively large percentage of the basin
being hydrologically suitable for wetland habitats. In com-
parison with the Pinelands as a whole, the basin has a larger
percentage of mapped wetlands; 36 percent of the basin is
mapped as wetlands, whereas wetlands covered 27 percent of
the entire Pinelands area in 2002 (Zampella and others, 2008).
A large portion of the wetlands at the northwestern (down-
stream) end of the basin is in active cranberry production. In
mapped wetlands within the basin, DTW ranges from zero to
1.5 m, with a mean of 0.13 m.

Data from five hydrologic transects (fig. 3) in the
McDonalds Branch basin describe the interaction of ground-
water levels with wetlands and surface water. These data
characterize changes in the water table in terms of hydraulic
gradients and the variability of potential groundwater flow
and discharge to the wetlands and surface water during the
two synoptic measurements in April and September 2005. Site
conditions and findings are described below.

Graphs of water levels and hydraulic gradients along
hydrologic transect MBHT1 in the headwaters of the McDon-
alds Branch basin (fig. 27) illustrate a substantial downward
hydraulic gradient at all well locations in April and slightly
higher water levels near the stream, indicating that the
McDonalds Branch was losing to the shallow groundwa-
ter system in this area (fig. 27). In September, although the
McDonalds Branch was dry, the near-stream vertical hydraulic
gradient was smaller but still downward, indicating a continu-
ing potential for downward groundwater flow in this area.

The hydraulic gradient at the middle well cluster was slightly
upward, which appears uncharacteristic when compared with
the other hydraulic gradients along the transect. The cause
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of this upward gradient is not clear but might be related to a
sharp contrast in soil or aquifer-sediment permeability and
(or) the influence of the slightly higher water levels beneath
the dry streambed nearby. Local contrasts in soil and sediment
textures could contribute to local anomalies in hydraulic gra-
dients and groundwater flow, particularly at locations where a
stream is losing or intermittent.

Transect MBHT1 is both hydraulically downgradient
and topographically downstream from the large headwaters
wetland described previously. The water table declines nearly
5 m beyond the edge of the headwaters wetland before reach-
ing the area of this transect. Beyond the edge of the wetland,
the substantially higher heads above the clay equilibrate with
those below, creating the sloping water table that is reflected in
both shallow and deep water levels locally (MBHT1). Given
that groundwater does not typically discharge to the McDon-
alds Branch at this location, most of the streamflow in this
area probably originates from the headwaters wetland directly
as surface-water flow and (or) indirectly as shallow ground-
water that discharges to the McDonalds Branch upstream from
MBHTI. This hypothesis does not preclude the possibility that
shallow transient groundwater flow may contribute water to
the wetland and stream during and after substantial precipita-
tion events.

Hydrologic transect MBHT?2 is on the northeast side
of the McDonalds Branch at the broad, open channel. Dur-
ing the April and September synoptic measurements, small
upward hydraulic gradients were observed at the upland end
of this transect. The groundwater-level profile slopes from
the uplands toward the McDonalds Branch with vertical
hydraulic gradients that are slightly upward near the middle
of the transect and much larger beneath the stream, indicating
that the potential for discharge to the stream during the April
measurement is likely. By the time of the September measure-
ment, local water levels had declined nearly 0.7 m, and the
McDonalds Branch was dry at this location. In September,
deep and shallow water levels in the wetlands near the dry
stream channel were nearly the same; with a slight upward
hydraulic gradient similar to that observed at transect MBHT 1.
The water level beneath the dry stream channel, however, was
higher than that of the wetlands and the hydraulic gradient was
slightly downward, possibly indicating that a residual ground-
water mound was created by low-permeability sediments
beneath a losing stream before the channel became dry. These
water-level differences below the stream channel combined
with contrasts in sediment permeability also could have caused
the slight upward gradient in the wetland. Water-table maps
(figs. 23 and 24) show that groundwater flow can bypass the
McDonalds Branch channel in this area and probably emerges
in other tributaries that join the main channel downstream
from the gaging station.

About 1,050 m downstream from transect MBHT?2,
transect MBHT3 (fig. 27) extends about 140 m from an upland
mixed pine and hardwood forest into a large cedar swamp
through which the McDonalds Branch flows. In April, the ver-
tical hydraulic gradient at the upland end of this transect was
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PERCENTAGE OF BASIN AREA

DEPTH TO WATER, IN CENTIMETERS

Figure 26.

Histogram showing percentage distribution of depth to water in McDonalds Branch basin, McDonalds Branch study area,

New Jersey Pinelands, April 2005. (Areas where 5-centimeter intervals of depth to water exceed 145 centimeters occupy less than 2

percent of the basin area and are not shown.)

zero, and water levels sloped toward the wetlands, indicating
a potential for horizontal groundwater flow in that direction.
Hydraulic gradients measured in the wetlands during April,
generally indicated the potential for upward flow to the wet-
lands and swamp, with the strongest upward gradients near the
edge of the cedar swamp. In the swamp groundwater levels
were at or above land surface, which is largely represented by
hummocks around either living trees or the apparent remnants
of decaying root systems. Water levels showed little horizontal
hydraulic gradient in the wetlands and swamp during the April
and September measurements, either as a result of surface-
water influence on groundwater levels or because these are
principally areas of groundwater discharge. During September,
the water levels in the three deep wells were equal along the
length of transect MBHT3, indicating no horizontal gradient
or flow, and the relation between the shallow and deep water
levels indicated a downward hydraulic gradient in the uplands
and a water table that sloped toward the wetlands. In the wet-
lands and swamp however, water levels in the shallow wells
were lower than those in the deep wells at the same location
indicating the persistence of upward hydraulic gradients and
the continued potential for groundwater to discharge. There-
fore, although lateral flow from the uplands toward the stream
probably was substantially reduced by September, the hydrau-
lic potential for groundwater to discharge to the wetlands

and swamp in this area likely continued as a result of upward

hydraulic gradients generated by groundwater flow along
longer flow paths originating farther upstream.

Transect MBHT4 (fig. 27) is on an unnamed tributary that
joins the McDonalds Branch from the south about 1,200 m
downstream from the gaging station. This hydrologic transect
crosses the tributary from southwest to northeast, toward a low
topographic divide between the tributary and the McDonalds
Branch, which is about 500 m to the north. In April, hydraulic
gradients were downward in the uplands and upward beneath
the wetlands (swamp) on both sides of the tributary. On the
southwest side of the tributary at the 86 m location (fig. 27),
the largest vertical hydraulic gradient (-0.24) in the basin was
observed. This location is near the two collocated wetland-
monitoring wells (McDonalds Branch 2 and McDonalds
Branch 2 Shallow) discussed previously, where water levels
indicated recharge-induced transient mounding of the water
table. A strong downward gradient also was observed on the
north side of the tributary at a transect distance of about 265 m
near the wetlands margin, indicating a possible similar mound-
ing condition. By the time of the September measurement,
which followed more than a month without rain, only a small
residual of the mounding could be detected in both the shallow
and deeper water levels at the 86 m location, and none was
detected near the wetlands margin at 265 m, where the gradi-
ent had reversed to upward. The slope of the water table also
had flattened, but the gradients at the swamp remained upward
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although the swamp was dry. Hydraulic gradients in the

swamp and on the northeast side of the tributary were slightly
upward, but the horizontal gradient indicated the potential for
flow toward the northeast, and toward the McDonalds Branch.

Downstream from the tributary described above, the
McDonalds Branch flows through a mature cedar swamp
flanked to the northeast by a hardwood and pine lowland.
Hydrologic transect MBHTS5 extends about 220 m from
pitch pine lowlands through the cedar swamp to the McDon-
alds Branch. In both April and September, the water table
sloped from the uplands toward the cedar swamp and vertical
hydraulic gradients were consistently downward at the upland
end of this transect and upward at the margin of the cedar
swamp (fig. 27). In April, upward hydraulic gradients in the
cedar swamp section of the transect indicated a potential for
groundwater to discharge to the cedar swamp and stream. In
September, the water table generally sloped away from the
stream, indicating that the stream could be losing water in this
area. Dense clay, however, was identified below the streambed
about 1.5 m below the water table. Although the thickness and
extent of this clay is unknown, its presence indicates that the
flow system that interacts with the stream may be limited, at
least locally, to that depth interval above the clay.

Stream base-flow measurements and the observed start-
of-flow locations for both the April and September 2005
synoptic measurements are shown in figure 28. Base flow
ranged from zero (dry channel) to 0.006 m*/s at the uppermost
measuring site on the McDonalds Branch and from 0.065 to
0.176 m?/s at the measuring site (01466550; fig. 3) above the
active cranberry bogs in September and April 2005. Because
bogs and ponds release water from storage more slowly fol-
lowing precipitation than natural stream channels and swamps,
the streamflow of 0.583 m*/s measured in April at station
01466600 below the cranberry bogs may include some water
from storage and may not represent base flow at this site for
the April synoptic measurement. Stream reaches between start-
of-flow locations observed in April and September 2005 are
shown with a dashed line in figure 28, indicating the range of
the seasonally intermittent stream channel. Base-flow data for
the McDonalds Branch, including the ratio of spring base flow
to summer base flow at stream sites, are provided in table 4. In
the McDonalds Branch basin, the base-flow ratios ranged from
2.7 to 2.9 for three sites in the middle- and lower-basin areas,
indicating that groundwater discharge to the stream is gener-
ally persistent and contributes to base flow in this area.

Water Budget

The water budget below includes values for all appli-
cable components of the hydrologic cycle in the McDonalds
Branch drainage basin and accounts for all known gains and
losses to or from the system. The basin water budget was
developed on a monthly basis. The period of this analysis is
October 2004—September 2006. The following equations were
used to calculate the water budget for the McDonalds Branch
drainage basin.
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Land-surface components:

R =P=£AS -Q, -ET, (6)
where
R, = recharge to the aquifer system,
P = precipitation,
AS = change in surface-water storage,
AS = change in soil moisture,
0, = direct runoff, and
ET = evapotranspiration; and

Groundwater components:

R,=Q,+L*AS *+R (7
where
R, = recharge to the aquifer system,
0, = base flow,
L = leakage to confined aquifers,
ASgw = change in groundwater storage, and
R, = groundwater inflow to/outflow from

adjacent basins. In the McDonalds

Branch drainage basin, there were no
artificial discharges to groundwater or
surface water (D, and D, respectively),
changes in surface-water storage (AS| ), or
groundwater or surface-water withdrawals
(Wg and W, respectively).

Average annual precipitation in the McDonalds Branch
drainage basin was 121 cm, slightly more than in the Albert-
son Brook drainage basin (114 cm), during the study period
(table 6). Total monthly precipitation typically is fairly
uniform through the year and is evenly distributed throughout
the basin. Monthly precipitation averaged 10.1 cm and ranged
from 1.3 cm in September 2005 to 29.5 cm in October 2005
(fig. 29, table 6).

Average annual E£7 in the McDonalds Branch basin dur-
ing the study period was 62.0 cm, the highest of the E7 values
for the three basins. This is because the basin has a larger
percentage of wetlands than the other two basins. Monthly ET
averaged 5.2 cm and ranged from 0.5 cm in December 2004
to 12.2 cm in July 2006. ET from the basin was equivalent
to 51 percent of precipitation on an annual basis. This loss,
however, varied widely throughout the year. In winter, when
ET was minimal, it was less than one-tenth the amount of
precipitation. During some summer months, nearly all precipi-
tation was lost to £7, and recharge to the underlying aquifer
was minimal. E7 exceeded precipitation in July, August, and
September 2005.

Direct runoff of precipitation in the basin was small,
averaging 0.1 cm/mo during the study period. Monthly values
ranged from zero cm (October 2004, August and September
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Table 6. Basin water budget for McDonalds Branch, Burlington County, New Jersey Pinelands, 2005-06.

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Land-surface budget

Change in Change

L Discharge surface- in soil- . Evapotran- Surfat:t.a-
Date Precipitation  to surface- water moisture Direct runoff spiration water with- Recharge
water storage storage drawals
Oct-04 8.1 0 0 0.4 0 4.1 0 4.4
Nov-04 10.4 0 0 -1.5 0.1 2.1 0 6.7
Dec-04 7.9 0 0 0.9 0.1 0.5 0 8.2
Jan-05 8.8 0 0 -0.3 0.1 0.6 0 7.9
Feb-05 6 0 0 -0.3 0.1 1.4 0 42
Mar-05 9.7 0 0 -0.4 0.2 2.1 0 7
Apr-05 10.9 0 0 1 0.5 5.1 0 6.3
May-05 7.5 0 0 0.7 0.1 7.3 0 0.8
Jun-05 11.5 0 0 0.7 0.1 10.3 0 1.8
Jul-05 10.8 0 0 1.7 0.1 11.6 0 0.8
Aug-05 4.8 0 0 1.4 0 10 0 -3.7
Sep-05 1.3 0 0 0.7 0 7 0 -4.9
Oct-05 29.5 0 0 -5.2 0.2 3.8 0 20.3
Nov-05 12.1 0 0 -0.8 0.1 2.1 0 9
Dec-05 9.6 0 0 0.3 0.2 0.6 0 9.1
Jan-06 13.6 0 0 0.2 0.5 1.7 0 11.5
Feb-06 33 0 0 0.1 0 1.1 0 23
Mar-06 1.3 0 0 2.3 0 1.9 0 1.8
Apr-06 7.4 0 0 -0.3 0 4.5 0 2.5
May-06 7.6 0 0 1.4 0.1 7.3 0 1.6
Jun-06 17.1 0 0 2.5 0.1 9.3 0 5.1
Jul-06 12.5 0 0 2.9 0.1 12.2 0 3.1
Aug-06 9.8 0 0 -0.5 0 9.6 0 -0.3
Sep-06 21.3 0 0 -1.9 0.2 6.9 0 12.3
Monthly average 10.1 0 0 0.04 0.1 5.1 0 4.9
Annual average 121.4 0 0 0.5 1.4 62 0 58.9
Groundwater budget
Date Base flow Gr_o undwater Leakage gr(:::la::l?:alrer Artificial Gral;rowz:er Recharge
withdrawals storage recharge outflow
Oct-04 2.7 0 1.1 -32 0 -0.7 1.3
Nov-04 3 0 1.1 1.4 0 -0.7 6.1
Dec-04 3.9 0 1.1 0.4 0 -0.7 6.1
Jan-05 4.4 0 1.1 0.8 0 -0.7 7
Feb-05 4.4 0 1.1 1.7 0 -0.7 7.9
Mar-05 4.8 0 1.1 1.9 0 -0.7 8.5
Apr-05 5.1 0 1.1 1.3 0 -0.7 8.2
May-05 4.2 0 1.1 -4 0 -0.7 2.1
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Table 6. Basin water budget for McDonalds Branch, Burlington County, New Jersey Pinelands, 2005-06.—Continued

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Groundwater budget—Continued

Change in e . Groundwater
Date Base flow Gr? undwater Leakage groundwater Artificial inflow or Recharge
withdrawals storage recharge outflow

Jun-05 3 0 1.1 -1.2 0 -0.7 3.6
Jul-05 3.1 0 1.1 -3.9 0 -0.7 1

Aug-05 2.3 0 1.1 -4.6 0 -0.7 -0.5
Sep-05 1.9 0 1.1 -5.2 0 -0.7 -1.5
Oct-05 2.9 0 1.1 8.5 0 -0.7 13.2
Nov-05 2.7 0 1.1 2.1 0 -0.7 6.7
Dec-05 3.6 0 1.1 0.4 0 -0.7 5.9
Jan-06 4.9 0 1.1 3.6 0 -0.7 10.3
Feb-06 3.9 0 1.1 0.2 0 -0.7 6

Mar-06 34 0 1.1 -3 0 -0.7 2.2
Apr-06 2.7 0 1.1 2.1 0 -0.7 2.4
May-06 2.6 0 1.1 -2.6 0 -0.7 1.9
Jun-06 2.4 0 1.1 0.3 0 -0.7 4.5
Jul-06 2.7 0 1.1 2.3 0 -0.7 2.2
Aug-06 1.9 0 1.1 2.5 0 -0.7 1.3
Sep-06 2.8 0 1.1 49 0 -0.7 9.5
Monthly average 33 0 1.1 -0.3 0 -0.7 4.8
Annual average 39.5 0 13.1 -3.5 0 -8.8 57.9

2005, and March 2006) to 0.5 cm (April 2005 and January
2006). Direct recharge of the aquifer system through infiltra-
tion of precipitation typically was greatest during the winter
months, when E7 was minimal. During the study period,
recharge during winter months (December-February) averaged
about 7.2 cm/mo. During summer months (July-September),
when ET was greatest, recharge averaged about 1.2 cm/mo.
Annual base flow in the basin during the study period repre-
sented 96 percent of annual streamflow. In September 2005,
the month with least precipitation during the study period,
base flow accounted for 100 percent of streamflow. During 3
other months with less than average precipitation—October
2004, August 2005, and March 2006—base flow accounted
for 100 percent of streamflow. In January 2006, one of the
wettest months during the 2-year period, base flow represented
91 percent of streamflow. Changes in storage of soil moisture
during the study period had a moderate effect on the water
budget. Monthly changes in soil-moisture storage ranged from
a decrease of 2.9 cm in July 2006 to an increase of 5.2 cm

in October 2005. The average annual change in storage was
0.5 cm, representing a slight decrease in soil moisture during
the 2-year study period. During the study period, groundwater
levels declined slightly, representing an average loss in storage

of 3.5 cm/yr. Monthly changes in groundwater storage ranged
from -5.2 cm (a water-level decrease) in September 2005to
8.5 cm (a water-level increase) in October 2005 (fig. 30,

table 6).

Estimated net vertical leakage to underlying confined
aquifers was 1.1 cm/mo, and estimated net horizontal outflow
to adjacent basins was 0.7 cm/mo. To evaluate the agreement
between the land-surface and groundwater components of the
water budget calculations, recharge values calculated using the
land-surface equation were compared to those calculated using
the groundwater equation (fig. 31). Estimates were generally
in fairly close agreement, to within a few centimeters. Differ-
ences in monthly recharge estimates ranged from -3.7 cm in
February 2006 and 2005 to 7.1 cm in October 2005. The aver-
age difference in monthly recharge estimates was 0.1 cm.
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Figure 29. Components of the land-surface water budget by month, McDonalds Branch basin, New Jersey Pinelands, water years

2005-06.

-30

Hydrologic Assessment

30

20 -

Rg=P+ ASgn - Qg, - ET

N\ R\ I\ I R\

QG\’ $0« QQ’G 5’6‘\ <<Q\z° @‘5\ y&q @'b*

AT I I O\ IR\ R\ I\ SR\ N\ S\

~ N W R o ¥ W @ @‘b‘ o @‘b* N W N

RN

EXPLANATION

Precipitation (P)

Change in soil moisture (A Sgp,)
Direct runoff (Qg,)
Evapotranspiration (ET)
Recharge (Ry)

65



66 Hydrologic Assessment of Three Drainage Basins in the Pinelands of Southern New Jersey, 200406

30

- R,=0Qpt L£AS,, *R; B
g=%b gw =N
20 n

10 - -

220 ,

WATER-BUDGET COMPONENT, IN CENTIMETERS
o

30 | | | | | | | | | | | | | | | | | | | | | | |

IN\ R\ S\ R\ I\ I \C I\ I \C I N TR\ \ TN\ B\ I \ S\ CHE\ I I\ I\
S W @& W @fzﬁ N N NS O W (& QW @Qﬁ W N W ee®

EXPLANATION
Base flow (Qp)
Horizontal groundwater inflow (R;)
Change in groundwater storage (A Sgy,)
Vertical leakage (L)
Recharge (Ry)

in RN

Figure 30. Components of the groundwater budget by month, McDonalds Branch basin, New Jersey Pinelands, water years 2005-06.
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Morses Mill Stream Study Area

The Morses Mill Stream study area is a relatively flat-
lying, near-coastal area of the Pinelands with hydrologic and
geologic characteristics that are similar to those of the other
two study areas. The Morses Mill Stream basin is a shal-
low, gently sloping drainage incised in typical Coastal Plain
sediments where the Cohansey Sand is commonly exposed
beneath the stream channels, swamps, and wetlands. There are
several large cedar swamps in the basin, and hardwood, pine,
and cedar wetlands are flanked by forested uplands. In the
upper part of the Morses Mill Stream basin, natural drainage
patterns have been altered by various agricultural activities,
such as channelizing flow around fields to drain wet areas or
creating ponds for irrigation purposes. A small sand and gravel
extraction operation is near, and old cranberry bogs created
many years ago form ponds and small lakes on the Morses
Mill Stream. By the time data collection for this study began
in 2004, the remaining agricultural land in the basin was being
replaced by developed land.

The agricultural areas in the upper basin transition to the
property occupied by Richard Stockton College, where much
of the data for this study was collected. Richard Stockton
College (fig. 4) was established in 1969 on a 648-ha tract in

PP PP PSS SE S S
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Comparison of monthly land-surface and groundwater recharge, McDonalds Branch basin, New Jersey Pinelands, water

the Pinelands that covers much of the lower part of the Morses
Mill Stream basin. Since the groundbreaking in 1970, most
development at the college has been in upland and near-wet-
land areas and does not appear to have altered the pre-devel-
opment wetlands and swamps to any great extent. Exceptions
include Lake Fred (fig.4); a former cranberry bog; and a
deeply incised (1 to 2 m), manmade ditch (fig. 4) that appears
to be designed to intercept shallow groundwater and effec-
tively drains the wetlands that flank the campus to the east and
southeast. This drainage ditch also receives stormwater from
various parts of the campus. Water from the drainage ditch
eventually discharges to the Morses Mill Stream at a location
about 460 m downstream of the dam on Lake Fred (fig. 4).
Seasonal groundwater use in and around the study area
may be affecting the groundwater levels. Groundwater also
is extracted from the lower part of the Kirkwood-Cohansey
aquifer system through wells at Richard Stockton College.
Groundwater use on campus is primarily for institutional
purposes, including landscape irrigation, and wastewater is
discharged to a regional sanitary sewer. Stormwater runoff
from impervious cover is routed through surface drains and
pipes and either recharges the groundwater or, in some areas,
discharges to nearby surface-water bodies.
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During this study, management of the pond level at
the dam on Lake Fred probably influenced local water-table
altitudes around the pond and (or) the discharge in the Morses
Mill Stream below the dam. The dam on Lake Fred sustained
storm damage in August 1997, as determined from field obser-
vations and information obtained from officials at Richard
Stockton College (D. Roesch, Richard Stockton College,
oral communication, June 2006). Afterwards, the lake level
was maintained at a relatively constant altitude about 0.3 m
lower than the pre-August, 1997 pond altitude, until August
17,2005, when it was lowered slowly an additional 0.6 m to
accommodate repairs to the dam. This lower level was main-
tained until the repairs were complete, and the lake level was
restored to the approximate pre-1997 altitude in March 2006.

Downstream from Lake Fred, the Morses Mill Stream
flows though hardwood lowlands, cedar swamps, wetlands,
and a privately owned recreational lake east of the Garden
State Parkway before it reaches the streamflow-gaging station
(01410225, fig. 4) at Port Republic, NJ.

Groundwater Levels

During the period October 1, 2004, to September 30,
2006, water-level data were recorded continually in six basin-
monitoring wells arranged in two three-well clusters in the
Morses Mill Stream study area (fig. 4). The three wells at each
of the basin-monitoring well clusters are screened in three of
the aquifer layers that lie between the water table and the base
of the Kirkwood-Cohansey aquifer system (Walker and oth-
ers, 2008). Hydrographs of daily mean water levels prepared
from these records (fig. 32) indicate that, during the period of
record, water levels fluctuated about 1.78 m in the upper-basin
monitoring wells and about 1.13 m in the lower-basin moni-
toring wells. These ranges are substantially greater than those
recorded in either of the other two basins, indicating that the
water-level fluctuations may be caused, in part, by differences
between basins, such as variations in aquifer characteristics,
stresses caused by groundwater withdrawals, differences in
climatic conditions, or a combination of these factors.

Seasonal water-level extremes in the Morses Mill
Stream study area occurred at nearly the same time in both
the upper- and lower-basin monitoring wells (figs. 32A, 32B).
In the other two drainage basins, in contrast, water levels in
the upper basin lagged well behind those in the lower basin.
Although the reason for this difference is not well understood,
possible causes include the lower topographic relief of the
Morses Mill Stream basin, the proximity of the lower-basin
well cluster to a lateral basin divide, the local influence of
recharge, and the stresses resulting from groundwater with-
drawals in this study area. Hydraulic gradients were down-
ward at both the upper- and lower-basin well clusters during
the entire period of record (figs. 32A, 32B). Thus, water
levels decreased as depth increased, indicating that both
basin-monitoring well clusters are in aquifer recharge areas.
Nearby, at a location closer to a cedar swamp that lies along
the Morses Mill Stream, the USGS conducted an aquifer test

in 2007 as part of another phase of this study to examine the
effects of pumping stresses on wetlands hydrology. Before the
aquifer test, water-level data from wells at the test site under
unstressed conditions revealed upward hydraulic gradients
from the base of the Kirkwood-Cohansey aquifer system to the
water table, indicating that groundwater that follows longer
flow paths probably discharges to the cedar swamp and the
stream in that area, and that the water levels in the lower-basin
monitoring wells reflect the effects of nearby recharge in the
lower part of the basin.

At the upper-basin monitoring-well cluster, the shal-
low well (011500-MM OW-18) is screened in the MM A-1
aquifer layer, which contains the water table at this location.
In this aquifer, near the water table and the top of the screened
interval in the shallow well, clay is found at depths rang-
ing from about 2.5 to 4.5 m. Daily mean water levels in well
011500-MM OW-18 showed little if any response to isolated
precipitation events less than 0.2 cm and somewhat attenuated
responses of varying amounts when precipitation exceeded
3 cm over a period of a few days. The middle and deep
basin-monitoring wells at this location, 011498—-MM OW-1M
and 011499-MM OW-1D, are screened in aquifer layers
MM A-1B and MM A-3, respectively (Walker and others,
2008). Boring logs and geophysical logs recorded at the
upper-basin well cluster indicate that clay layers up to 5 m
thick separate the screened intervals of each of the upper-basin
monitoring wells. These clays are part of the more extensive,
locally discontinuous leaky confining layers (Walker and oth-
ers, 2008). The water table is higher than water levels in the
middle well (011498-MM OW-1M) with water-level differ-
ences ranging seasonally from about 0.2 to about 0.7 m. Water
levels in well 011498—-MM OW-1M also are consistently
higher (about 0.2 m) than those in well 011499-MM OW-1D.
Water-level fluctuations in the two deeper wells are smaller
than, but similar to, that of the water table; they also show
a smaller response to precipitation. Frequent short-duration
fluctuations in water levels in the deeper wells probably are
attributable to pumping effects from a nearby production well
screened in aquifer layer MM A-3 about 1,200 m to the west.
The distribution of water levels in the upper-basin monitor-
ing wells indicate that (1) the water table is probably less well
connected hydraulically with the deeper aquifer layers than
the deeper aquifer layers are connected to one another, at least
locally; (2) the leaky confining layer separating the middle and
deep wells does not isolate the two wells from the influence
of pumping; and (3) the deeper aquifers are probably hydrau-
lically connected to the water table nearby, even if they are
effectively isolated locally.

Geophysical logs and boring logs at the site of the
lower-basin monitoring well cluster (Walker and others, 2008)
show lithology similar to that at the upper-basin monitoring-
well site, except that little or no clay is present in either the
unsaturated or saturated sediments overlying the screened
interval of the shallow well (011501-MM OW-2S). The
shallow well is screened in aquifer layer MM A-1B, which
contains the water table and is unconfined at this location; the
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Figure 32. Groundwater levels in (A) upper and (B) lower basin-monitoring wells and (C) precipitation, Morses Mill Stream study area,
New Jersey Pinelands, 2004—-06.
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overlying MM A-1Cl1 leaky confining layer consists mostly
of sand and gravel and probably is ineffective as a confining
layer at this location (Walker and others, 2008). The middle
well, 011502-MM OW-2M, is screened in aquifer layer
MM A-2, but the overlying leaky confining layer MM C-1
that separates the middle well from aquifer layer MM A-1B
layer at this location is thin and probably very leaky. The
water-level hydrographs for these two wells (fig. 32B), are
similar and illustrate the results of this condition. The small
difference between these water levels contrasts noticeably
with the difference between water levels in the middle and
deep wells (011502-MM OW-2M and 011503-MM OW-2D)
screened in aquifer layer MM A-3, the principal source of
local water-supply in the Kirkwood-Cohansey aquifer sys-
tem. Three production wells are located at distances ranging
from 300 to 1,200 m from the lower-basin monitoring-well
cluster. Small, generally regular short-term water-level
fluctuations are evident in the hydrographs of daily mean
water levels for well 011503—MM OW-2D, and similar but
less pronounced fluctuations are shown in the hydrograph for
well 011502-MM OW-2M (fig. 32B). These fluctuations are
probably a response to local pumping. The substantially lower
water level in the deep well at this location also is a likely
indicator of the influence of local groundwater withdrawals.
The effects of precipitation on daily mean water levels are
less pronounced in the lower-basin well cluster than in the
upper-basin well cluster, although the pattern is similar, with
the thick unsaturated sediments at the lower basin well cluster
appearing to dampen the effects of infiltration and recharge.
Hydrographs for the period April 1, 2004, to September
30, 2006 (figs. 4, 33), prepared from continuous records of
water levels in two wetland-monitoring wells screened in the
unconfined aquifer, reveal differences in the range of water
levels and their response to precipitation in wetlands along
a small tributary that joins the Morses Mill Stream from
the southwest at Lake Fred (fig. 4). Well 011457—Richard
Stockton College 2 was used to monitor the water table in a
pine and hardwood wetland in the headwaters of this tribu-
tary. Groundwater levels fluctuated 1.0 m during the period
of record (fig. 33B). Water levels responded immediately to
nearly all precipitation events, except those that followed
sustained dry periods. Along the same tributary to Morses
Mill Stream, a second shallow well (011458—Richard Stock-
ton College 1) is screened in the sand and gravel directly
beneath a cedar swamp. Water-level fluctuations were limited
to 0.4 m during the period of record, probably as a result of
the influence of the swamp and nearby stream (fig. 33A).
Water levels generally responded immediately but minimally
to even the smallest precipitation events throughout the period
of record (fig. 33C). Nearby, a small engineered subsurface-
stormwater-infiltration system receives rainfall from nearby
parking lots and roofs, directing it to a small area where the
groundwater is recharged. Although the extent to which this
localized induced groundwater recharge may affect the water
levels beneath the swamp is unknown, the hydrograph for
011458—Richard Stockton College 1, compares well with that

of 011457—Richard Stockton College 2, which is located in

an area that receives only natural recharge. This comparison
suggests that the infiltration system does not substantially alter
the natural water table response to precipitation in the area of
011458—Richard Stockton College 1.

Streamflow

A streamflow-gaging station was established on the
Morses Mill Stream at Port Republic, NJ, (01410225) near the
lower basin boundary of this study area (fig. 3). Streamflow
records collected from October 1, 2004, to September 30,
2006, indicate a range of daily mean discharge from 0.040 to
0.93 m?¥s (fig. 34). A wooden box culvert forms the control
downstream from the streamflow-gaging station. Streamflow
may have been controlled for short periods at Lake Fred on the
Richard Stockton College campus or at a private recreational
lake upstream from the gaging station. The documented
regulation of Lake Fred, described previously, resulted in
a short-term increase in discharge during mid August 2005
(fig. 34A), when the altitude of Lake Fred was lowered by
releasing water from storage to repair the dam. Streamflow
also showed the effects of raising the pond altitude in March
2006, which resulted in a brief period when daily discharge
at the gaging station fell to about 0.04 m?/s, indicating that
the period-of-record low daily mean discharge recorded for
March 17, 2006, was abnormal for that time of year and was
caused by regulation of Lake Fred. The lowest daily mean
discharge that was unaffected by regulation during this study
(0.042 m*/s) occurred in both October 2004 and August 2005
and was slightly higher than that reported for March 17, 2006.
Stream stage fluctuated about 0.5 m during the period of
record, showing responsiveness to precipitation that could
result from storm-runoff characteristics in the basin; however,
stream stage also is consistent with shallow water levels in the
wetlands (figs. 33A, 33B). Although groundwater beneath the
wetlands is a substantial, near-surface source of discharge to
surface water, the surface runoff routing and the engineered
stormwater-infiltration system on the Richard Stockton Col-
lege campus makes it more difficult to assess the relation of
precipitation to the observed groundwater level and stream-
flow response.

Although no long-term historical streamflow records are
available for the Morses Mill Stream basin, the understanding
of data collected during this 2-year study can be improved by
relating them to records from the East Branch Bass River, a
tributary to the Mullica River, where hydrologic conditions
are similar. Mean annual discharge at streamflow-gaging sta-
tion 01410150, East Branch Bass River near New Gretna, NJ,
about 14 km northeast of the Morses Mill Stream study area,
for 2005 and 2006 was 88 and 95 percent, respectively, of the
long-term mean annual discharge determined from 29 years of
record (U.S. Geological Survey, 2009).
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Figure 33. Groundwater levels in (A) Richard Stockton College 1 and (B) Richard Stockton College 2 wetland-monitoring wells and (C)
precipitation, Morses Mill Stream study area, New Jersey Pinelands, 2004—06.
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Figure 34. Surface-water stage and discharge at (A) Morses Mill Stream at Port Republic, NJ, gaging station and (B) precipitation,
Morses Mill Stream study area, New Jersey Pinelands, 2004—06.

Syn 0 pt| ¢ Measurements lower part of the Kirkwood-Cohansey aquifer system about
17 km west of the Morses Mill Stream study area. During

Two synoptic measurements were made in the Morses the same period, daily mean discharge at streamflow-gaging
Mill Stream study area during two low-flow periods, one in station 01410150, East Branch Bass River near New Gretna,
spring (May 3-13, 2005) and another during late summer NJ, was slightly lower than the 29-year period-of-record daily
(September 13—15, 2005). Water-level data collected during mean discharge for May (U.S. Geological Survey, 2009).
these periods are presented in table 3 (at end of report), and The May synoptic measurements were begun following
the location of the data-collection sites selected for analysis about 1 month with limited precipitation and during a down-
are shown in figure 35. ward trend in water levels following the seasonal high of 2005

During the May 2005 synoptic measurement, groundwa-  (figs. 32, 33). Light precipitation totaling 1.88 cm occurred on
ter levels in well 010256 (Scholler 1 Obs.) were about equal to 2 consecutive days, ending 3 days prior to the beginning of the
the 24-year period-of-record daily mean water level for May synoptic measurements, resulting in a minor diversion from
(U.S. Geological Survey, 2009). This well is screened in the the downward water-level trend leading up to the time of the



measurements. Another small event (0.97 cm) occurred during
the measurements on May 6, but water levels and stream-
flow showed little response to that precipitation. Streamflow
also remained close to the pre-precipitation trend during the
measurements (fig. 34). Stream base flow was relatively high
during the May measurements (fig. 34) and showed a general
downward trend. The altitude of Lake Fred was not adjusted
during the May measurements.

On the basis of records for well 010256 (Scholler 1 Obs),
groundwater levels in the vicinity of the study area during
the September synoptic measurement probably were lower
than the 24-year period-of-record daily mean water levels
for September. The daily mean discharge for the East Branch
Bass River near New Gretna, NJ, during September also was
lower than the 29-year period-of record daily mean discharge
(U.S. Geological Survey, 2009). In mid August 2005, the
altitude of Lake Fred was lowered for maintenance and then
was maintained at a constant level throughout the period of the
September synoptic measurement. The streamflow hydrograph
shows the increased flow associated with the lowering of Lake
Fred and indicates that the effects of the release had dissipated
well before the September synoptic measurement was begun
(fig. 34).

The water-table contour maps prepared from the May
and September 2005 synoptic measurements (figs. 36 and 37)
show that the water-level altitude slopes along the length of
the basin, decreasing about 17 m between the upper and lower
basin boundaries. The water-table altitude declined throughout
the basin from May to September, with the decline ranging
from 0.04 to 1.78 m. Water levels generally were smallest near
discharge areas such as swamps, streams, and ponds and great-
est in the uplands. The differences in the slope and direction of
groundwater flow between the two synoptic measurements in
the upper part of the basin vary locally, indicating that appar-
ent groundwater flow paths and gradients were affected by
local hydrologic conditions; specifically, upper basin streams
ceased to flow because water levels had declined and local-
ized shallow groundwater discharge to surface water ceased
at locations upstream from the start-of-flow. As the streams
became dry, they no longer influenced the near-stream ground-
water flow paths associated with gaining and losing stream
reaches. Consequently, the water-level contours cross the dry
streambeds normal to the stream channels rather than reflect-
ing local flow toward the stream. Groundwater flow paths in
these areas describe longer, sub-regional groundwater flow
paths along the slope and orientation of the basin as ground-
water moves toward points of discharge farther downstream.
Low-permeability sediments, typically clays, underlie much of
the area surrounding the Morses Mill Stream, especially near
the wetlands and swamps, which formed in ancient channels.
In the lower parts of the basin, these clays appear to have
been eroded and replaced with coarser sediments beneath the
present-day streams and swamps. In the uplands, these low-
permeability sediments commonly are capped with coarse
sediments, permitting rapid infiltration to the top of the clays,
which impede further vertical movement and may cause lateral
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flow, creating shallow flow systems that discharge directly to
wetlands, swamps, and streams. In other upland areas, coarse-
grained channel bars were formed, and the shallow clays may
be absent (Walker and others, 2008).

Groundwater flow follows the general path of Morses
Mill Stream, from areas of highest water level to those of
lowest water level. The topographic divides (basin boundar-
ies), however, do not appear to coincide with the position of
the groundwater divides in localized areas along the northern
and southern basin boundaries where water-table contours
indicate groundwater is either leaving or, in a few locations,
entering the basin in both May and September (figs. 36, 37).
For example, the relatively high water table in a localized area
along the basin’s southern boundary indicates that ground-
water may be entering the basin from the south during both
synoptic measurements.

Depth to the water table in the Morses Mill Stream basin
(fig. 38) ranges spatially from zero at points of groundwater
discharge such as ponds, streams, and swamps to a maximum
of more than 10 m in upland areas along the northern and
southern basin boundaries. The distribution of the DTW in
the basin is shown in figure 39, which provides a profile of
the hydrologic settings in this basin for habitats dependent on
various ranges of water-table depth. DTW is less than 0.5 m
over 17 percent of the basin, resulting in a relatively small per-
centage of the basin being hydrologically suitable for wetland
habitats. In comparison with the Pinelands area as a whole,
mapped wetlands constitute a slightly smaller percentage
of the basin; 23 percent of the basin is mapped as wetlands,
whereas wetlands covered 27 percent of the entire Pinelands
area in 2002 (Zampella and others, 2008). DTW in the mapped
wetlands areas ranges from zero to 4.5 m, with a mean of
0.73 m. Areas where DTW ranges from 0.5 to 2.0 m occupy a
greater percentage of the Morses Mill Stream basin than of the
McDonalds Branch and Albertsons Brook basins, meaning that
the Morses Mill Stream basin contains the greatest percentage
of marginally suitable and transitional wetlands habitats of the
three basins.

Data collected along five hydrologic transects (fig. 4) in
the Morses Mill Stream basin during the synoptic measure-
ments in May and September 2005 describe the interaction of
groundwater levels with wetlands and surface water. These
data characterize changes in the water table with respect to
hydraulic gradients and the variability of potential groundwa-
ter flow and discharge to wetlands and surface water during
periods of seasonal high and low water levels. These data are
shown in figure 40 and the site conditions and other findings
are described below.

The uppermost hydrologic transect, MMHT, is located
on an intermittent stream reach near the headwaters of the
Morses Mill Stream. A staff gage is located at the upstream
side of the roadway culvert about 15 m downstream from the
transect. During the May synoptic measurement, the stream
stage was at the same altitude between the nearest transect
well pair and the staff gage. The vertical hydraulic gradients
in May were downward at the two well clusters farthest from
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the stream, whereas the near-stream well cluster indicated an
upward hydraulic gradient toward the stream (fig. 40). In Sep-
tember, the shallowest wells in the upgradient and middle well
clusters were dry and a small upward gradient was measured
in the well cluster nearest the stream, which also was dry at
the time of the measurement. During both synoptic measure-
ments, water levels indicated groundwater gradients toward
the stream, but the deep wells showed a decidedly smaller
horizontal gradient toward the stream in September. Below
the roadway, the Morses Mill Stream normally falls through a
culvert into a small irrigation pond, creating a head differential
between the pond and the stream above the road. Although the
stream above the road was dry in September, the horizontal
gradient toward the stream and the slight upward gradient
measured at the near-stream well cluster indicate that ground-
water discharge also may have been occurring in September.
If so, groundwater likely would have been moving toward the
pond (lower altitude) at that time (fig. 37).

Downstream from the irrigation pond, which is used
for the surrounding blueberry fields, the Morses Mill Stream
flows into a hardwood lowland and swamp flanked by forested
wetlands and uplands. Transect MMHT? is situated along the
north side of the stream in this natural setting (fig. 37). Tran-
sect MMHT? is about 150 m long; the hardwood swamp is
about 30 m wide and extends to the stream. The May synoptic
measurements indicated upward hydraulic gradients at all well

clusters and beneath the streambed, and the water table sloped
toward the stream along the length of the transect; both condi-
tions indicate potential discharge to the stream. In September,
water levels indicated no horizontal gradient from the uplands
to the wetlands with slight upward gradients measured at the
two well clusters nearest the stream. Also, a large downward
hydraulic gradient was observed beneath the stream, indicat-
ing that the stream probably was losing water to the aquifer, at
least locally.

About 1,500 m downstream from MMHT?2, a small tribu-
tary joins the Morses Mill Stream from the southwest at Lake
Fred. In the headwaters of this tributary, hydrologic transect
MMHT3 originates in a hardwood upland area that transitions
to wetlands and eventually a swamp. There is no well-defined
stream channel here, and surface water flows as the ground-
water discharge and recent swamp drainage allow. In May, the
water table sloped with a small horizontal gradient toward the
wetlands and stream. Vertical gradients were downward in the
uplands and upward near the edge of both the wetlands and the
swamp. A small upward hydraulic gradient was measured with
a temporary piezometer beneath the swamp in the vicinity of
the transect, indicating a potential for groundwater discharge
in this area.

In September a very small horizontal gradient from the
uplands to the wetlands is observed, but no vertical gradient
could be determined at the upland end of the transect because
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the shallow wells there were dry. From the margin of the wet-
lands to the swamp, the horizontal gradients were too small to
measure; the vertical gradient was upward near the wetlands
but there was no vertical gradient evident near the swamp. The
distribution of vertical gradient and groundwater flow at this
location in September is not well understood but may have
been affected by variations in sediment texture in the shallow
aquifer beneath in the wetlands and the swamp.

Hydrologic transect MMHT#4 is on the southern side of
the same tributary about 400 m downstream from MMHT3
(figs. 4, 40). In May, water levels sloped uniformly from the
pine and hardwood uplands to the cedar swamp. Hydraulic
gradients were downward in the uplands, upward at the cedar
swamp wells, and upward near the tributary, indicating pos-
sible discharge to the swamp and stream. In September, the
shallow well in the upland cluster was dry, but the water table
defined by deep wells indicated a smaller slope in the water
table toward the cedar swamp than in May. Small upward gra-
dients were measured in the middle well cluster in the cedar
swamp and near the stream in September. Minimal flow also
was observed in the stream, indicating that the upward hydrau-
lic gradients between the nearby wells probably represent dis-
charge of groundwater to the stream in this area in September.

Hydraulic transect MMHTS is more than 800 m down-
stream from Lake Fred in a natural, predominantly hardwood
forested area (figs. 4, 40). Groundwater levels slope with the
topography toward the stream, with downward hydraulic
gradients in the uplands in both May and September 2005.
Downward gradients also were observed in the middle well
cluster in May, but vertical gradients were upward at this
location in September, probably indicating a greater contribu-
tion of deep groundwater at this location than in May. Also in
September, water levels in the two deep wells in the upland
and middle well clusters were the same, indicating a greater
decline in groundwater levels in the uplands than at the middle
well cluster and likely little shallow horizontal groundwater
flow toward the stream between these well clusters. In both
May and September, however, horizontal hydraulic gradients
were greater between the middle well cluster and the stream;
the largest upward gradients also were measured at the stream.
Water-level altitudes and the distribution of the hydraulic
gradient between the middle well cluster and the wells near the
stream indicate that a considerable groundwater contribution
from deeper in the aquifer probably discharges to the Morses
Mill Stream in this area.

Stream base-flow measurements and the observed
start-of-flow locations for both May and September 2005
synoptic measurements (fig. 41) show that base flow mea-
sured at streamflow sites ranged from zero (dry stream bed)
to 0.022 m’/s at an upper basin stream site, and from 0.059
to 0.283 m?/s at the streamflow-gaging station in September
and May 2005. Locations of start-of-flow observed during the
May and September 2005 synoptic measurements are shown
in figure 41 with a dashed line indicating the range of the
seasonally intermittent stream channel defined by the start-of-
flow observations. Base-flow discharge data for the Morses
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Mill Stream, including the ratio of spring base-flow discharge
to summer base-flow discharge, at stream sites are provided in
table 4. The base-flow discharge ratios were 17 and 48 at two
sites in the upper-basin areas and 5 and 11 at two sites in the
lower-basin areas.

Water Budget

The water budget detailed below lists values for appli-
cable components of the hydrologic cycle in the Morses Mill
Stream basin and accounts for all known gains and losses to
or from the system. The basin water budget was developed
on a monthly basis. The time period covered by this analysis
is October 2004 through September 2006. The Morses Mill
Stream basin budget area encompasses 21.63 km? in Atlantic
County, NJ (fig. 5).

The following equations were used to calculate the water
budget for the Morses Mill Stream basin.

Land-surface components:

R =P+AS +AS -Q,6 -ET-W_, ®)
where
R = recharge to the aquifer system,
P = precipitation,

AS = change in surface-water storage,
AS = change in soil moisture,

Q, = direct runoff,

ET = evapotranspiration, and

/4 = surface-water withdrawals/diversions; and

s

Groundwater components:
Rg= 0, + ngL iASgwiRi , )

where

= recharge to the aquifer system,
= base flow,

= groundwater withdrawals,

= leakage to confined aquifers,

A = change in groundwater storage, and

>°O§r,) thpmw

= groundwater inflow to/outflow from

adjacent basins. In the Morses Mill Stream
basin, there were no artificial discharges to
groundwater or surface water (D and D,
respectively).

Average annual precipitation in the Morses Mill Stream
basin was 114 cm during the 2-year study period (table 7), the
same as in the Albertson Brook basin. Monthly precipitation
typically is fairly uniform throughout the year and evenly dis-
tributed throughout the basin. Monthly precipitation averaged
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9.5 cm and ranged from a low of 1.0 cm in March 2006 to
23.1 ecm in October 2005 (fig. 42, table 7).

Average annual E7 in the Morses Mill Stream basin
was 58.6 cm during the study period. Monthly E7T averaged
4.9 cm and ranged from 0.4 cm in December 2004 to 11.5 cm
in July 2006. ET from the basin was equivalent to 52 percent
of precipitation on an annual basis. This loss, however, varies
widely throughout the year. In winter, when E£7 is minimal
(December and January of both water years), £7 was less than
one-tenth the amount of precipitation. During some summer
months, nearly all precipitation was lost to £7, and recharge
to the underlying aquifer was minimal. E7 exceeded precipita-
tion during June, July, August, and September 2005 and March
2006.

Direct runoff of precipitation in the basin was relatively
small, averaging 0.4 cm/mo during the study period. Monthly
values ranged from 0.1 cm in September 2005 to 1.3 cm in
September 2006. Direct recharge of the aquifer system from
precipitation typically was greatest during the winter months,
when ET was minimal. During the study period, recharge dur-
ing winter months (December-February) averaged 8.0 cm/mo.
During summer months (July-September), when ET was great-
est, recharge averaged about 0.5 cm/mo. Annual base flow in
the basin during the study period represented 86 percent of the
annual streamflow. In September 2005, the month with least
precipitation during the study period, base flow accounted for
88 percent of streamflow. In May 2005, base flow represented
95 percent of streamflow, even though precipitation was nearly
average. In September 2006, the second wettest month during
the 2-year period, base flow represented 67 percent of stream-
flow. Changes in storage of soil moisture during the study
period had a moderate effect on the water budget. Monthly
changes in soil-moisture storage ranged from a decrease of
3.6 cm in July 2006 to an increase of 6.4 cm in October 2005.
The average annual change in soil-moisture storage during
the 2-year study period was a decrease of 0.6 cm. During the
study period, groundwater levels declined slightly, represent-
ing a loss in storage of 2.1 cm/yr. Monthly changes in ground-
water storage ranged from a decline of 2.7 cm in August 2005
to an increase of 5.2 cm in October 2005 (fig. 43, table 7).

In general, groundwater withdrawals and surface-water
diversions from the Morses Mill Stream basin are small. On
an annual basis, groundwater withdrawals and surface-water
diversions account for about 4 percent of the total precipita-
tion, and groundwater withdrawals account for about 8 percent
of recharge (fig. 43). Withdrawals from the basin typically are
greater in summer, when withdrawals for irrigation are great-
est. A few public-supply wells, which account for most of the
total withdrawals, are situated within the basin.

Estimated net leakage to underlying confined aquifers
was 0.02 cm/mo, the smallest value among the three basins.
Estimated net outflow to adjacent basins was 1.0 cm/mo.

To evaluate the agreement between the water-budget cal-
culations, recharge values calculated using the land-surface
equation were compared to those calculated using the
groundwater equation (fig. 44). Estimates were generally in
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close agreement, to within a few centimeters. Differences in
monthly recharge estimates ranged from -4.0 cm in September
2005 to 4.2 cm in October 2006. The average difference in
monthly recharge estimates was 0.1 cm.
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Table 7. Basin water budget for Morses Mill Stream, Atlantic County, New Jersey Pinelands, 2005-06.

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Land-surface budget

. . Discharge Change in  Change . Evapo- Surface-
Date Pre(_:lpl- to surface surface- |n'sml- Direct tran- we.xter Recharge
tation water water  moisture  runoff spiration with-
storage  storage drawals
Oct-04 8.6 0 0 0.5 0.3 3.8 0 5
Nov-04 11.4 0 0 -1.9 0.5 2 0 7
Dec-04 6.6 0 0 1.1 0.4 0.5 0 6.7
Jan-05 10 0 0 -0.3 0.5 0.5 0 8.7
Feb-05 7.7 0 0 -0.4 0.2 1.4 0 5.7
Mar-05 9.9 0 0 -0.5 0.6 2 0 6.9
Apr-05 8.8 0 0 1.2 0.5 4.8 0 4.7
May-05 9 0 0 0.9 0.2 6.9 0.1 2.8
Jun-05 9.5 0 0 0.9 0.1 9.8 0.1 0.4
Jul-05 10.7 0 0 2.1 0.2 10.9 0.1 1.5
Aug-05 3 0 0.7 1.8 0.2 9.5 0.1 -4.3
Sep-05 1.4 0 0 0.9 0.1 6.7 0.2 -4.6
Oct-05 23.1 0 0 -6.4 0.8 3.6 0.1 12.2
Nov-05 7.3 0 0 -1 0.5 2 0 3.8
Dec-05 11.1 0 0 0.4 0.4 0.6 0 10.5
Jan-06 14.6 0 0 0.2 0.7 1.6 0 12.4
Feb-06 5.5 0 0 0.1 0.3 1 0 43
Mar-06 1 0 -1 2.9 0.6 1.8 0 0.5
Apr-06 8.5 0 0 -0.4 0.4 4.3 0 3.4
May-06 8.9 0 0 1.8 0.3 6.9 0.2 3.2
Jun-06 12.2 0 0 -3.1 0.3 8.8 0.1 -0.1
Jul-06 13.4 0 0 3.6 0.5 11.5 0.1 4.8
Aug-06 9.3 0 0 -0.6 0.4 9.1 0.3 -1.1
Sep-06 16 0 0 -2.4 1.3 6.5 0 5.8
Monthly average 9.5 0 -0.01 0.1 0.4 4.9 0.1 4.1
Annual average 113.6 0 -0.1 0.6 5.1 58.6 0.6 50
Groundwater budget
Date Base flow Gr_o undwater Leakage ng)I:l:l:ig;a::ler Artificial Gri‘:ll;;:::\'lvg:er Recharge
withdrawals storage recharge outflow
Oct-04 1.6 0.5 0.02 0.8 0 -1 3.8
Nov-04 2 0.5 0.02 2 0 -1 5.5
Dec-04 3 0.4 0.02 0.9 0 -1 5.3
Jan-05 2.7 0.5 0.02 0.8 0 -1 4.9
Feb-05 34 0.4 0.02 1.9 0 -1 6.6
Mar-05 4.4 0.5 0.02 2.4 0 -1 8.2
Apr-05 4.7 0.5 0.02 -0.6 0 -1 5.6
May-05 3.5 0.4 0.02 -1.4 0 -1 35
Jun-05 2.3 0.3 0.02 2.5 0 -1 1
Jul-05 1.7 0.4 0.02 2.1 0 -1 1
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Table 7. Basin water budget for Morses Mill Stream, Atlantic County, New Jersey Pinelands, 2005-06.—Continued

[All values are in centimeters; recharge values determined as a residual may be different from computed values due to rounding]

Groundwater budget—Continued

Change in e Groundwater
Date Base flow Gr_o undwater Leakage groundwater Artificial inflow or Recharge
withdrawals storage recharge outflow

Aug-05 1.1 0.2 0.02 -2.7 0 -1 -0.4
Sep-05 0.7 0.3 0.02 -2.6 0 -1 -0.6
Oct-05 1.7 0.2 0.02 52 0 -1 8

Nov-05 1.7 0.1 0.02 0.2 0 -1 3

Dec-05 3.4 0.2 0.02 3 0 -1 7.6
Jan-06 5.8 0.1 0.02 4.5 0 -1 11.4
Feb-06 4 0.2 0.02 -0.8 0 -1 4.4
Mar-06 2.6 0.2 0.02 2.5 0 -1 1.3
Apr-06 2.5 0.4 0.02 -0.8 0 -1 3.1
May-06 2.4 0.3 0.02 -0.7 0 -1 2.9
Jun-06 1.8 0.3 0.02 -1 0 -1 2.1
Jul-06 2 0.5 0.02 -1.5 0 -1 1.9
Aug-06 0.9 0.5 0.02 -1.7 0 -1 0.7
Sep-06 2.6 0.5 0.02 34 0 -1 7.5
Monthly average 2.6 0.4 0.02 0.2 0 -1 4.1
Annual average 31.1 4.2 0.2 2.2 0 -11.4 49.1
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Figure 42. Components of the land-surface water budget by month, Morses Mill Stream basin, New Jersey Pinelands, water years
2005-06.
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Figure 43. Components of the groundwater budget by month, Morses Mill Stream basin, New Jersey Pinelands, water years 2005-06.
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Characteristics of Pinelands Drainage Basins

This examination of the hydrologic conditions and the
relations among groundwater, surface water, and wetlands in
three Pinelands drainage basins provides an indication of the
range of characteristic conditions and relations throughout the
region. Results can provide a basis for identifying those hydro-
logic characteristics that are common to, or representative of,
the Pinelands area. An understanding of both the range and
commonality of these characteristics strengthens the concep-
tual basis for quantitative analysis of the hydrologic system
and is critical to the development of predictive hydrologic
models used in water-resource planning and management.

The physical site characteristics, hydrogeology, stream
geomorphology, vegetation, and the type and percentage of
developed land in the three basins represent a range of condi-
tions typical of the New Jersey Pinelands. Precipitation is the
primary source of all water reaching the Kirkwood-Cohansey
aquifer system, and precipitation generally infiltrates the
Pinelands soils readily (Rhodehamel, 1973). Excluding runoff
due to impervious cover and (or) low-permeability soils or,
in undeveloped areas, runoff during heavy rainfall, about 50
percent of the precipitation reaching the surface is available to
recharge the aquifer system with the balance consumed by ET
(Rhodehamel, 1970).

Recharge to the groundwater system occurs by infiltra-
tion of precipitation through the soil column and percolation
through the unsaturated zone to the water table. This process
may be rapid, delayed, or diverted laterally in the subsurface
depending on the thickness and character of the variably
permeable soils and unsaturated geologic sediments, their
moisture content, and the intensity and duration of precipita-
tion. Precipitation that reaches the water table recharges the
groundwater, which flows through the complex assemblage
of sediments making up the Kirkwood-Cohansey aquifer
system. Groundwater flow is driven by hydraulic gradients
to discharge eventually to wetlands, swamps, streams, deep
confined aquifers, water-supply wells, and coastal waters.

Pinelands wetland vegetation has established itself in
type settings having favorable exposure, soil conditions,
precipitation, and depth to water table. The seasonal range in
depth to the water table below land surface is one of the criti-
cal determinants of areas suitable as wetland habitat. Spatial
variations in depth to the water table are, in part, a function
of the variability of the water-table altitude and land-surface
topography. In general, as local land-surface altitude increases
with distance from streams, depth to the water table also
increases, although not always proportionately.

Water budgets are useful for understanding the relations
among the major components of hydrologic systems and
system responses to changes, and for evaluating water-supply
availability and sustainability (Alley and others, 1999; Healy
and others, 2007; table 8). Monthly water budgets provide an
indication of seasonal changes in rates of water flux, which
are reflected in changes in water levels and streamflows.
Monthly rates of water flux across the land surface vary with
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monthly precipitation, which modulates the water available for
increases in soil moisture, E7, and aquifer recharge. Recharge
rates generally are highest during the non-growing season
and are inversely related to £7. Average non-growing-season
(November-February) recharge for the three study areas
ranged from 6.6 to 7.4 cm/mo. Recharge to the aquifer system
generally is lowest during the growing season, when monthly
ET is high; monthly E7T can sometimes exceed monthly
precipitation during these months. Average growing-season
(March-October) recharge for the three study areas ranged
from 2.6 to 3.7 cm/mo. If precipitation is relatively constant
through a seasonal cycle, as occurred during water year 2005,
monthly recharge will approximate a sinusoidal function peak-
ing during late winter/early spring. If precipitation fluctuates
more through a seasonal cycle, as occurred during water year
2006, monthly recharge may be more episodic; recharge rates
may be low during some colder months, as occurred dur-
ing March 2006, and higher during some warmer months, as
occurred during September 2006.

Monthly rates of water flux into and out of the aqui-
fer system vary primarily with rates of recharge. In basins
without large withdrawals or lateral export of water, monthly
recharge is balanced for the most part by stream base flow and
changes in groundwater storage. Stream base flow accounted
for 86 to 96 percent of the mean annual streamflow in the
three study areas. Average annual groundwater withdrawals in
the three study areas were small relative to average recharge
(0—11 percent) and, therefore, withdrawals had a small to
negligible effect on the annual water budget at the scale of this
analysis. The effect of withdrawals on the water budget can be
more substantial locally or when evaluated on a seasonal basis.

To understand how the Pinelands groundwater system
receives recharge and functions to support wetland water lev-
els and streamflow in specific areas, it is important to consider
all the existing site conditions, physical controls, and hydraulic
stresses in the aquifer system that may affect the various flow
paths between recharge and discharge areas. In the Pinelands,
the extent to which the groundwater system can be recharged,
and is hydraulically connected to the wetlands, swamps, and
streams, is in part controlled by the natural conditions that
have allowed wetlands and the various surface-water environs
to become established. Those conditions include physical and
hydraulic controls such as topography, the thickness and char-
acter of materials through which recharge and groundwater
flow take place, and the extent and thickness of fine-grained
geologic sediments, iron-cemented layers, and organic mate-
rial that may form barriers to flow. Knowledge of the presence
and functional relation of these controls on groundwater flow
and the water table is essential to understanding the potential
effects of future development on local wetland, swamp, and
stream ecosystems. The structure and distribution of hydro-
geologic units of varying permeabilities in the three study
areas described in the hydrogeologic framework developed by
Walker and others (2008) form the foundation for the ground-
water flow models being developed for the three study areas.
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Table 8. Summary of average annual water budget for Albertson Brook, McDonalds Branch, and Morses Mill Stream basins,

New Jersey Pinelands, 2005-06.

[All values are in centimeters]

Albertson Brook

McDonalds Branch Morses Mill Stream

Land-surface budget

Precipitation 113.8 121.4 113.6
Discharge to surface-water 0 0 0

Change in surface-water storage 0 0 -0.1
Change in soil-moisture storage 0.7 0.5 0.6
Direct runoff 6.1 1.4 5.1
Evapotranspiration 56.1 62 58.6
Surface-water withdrawals 0.1 0 0.6
Recharge 52.3 58.9 50

Groundwater budget

Base flow 49.3 39.5 31.1
Groundwater withdrawals 6 0 4.2
Leakage 0.7 13.1 0.2
Change in groundwater storage -1.2 -3.5 2.2
Artificial recharge 0.8 0 0

Groundwater inflow or outflow -0.4 -8.8 -11.4
Recharge 54.4 57.9 49.1

The water table describes the top of the complex three-
dimensional flow system. Overall, the groundwater flow sys-
tem has spatially varying water levels, hydraulic gradients, and
flow paths connecting recharge and discharge areas. The direc-
tion of horizontal groundwater flow that can be approximated
from the spring and summer 2005 water-table-altitude maps
generally follows the slope of the basin topography, eventually
flowing toward points of discharge at wetlands, swamps, and
surface-water bodies.

Water levels measured in the basin-monitoring wells
in each study area help to describe the head relations among
shallow, intermediate, and deep aquifer layers in and between
the upper- and lower-basin areas. These head relations reflect
hydraulic gradients that control the flow of groundwater
through the aquifer system. These gradients provide insight
into subsurface flow patterns, which can be categorized as
local or regional, as demonstrated by using numerical models
(Modica, 1996; Rice and Szabo, 1997).

Water levels in the basin-monitoring wells generally
indicated downward hydraulic gradients in upland-recharge
areas, horizontal hydraulic gradients toward the lower parts
of each basin, and upward gradients approaching points of
discharge such as wetlands, swamps, and streams, as shown in
the hydrographs for these well sites and the water-table maps.
Although deep, more regional groundwater flow normally
discharges to the surface in the lower parts of the drainage
basins, hydraulic stresses in the aquifer system induced by the

withdrawal of groundwater alters natural hydraulic gradients
and affects groundwater flow by diverting to wells some of the
flow that would otherwise reach the wetlands and streams.

Topographically high areas near lateral basin divides in
the lower parts of a drainage basin also act as groundwater
recharge areas and display downward hydraulic gradients.
Groundwater flow paths become increasingly short and shal-
low as the recharge areas become closer to the discharge
areas. As a result, flow paths that originate in areas near lateral
basin divides contribute more flow to wetlands and streams
downstream than those that originate closer to the points of
discharge. Discharge to larger streams in lower-basin areas are
largely supported by regional groundwater flow paths that are
deeper and longer than the shallow, localized flow systems;
therefore, these areas probably are less affected by seasonal
drought conditions than those areas supported by localized
flow systems.

Hydrologically, wetlands in the three Pinelands study
areas generally fall in one of two categories: (1) those located
in groundwater recharge areas and (2) those flanking streams
in groundwater discharge areas.

A recharge-area wetland was identified in the headwaters
of the McDonalds Branch basin. This wetland straddles a lat-
eral basin divide and is underlain by an extensive shallow clay
layer of finite areal extent. The hydraulic head of the ground-
water above this clay was as much as 3 m higher than that of
the underlying aquifer and also exceeded the altitude of the



water table immediately surrounding the clay, creating a sub-
stantial downward gradient and a large potential for recharge
to the underlying aquifer in and around the wetlands. Horizon-
tal hydraulic gradients across these wetlands also were large,
causing radial flow in the groundwater and surface water,

part of which discharges to the headwaters of the McDonalds
Branch. Farther downstream from the headwaters wetlands
where the clay is absent, the McDonalds Branch loses water to
the unconfined aquifer.

Wetlands that have established in groundwater recharge
areas are normally underlain by confining layers of clay and
(or) other low-permeability sediments capable of retarding the
vertical movement of water, which usually results in localized
groundwater mounding following recharge events. Ground-
water mounding above the confining bed causes downward
hydraulic gradients to develop between the water table and the
aquifer below, which can promote both vertical leakage and
lateral flow above the clay. Wetlands and streams that may
exist in groundwater recharge areas rely on runoff and (or)
recharge from precipitation, and shallow, local flow subsys-
tems that may develop above the confining beds. The extent
to which these wetlands are hydraulically connected to or
isolated from the underlying aquifers is site specific and vari-
able. During extended dry periods, the water table in recharge-
area wetlands may drop sufficiently to cause locally supported
stream discharge to cease. If the low-permeability sediments
are sufficiently leaky, or if they are of limited extent, the water
table may drain naturally and equilibrate with water levels in
the underlying aquifer. Regardless of the site- specific condi-
tions, wetlands in recharge areas are likely to be most sensitive
to extended drought conditions and less sensitive to stresses of
groundwater withdrawals from beneath the confining layers.

The most common wetland settings in the three study
areas are those that form in lowland areas where groundwa-
ter discharges to the surface. These discharge-area wetlands
generally develop in the lower parts of the Pinelands drainage
basins. Observed gradients and evidence of local and regional
flow subsystems in these areas indicated that flow patterns
were similar to those of the generic stream-aquifer flow sys-
tems described by Toth (1963) and Modica (1997). This type
of wetland is represented at 12 of the 15 hydrologic-transect
locations.

Many of the hydrologic characteristics common to the
discharge-area wetlands are revealed in the data analysis of
hydrologic transect ABHT4 in the Albertson Brook basin.
During wet periods at this location, groundwater discharges
to the surface along short, shallow flow paths originating near
the local, lateral basin divide in addition to deeper, longer
path groundwater flow originating in recharge areas farther
upstream in the basin. The vertical hydraulic gradient at the
upland well cluster of ABHT4 reversed from downward in
April to upward in September, whereas that in the middle well
cluster in the wetlands was upward in April and zero in Sep-
tember. The horizontal gradient from the uplands toward the
stream at this site, however, was similar in April and Septem-
ber, indicating continued horizontal groundwater flow from
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the uplands toward the stream. These conditions may indicate
that groundwater traveling along long, deep flow paths was
supporting the shallow groundwater in this area and helping to
maintain the horizontal hydraulic gradient toward the wet-
lands and stream. At other hydrologic-transect sites, such as
ABHTS, the April horizontal gradient between the uplands and
wetland was not maintained, but the same vertical-gradient
relation was present at the two well locations in the uplands
and at the edge of the wetlands. Wetlands that lie in ground-
water discharge areas generally flank streams in the lower
parts of the drainage basins where the water table is shallow.
They may be underlain by a broad range of sediments from
coarse sand and gravel to clay or other low-permeability sedi-
ments, peat, and (or) muck soils. These wetlands receive water
directly through infiltration of precipitation and indirectly
from groundwater flow as it discharges to the surface. This
groundwater discharge includes localized, relatively shallow
groundwater flow that follows short flow paths and has com-
parably short travel times and is, therefore, more likely to be
affected by seasonal drought conditions. The most persistent
groundwater flow that reaches these discharge-area wetlands
originates in the upper parts of the drainage basins and follows
longer paths of flow to points of discharge. Hydraulic gradi-
ents from the various recharge areas to points of discharge
control the relative contribution of groundwater that travels
along long and short flow paths. As the local groundwater
reservoir near a discharge-area wetland declines during dry
periods, it is likely that a smaller proportion of groundwater
discharge comes from local recharge and a larger proportion
is derived from upland recharge through the longer, more
regional groundwater flow paths.

During extended dry periods, near-stream wetlands in
upper-basin areas may shift from a condition of groundwater
discharge to one of groundwater recharge, as water levels
decline and start-of-flow locations move farther downstream.
Potential areas of such alternating recharge and discharge
conditions probably are best described by the intermittent
range of groundwater discharge to streams in the Albertson
Brook, McDonalds Branch, and Morses Mill Stream study
areas that is shown by the dashed lines in figures 15, 28, and
41, respectively.

The hydrologic-transect data from the three drainage
basins indicate considerable similarity in the way wetlands
and streams in the Pinelands were supported by groundwater
during the spring 2005 measurements. The hydraulic gradi-
ents observed near wetlands and streams in the lower parts
of the basins reflected the convergence of shallow, localized
groundwater flow from nearby uplands with the deeper, more
regional groundwater flow originating in recharge areas farther
upstream in the basins. These local flow conditions generally
were indicated by downward hydraulic gradients at the upland
end of the hydrologic transects; horizontal gradients toward
the swamps and streams; and upward gradients near points of
discharge at the wetlands, swamps, and streams.

In the summer of 2005, following a month with no
substantial recharge, synoptic water-level measurements along
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the same transects indicated changes in water levels, hydrau-
lic gradients, and flow paths compared to those in the spring.
These changes included a decline in upland and wetland water
levels, reduced downward hydraulic gradients near the upland
ends of transects or reversals in those gradients, and a decline
in the groundwater levels resulting in reduced horizontal
gradients and flow from local uplands to the wetlands. At the
same time, although water levels had declined, horizontal
gradients from the wetlands toward the stream often showed
little change from the spring conditions, indicating continued
flow toward the discharge points closest to the surface water.
When this occurred, downward gradients at the upland ends
of the transects were generally reduced or had reversed to
upward, reflecting a transition from shallow, localized ground-
water flow to deeper groundwater flow traveling along longer
flow paths contributing to the wetlands, swamps, and streams.
During the drought conditions of summer 2005, the horizontal
gradients from the wetlands toward the stream apparently were
sustained by upward flow due to increases in vertical gradients
beneath these lower-basin discharge areas. Although the con-
tribution of discharge to the surface from shallow groundwater
flow may be substantially reduced or cease during seasonal
drought, discharge from deeper groundwater flow traveling
along longer flow paths probably continues, albeit at lower
discharge rates, while supporting the water table at lower lev-
els. Those basins or parts of basins with small drainage areas,
those parts of drainage basins located in recharge areas, and
(or) those discharge-area wetlands that are transitional in the
intermittent stream reaches described previously, however, are
least likely to receive discharge from deep groundwater flow
traveling along longer flow paths.

The results of the study confirm that stream start-of-flow
locations vary seasonally and with changing climatic condi-
tions, as conceptualized by Modica (1998). In the Pinelands,
start-of-flow locations occur at the most upstream point where
groundwater begins discharging to the surface—a location
where the altitude of the water table first exceeds that of the
streambed. On the basis of long-term daily mean discharge
statistics at streamflow-gaging stations near or within each of
the three study areas, the hydrologic conditions in September
2005 in these areas represent an extreme low in water levels
and streamflow. Therefore, start-of-flow probably occurred far-
ther downstream in September 2005 than it would have during
a normal September. Start-of-flow locations identified on the
basis of field observations in the spring and summer of 2005
defined the intermittent stream sections between the measure-
ments made in the spring and summer of 2005 (figs. 15, 28,
and 41). Downstream from the intermittent stream segments,
base-flow discharge ratios (table 4) are lower and appear to
indicate more persistent groundwater discharge than the higher
discharge ratios farther upstream.

Water levels normally fluctuate with the seasons, but if
an extended period of drought should coincide with increased
stresses caused by groundwater withdrawals, the depth to
the water table, start-of-flow location, and stream discharge
all will be affected. The stream base-flow and water-level

measurements made during the spring and summer of 2005
indicate that some stream reaches may lose flow to the
groundwater. Surface water can be lost by moving directly

to the underlying aquifer when the hydraulic gradients are
downward from the surface water (Winter and others, 1998).
This also can occur when the stage in the stream is supported
above the local water table by low-permeability sediments or
when groundwater withdrawals reverse hydraulic gradients,
inducing vertical leakage through the streambed to the aquifer
below. Loss of streamflow also can occur indirectly when
pumping far from the stream captures groundwater flow that
might otherwise discharge to the stream (Jenkins, 1968). In
this case, vertical hydraulic gradients in the groundwater could
continue to indicate upward flow to the stream and (or) wet-
lands, but the hydraulic gradients and discharge to the surface
would be reduced, but not reversed. Base-flow discharge mea-
surements identified only one potential losing stream reach in
the three study areas; the losing reach was in the lower part
of the Albertson Brook basin where agricultural irrigation

is known to be active within 300 m of the stream during the
growing season. This water use might have contributed to the
apparent loss of streamflow, but the loss was approximately
equal to the acceptable error for the discharge measurement.
Limited data and the inherent difficulties of measuring stream
discharge at some Pinelands stream locations made the results
inconclusive.

Other areas of potential losses from surface water were
identified by water-level differences that indicate downward
hydraulic gradients that are indicative of potential losses
from surface water to groundwater. Some examples include
the locations of hydrologic transects MBHT1 and MBHTS5
(fig. 27) in the McDonalds Branch basin and MMHT?2 in the
Morses Mill Stream basin (fig. 40). Other possible stream
losses are indicated by water-table contours showing that the
general direction of groundwater flow crosses a stream. An
example is along the upper reaches of the McDonalds Branch
where groundwater contours indicate that groundwater flow
probably bypasses the McDonalds Branch and emerges as
groundwater discharge farther downstream (fig. 23). A similar
area in the lower part of the McDonalds Branch is illustrated
by water-table contours near hydrologic transect MBHTS.
Upstream from this area, groundwater flow that crosses
beneath the stream channel probably induces vertical leakage
from the stream, causing losses in streamflow, and this water
follows the path of groundwater flow into the adjacent basin
as illustrated with arrows indicating flow leaving the basin in
a westerly direction (fig. 23). Although it was possible to iden-
tify potential areas of losses from streamflow using water-level
data, these losses could not be confirmed or quantified because
either no discharge measurements could be made in those
areas, or the losses were too small to be discernable given the
limited ability to make accurate discharge measurements as a
result of the site conditions.

The Albertson Brook and Morses Mill Stream basins
have the greatest reported groundwater use of the three
study areas. The use of groundwater in the vicinity of the



McDonalds Branch study area is limited to isolated domestic
wells, two public-supply wells, and two irrigation wells, and
because development there is minimal and the study area is
composed predominantly of State-owned land, the associated
hydraulic stresses appear to have been comparatively small
during this study.

Considering the range of hydrologic complexities identi-
fied in the three study areas, general hydrologic characteristics
of the Pinelands that are important in evaluating the relations
between surface water (including wetlands) and groundwater
include the following:

* Precipitation is the primary source of recharge to all
parts of the Kirkwood-Cohansey aquifer system.

* Generally, aquifer-system recharge areas are topo-
graphically high (upland) areas and discharge areas
(except groundwater-withdrawal areas) are topo-
graphically low areas such as at wetlands, swamps, and
streams.

* Soil and geologic sediment layers of contrasting per-
meability are present in some areas and affect infiltra-
tion, groundwater-flow patterns, interactions between
groundwater and surface water, and the degree to
which stressed aquifer layers are hydraulically con-
nected with the water table near the wetlands and
surface water.

 Shallow groundwater flow supports water levels in
local wetlands and surface water during wetter periods.
Deeper, more regional groundwater flow supplements
the shallow discharge to lower-basin areas and con-
tinues to support water levels, providing the princi-
pal groundwater discharge to wetlands and streams
in those areas as local water levels decline during
extended dry periods.

» Wetlands can generally be characterized as those in
upland groundwater recharge areas where downward
hydraulic gradients persist and, more commonly, those
wetlands flanking streams in groundwater discharge
areas where upward hydraulic gradients persist. During
extended dry periods, near-stream wetlands in upper-
basin areas may transition from areas of discharge to
areas of recharge, as water levels decline and start-of-
flow locations move progressively farther downstream.

Summary and Conclusions

The New Jersey Pinelands area is a 4,450-km? National
Reserve in southern New Jersey that overlies the Kirkwood-
Cohansey aquifer system in the Atlantic Coastal Plain. This
ecologically diverse area supports a variety of habitats and
is home to many threatened and endangered species. The
landscape is covered with a patchwork of cedar swamps;
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other wetlands; coniferous, hardwood, and mixed forests;
agricultural areas; and developed residential and commercial
areas. Demand for water from the Kirkwood-Cohansey aquifer
system is increasing as development in the area increases.

The Pinelands Commission has been tasked with evaluat-
ing increasing water-supply demands in the Pinelands and the
potential for adverse effects on the hydrologic and ecological
systems of the area. An investigation of the relations among
key hydrologic and ecological attributes was needed in order
to (1) assess the effects of groundwater diversions from the
Kirkwood-Cohansey aquifer system on streams and wetland
water levels within the Pinelands and (2) determine the poten-
tial ecological effects of reduced streamflows and water levels
on aquatic and wetland communities, respectively. Therefore,
the U.S. Geological Survey (USGS), in cooperation with the
Pinelands Commission, began a multi-phase hydrologic inves-
tigation in 2004 to characterize the hydrologic system support-
ing the Pinelands aquatic and wetland communities.

Three drainage basins, the Albertson Brook, McDonalds
Branch, and Morses Mill Stream basins, were selected for
detailed hydrologic assessment to provide the information
needed to develop groundwater flow models that can be used
to predict hydrologic responses to increased groundwater
withdrawals. The first phase of the hydrologic assessment was
a comprehensive hydrogeologic framework investigation of
each study area. The second phase of the assessment, and the
subject of this report, was an evaluation of the groundwater
and surface-water hydrology of each of the three selected
drainage basins studied. The major objectives included:

1. compiling available hydrologic data;
2. collecting additional hydrologic data;

3. characterizing the function of the hydrologic
system, including the interaction of the Kirkwood-
Cohansey aquifer system with wetlands and
surface water;

4. quantifying the water budget for each drainage
basin; and

5. providing the hydrologic data and interpreta-
tions needed to construct predictive groundwater
models.

The report describes the methods used to establish new
data-network sites and to collect and analyze the hydrologic
data. In the data-collection phase of the study, previously
available and newly acquired hydrologic and climatologic
information was compiled. The data network included
471 wells, 26 of which were continuous water-level monitor-
ing sites, and 106 surface-water sites, including 4 recording
streamflow-gaging stations; the continuous records were col-
lected during 2004—06. During this period, area groundwater
levels fluctuated from about 0.8 to 1.8 m in upland recharge
areas and from about 0.4 to 1.1 m in lowland discharge areas.
Stream levels at base flow fluctuated over a smaller range
during the same period, generally from almost no change
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where levels are controlled by channel conditions to as much
as 0.4 m elsewhere. Annual mean streamflow in and near

the study areas for water years 2005 and 2006, respectively,
ranged from 88 to 101 percent and 83 to 106 percent of the
long-term mean annual discharge. These values are well
within the range of annual mean flows of streams in and near
the study areas.

In addition to the continuous-record data collection,
network sites were used to make synoptic measurements of
groundwater levels, stream stage and stream discharge, and
start-of-flow locations during spring and late summer 2005.
These data were analyzed in the context of the previously
published hydrogeologic framework of the Kirkwood-Cohan-
sey aquifer system and in consideration of other physical and
hydrologic characteristics that could affect water levels and
groundwater flow and the interactions of groundwater with
wetlands and surface water. The geology, geomorphology,
and land-surface characteristics of each basin control how and
to what extent recharge enters and flows through the ground-
water system, ultimately discharging to surface water. The
water-level altitudes and hydraulic gradients that develop in
the aquifer system control the rate and direction of ground-
water flow and its discharge. The hydrologic characteristics
of and water use in and near each basin affected the ground-
water system and are reflected in the hydrographs of daily
mean groundwater levels and streamflow as they responded
to variations in precipitation and recharge during the study
period (2004-06). Excluding water lost to evapotranspiration
and the storm runoff that contributes directly to streamflow,
the portion of precipitation that recharges the aquifer system
(about 50 percent) supports groundwater flow along various
flow paths toward discharge areas and eventually contributes
to stream base-flow. During wet periods, higher water levels
resulted in base flow that likely included a larger proportion of
groundwater discharge flowing along shorter, more localized
flow paths and typically higher streamflows than during dry
periods. During base-flow conditions following extended dry
periods, streams and wetlands were supported principally by
groundwater flowing along longer flow paths and less by shal-
low local groundwater flow, resulting in lower water levels in
wetlands and streams and reduced streamflow.

Two contrasting hydrologic extremes representing base-
flow conditions were documented with synoptic water-level
and streamflow measurements and observations of start-of-
flow locations in streams during spring and late summer 2005.
Maps developed for each study area show water-level altitudes
for these two periods, depth to the water table during the
spring measurement, and distribution of base-flow discharge
during the spring and summer synoptic measurements. Within
mapped wetland areas, the depth to the water table ranged
from zero to 4.5 m. These ranges likely are representative of
average conditions throughout most of the Pinelands. The per-
centage of basin area characterized by the depth to the water
table of less than 0.5 m ranged from 17 to 48 percent and var-
ied with the percentage of the basin area mapped as wetlands.

The synoptic measurements made during spring and late
summer 2005 also included water levels and hydraulic gradi-
ents measured in wells situated along 15 hydrologic transects,
each one extending from in or near the uplands through the
wetlands to the streams. A comparative analysis of hydrologic
conditions during the contrasting periods of the synoptic mea-
surements revealed the dynamic nature of water-table depth,
groundwater flow patterns, sources of flow to wetlands and
streams, and streamflow characteristics.

Hydrologically, wetlands in the three Pinelands study
areas can be generally characterized as being either (1) those
located in groundwater recharge areas or (2) those flanking
streams in groundwater discharge areas. Seasonally, the source
of water reaching wetlands depends on whether the wet-
lands are in groundwater recharge or groundwater discharge
areas. Recharge-area wetlands and surface-water bodies are
supported by local precipitation and local groundwater that
moves along short flow paths and may cease to discharge to
the surface locally during dry periods. Conversely, discharge-
area wetlands and streams continue to be supported by deeper
groundwater that moves through longer, regional flow paths
after shallow groundwater levels have declined and discharge
from the shallow, local groundwater system is reduced or has
ceased altogether.

Basin-wide water budgets, in which inflows are balanced
by corresponding outflows and changes in storage, were devel-
oped for each study area to quantify the major components
of the hydrologic cycle. Human activities that can affect the
natural system, such as groundwater withdrawals and artificial
discharge, also are included in the budget. Both a land-sur-
face-based equation that describes gains from and losses to the
land surface and a groundwater-based equation that describes
gains from and losses to the underlying Kirkwood-Cohansey
aquifer system provided independent estimates of recharge
and a basis for comparing the relative importance of the vari-
ous water-budget components. Monthly rates of water flux
across the land surface vary with monthly precipitation, which
modulates the water available for increases in soil moisture,
ET, and aquifer recharge. Average annual precipitation in the
three study areas during water years 2005-06 ranged from 114
to 121 cm. Average annual £7 was about 50 percent of annual
precipitation, and ranged from 56 to 62 cm. Average annual
recharge ranged from 50 to 59 cm and was generally highest
during the non-growing season, when E7 was low. Groundwa-
ter withdrawals in the three study areas were small on average
(0—11 percent of recharge), and therefore, withdrawals had
a small to negligible effect on the average water budgets of
these basins at the scale of this analysis. The effect of with-
drawals on water budgets can be more substantial locally or
when evaluated on a seasonal basis.

Collectively, these interpretations describe the hydrologic
variability in the three Pinelands study areas and provide the
information needed to calibrate groundwater flow models for
those areas. The following conclusions highlight other impor-
tant hydrologic conditions identified during this study:



The soils and sediments in the unsaturated zone and
the sediments in the aquifer system underlying the
Pinelands have varying textures and permeability
that affect patterns of infiltration, recharge, ground-
water flow, and discharge to wetlands, streams, and
supply wells.

Recharge replenishes the aquifer system and contrib-
utes to groundwater flow, most of which moves to
wetlands and surface water where natural discharge
occurs. Recharge rates are generally highest during
the non-growing season and are inversely related to
evapotranspiration rates.

Groundwater-level fluctuations increase with dis-
tance from surface water.

Stream-stage hydrographs compared closely with
those of groundwater levels in nearby wells as a
result of the close relation of groundwater discharge
and stream base flow.

Depth to the water table ranges from zero at points
of groundwater discharge, such as ponds, streams,
and swamps, to several meters in topographically
high areas.

The depth to the water table in the wetlands changes
seasonally in response to variable evapotranspira-
tion, precipitation, infiltration, and groundwater
recharge.

Wetlands in groundwater recharge areas are typi-
cally characterized by downward hydraulic gradients
causing local water levels and streamflow to be
entirely dependent on local precipitation and shallow
groundwater flow, probably making recharge-area
wetlands sensitive to drought conditions.

Recharge-area wetlands and streams may lose water
to deeper aquifer layers as a result of persistent
downward hydraulic gradients that occur naturally
or can be induced by pumping stresses, lowering
the water table and reducing or eliminating potential
streamflow.

Wetlands that lie near surface-water bodies in

the lower part of a drainage basin typically are in
groundwater discharge areas that generally display
persistent upward hydraulic gradients beneath wet-
lands and surface water.

Although groundwater withdrawals can stress the
groundwater flow system and affect water levels,
the distribution of low-permeability sediments in
the subsurface controls the degree to which stressed
aquifer layers are hydraulically connected with the
water table.
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* Hydraulic gradients near wetlands are dynamic, and
changes in these gradients (and consequently poten-
tial groundwater-flow directions) were observed
under differing hydrologic conditions.

* In general, horizontal gradients along the hydrologic
transects indicated lateral flow toward wetlands,
and vertical gradients indicated upward flow toward
points of discharge, such as wetlands and streams
(with some exceptions observed during the summer
2005 measurement).

* Low-permeability zones can support a transient,
mounded local water table in some areas.

The results of this study indicate that the precision of water-
table maps in and near wetlands could be improved by know-
ing the location, extent, and characteristics of areas where
mounding of the water table occurs. Some Pinelands wetlands
have been shown to be supported by localized mounding of
the water table above relatively low-permeability sediment
layers, which can act to isolate the water-table hydraulically
from the deeper groundwater system. Because the location,
extent, hydrologic characteristics, and relation of these com-
monly localized wetlands to the water table are not well under-
stood, their vulnerability to stresses placed on the hydrologic
system is difficult to assess. Additional work could identify the
location, extent, and characteristics of the low-permeability
layers that create and maintain these wetlands and their rela-
tion to the larger groundwater system. Indicators could be
developed and used to identify those types of wetlands that
rely on mounded water tables in other areas.

The results of this study also show that quantifying
possible losses of streamflow resulting from either natural
hydrogeologic conditions or groundwater withdrawals using
conventional streamflow measuring methods is difficult
because Pinelands stream channels are commonly irregular,
may be obstructed locally, or may have low or irregular veloc-
ity profiles. These conditions not only affect the accuracy of
the streamflow measurements but also can cause localized
gains and losses in flow; therefore, the locations of stream-
flow measurements are critical when evaluating differences in
base flow along a stream reach. Additional work to determine
potential areas of streamflow loss using measurements of
hydraulic gradients, fluxes, and streambed permeability along
losing stream reaches would substantially improve measuring-
site selection and the quantification and evaluation of losses of
streamflow in Pinelands streams.
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For additional information, write to:
Director

U.S. Geological Survey

New Jersey Water Science Center
Mountain View Office Park

810 Bear Tavern Rd., Suite 206
West Trenton, NJ 08628

or visit our Web site at:
http://nj.usgs.gov/
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