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Summary 

The objective of this work is to propose and evaluate specific algorithms using—as input—
transformed hyperspectral (HS) data in order to obtain novel forms for output surfaces, and then 
use these output surfaces to improve the performance of candidate ground view (GV) anomaly 
detection systems.  

To date, a significant amount of research has focused on classification and detection algorithms 
using parametric HS data models as foundation for algorithm development, while little has been 
done to address the underlying fundamental problems that affect algorithm performances.  One 
goal of this work is to identify a short list of fundamental performance challenges for existing 
local and global anomaly detection algorithms, and then use this list to find from a large 
population of scoring algorithms those metrics that could perform more robustly over these 
fundamental challenges.  Another goal is to introduce to the HS research community the state of 
the art in global anomaly detection, which does not require segmentation of the HS image data. 
Global anomaly detection often requires segmentation in the prior art.        

This report identifies three underlying key factors in spectra—spectral magnitude, spectral shape, 
and spectral mixture—that can interfere with detection performance, as observed through sliding 
small windows.  

A data transformation method is introduced to reduce algorithm sensitivity to spectral 
magnitude, while preserving high sensitivity to spectral shape; both properties are desired for 
effective anomaly detection.  In addition, an asymmetric scoring metric is introduced to handle 
spectral mixtures, where each scoring metric uses two transformed spectral samples.  

Finally, this report presents a fully operational GV global anomaly detection algorithm and 
evaluates the approach using real HS data cubes, where some targets are present in a natural 
clutter background under different illumination and atmospheric conditions.  The uniqueness of 
this GV anomaly detection approach is that a random sampling model is proposed as a parallel 
process in order to mitigate the likelihood that samples of targets are erroneously used as clutter 

spectral references during imagery testing.  The cumulative probability P
~

of taking target samples 
by chance during parallel processing were modeled by the binomial distribution family, such that 

  MNqP  11
~

, where N  is the number of randomly selected nn  blocks of data, taken from 
data cube X  (per repetition or process), M  is the number of parallel processes, and q  (the only 

target related parameter) is a proportion (an upper bound guess) of the maximum total number a  

of all target pixels over the total number of pixels (RC) in X , i.e., 





 

RC

a
q .  Note that q  is 

invariant to target scale, target shape, or to the number of targets in X . For instance, 05.0q  

indicates that targets in the imagery area are not expected to cover more than 5% of the entire 
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image area in X . Choosing a sensible q for the given application, one can use   MNqP  11
~

 to 

assist on tradeoff decisions between N and M for a desired (small) P
~

 [e.g., 01.0
~ P )]. 

Moreover, this report shows how N and M can be automatically set using a simple guideline, and 
how to implement an adaptive cutoff threshold method for the GV global anomaly detection 
algorithm suite. 

Experimental results, using no prior information about the clutter background, are presented 
from having the GV global anomaly detection approach testing multiple examples of real HS 
data cubes, showing favorable outcomes. 
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1. Introduction 

1.1 Background 

The field of spectroscopy examines the electromagnetic radiation that each unique material 
reflects, absorbs, and emits.  The electromagnetic spectrum is sampled at a sufficiently large 
number of spectral bands to create a discrete spectral signature for different materials.  In theory, 
each spectral signature should be unique for each unique material owing to its molecular 
structure.  The ability to identify, within certain limits, physical materials from their spectral 
signature is the basis behind remote sensing imaging spectroscopy (1). 

Remote sensing imaging spectroscopy involves using an airborne or space-borne platform with a 
sensor that records the reflected or emitted electromagnetic radiation.  The sensor collects the 
radiation over a wide range of contiguous spectral bands, with each band corresponding to a 
unique spectral value.  As the sensor moves above a region it records the electromagnetic 
radiation from a narrow swath of land, in many different spectral channels.  The field of view of 
the sensor is broken into hundreds of thousands of pixels, with each pixel representing from less 
than one to many squared meters of the region of interest depending on the spatial resolution of 
the sensor and the height of the sensor during the data collection.  A collection of spatial-spectral 
images is put together resulting in a hyperspectral (HS) data cube, where the length and width 
represent the spatial dimension, and the depth represents the spectral dimension (2).   

The resulting HS data cube consists of hundreds of thousands of pixels.  Each pixel has tens or 
hundreds of data points, each point corresponding to a unique spectral value.  In theory, the 
spectral signature of each pixel should uniquely characterize the physical material in that spatial 
land area.  In practice, the recorded spectral signatures will never be identical for samples of the 
same material.  Owing to the different illumination conditions, atmospheric effects, sensor noise, 
etc., the resulting spectral signatures for HS data pixels containing similar materials will exhibit 
spectral variability.   

1.2 Application of Statistical Models 

Each spectral signature can be represented by a multidimensional vector, where each vector 
dimension represents a different spectral band.  The spectrum of each pixel in a HS data cube is a 
vector lying in a multidimensional space.  All pixels containing the same material and roughly 
the same amount of illumination will have their vector spectra closely grouped within the vector 
space, forming a sort of data cloud in the multidimensional space.  The overall data space may 
contain many different homogeneous data clouds corresponding to the different materials in the 
HS data cube.  Provided there are enough pixels in the data cube, or sample, this spectral 
variability can be modeled as a multivariate probability distribution. 



 

4 

Accurate models for the spectral variability of HS data are useful in many applications.  Indeed, 
these models can be used to develop and evaluate algorithms for classification and detection, 
select proper thresholds, and generate synthetic data. 

Classification algorithms use probability distribution models to group the pixels of like material 
into spectrally homogeneous data sets.  Classification algorithms label each pixel in such a way 
that similar material pixels have the same label and the data can be segmented into spectrally 
homogeneous clusters.  The material of each cluster can then be determined using available 
ground truth or comparing the statistical nature of the clustered pixels to that of a library of 
known materials.   

Classification of HS image data has many applications.  The classification labels can be used to 
determine the number of pixels of a particular material type in a scene, and since each pixel 
covers a spatial region, it is related to the amount of a material present.  In commercial 
applications, this could be used, for instance, to compute farming yields, where the number of 
pixels of a specific crop could be used to estimate the amount of crop to be produced.   

Detection algorithms use the probability distribution models to find pixels which contain a 
specific material of interest (target).  The target pixels are considered rare relative to the number 
of pixels, which do not contain the target.  Otherwise classification algorithms are used to 
segment the pixels.  When the exact target signature is not known a priori, then the probabilistic 
models can be used to find pixels which are spectrally anomalous.  In applications of anomaly 
detection algorithms, one tries to find objects that are significantly different spectrally from the 
other pixels within a scene. 

Probabilistic models are also useful for generating synthetic HS data.  The resulting synthetic 
data would have the same spectral variability as real world data and can be used to evaluate the 
classification and detection algorithms under different conditions. 

Classification and detection applications require accurate statistical models of the HS data to be 
effective.  Without accurate models, the algorithms’ performance is significantly reduced. 

1.3 Statistical Models for HS Data 

Statistical signal processing uses a finite number of samples to model the probability of the data.  
The multivariate model defines the probability density function of the data.  The effectiveness of 
a data model depends upon how accurately it represents all aspects of the data and how widely it 
applies. 

Most utilized models are parametric, where the shape of a particular model is controlled by a set 
of parameters.  If all of the parameters are known a priori, then the data model is completely 
known.  When the parameters are not known a priori, they need to be estimated from the 
available data set. 
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For HS data, where the model and model parameters are not known a priori, typically a model 
for the spectral variability of the pixels is proposed and the model parameters are estimated using 
an entire HS dataset.  The goal is to model the multivariate spectral variability of a particular 
dataset as accurately as possible, where each pixel  CcRrK

rc  1;1 Rx  has K spectral 

bands, and the complete data cube KCR RX  consists of RC  pixels.  The objective of 
statistical modeling of HS data is to propose a spectral probability distribution model and 
estimate its parameters: 

Given Multivariate Data:   





















RCRR
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xxx
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xxx
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  , ,  ,

           

  , ,  ,

  ,   ,  ,

21

22221

11211









                 

Proposed Multivariate Model:   ;~ xx Krc f  

Estimate Model Parameters:    ̂  

Since it is not possible to know the exact distribution of the data, real world processing of HS 
data must rely on limited information.  The accuracy of the model parameter estimates depends 
on the number of HS data vectors.  Due to the variation in spectral illumination, the different 
types of material present during each data collection, and other factors, only data collected 
during a single collection can be used to estimate the parameters of the multivariate model.  In 
other words, the models must be determined in an adaptive manner from the HS data directly, 
with each HS dataset having different model parameters (3). 

The primary model used for the spectral variability of HS image data is the multivariate normal 
distribution.  While this model might do an adequate job modeling the main body of the data, 
rarely does it do an adequate job in modeling the tails of the distributions (3, 4).  For detection 
applications at a low probability of false alarms, with hundreds of thousands pixels in a HS data 
cube, incorrectly classifying a few hundred pixels might not have a large effect on the overall 
classification of a scene.  However, if, for example, a detection threshold is set with the 
expectation of one or two false alarms in the scene, and hundreds of pixels score higher than the 
threshold and are incorrectly labeled as targets, then the results of the detection algorithm 
become unreliable and of little value. 

1.4 Relevant Work 

In practice, it has been observed (5) that finding accurate models for high dimensional HS data 
may be unrealistic.  Implementation of a parametric classifier for HS data is often cumbersome, 
it requires an unreasonably large set of training data to adequately characterize the 
multidimensional probability surface of each scene or target set, and it is difficult to store the 
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description of such a surface unless it is well behaved (5).  It has also been observed (6) that it is 
extremely difficult to obtain an accurate density estimate nonparametrically in high-dimensional 
spaces.  For these reasons, general class-conditional distribution functions are often replaced by a 
more tractable class-conditional distribution function for classification or detection using HS 
data.   

Examples of parametric multivariate-normal-based target detection algorithms are the matched 
filter (7), the kernel spectral matched filter (8), and linear mixture models (9–11).  Another main 
limitation of these representative parametric algorithms, in addition to assuming normality for 
HS data, is that they require a known target signature, and reliable target signatures are difficult 
to ascertain due to spectral variations already discussed in section 1.1.   

An alternative approach that does not require a spectral library for targets and has potential for 
invariance to atmospheric and illumination effects is anomaly detection, global or local.     

Existing global anomaly detectors require that the HS data cube is first segmented into its 
constituent material classes.  Then detection is achieved by applying a cutoff threshold and 
automatically locating pixel clusters with pixel values above the threshold, representing the 
outliers of these classes.  These hybrid algorithms vary in the method of segmentation, but tend 
to use maximum likelihood detection under the multivariate normal distribution.  Furthermore, 
since the correct number of material classes in the scene is unknown a priori and needed by 
segmentation algorithms, this number is an unknown parameter that significantly affects the 
output results of such algorithms.  The stochastic expectation maximization clustering algorithm 
(12) is a related example, see also reference 13.   

Existing local anomaly detectors process small (nn) windows of the HS data, where data 
sampling is not done in X  (see subsection 1.3); all the rcx  ),,1;,,1( CcRr    in X  are 

used; modeling is only done at the level of the nn  windows, where n << R and n << C (<< 
denoting many orders of magnitude smaller than); and at the level of the pixel area surrounding 
these windows.  Blocks of data ( nn  windows) that are spectrally different from pixels 
surrounding them score high using an effective detector in contrast to blocks of data that are not 
spectrally different from their surrounding pixels.  After the detector scores the entire X , it 
yields a 2-dimensional (2-dim) surface Z  [a    1 1  nCnR  array of scalars], where a 

cutoff threshold is then compared to the pixel values in Z .  Pixels having values greater than the 
threshold are labeled local anomalies.  These are all features of existing anomaly detectors.   

The most popular local anomaly detector in the HS research community is based on a maximum 
likelihood estimation under the multivariate normal distribution; this detector is commonly 
known as the Reed-Xiaoli (RX) algorithm (14).  A kernelized version of RX has been also 
proposed (15).  For nonparametric local anomaly detection, the most prominent multivariate 
detectors use classic methods, such as, Fisher’s linear discriminant (15) and principal component 
decomposition (16, 17).   
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Because local anomaly detectors (parametric or nonparametric) process small windows across 
the spatial area of X , these algorithms are vulnerable to transitions across distinct regions in X .  
Region transition events occur once a block of data representing a specific material is compared 
to a surrounding mixture of pixels representing the same material and one or more additional, but 
distinct, material types.  This sort of events can augment the probability of false alarms in X  
because a spectral sample consisting of pixels of two or more material types is, indeed, different 
from a spectral sample consisting of pixels of a single material.  Since existing local anomaly 
detectors do not directly account for local transitions of distinct regions, there is a need to 
address the problem.   

Finally, local anomaly detectors are limited to applications where the scales of targets in X  
(relative sizes of targets to other objects in the imagery) are expected to be known a priori.  This 
prior knowledge is available in air-to-ground (top view) detection applications, where the sensors 
look straight down at the ground at a known altitude.  However, this prior knowledge is not 
available in ground-to-ground (ground view (GV)) detection applications, where target scales are 
dependent on the range between sensors and targets.  If the goal is to detect targets as spectral 
local anomalies in the scene, one has to ensure that a small window in the imagery (inside 
window) is reasonably separated from its surrounding pixel region (outside window) to avoid 
having a block of target data compared to surrounding pixels that also belong to the same target.  
So, using the inside-outside window method for sample comparison, properly setting the 
separation gap between the inside and outside windows must be done a priori and is a critical 
factor, completely removing GV anomaly detection applications, as candidate applications using 
inside-outside windows.  An alternative sampling method is needed for GV anomaly detection 
applications. 

HS image data offer clear advantages over conventional broadband images—each pixel has K 
bands in HS image data versus one band in broadband images, but with current detection 
algorithm vulnerabilities, the topic of robust target detection is still open for research.   

1.5 Overview of This Work 

This report focuses on the development and evaluation of an algorithm suite for GV anomaly 
detection applications using HS data cubes.  In this context, a target is any manmade object in a 
natural clutter background, whose spectral signature is not available, and if available, is 
considered unreliable and is not used in the approach.   

An algorithm suite consists of a host of techniques each performing a specific task in order to 
achieve the overall goal of detecting, autonomously, the presence of targets in the scene as 
spectral anomalies in the HS imagery, yielding in the process a low false alarm probability.   

If targets are present in the scene, each target is assumed to be represented by multiple pixels rcx  

( CcRrK
rc  1;1; Rx , see subsection 1.3) in data cube X  ( KCR RX ), and cover an 

area in X  greater than or equal to nn , where n << R  and n << C.   
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This report analyzes X for GV anomaly detection applications by sliding an nn  window and 
proposes to test the observed spectral sample in the nn  window against N randomly selected 

nn  blocks of data taken from X .  This testing approach addresses the uncertainty on target 
scales, as discussed in subsection 1.4 for local anomaly detectors, by eliminating the need for an 
outside window.  It also automatically addresses the global anomaly detection problem without 
the need to use unreliable segmentation techniques in X , as described in subsection 1.4 for 
global anomaly detectors.   

However, as also discussed in subsection 1.4, any testing approach that uses sliding windows is 
vulnerable to transitions across distinct spectral regions in X . 

This report establishes that using a data transformation method that maps multivariate spectral 
samples to univariate samples and applying univariate detectors to test the transformed samples 
can significantly reduce the probability of false alarms in X compared to multivariate anomaly 
detectors.   

The use of statistical models for the development of detectors described in this work is purely for 
motivation of particular formulas for calculating anomaly output surfaces.  In particular, 
formulas from the RX algorithm (14) and the Asymmetric Variance Test (AVT) algorithm (18) 
will be utilized in this report. 

Using both RX and AVT algorithms, this report presents a fully operational GV anomaly 
detection algorithm suite and evaluates the suite using real HS data cubes, where targets are 
present in a natural clutter background under different illumination and atmospheric conditions.   

The remainder of this report is organized as follows:  section 2 presents our approach to GV 
anomaly detection, where, subsection 2.1 discusses the Surface Optics Corp. (SOC)-700 HS data 
used for this experiment, and subsection 2.2 proposes a repeated (parallel) random sampling 
approach—modeling this approach by a binomial distribution—and discusses how this sampling 
approach can be implemented in the context of anomaly detection; section 3 summarizes the 
results using the GV anomaly algorithm to test real GV HS imagery; and section 4 draws some 
conclusions and suggests follow up work. 

2. Autonomous Sampling of the Cluttered Environment 

This section addresses the problem of anomaly detection from a ground-to-ground viewing 
perspective.   

If an anomalous object (target) is defined as one made of a material that is spectrally different 
from all the materials composing its natural clutter background, then the question we attempt to 
answer in this section is the following:  Can an algorithm suite be developed to automatically 
detect (or accentuate) the presence of targets in a cluttered environment, given that the imagery 
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was recorded from the ground-to-ground viewing perspective and no prior information is known 
about the various materials composing the cluttered environment, the number of targets present 
in the scene (or if targets are present at all), the scales of targets (their relative sizes in the 
imagery), shapes and material types of these targets, the illumination environment, and 
atmospheric conditions? 

Anomaly detection using GV imagery is significantly harder to address than using TV imagery, 
because the distances between the sensor and objects in the scene are unavailable for GV 
imagery, thus, adding one more unknown variable (target scales) to the anomaly detection 
problem.  Note, for instance, that small targets at closer range will look large—and vice versa, 
and multiple targets in the same scene may have different scales.  The sampling method using a 
fixed dual rectangular window (16) would not be effective in this application because, in the 
event that target samples are observed in the inside window, it cannot be guaranteed that the 
samples observed through the outside window will always belong to the clutter background.  
Therefore, in the event that target samples are simultaneously observed through both inside and 
outside windows, the detector will likely suppress the pixels representing that window location in 
the resulting output surface. 

To circumvent target scale uncertainties, we propose to automatically take N blocks of data from 
random locations in the imagery and, since the targets are expected to cover a significantly small 
area in the imagery, label these data sets as spectral references of clutter background.  There is, 
however, a probability that, if targets are present in the scene, some of these spectral reference 
sets will be contaminated, i.e., one of these spectral reference sets includes target pixels.  In 
order to decrease the probability of contamination, we propose to repeat independently this 
random sampling process M number of times and will show that the probability of taking target 
samples by chance during these repetitions can be modeled—approximately—by the Binomial 
distribution family.  We will use this approximation to assist on tradeoff decisions. 

2.1 Description of the SOC-700 Hyperspectral Data 

The GV imagery used for this work was recorded using the SOC-700 visible to near infrared 
(VNIR) HS spectral imager from Surface Optics Corporation.  The system produces HS data 
cubes of dimensions 640 R  by 640C  pixels by 120K  spectral bands between 0.38 and 
0.97 m.  The sensor is commercially available off the shelf (20).   

Figure 1 depicts samples of GV imagery recorded with the SOC-700 HS imager; each pixel in 
any of the four cube examples corresponds to the average of all the band (120) values at that 
pixel location. 

Data cubes Cube 1, Cube 2, and Cube 3 were collected during the month of June 2004 in Fort 
Hunter Liggett, CA; data cube Cube 4 was collected during the month of April 2008 in Picatinny 
Arsenal, NJ.  From actual ground truth, it is known that the scene in Cube 1 (figure 1) contains 
three motor vehicles and a standing person in the center of that scene (i.e., two pick-up trucks to 
the left in proximity to each other, a man slightly forward from the vehicles in the center, and a 
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sport utility to the right).  The cluttered environment in Cube 1, Cube 2, and Cube 3 is dominated 
by Californian valley-type trees and/or terrain. Cube 2 features the same sport utility vehicle and 
the same person stand in proximity to each other; they are located in the same valley, but at a 
different area from the one in Cube 1.  Cube 3, although recorded in the same general geo-
location of Cube 1 and Cube 2, depicts a significantly more complex scenario, where, from 
actual ground truth, it is known that a sport utility vehicle is in the shades of a large cluster of 
trees.  Portions of the shadowed vehicle can be observed near the center in Cube 3.  Cube 4 was 
recorded in a wooded region in Picatinny Arsenal, NJ, where (according to the available ground 
truth) a sport car is located behind several tree trunks and, hence, can be only partially observed 
in this heavy cluttered environment; see figure 1 (left-center in Cube 4). 

                                        Cube 1                                            Cube 2 
 

 

                                   Cube 3                                               Cube 4 
 

Figure 1.  Examples of GV imagery.  An effective GV anomaly detection algorithm suite would allow a 
machine to accentuate the presence of targets, while suppressing the cluttered environment, 
using no prior information about what constitutes clutter background or target in the imagery. 
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The four data cubes in figure 1 are independently displayed as intensity images after linear 
mapping the gray scale of each to the range 0–255.  Pixel intensities shown in each individual 
surface is only relative to corresponding values in that surface; in other words, pixel values 
representing the same material (general terrain) may be displayed with different intensities in 
another surface.  This fact explains, for instance, the difference in brightness between the terrains 
displayed in Cube 2 and Cube 3, given that both the cluttered environment and atmospheric 
conditions were about the same during collection of both data cubes.  The strong reflections from 
certain parts of the vehicles captured by the sensor in Cube 1 and Cube 2 are not as dominant in 
Cube 3 because the vehicle in Cube 3 is in tree shades; hence, the terrain in Cube 3 is the 
strongest reflector in the scene.     

2.2 A Binomial Based Parallel Random Sampling Model  

A parallel random sampling approach is presented in this subsection for autonomous clutter 
background characterization (ACBC).  Using a favorite detector, this approach is then 
incorporated into an algorithm suite in order to perform GV anomaly detection.  Results from 
testing this anomaly detection algorithm suite on real GV imagery are also presented in this 
section. 

Assuming that target pixels are present in the CR  spatial area of a KCR  HS data cube X  
(see examples in figure 1), we denote a the total number of target pixels in X  and q the 

probability of a pixel in X  being a target pixel out of all RCA   pixels in X , i.e., 
A

a
q  .  (In 

most applications q is unknown, and if multiple targets are present in the imagery, a will be the 
total number of all target pixels included in the imagery; also, these targets may or may not have 
the same material type.)  In order to represent the unknown clutter background in the imagery, let 
N blocks of data—all having a fixed small area    CRnn   —be randomly selected from 

the CR  area (see figure 2).  In theory, for    1 1 nn  and using the assumption that target 

pixels in X  are disjointed and randomly located across the CR  imagery area (in practice, this 
assumption is not satisfied when targets are present in the scene), the probability P that at least 
one block of data has a target pixel is 

 
       

 ,01               

211




mp

NmpmpmpmP 
. (1) 

where p  is the binomial density function (23), given parameters q and N, and  Nm ,,1,0   is 

the number of blocks of data containing a target pixel, or 

       mNm qq
mNm

N
Nqmp 


 1

!!

!
, . (2) 

(Symbols and ! denote given parameters and the factorial operator, respectively.) 
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For convenience, we will refer to  1mP  as the probability of contamination and, 

consequently, m as the number of contaminated blocks of data.  

 

Figure 2.  N small (n  n) blocks of data are randomly (autonomously) 
selected from the imagery (R  C) area, as spectral reference 
sets.  In autonomous remote sensing applications, since it is 
unknown a priori whether target pixels are present in the 
imagery, a probability P(m  1) exists of at least a block of 
data being contaminated with target pixels.  

The implementation of this contamination model to the autonomous background sampling 
problem requires that each one of the N  nn  blocks of data be regarded as an independent 

reference set  )(
2

fW   Nf ,,2,1   representing clutter spectra, where 2  )(
2  nKf RW  is a 

rearranged sequence version of the fth block of data having 2
2 nn   spectra.  By necessity, 2n  

must be significantly greater than 1—for statistical purposes—but yet significantly smaller than 

CRA    (e.g., 000977.0
640

20
2

2
2 

A

n
) in order to be reasonable to regard a nn  block of data 

an unit area on the CR  imagery area.  A contaminated block of data, then, will be treated 
qualitatively as a block having target pixels covering a large portion of the block’s area (e.g., 
greater than 0.70).  In addition—when targets are present, since pixels representing a single 
target are expected to be clustered in the imagery, the assumption that each target pixel is 
randomly located across the imagery area will be ignored.  Using equation 1, while ignoring the 
non-clustered target pixel assumption, implies that the probability of contamination will be 
overestimated, as blocks of data are less likely to be randomly selected from the same cluster of 
target pixels.  (For the autonomous background sampling problem, it is more conservative to 
overestimate the probability of contamination than to underestimate.)  
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Figure 3 shows a plot of the probability of contamination P(m  1) versus N, for two values of q 
(0.1 and 0.2).  It is highlighted in figure 3 that, for instance, if parameters are set to 
   22,10.0, Nq  then P(m  1) = 0.90.  Notice that for 22N , if target pixels are present but 

cover less than q = 0.10 of the imagery area, P(m  1) = 0.90 is overestimated by two fronts:  (1) 
pixels from a single target are not randomly spread across the imagery area, but clustered, and 
(2) the cumulative number of target pixels covers less than 0.10 of the imagery area.  So, 
equation 1 provides an upper bound approximation of the probability of contamination, given 
parameters q and N. 

Figure 3 also shows the tradeoff between having a larger number of spectral sets (increasing N) 
in order to adequately represent the clutter background, which is desired, and the cost of 
increasing probability of contamination, which is not desired.  (More directly, contamination 
implies that once target pixels are randomly selected by chance from the imagery area, they will 
be used by a detector as reference set to test the entire imagery, which under the case targets 
would be suppressed.)  

 

Figure 3.  The probability P(m  1) of having at least a (1 1) block of data contaminated with a target 
pixel, as a function of N (the number of randomly selected (1 1) blocks of data), for two given 
values of q (the probability of randomly selecting a target pixel in the imagery area).  These 
curves are conservative upper bounds, because target pixels are assumed to be randomly 
distributed across the imagery area, but in practice pixels are clustered per each target.   

Since the presence of target pixels in the imagery is unknown a priori, finding a way to decrease 
the probability of contamination becomes a necessity.  In order to decrease this probability, using 
an adequately large N and a sensible value for q, we propose to independently repeat the random 
sampling process described in this subsection M number of times.  Figure 4 illustrates the 
outcome of M repetitions.  If we denote the probability of contamination of the gth random 
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sampling process (or repetition) as  1mPg , Mg 1 , for a fixed q and N, note that each 

   11  mPmPg  and, since   0.110.0  mP  and these processes will be repeated 

independently from each other, the overall probability P
~

 that all the processes will be 
contaminated with at least a contaminated block of data will decrease as a function of increasing 
M, or 

         MM mPmPmPmPP 1111
~

21   . (3) 

The overall probability of contamination in equation 3 can also be expressed using the binomial 
distribution by letting m~  be the number of independent processes that are contaminated out of M 
repetitions, where  Mm ,,1,0~  , and using  1mP  as the probability of contamination per 

process.  It follows that      

 

         

  

   ,11                    

1                    

111
!~!~

!~~ ~~

MN

M

mMm

q

mP

mPmP
mMm

M
MmP








 

. (4) 

for AqMN  . 

 

Figure 4.  The probability )~(
~

MmP   that all M random sampling processes(repetitions) will 

have at least a contaminated block of data decreases as a function of increasing M, given 
that each independent process has a probability Pg(m  1) of being contaminated.    
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Figure 4 also shows a plot of P
~

 as a function of increasing M, for   90.01 mP  and 

  65.01 mP .  Taking, as an example, the P
~

 curve in figure 4 corresponding to using 

  90.01 mP  in equation 4, notice that for 40M ,  MmP ~~
 decreases to virtually zero.  

This outcome implies that at least one out of the 40M  processes has an extremely high 
probability of not being contaminated, as long as 22N  and target pixels do not cover 
significantly more than 10% of the imagery area  10.0q .  Shortly we will show how to use 

this autonomous random sampling approach in the context of GV anomaly detection and give 
some guidelines in how to choose parameters q, N, and M.  (Since the M processes are performed 
independently of each other, this sampling approach will be also called the parallel random 
sampling approach.)  

3. GV Hyperspectral Anomaly Detection 

The GV anomaly detection problem can now be addressed using (1) the parallel random 
sampling approach discussed in subsection 2.2 (needed to characterize the unknown clutter 
background in the imagery), (2) an effective anomaly detector to test reference data against the 
entire imagery, (3) a way to fuse the results from testing N randomly chosen blocks of data 
against the entire imagery using small windows (this will produce a 2-dim output surface per 
process), and (4) a way to fuse M independently produced 2-dim output surfaces into a single 2-
dim decision surface.    

We start by choosing a multivariate detector (RX) (14) and a univariate detector (AVT) (18), and 
follow with a discussion on how to approach (3) and (4) using (1) with these detectors. 

3.1 Multivariate GV Anomaly Detection 

Let a GV HS data  KCR   cube X  be available for autonomous testing.  Let also N  blocks 

 nn  of data be randomly selected from the X ’s CR  spatial area and used as a reference 

library set )(
2

fW   Nf ,,2,1   representing clutter background spectra, where 

 )(
2

)(
21

)(
2 2

   , , f
n

ff yyW   is a rearranged sequence version of the fth block of data having 2
2 nn   

spectra, where   Kn

u
f
u Ry 

2

1
)(

2  are K-dim column vectors.  Let  
11111    , , nyyW   be the 

rearranged version of a  nn  window of test data at location ij in X —for column vectors 

  Kn

hh Ry 
1

11 ;  first, we would like to automatically test 1W  against all  N

f
f

1
)(

2 W , and produce 

a single output (scalar) value 0.0
~ )( ij

RXZ  from these N test results.  Using in this case the RX 

detector as the base detector, we propose the following: 

 
 fij

RX
Nf

ij
RX ZZ )(

1

)( min
~


 , (5) 
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where 

 
          ffffij
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nn
Z 2

1

2

t

2
21

21)( ˆ yyΣyy 11 





, (6) 

  0.01
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)(
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1
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u

f n yyyyΣ , 

2
21 nnn  , and  1,,1  nRi   and  1,,1  nCj   index the left upper corner pixel of 

an nn  window in X .   

Notice that if      Nij
RX

ij
RX

ij
RX ZZZ )(2)(1)( ,,,   are placed in ascending order and denoted by 

     
)()(

2
)(

1 ,,, ij
NRX

ij
RX

ij
RX ZZZ  , such that      

)()(
2

)(
1

ij
NRX

ij
RX

ij
RX ZZZ   , then )(

)1(
)(~ ij

RX
ij

RX ZZ  —the lowest 

order statistics (25).   

Notice also that if 1W  is significantly different from all  N

f
f

1
)(

2 W , then all of the corresponding 

results  N

f
fij

RXZ 1
))((

  in equation 6 would yield high values; this outcome means that the lowest 

order statistics )(~ ij
RXZ in equation 5 would also produce a high value.  Otherwise, if 1W  is 

significantly similar to at least one of the samples in  N

f
f

1
)(

2 W , then at least one of the 

corresponding results in  N

f
fij

RXZ 1
))((

  would yield a low value; this low value would be assigned to 
)(~ ij

RXZ , according to equation 5.   

Since it is unknown a priori whether target spectra are present in X , the entire X  needs to be 

tested.  In order to do it, all   1 ,1

1 ,1
)(~ 



nCnR

ji
ij

RXZ  must be computed according to equation 5, 

producing a 2-dim output surface )(~ g
RXZ , or  
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where the index g  Mg 1 has been introduced to results produced by equation 5 in order to 

denote the repetition (or process) number discussed in subsection 2.2.  (Notice that 
)1(  )1()(~  nCnRg

RX RZ , which for 1n  is a smaller spatial area than the X ’s CR  spatial area.) 

The result in equation 7 is our approach to (3), as defined in the first paragraph in section 3.   

The procedure discussed thus far in this subsection will be independently repeated M number of 

times, as discussed in subsection 2.2.  Using the pixel values ))((~ gij
RXZ  from )(~ g

RXZ , our approach to 
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(4), as defined in the first paragraph in section 3, is to sum M results as follows: (the rationale 
will be explained shortly) 
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Figure 5 illustrates )(~ g
RXZ  equation 7 and  RXZ  equation 8 through a parallel random sampling 

diagram.  The diagram shows M independent (parallel) paths, where, in each path, independent 
blocks of data are randomly selected from the input HS data cube so that the entire data cube can 
be tested, against these blocks of data, using a testing window of the same block size.  Each path, 

which is indexed by g  Mg 1 , produces a 2-dim output surface  )(~ g
RXZ , where, at the 

backend of the diagram, all  M

g
g

RX 1
)(~

Z  are summed pixelwise (i.e., only the pixel values at the 

same pixel location are added), producing a final 2-dim surface RXZ , as shown in equation 8.   

 

Figure 5.  Parallel random sampling approach for GV anomaly detection, where detector’s output surfaces 
are fused by summing pixelwise the surfaces.   
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For a given repetition g  Mg 1 , we assume that the realization of 1W  from a window 

location ij in X  is a spectral sample of a target, and the realizations of  N

f
f

1
)(

2 W  are samples of 

various materials composing the clutter background in X , i.e., the randomly selected blocks of 
data are not contaminated with target spectra.  Using an effective anomaly detector, equation 5 is 
expected to yield a high value for that ij location.  Moreover, if the target scale in X  is larger 

than nn , then the target will be represented by multiple pixels in )(~ g
RXZ —see equation 7, having 

high values.  These pixels are expected to be clustered, hence, accentuating the target spatial 

location in )(~ g
RXZ .  However, as discussed in section 2, the contamination probability  1mP , for 

a given g, increases as a function of increasing N (see figure 3).  Figure 4 shows further that for a 

fixed q, N and an adequately large M, if (for instance) results      M
RXRXRX ZZZ )22(2)22(1)22( ~

,,
~

,
~

  

correspond to the same portion of the target at testing window location  2,2  ji , then 

equation 4 give us the confidence that at least one term in      M
RXRXRX ZZZ )22(2)22(1)22( ~

,,
~

,
~

  will have a 

high value with high probability   MmP  ~~
0.1 ; we can capture this high value(s) by summing 

these terms, or for this example  


M

g

g
RXZ

1

)22(~
, as shown in equation 8 for all ij locations.  Notice 

that a target may also be represented by multiple (clustered) pixel locations in RXZ  equation 8.   

3.2 Univariate GV Anomaly Detection 

The implementation described in subsection 3.1 for the RX detector is readily applicable to other 
multivariate or univariate detectors, as it is illustrated in this subsection using the univariate 
based AVT detector.   

To use the univariate AVT detector, spectral samples must be first transformed using a 
transformation method—see reference 18.  We can do that by using the N randomly selected 
blocks of data and arrange to  Nff 1)(

2W , replacing 2W  in (18) with )(
2

fW , and using the 

index f, accordingly, in the AVT formulas in reference 18, or 
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And equivalently for  
11111    , , nyyW  —the rearranged version of a  nn  window of test 
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From equation 12 and 13, the following two univariate sequences will be used as inputs to the 
AVT detector: 
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where Nf 1 . 

Following the discussion that led to equation 5, the AVT detector is implemented as follows: 
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2
2S  is the sample variance of )(
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which leads to AVT’s final output surface AVTZ ,  
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For the remainder of this report, we will refer to parallel random sampling as PRS and, 
consequently, to equations 8 and 20 as PRS-RX and PRS-AVT, respectively.   

4. Summary of Results 

This section focuses on the application of the PRS approach, as discussed in section 3, to the 
autonomous GV anomaly detection problem.  No prior information (e.g., spectral library, 
expected target scales, any knowledge about the scenario) is used, except for the comparative 
analysis discussed later in this section.  Since this approach requires an effective anomaly 
detector as its base detector, and results in reference 18 show that the two-step univariate 
detection techniques are more effective for testing difficult simulated cases than existing 
multivariate detection techniques, most of the results presented herein were obtained using PRS-
AVT.  Initial results using PRS-AVT and PRS-RX are shown in subsection 4.1.  Applying PRS-
AVT to data collected recently (May/June 2008) at Picatinny Arsenal, NJ, additional results are 
shown in subsection 4.2.  The recent data exemplify various scene conditions (e.g., fog, partially 
overcast).  Subsection 4.1 focuses on first checking whether PRS (using an effective detector) 
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works; subsection 4.2 focuses on the performance robustness of PRS-AVT to changing 
illumination environment and atmospheric conditions.   

4.1 Initial Results  

PRS-AVT was initially applied to Cube 1, Cube 2, Cube 3, and Cube 4 (see figure  1) to test for 
scene (spectral) anomalies, obtaining excellent results—they are shown in this subsection.  PRS-
RX was also applied to Cube 3 for comparison purposes.   

We begin by first showing how parameters N and M affect the output of PRS-AVT testing Cube 
1 (figure 6).  Figure 6 (top right and bottom left) represent two different outcomes for AVTZ  in 

equation 20, where nn  was fixed at once to 20  20 (for all data blocks and window sizes) 
and parameters q, N, and M were set to (q = 0.1; N = 3; M = 3)—top right display—and (q = 0.1; 
N = 22; M = 40)—bottom left display.  (These output surfaces, which for displaying purposes 
were extended to the size of Cube 1, are displayed using a pseudo-color map, such that, the 
brighter the pixel values in those surfaces, the stronger it is the evidence of anomalies at those 
pixel locations, relative to randomly selected blocks of data.  Also, for calibration purposes, the 
single motor vehicle at the scene’s center right has about 25,000 pixels, which means that a 20  
20 window would test 63 non-overlapping pixel locations over that target; but this target would 
yield significantly more than 63 pixels in the output surface since sliding windows overlap.)  The 
top right output surface displays an example when N is not set sufficiently high in order to 
adequately represent the clutter background.  In this case, three blocks of data were randomly 
selected from the scene (most likely from the open field area, since it is the largest area in the 

scene), and used by the AVT detector to suppress (according to  Mgg
AVT ,,1

~ )( Z  in equation 

19) the open field in Cube 1, not only once, but most likely 3M  times.  As a result, the three 
motor vehicles and the canopy area on the upper portion of that scene were accentuated relative 
to the open field.  Initially, we ignored the Binomial distribution model and set parameters N and 
M intentionally low in order to test Cube 1 and show the undesired result in figure 6 (top right). 

If M were set much higher (e.g., 30), with other parameters fixed, one or more )(~ g
AVTZ  would most 

likely have the tree area also suppressed, but since all of )(~ g
AVTZ  are pixelwise summed (see 

equation 20) that tree area (although smaller than the open field, yet significantly larger than 
individual candidate targets) would still be accentuated relative to the open field.  The results 
shown in figure 6 (top right) gave us the initial confidence that PRS seems to work as intended.  
We then used the Binomial distribution model to guide us on setting N and M, which is 
conditional on a sensible q. 
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Figure 6.  PRS-AVT results on Cube 1 (top left) for scene anomalies; output surface (top right) using 
parameters (q = 0.1; N = 3; M = 3); and output surface (bottom left) using parameters (q = 0.1; N 
= 22; M = 40).  Brighter pixels values in the output surfaces correspond to higher confidence on 
the presence of anomalies in the imagery, relative to randomly selected blocks of data.  Also, 
notice that since ZAVT is a sum of results, bright clusters in those surfaces are smooth clusters. 

For most remote sensing applications, targets (if present in the scene) will cover no more than 
10% of the imagery spatial area.  For instance, the motor vehicle having 25,000 pixels in Cube 1  

covers 6.1% of the imagery area 







409600

25000
.  So, we fix at once 1.0q  as a robust choice.  The  

binomial distribution plot in figure 3, for 1.0q , shows that 22N  yields an upper bound 

contamination probability   9.01 mPg   Mg 1 , and the plot in figure 4 shows a 

corresponding cumulative contamination probability   0.0~~  MmP  for M = 40.  The output 

surface shown in figure 6 (bottom left) is the result using PRS-AVT to test Cube 1 having 
parameters set to (q = 0.1; N = 22; M = 41).  That output surface shows the manmade objects 
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(three motor vehicles) clearly accentuated relative to the unknown cluttered environment, given 
that no prior information is used about the materials composing the clutter background, or about 
whether targets are present in the scene, or about targets’ scales relative to other object structures 
in the imagery.  But notice in figure 6 that the standing person in the scene center is not detected, 
possibly because the window size might be too large and/or there must have some materials in 
that background (randomly selected) spectrally similar to the materials representing that person 
(e.g., pants, shirt, skin).  Figures 7 and 8 show additional results. 

Figure 7 shows results using PRS-AVT to test Cube 2 and Cube 3, and figure 8 shows results 
using PRS-AVT to test Cube 4, which represents a particularly difficult case of clutter 
suppression.  Parameters were set to (q = 0.1; N = 22; M = 40) for the three cubes. 

 

 

Figure 7.  PRS-AVT results on Cube 2 (top left) and Cube 3 (bottom left), where corresponding 
output surfaces are shown immediately to the right of the cube displays.  Parameters 
were set to (q = 0.1; N = 22; M = 40). 
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Figure 8.  PRS-AVT results on Cube 4 (left), and corresponding output surface (right).  Parameters 
were set to (q = 0.1; N = 22; M = 40).  Cube 4 exemplifies a hard case for autonomous 
clutter suppression. 

The output results shown in figures 6, 7, and 8, using parameters set to (q = 0.1; N = 22; M = 40), 
are excellent results for the given application, especially for Cube 3 and Cube 4, both clearly 
showing the presence of a motor vehicle highly accentuated—one in tree shades and another 
parked behind a heavily cluttered environment.  These results ensure to us that the idea behind 
the PRS approach works, as intended, but the overall results might dependent on the 
effectiveness of its core anomaly detection technique.  Figure 9 shows a qualitative comparison 
between using PRS-AVT and PRS-RX to test Cube 3.     
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AVTRX ZZ                               
 

 

Figure 9.  Comparison results for PRS-AVT and PRS-RX on Cube 3 (bottom center) by setting N to three 
different values (10, 50, and 100); the corresponding PRS-RX output surfaces are shown in the left 
column, and the corresponding PRS-AVT output surfaces are shown in the right column. 

For the results presented in figure 9, the window size    2020 nn  and parameters (q = 0.1; 

M = 100) were fixed, but N varied (N = 10, 50, 100).  Using 100M  (a high number of 
repetitions—it took two weeks to obtain results shown in figure 9 using the MATLAB software 
environment and a Pentium IV personal computer), we have confidence that the overall 
cumulative probabilities of contamination for both PRS-AVT and PRS-RX are equally low for 
the chosen values of N.  In doing so, we can now check the sensitivity of the AVT and RX 
detectors to different values of N.  Under these settings, the detector that can show the lesser 
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sensitivity to varying N is more desired.  Sensitivity can be qualitatively checked by inspection of 
figure 9, i.e., the observed changes on the output surface of a given detector as N changes.  PRS-
RX results are shown in the left column (figure 9), and PRS-AVT output surfaces are shown in 
the right column (figure 9), where, from the top, N values were changed from 10, 50, to 100.  
Both sets of output surfaces use the same standard pseudo-color map (rainbow, which is 
available in MATLAB) for displaying purposes.  By inspection, the output surfaces in figure 9 
clearly show a higher sensitivity of the RX detector to a varying N compared to the AVT 
detector.  These output surfaces were extended to match the approximate size of the imagery 
spatial area of Cube 3 in figure 9.  According to available ground truth information about the 
data collection, the visible clusters approximately at the center of all three PRS-AVT output 
surfaces correspond to the pixel locations where a motor vehicle happens to be present under tree 
shades.  Similar clusters are also shown at about the same pixel locations in PRS-RX output 
surfaces using N = 50 and N = 100, but with the cost of having clusters of similar or greater 
strength elsewhere in the imagery (false positives) covering some 15% to 20% of the imagery 
spatial area.  Using 10N , the corresponding PRS-RX output surface shows that the anomaly 
strength at the target pixel locations are similar or greater than the strength of no more than 50% 
or so of all pixel locations in the imagery, which means that if a threshold is set to detect target 
pixels, about 50% of the imagery would show up as being anomalous to the clutter background.   

We will now address the robustness of the PRS-AVT testing HS data collected under various 
environmental conditions.   

4.2 Adaptive Threshold Under Various Environment Conditions  

The goal in this subsection is to establish an adaptive threshold method and then to test PRS-
AVT for robustness using real HS imagery collected under various environmental conditions.  
But before we address the adaptive threshold requirement, we will first briefly introduce the 
additional dataset used to produce results for this subsection, followed by a brief discussion on 
automatically setting parameters N and M, given q.   

4.2.1 Description of Additional Data 

Figure 10 depicts photos taken at a target site under various environmental conditions at the U.S. 
Army Armament Research, Development, and Engineering Center (ARDEC), Picatinny Arsenal, 
NJ.  The target site in figure 10 features heavy clusters of trees, surrounding an open grassy field, 
and a dirt road leading to targets.  There are two targets at that site; both are validated surrogates 
of military tanks, which imply that their physical appearances are similar to the actual tanks, and 
they were painted using genuine paints of the targets they represent.  Using the SOC-700 HS 
imaging system, HS VNIR data were recently collected (May/June 2008) from a tower standing 
about 0.7 km from the target site, capturing reflectance of the same site under seven different 
conditions:   
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1. Clear sunny day (noon) at a higher elevation (data collected at a higher elevation angle 
relative to the remainder viewing perspectives in this set, except in condition 7 

2. Clear sunny day (afternoon) at a lower elevation 

3. Clear sunny late afternoon (sun light is weaker, objects cast long shadows) 

4. Cloudy day (sun light energy is attenuated by some amount) 

5. Fog above the targets (upper fog) 

6. Targets immersed in fog (lower fog) 

7.  Partially overcast (where the targets are present on the overcastted portion of the scene and 
elevation angle is the same as in condition 1).   

These various conditions are known to challenge target detection/classification algorithms 
because they can significantly change the spectral characteristics of a particular material (e.g., 
paint), see, for instance, reference 36. 
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Figure 10.  A target site under different environmental conditions. 
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4.2.2 Automatic Parameter Setting 

For remote sensing applications, it is often desired to enable a machine to automatically set 
algorithm parameters.  On this note, we can automate the setting process of parameters N and M, 
given q.   

To properly function, the PRS approach requires an adequately large N, which undesirably 
increases the contamination probability  1mP  per repetition, and an adequately large M, 

which desirably decreases the overall cumulative contamination probability  MmP ~~
 of the 

PRS approach for M repetitions.  From equations 1, 2, and 4, using the log of base 10, direct 
transformation leads to 
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and 
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For any given q, we can fix the values of  1mP  and  MmP ~~
, and obtain N and M directly 

using equations 21 and 22, respectively.  As guideline,  1mP  should be set high, but less than 

1.0, so that N can also be relatively high and   0.1~~  MmP ;  MmP ~~
 should be set very low, 

near zero.  The good news is that the actual values of  1mP  and  MmP ~~
 are unimportant, 

as long as the guideline is followed.  As an example, we could fix   90.01 mP  and 

  01.0~~  MmP , and for 05.0q , we obtain directly from equations 21 and 22 parameter 

values 45N  and 44M .  (Since N and M are defined as integers, these numbers are rounded 
off  .)  For consistency with initial results discussed in subsection 4.1, we will fix at once 

10.0q ,   90.01 mP , and   015.0 MmP RR , which using equations 21 and 22 yield 

22N  and 40M .   

4.2.3 Adaptive Cutoff Threshold 

An adaptive cutoff threshold is also desired for remote sensing applications due to the various 
environmental conditions a scene can be exposed to, and to the diverse clutter background in 
different geographic locations across the world.  For the PRS approach, we propose to take the 
fused output surface, in the case of AVT, AVTZ  in equation 20, and estimate both the mean and 

standard deviation (STD or sigma) using this surface’s pixel values as input.  Denoting 
AVTZ and 

AVTZ  the sample average and the sample STD, respectively, an adaptive cutoff threshold (a 

scalar) is obtained as 

  
AVTAVT

aaT ZZ   , (23) 
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where 0.0a  is a constant and, using equations 19 and 20, 
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If equations 24 and 25 happens to be too sensitive to a relatively small number of pixels values in 

AVTZ , then one could use the average median, in place of the sample mean, and a less sensitive 

estimate for STD.  After experimenting with the latter route, we did not see a need to follow it; 
hence, we chose to use equations 23, 24, and 25 to test the additional data cubes shown in figure 
10. 

The SOC-700 imaging system can record the HS VNIR data cube of a site while taking a photo 
of the same viewing sight of the HS imager.  Figure 10 depicts only the photos of the target site.  
The HS data cubes used for this experiment have dimensions 640 R  by 640C  pixels by 

120K  spectral bands between 0.38 and 0.97 m.    

In order to test the additional data depicted in figure 10, we set the data block size and testing 
window size to be the same, or    2020 nn ; 10.0q ;   90.01 mP , which using 

equation 21 yields 22N ;    015.0 MmP RR , which using equation 22 yields 40M ; and 

the adaptive cutoff threshold  
AVTAVT

aaT ZZ   , see equation 23, set initially to  10T  and 

 30T . 

We tested these additional data cubes but exhibited the corresponding results differently from the 
way results were exhibited in subsection 4.1.  Figure 11 depicts some of those results using PRS-
AVT to test the HS data cube named Cloudy Day.  In figure 11, the photo representing this cube 
is shown at the top left; the top right shows the thresholded fused-output surface using  10T ; the 

bottom right shows the thresholded fused surface overlaid on the photo (the fused output surface 
and its thresholded version were automatically extended to the known photo size, as part of the 
overlaying process); and the bottom left shows the thresholded fused-output surface using  30T .  

Notice in figure 11 that at 10 sigma both targets are fully detected, and the dirt road shows up as 
false positives.  At 30 sigma, an autonomous and untrained machine—having no prior 
information about the target scales/shapes or materials composing the clutter background—can 
detect both targets with no false alarms, figure 11 (bottom left).  Figure 12 shows additional 
results. 
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Figure 11.  PRS-AVT thresholded fused-output surface (top right) using parameters (q = 0.1; N = 22; M = 40) 
and T(10); Overlaid results using threshold T(10) (bottom right) and T(30) (bottom left).  At 30 
sigma, both targets are fully detected with no false positives.  Because of the targets’ different 
angular orientations, they appear to have different scales and shapes. 



 

32 

 

Figure 12.  PRS-AVT overlaid results for Lower Fog, using parameters (q = 0.1; N = 22; M = 40) and 
adaptive thresholds T(5), T(10), T(20), T(30), and T(50).   

Figure 12 depicts the PRS-AVT results using the HS data cube named Lower Fog (arguably the 
most difficult one in this additional dataset for autonomous anomaly detection tasks), and 
applying the following thresholds:  T(5), T(10), T(20), T(30), and T(50), where the first column 
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in figure 12 shows results for T(10) and T(30), and the second column shows T(5), T(20), and 
T(50).  Notice that at 10 sigma, the fog over the valley causes PRS-AVT to quadruple the false 
alarm proportion relative to results shown in figure 11 (bottom right) for the same scene on a 
cloudy day.  But at 30 sigma, both targets are comparably detected between HS data cubes 
Lower Fog and Cloudy Day, producing negligible false positives (notice in figure 12, first 
column bottom surface, one can see very small clusters of false positives at the lower left of that 
surface).  At 50 sigma, the detection and false alarm proportions are comparable between results 
using T(30) and T(50), which strongly suggests that PRS-AVT is capable of accentuating scene 
anomalies under adverse conditions.  In order to check this, we tested the remainder data cubes 
using PRS-AVT (figure 13). 

In figure 13, tested cubes are shown in rows 1 and 4 (from the top), and—applying an adaptive 
threshold at  30T —the corresponding overlaid results are shown in rows 2 and 3.  Both targets 

are detected with virtually no false positives, except for the negligible false positive very small 
clusters shown on results for Lower Fog (lower left in overlaid surface).  Those results suggest 
that the PRS approach, having an effective anomaly detection technique as its base detector, 
seems to be a robust approach for different data collection conditions.    
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Figure 13.  PRS-AVT overlaid results, using parameters (q = 0.1; N = 22; M = 40) and adaptive threshold 
T(30).  In all cases, PRS-AVT yielded virtually zero false alarms detecting both targets.   
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5. Conclusion 

This report has proposed and examined the performance of an autonomous approach for the GV 
anomaly detection problem using real HS data cubes.  The approach is generalized in the sense 
that it can be used with any detection technique, although this report also showed that the 
effectiveness of the chosen base detector will significantly affect the test results.  The approach 
applies random sampling of the imagery and repeats the sampling process in order to mitigate the 
probability of contamination (spectral samples of candidate targets being used as clutter 
background reference samples).  As such, the approach requires no prior information (e.g., a 
spectral library of the clutter background and/or target, target size, or shape), and, therefore, is 
free from training requirements.  This report showed that the PRS approach can be modeled by 
the binomial family of distributions, where the only target related parameter q (the upper bound 
proportion of target pixels potentially covering the spatial area of the imagery) is robust—thus 
invariant—to different sizes and shapes of targets, number of targets present in the scene, target 
aspect angle, partially obscured targets, or sensor viewing perspective.  Binomial distribution 
plots were used to set other parameters: N (number of randomly selected blocks of data) and M 
(number of process repetitions).  This report also showed how N and M can be automatically set 
using a simple guideline, and how to implement an adaptive cutoff threshold method with PRS. 

The PRS-AVT approach, in particular, was applied to real HS data cubes yielding excellent 
results for different target deployments (target in an open field, target in tree shades, and target 
behind heavy wooded region), different environmental and illumination conditions (conditions as 
diverse as having fog over or immersing the targets, partially overcast, and different elevation 
angles and times of the day), and different clutter backgrounds (California valley, New Jersey 
wooded areas).  Finally, a comparative analysis was presented to show the effectiveness of using 
the univariate anomaly detection technique (AVT) over a more conventional multivariate 
anomaly detection technique (RX) to the GV anomaly detection problem.   
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Acronyms 

ACBC autonomous clutter background characterization  

ARDEC  Armament Research, Development, and Engineering Center 

ARL  U.S. Army Research Laboratory  

AVT Asymmetric Variance Test 

GV  ground view 

HS  hyperspectral 

PRS  parallel random sampling  

PRS-AVT PRS using the AVT detector 

PRS-RX PRS using the RX detector 

RX Reed-Xiaoli 

SOC Surface Optics Corporation  

STD or sigma  standard deviation 

VNIR  visible to near infrared 
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