
c c

NASA Contractor Report 1 81 81 0

* Evidence Flow Graph Methods for Validation
and Verification of Expert Systems

Lee A. Becker, Peter G. Green, and Jayant Bhatnagar

Worcester Polytechnic Institute
Worcester, MA oisos

I Contract NAG1 -809

National Aeronautics and
Space Administration

Langley Research Center
Hampton,Virginia 23665
(NASA-CR-T81810) EVXDDEEE fLOH G R A P H R 89- 2 83 28

H E T H O D S FOR Y A L I D A T I O I A N D VERIPICATXCP OF
EXPERT SYSTEUS [Worcester P o l y t e c h n i c
Inst.) 46 p CSCL 09B Unclas

- -

63/62 ~ 0220032

I

.

TABLE OF CONTENTS

1 1. Introduction .. A

2. A Framework for Verifying Expert Systems 5

3. Knowledge Level Verification f o r a Rule-based Representation ... 10

Translator ... 10
3.a. The Knowledge Representation to Evidence Flow Graph

3.b. The Simulator .. 14

3.c. The Post Processor ... 21

4. Types of Testing .. 21

5. Results of the Project .. 23

6. Conclusions ... 28

Appendices .. 31

References .. 4 3

I:
c

i

1. INTRODUCTION

DATABASE

This final report describes the results of an investigation into

the use of evidence flow graph techniques for performing validatior!

and verification of expert systems. The term validation in this

context is taken to mean demonstrating that the system meets user

requirements, and the term verification is taken to mear,

demonstrating that the system meets specifications. Since the

principal uses cf the techniques described in this report are in

the context of verification, the term verification will be used

throughout this document, although many of the techniques may also

be applicable to validation.

RULES
4

Simple expert systems consist of a set of rules, a data base, and

an inference engine as shown in figure 1.

Figure 1: A'Simple Expert System

An evidence flow graph representation (MIC87) for such a system

replaces each rule with a process that is triggered by the arrival

of data into the data base, either from an external source or from

the execution of another decision process, as shown in figure 2.

The result is a graph with data flow properties (ACK82) in which

input data triggers rule executions until outputs are generated.

The word 'process' here is used in the operating systems sense, as

meaning a computational object with its own register state, memory

map, local data and stack, and access to code and fixed In

an Evidence Flow Graph context, a decision process is a node in the

graph which has an input queue for receiving messages from its

input graph arcs. State variables may be contained within decision

processes and partial solutions are transmitted along the arcs of

data.

the graph.
7a ,b Evi&nce Flow Graph

M e s s q e s

Decision p m s s (DP) execution is mggered by
the arrival oi messages travelling along arcs.

2b: A Simple Rule-based Expert System

Rule 1: IfXandB thenC
Rule2: I fD andE thenF
Rule3: IfCandFthenG

2: Rules mapped onto evidence flow graph

A

C

G
B
D b

F

DP Defiaons
DPI:

DE?
DP3:

When A and B arrive send C to DP3

When D and E arrive sendF to DP3

When C and F arrive ourpt G

FiguPY 2: Transformation of a R u l e - B a d Expen System
into an Evidence Flow Graph

3

The potential importance of evidence flow graphs for verification

is twofold. First, the flow graph representation makes it possible

to simulate the actions of the rules using discrete event

simulation tools developed for analyzing complex systems. This

opens up the possibility of performing monte-carlo performance

tests under a wide variety of input values and timings. Second,

the flow graph representation is independent of the inference

engine and offers the potential for verifying "portable" sets of

rules which will work under any rule execution sequence imposed by

an inference engine. When it is determined that correct operation

is dependent on the inference engine, the rules and inference

engine must be verified and controlled as a unit.

The principal purpose of the research reported here was to

determine whether evidence flow graph techniques would be useful in

the verification of expert systems. This was approached by

developing:

a) A translator to translate simple horn-clause rule bases into the

evidence flow graph representation developed by Chisvin (CHI88)

based on the work of Michalson (MIC88).

b) A simulation program written in SIMSCRIPT (RUS83,LAW84) to

analyze the performance of the flow graph under a variety of

conditions.

c) Methods for analysis which attempted to identify problems with

rule execution by examining the output of the simulation program.

These tools were then applied to a simple rule base which contained

4

errors. It was found that the method was capable of identifying

problems, although it was evident th.at a much more sophisticated

results analysis program will be needed if this technique is to be

used on a large scale system.

It was found that the order of presentation of input data can

affect the output from a set of rules. By corollary, the order in

which the inference engine executes the rules may affect the

output. This can cause problems when undesired outputs are

produced before all the data is available or before all possible

rules have been executed. It was also found possible to affect the

resultant output by making small changes to critical parameters.

AS a result of this investigation we have determined that evidence

flow graph techniques can be used to find problems in rule-based

expert systems and that these techniques therefore have a place a s

part of the evaluation regime for the verification of expert

systems.

Some of the faults found using evidence flow graph techniques, such

as circular reasoning and’ unreachable conclusions, could be

determined by other methods (S W 8 2 , NGU85, NGU87, STA87, BEL87,

JOH88). Some problems, such as critical sensitivity to parameters

o r the timing of data inputs, are uniquely suited to flow graph

simulation techniques, as is the determination of whether the rules

are valid for any rule firing order.

To date experiments have been limited to simple horn-clause rule

sets with most of the post-simulation analyses being done by hand.

TO make evidence flow graph techniques practically useful, much

5

work remains to be done. First, the work of Michalson (MIC88)

needs to be extended to cover the translation of commonly used

expert system shell paradigms into evidence flow graphs. Then some

work needs to be done to build the software infrastructure to allow

the automation of monte-carlo sensitivity and data timing

simulations. Finally it is evident that an intelligent

post-processing program will be needed to find problems in the mass

of data produced by the simulations. This program will probably be

an expert system itself with knowledge about how to find faults

from the results of the simulations.

This report presents a framework for verifying expert systems in

section 2. In section 3 the conversion of rules to evidence flow

graphs is described followed by a description of the simulation

program. Section 4 discusses the kinds of testing supported by the

evidence flow graph approach and section 5 discusses the results,

given in detail in the appendices, of the tests performed during

this research. Finally in section 6, the report concludes with a

summary of the results obtained to date and a favorable prognosis

for the future use of these 'techniques in the verification of

expert systems.

2 . A - FRAMEWORK FOR - VERIFYING EXPERT -- SYSTEMS

Figure 3 depicts our framework for the development of a verified

expert system. One important feature of our approach is that the

verification is divided into a set of distinct processes.

Performance analysis and verification takes place first at the

knowledge level, then again after information about the execution

6

environment has been incorporated. This is followed by a hardware

failure effects analysis before testing in a simulated real-world

environment. One cannot just verify a knowledge base. If the rule

base is not invariant over all control strategies, then this must

be known, and the rule base and control regime must be verified as

a pair. In addition, any modification to either the rule base or

the control regime requires that the pair be reverified. It is

obvious that if the rule base were invariant over all control

strategies, the control regime could be changed and reverification

would not be necessary. This would support portability.

Evidence Flow Graphs were developed at WPI as a representation for

rule-based, Hearsay/Blackboard-based, and communication expert

object-based expert systems (GRE87,MIC87). An evidence flow graph

is a directed graph which represents decision making in terms of

the collective behavior of several independent processes. The

processes are characterized by the ability to make decisions in.a

limited problem domain and by the ability to communicate the

results of the'se decisions by passing messages to other decision

processes. The processes may range in complexity from simple
*

7

XYCVSiS3GI SOU?.CZS

(-)
A

c

Figure 3 : The Proposed Model for Verification of Expert Systems

S?z:C::ICd~:ONS .+.

a

Evidence flow graphs provide a unified representation that can be

mapped onto different computer hardware architectures. These

graphs and their application are being investigated as part of an

overall research project into how to build intelligent systems that

are able to function in real-time in uncertain environments.

In real-time systems uncertainty arises from a number of sources.

During the processing of the input the environment may change.

Input data may be erroneous due to noise, imperfect sensors, or

faulty human data entry. Signal processing algorithms can produce

false outputs, due to factors such as aliasing, which are used as

inputs to the expert systems. Finally, the necessarily limited

knowledge contained in the rule base itself may cause uncertainty.

Evidence flow graphs are also of value in the verification of

expert systems. Figure 4 depicts the use of flow graphs for

performance analysis on different knowledge representatiins. An

important feature of our approach is transforming the knowledge

representation used into a graph theoretic form from which it can

be analyzed and simulated using techniques developed for non-linear

control systems.

9

PERE'ORMAXCE ANALYSIS
ay SIMULATIONS

RULES T

bVEiiIFY --,

/JLACKBObRDS/ /COMMONICAT!NG[EXPERT OBjECTS
COMMUNICATING
EXPERT OBjECTS

RULES SLACKBOARDS

I FLOW GUPHS~

t
SIMULATION MODf:l

output
SPECIFICATION

input

--

Figure 4: Evidence Flow Graphs as a Unifying Representation

10

,

3. KNOWLEDGE-LEVEL VERIFICATION FOR A RULE-BASED REPRESENTATION - -

In the research described in this report we have investigated

knowledge-level verification and have demonstrated our approach

using a rule-based knowledge representation. Our system contains

two modules: a rule-base-to-evidence-flow-graph translator and a

simulation program. A third logical module, post-processing,

currently is done by hand.

3.a. The Knowledge-Representation-to-Evidence-Flow-Graph
Translator

A translator takes the knowledge representation and yields an

evidence flow graph. The knowledge is in the form of Horn-clause

rules, where the antecedent is a conjunction of predicates and the

consequent is a conclusion. There are specially designated input

predicate nodes and output final conclusion nodes, as well as nodes

for any subconclusions. For each rule there is a directed link

from each of the predicates of the antecedent (input nodes or

subconclusions) to the node of the conclusion or subconclusion in

the consequent, as illustrated in Figure Sa. Weights on the links

are based on the number of conjuncts. When a parameter is referred

to in several relational predicates, there is a directed link from

the parameter to each of the nodes for the relational predicates,

as illustrated in Figure 5b.

11

A and B --> C

D and E --> F

F and G --> H

output
conclusion

input
edicates

Figure 5a: Evidence Flow Graph Representation f o r Simple Rules

W > 200 and A --> B W < 100 and C --> D

n < 0
i v > 200

W @@ w < 100

input input relational
parameter predicates predicates

Figure 5b: Evidence Flow Graph Representation f o r Parameter Inputs

Conversion of a production rule base into an Evidence Flow Graph

(E F G) is achieved by a translator implemented in LISP on a VAX/VMS

11/750 system.

The translator uses a depth-first strategy on the rule base to

generate the nodes of the graph. Generation begins with the

selection of an arbitrary rule from the rule base. Next, all rules

leading One

For conclusion node is created in the graph for each such group.

every conjunct of each rule in the group, a new node is created if

one does not already exist. This node is treated as the conclusion

node for a new group of rules that have the corresponding conjunct

as their conclusion. Conjuncts that are specified as inputs to a

rule are mapped to the input nodes of the graph. Conjuncts which

are not conclusions of any rule and which are not specified as

inputs are treated as undefined and are flagged as errors. Graph

generation continues until all conjuncts that appear in the rule

base are mapped to the nodes of the graph.

to the same conclusion are collected to form a group.

For every conjunct that includes a logical comparison operator in

its description, two nodes are established. One node is the value

node that models an input node for the input parameter being

compared, while the other is the comparison node that contains the

threshold value against which the parameter value comparison is

performed. A single arc connects the value node to the comparison

noc?o. In order for the comparison node to fire, a message must be

received along this arc. All other conjuncts that perform a

comparison of the same parameter against a different value have a

different comparison node with an arc from the same input parameter

1 3

node.

The translator combines graph generation with static rule base

checking that preceeds the dynamic testing implemented by the

simulator (section 3.b.). Static checking enables the

identification of those rules that contain undefined conjuncts in

their conditions. In the event of detection of such a rule in the

rule base, the translator logs an error in the error log file

indicating the rule in error along with the conjunct that caused

the error. From then on, the erroneous conjunct is treated as an

input conjunct and graph generation continues as normal. On

completion of graph generation, the translator issues a warning on

the inconsistency of the generated graph arising from the assumed

treatment of undefined conjuncts. Should no errors occur durin'g

graph generation/static checking, the translator outputs the graph

in a canonical form which can then be modified for providing a

formatted input to the simulator.

The reformatting of the translator output is provided to describe

each node completely in the input to the simulator. Each node's

description includes information on the type of node (e.g. input,

output, etc.), the arc relations (e.g. conjunctive/disjunctive

with respect to other arcs), and a description of each arc (e.g

source node, relative importance of the arc for that node).

14

3.b. The Simulator

A simulator executes the evidence flow graph. All nodes, except

for the input and relational predicate nodes, are updated with a

weighted sum of the values of their input arcs. When several rules

have the same conclusion, the update values are treated as a queue

which takes the maximum of their input values. For example in

Figure 6, if both are available E updates with the maximum of the

weighted sums of A & B and of C & D; if only one sum available

it becomes the value of E; and if neither is available E will not

be updated.

is

A and B --> E

C and D --> E

6 S

The update values are

directed arc. The

For the initial stage

vera1 Rules with the Same Conclusion

sent as messages to nodes to which there is a ,

values are r e a l numbers between 0.0 and 1.0.

of V & V (the knowledge level) it might be
- -

assumed that the work cells (nodes) fire as soon as their inputs

are available and that there is no contention for computing

1 5

resources. One could then pick processing cell times at random

from a distribution and test for many possible execution sequences.

Simulation continues until all activity ceases in the network.

The motivation for using a 'universal,' idealized environment for

the basis of knowledge-level verification is portability and

flexibility; it could also make hardware fault tolerance more

realizable. The data-flow-like processing allows one to consider

the knowledge independently of the control strategy and reflects

inherent parallelism of expression of rules. It is also possible

to verify a knowledge base under a particular control strategy.

For example, a rule firing order mechanism for an inference engine,

like a conflict resolution method, would be converted into a work

cell scheduling mechanism for computing resources, in this case,

priorities of node firings.

The formatted output obtained from the translator provides input to I

the simulator, which is implemented in SIMSCRIPT 11.5 on a

VAX/ULTRIX 11/780 system.

Three major components comprising the simulator are :

(a) Decision Process Nodes

(b) Interconnection Arcs

(c) Communication Messages

Decislon process nodes are centers of active decision making in the

evidence flow graph. Broadly they may be classified into four main

categories :

(a) Input nodes

(b) Output nodes

16

(c) Intermediate nodes

(d) Comparison nodes

Input nodes are entry points for symbolic and numeric information

flowing into the graph from the external environment. These nodes

fire collectively in subsets as explained later in this section.

Information leaving the input nodes appears as input to

intermediate and/or comparison nodes.

Intermediate nodes are the centrally located nodes of the graph and

are isolated from the external environment by the input/output

nodes. Input to intermediate nodes may appear from input,

comparison, or other intermediate nodes. On collection of enough

evidence at the intermediate nodes, decisions regarding the

subsequent flow of evidence are made. Evidence flowing out from an

intermediate node is either confirmation or negation of the

evidence arriving at its input.

Decisions at the graph nodes are conveyed to other nodes through

flow of messages in the graph. No feedback information is made

available at the input pf graph nodes.

A comparison node is another type of node present in the evidence

flow graph. Each comparison node has an arc from a parameter input

node. Comparison nodes handle the flow of numeric evidence into

the graph. Their functional description is provided later :in this

section.

All types of nodes have certain basic attributes, including

node-id, node-type, node-threshold, node-conclusion, and various

statistical counters that keep track of node activity in terms of

1 7

the number of input messages received and the number of

positive/non-positive messages output by the node. Node-id of a

node is its unique identification in the graph. Behavior of a node

(i.e. action taken by a node on its activation) depends on the

type of that node. Input nodes and intermediate nodes send

messages to other nodes with activation values, while the output

nodes produce the final conclusions. Node threshold is a static

comparison value against which total evidence collected at a node

is measured. If the evidence gathered at a node exceeds the firing

threshold, the node fires with a boolean true value, otherwise it

fires with a boolean false value.

At any time during simulation, the nodes are either in an active

state or in a state of hibernation. A message arriving from

another node activates a hibernating node. Input arcs of nodes are I

checked for message arrivals. Message copies are deposited in

input queues of the destination node/nodes specified in the I I

message. During its activation, a node checks all relevant arcs

for messages. If all conjunctive arcs have messages and at least

one arc in the set of disjunctive arcs has a message, the node

fires. Messages that initiate firing are removed from input queues

l

and the node subsequently enters a hibernation state. Should the

message requirements at the input arcs be insufficient, the node

enters the hibernation state without firing. The activation

sequence for nodes follows a fixed pattern: input nodes fire

first, followed by the activation of comparison nodes, which in

turn is followed by activation of intermediate and output nodes.

Associated with each node are entities called arcs. Incoming

I

messages are buffered in the arcs of a node. An arc may bear a

conjunctive or disjunctive relationship to other incoming arcs of a

node. As mentioned earlier, messages must be received along a l l

conjunctive arcs and along at least one of the disjunctive arcs for

a node to fire. Each arc entity has attributes such as source

node, weight, type (conjunctive/ disjunctive), and a count of the

messages it receives. The weight of an arc is considered for

determining the importance of messages that are received along that

arc. In the current system, the arc weight is computed in the

translator by distributing the certainty factor of a node uniformly

over the input arcs. The evidence from each arc is the product of

the message activation level and the weight of the arc. Total

evidence collected at a node is computed as the sum of evidence

from all conjunctive arcs plus the maximum of the evidence values

from all disjunctive arcs.

Messages form the medium for inter-node communication. Each

message is characterized by a value (if the evidence it carries is

a quantifiable numeric quantity), the weight of the corresponding

arc, and a message number to uniquely identify the message in the

system. Messages are consumed by a node on its firing. The output

of a node consists of messages that carry evidence representing a

combination of evidence brought to the node by other messages plus

the evidence generated at the node itself.

The simulatsr operates in t w o phases: the setup phase and the

simulation phase. During the setup phase, the description of each

node of the graph is read from an input file and a corresponding

node is modelled as follows: if the node is an input node, a

19

simulation entity modelling the node is created in the input nodes

set. If the node is a non-input node, a process is created for

modelling that node. The process description includes the node's

attributes (e.g. its type), node entities and their attributes

(e.g. arcs and the relationships between them, relative weights,

etc), and a procedure to simulate its action on activation. For

each such process created, a process notice is placed in the future

events set of the simulator, which works like a queue.

For value-comparison nodes, two nodes are modelled in the

simulator: the parameter value node is placed in the input nodes

set, while the comparison node is associated with a process notice

in the future events set. Process notices for all non-input nodes

are scheduled to execute at the instant they are examined by the

simulator. This instantaneous execution property of the node

processes, which are running as co-routines, implemeqts the

inherent parallel execution model of the Evidence Flow Graph.

A single simulation is made up of an arbitrary number of simulation

cycles. The simulation is performed by first generating a value

for each input. Then, in each simulation cycle, the inputs are

applied to the graph in random order and in groups of random size.

All process notices pending in the future events set are examined

and their associated actions are executed.

The actions specified for intermediate nodes are as follows:

verify that at least one message is queued in the buffer of every

arc of a conjunction of input arcs and at least one message is

queued in at least one of the arcs of every disjunctive set of

2 0

input arcs. If all appropriate arcs have messages present in their

buffers, compute the combined measure of evidence collected at this

node. Check this measure against the node threshold. If there are

not enough messages received on appropriate arcs, then simply

suspend execution of the node process. Otherwise fire the node

with a boolean value and delete all messages that contributed to

current node firing. Firing of a node is equivalent to generating

a new message and scheduling a corresponding process notice in the

future events set with a priority of execution higher than the

priority of execution of node process notices. Once a node has

fired its execution is suspended.

The action sequence specified for output node processes is simpler.

An output node qualifies for firing in the same way as an

intermediate node does. If an output node qualifies for firing,

then the conclusion reached is output and execution is suspended,

otherwise the node process is suspended and the current simulation

cycle is continued. During the execution of a message process

notice mentioned in the action sequence outlined above, the action

taken is to resume and reschedule all supended node processes,

followed by storing messages in input buffers of arcs of every

destination node in the future events set for which the message is

intended.

On completion of a simulation cycle, the buffers of all arcs in the

graph are cleared of any pending messages to prepare for a new

subsequent simulation cycle. Simulation cycles are repeated until

the expiration of the user-specified duration of simulation.

3.c. The Post Processor --

Once a simple simulator was built and tested, it became eiiident

that a post process will need to be developed to aid the user in

analyzing the simulation results. The pattern of node firings (and

message passings) is recorded in a logfile by the simulator. A

post processor could then do various analyses on this file, for

example to determine nodes that have never fired or nodes that have

fired very often. The rules corresponding to these nodes warrant

additional scrutiny. The post processor also could compile results

from multiple runs with the same input, perhaps available at

different times. Thus results from different input orderings and

with different firing orders can be compared to see if the results

are always the same. In other words, the output of the post

processor will allow the identification of invariance of results

with different input orderings, with different firing orders, as

well as with parameter variation. The development of such a post

processor is crucial to analysis of large-scale systems.

4 . TYPES OF TESTING --

A variety of different types of testing are supported by this

approach. The most common type of checking done on expert systems

is for consistency (SUW82,NGY85,NGY87,STA87). Static analysis on

the evidence flow graph can yield this kind of information. In

fact, several systems which do consistency checking translatz a

rule base into a inference net or graph for their analysis

(STA87,BEL87). Such a graph structure could also be used to derive

or generate sets of inputs for structural testing, if desired

2 2

(STA87). We concentrate here on the kinds of dynamic testing which

can be done using simulation.

If there are available test cases which specify the conclusion to

be reached for a set of inputs, these can be executed using the

simulator and wrong conclusions can be detected. This kind of

testing can also be readily done by executing the expert system

itself. However, there may be significant difficulty in assembling

a large, well-distributed set of test cases (OKE86). With the

proposed method there are a number of types of testing which do NOT

require the availability of test cases. All these involve running

multiple simulations with inputs values randomly generated from

within the operational profile.

One type of testing which is very significant, which does not

require knowing the desired conclusion for a set of input values,

is testing whether the same conclusion will be reached regardless

of the order that the input values become available. This is

relevant when the system acts on the basis of the first conclusion

reached. For a given set of input values, multiple runs are made

with different orderings of various subsets of the inputs.

F o r sensitivity testing the values of parameters are randomly

varied within their operational profiles to determine whether any

parameter is critical in its effect on the input, i.e. small

changes in its value cause significant changes in the output. The

effects of different degrees of belief of input predicates can also

be examined. The evidence flow graph can be partitioned to allow

this testing to be carried out only on the relevant subset of

2 3

nodes.

For some applications it may be possible or necessary to specify

critical conclusions that are to be reached only under certain

conditions or are not to be reached under certain conditions.

These specifications can be tested using multiple simulations with

randomly generated inputs. For these applications, it is critical

to partition the evidence flow graph to allow more exhaustive

testing.

5 . RESULTS OF THE PROJECT --

At present a prototype rule-base-to-evidence-flow-graph translator

has been completed; this is written in LISP. A simulation program

to run an evidence flow graph with varying input values and

orderings has been completed; this is written in SIMSCRIPT. A rule

base for a small expert system has been translated into an evidence

flow graph, and the simulation programs have been used to run the

network. In addition, errors have been inserted into the sample

rule base to demonstrate the kinds of errors that the proposed

approach can detect. This is discussed below.

Appendix 1 contains the sample rule base. Appendix 2 contains the

evidence flow graph representation that was generated from this

rule base by the graph generator. Appendix 3 contains the symbolic

representation of this evidence flow graph. This evidence flow

graph representation is now described in detail. All the

INPUT - NODES except for AGE and LENGTH are predicates; their input

values will be truth values (1 is true and 0 is false, and values

2 1

between 1 and 0 indicate degree of belief). AGE and LENGTH are

parameter inputs. They are input as real values, and the functions

in their corresponding COMPARISON - NODES return true values (between

1.0 and 0.0).

The OTHER - NODES correspond to conclusions, i.e. right-hand sides

(RHS's) of rules. The OTHER - NODES which begin with an * are final
conclusions. In each OTHER - NODE following the node number,

conclusion, and certainty factor, there is a list of nodes which

correspond to the conjuncts on the left-hand side (LHS) of the

rule.

The nodes for the conjuncts may be either INPUT - NODES,

COMPARISON - NODES, or other OTHER - NODES. .Following the number of

the conjunct node, there is a real number between 0.0 and 1.0.

This stands for the 'weight' on the link from the conjunct node to

the conclusion node. The OTHER - NODES are updated with a weighted

sum. The value of each conjunct node is multiplied by its weight

and these products are added together.

0 In node 2 4 for 'mammal,' the second element in the conjunct list

consists of two nodes; these two nodes correspond to the second

conjunct in the rule for 'mammal' in EX.l. The second conjunct in

the rule w a s 'animal', and there were two rules with 'animal' as a

conclusion, as there are two OTHER - NODES (4 and 6) with 'animal' as

a conclusion. These two nodes are connected to node 2 4 by an

OR-connection. The value of an OR-connection used for updating is

the maximum value of the nodes which have so far sent values to the

updating node. For this rule base there are no ELSE - NODES, which

are created for if-then-else rules. There are also no NOT - NODES,

which are used when a negated predicate is a conjunct in the LHS of

a rule; the same predicate can thus be referred to positively and

negatively in different rules.

The errors that can be detected by our techniques can be divided

into three classes:

1. sensitivity (over-sensitivity) of the conclusion to
input parameters,

2 . different conclusions from one set of input values, and

3 . errors which other researchers have detected using static analy-
tic methods but which may also be detected using our techniques.

Appendix 4 is a sample run with the input values on the right. The

input values are randomly generated. For this run the conclusion

'ostrich' was reached. For sensitivity testing of the parameter

inputs (class 1 above), the values of the other inputs may be held

constant while just the parameters are varied. Alternatively a

post-processor could take the results of the randomly generated

input values, group together those which differ only in a parameter

input, and perform analysis on the groups.

For a given set of rules, it is possible that several conclusions

can be reached from a single set of input values. This may be

undesirable when an action is to be taken on the basis of the first

conclusion reached and when the input values become available

dynamically, i.e. not simultaneously. The simulation program also

runs in a dynamic mode. This is illustrated in appendices 5, 6, 7 .

Appendices 6, 7, and 8 will be used to present an example of the

second class of errors.

2 6

As appendix 5 shows, the rule base represented by the graph can be

run with just a subset of the input values; the additional subsets

are added until all the values have been input or a conclusion is

reached. If simulation with a subset of input values reaches a

conclusion, no additional subsets are run. This is what has

occurred in appendices 6 and 7 . The input values for these two

runs are both subsets of those in appendix 8. In the runs detailed

in appendices 6 and 7 , different conclusions have been reached

based on the order in which the input values in appendix 8 have

become available. This is an example of the second class of

errors.

Appendix 9 gives several rules which were added to the original

rule base. These will be used to illustrate the capabilities of

the system for identifying the third class of errors, those which

other researchers have detected using analytic methods but which

may also be detected using our techniques.

The last rule wqs identified as problematic during the translation

process which generates the graph. This is an example of an error

in which an antecedent conjunct in the LHS of some rule is neither

an input nor a conclusion of some other rule. The conjunct

'killshuman' is not parenthesized and therefore indicates an

intermediate conclusion; however, .there is no rule which has

'killshuman' as its RHS. Such an error might have many 'sources'.

For example, the conjunct could havc- been misspelled in either the

LHS o r the RHS of some rule, the rule which concludes this conjunct

could have been omitted, or it may have been intended that this

conjunct be an input.

2 7

Appendix 10 illustrates the data on message arrivals which are

stored for each node. Appendix 11 is a report on the frequency of

node firings for the graph generated from the rules in appendix 1

with the rule for 'human' replaced by the one in appendix 9 and the

rule for 'man' from appendix 9 added. The nodes which never fired

positively should be examined more fully. This does not

necessarily indicate a problem, at least for the number of runs

done, but it points to situations which bear greater scrutiny. For

example, the conclusions 'shark' and 'ape' were never reached, but

there is nothing wrong with the rules that lead to them. On the

other hand, the conclusions 'man' and 'human' from the first two

additional rules in appendix 5 also never were reached, and closer.

scrutiny indicates that these rules were circular, each requiring

the other conclusion to be reached.

Another possible cause for a conclusion never being reached would

be if the rules leading to it were directly contradictory. For

example, conclusion C would be unreachable if the same predicate

were used positively in the LHS of an intermediate conclusion A,

' and negatively in the LHS of an intermediate conclusion B, and the

rule w i t h C in i t s RHS had A and B in i t s LHS. Conclusion C would

a l s o be unreachable if A and B referred to mutually exclusive

comparison. Running multiple simulations identifies the rules that

bear greater scrutiny.

Appendix 12 is a subset of the graph in appendix 3 . The original

graph was partitioned, and appendix 8 contains only the nodes

corresponding to the rules that can be used to lead to the

conclusion 'ape'. The smaller graphs created by partitioning allow

2 8

more simulations to be run in a given amount of time. They can be

used for conclusions of particular interest, perhaps those which

are only to be reached under certain conditions.

6. CONCLUSIONS

It has been shown that Evidence Flow Graph methods can be used to

detect errors and inconsistencies in expert systems. This has been

demonstrated experimentally by taking an existing rule base and

converting it automatically to an evidence flow graph. This flow

graph was then used as the input to a simulation program which

predicted the performance of the expert system under a variety of

conditions. Faults were detected during the translation process

and as a result of simulation runs.

The set of techniques developed is general in nature and has a

number of advantages over other techniques for detecting’problems

as part of the verification process:

a) It provides a uniform representation for various

knowledge representations and control strategies.

b) The evidence flow graph allows for analysis to

recognize unused inputs and subconclusions,

unreachable conclusions, disjoint and hence

partitionable subgraphs, and relationships between

inputs and outputs.

comprehensible representation in which many of these

can be readily recognized.

It also provides a visually

2 9

It allows for simulation using techniques developed

for non-linear stochastic systems.

It allows the consideration of different orders

of input availability, and potentially allows for

multiple data values for a single parameter.

It allows for sensitivity testing to determine where

small changes in the values of input parameters

will result in different conclusions.

It was concluded that evidence flow graph techniques do have a role

to play in performing sensitivity analyses as part of the

verification process for expert systems. More work, however, needs

to be done to make these techniques practically useful. Some of

the major future activities needed are:

1) The development of a program that will automatically develop

simulation test sequences based on meta-knowledge about such items

as possible ranges of input data and order of data availability.

2) The development of a post-processor program to automatically

analyze the output data from the simulation runs and to detect

problems. The simulation program generates a large volume of data

when performing monte-carlo analyses which is not practical to

examine by hand. This post-processing program will need to embody

knowledge about faults that could occur and how to detect them.

3) Further development of techniques to partition flow graphs so as

to reduce the search space for faults.

3 0

4) Expansion of the translation program to translate more complex

knowledge forms into evidence flow graphs.

A successful start has been made on developing techniques which can

be used for the verification of expert systems. The work described

in this report has hopefully laid some of the foundation which can

be used to assure that the expert systems used in our space program

are reliable and safe.

LHS*

Appendix 1: Sample Rule Base

(((has-skin) (moves - around) (breathes))

(((moves - around) (breathes) (eats))

((animal (has - fins) (can - swim))

(((bites) (length > 5) fish)

(((edible) fish)

(((has - wings) animal)

((bird (can - fly))

((bird (long - legs))

(((warm - blooded) animal (suckles - young))

((mammal (talks) (age < 100))

(((lives - - on trees) (age < 100) mammal)

I

R H S CF

animal

animal

fish

shark

salmon

bird

canary

ostrich

mammal

human

*The conjuncts are enclosed in parentheses, if they are input

predicates, but not if they are inferred predicates, i.e. those

on the RHS of some rule.

3 2

Appendix 2: Evidence Flow Graph Representation of the Rule Base

3 3

Appendix 3 : Symbolic Representation of the Evidence Flow Graph

(INPUT - NODES

(2 9 (LIVES ON - TREES))
(2 6 (AGE))-
(2 5 (TALKS))
(2 3 (SUCKLES YOUNG))

(1 8 (CAN FLY))
(2 2 (LONG LEES))

(1 6 (HAS-WINGS))
(1 4 (EDIBLE))
(11 (LENGTH))
(10 (BITES))
(8 (C A N SWIM))
(7 (HAS-FINS))
(5 (EATS))

(1 (HAS - SEIN))

(3 (BREATHES))
(2 (MOVES AROUND))

)

(OTHER - NODES

(* (3 0 APE
(* (2 8 HUMAN
((2 4 MAMMAL
(* (2 1 OSTRICH
(* (1 9 CANARY
((1 7 BIRD
(* (1 5 SALMON
(* (1 3 SHARK
((9 FISH
((6 ANIMAL
((4 ANIMAL

)

0 .9 (((2 9 0 . 3)) ((2 7 0 . 3)) ((2 4 0 . 3)))))

0 . 9 (((2 2 0 . 3)) ((6 0 . 3) (4 0 . 3)) ((2 3 0 . 3)
0 . 9 (((17 0 . 4 5)) ((2 0 0 . 4 5)))))
0 . 9 (((17 0 . 4 5)) ((1 8 0 . 4 5)))))
0 . 9 (((1 6 0 . 4 5)) ((6 0 . 4 5) (4 0 . 4 5)))))
0 . 9 (((1 4 0 . 4 5)) ((9 0 . 4 5)))))
0.9 (((10 0 . 3)) ((12 0 . 3)) ((9 0 . 3)))))
0 .9 (((6 0 . 3) (4 0 . 3)) ((7 0 . 3)) ((8 0 . 3)))))
0 . 9 (((2 0 . 3)) ((3 0 . 3)) ' ((5 0 . 3)))))
0 .9 (((1 0 . 3)) ((2 0 . 3)) ((3 0 . 3)))))

0 . 9 (((2 4 0 . 3)) ((2 5 0.3)) ((27 0 . 3)))))

(COMPARISON - NODES

(ELSE - NODES)

(NOT - NODES)

1

NODE

Initial node firings:

25

18

16

5

3

2 9

2 6
I

2 3

14

11

10

8

7

1

2

I

Appendix 4: Sample Run 1

talks

warm - blooded

long - legs

can - f l y

has - wings

eats

breathes

lives on trees

age

suckles - young

edible

length

bites

can swim

has - fins.

has skin

moves - around

- -

-

-

VALUE FIRED

0

0

1

0

1

1

1

0

46.38 1

1

0

4 . 9 0 1

0

1

1

0

1

34

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT ostrich

3 5

NODE

Initial node firings:

2 5 talks

2 0 long - legs

18

2 3 suckles - young

14 edible

can fly -

11 length

Appendix 5: Sample Run 2

VALUE FIRED

can swim

lives on trees
- 8

2 9 - -
Additional Node Firings:

22 warm - blooded

7 has - fins

5 eats

has skin - 1

Additional Node Firings:

1 6 has - wings

2 moves - around
Additional Node Firings:

10 bites

3 breathes

Additional Node Firings:

Input nodes exhaused

1 9 8 . 5 6 1

0

1

0

0

0

6 .93 1

1

1

1

1

0

1

>>>>>>>INSUFFICIENT EVIDENCE FOR REACHING ANY CONCLUSION<<<<<<<

NODE

Initial node firings:

1 has - skin

2 moves - around

25 talks

22 warm - blooded

11 length

20 long - legs

16 has - wings

5 eats

3 breathes

~

Appendix 6: Sample Run 3

lives on trees - - 29

Conclusion:
~

VALUE

4 . 9 0

FIRED

0

1

0

0

1

1

1

1

1

1

36

THERE IS ENOUGH EVIDENCE (0 . 9 0) TO SUGGEST THAT ostrich

3 7

NODE

Initial node firings:

Appendix 7: Sample Run 4

VALUE FIRED

10

8

2 2

18

16

2

5

3

2 6

2 3

bites

can swim

warm blooded

-

-
can - fly

has - wings

moves around -
eats

breathes

age

suckles - young

0

0

0

1

1

1

1

1

4 6 . 3 8 1

1

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT canary

38

Appendix 8:

NODE

Initial node firings:

2 5

2 2

2 0

1 8

1 6

5

3

29

2 6

2 3

1 4

11

1 0

8

7

1

2

talks

warm - blooded.

long - legs

can - fly

has - wings
eats

breathes

lives on trees

age

suckles - young

edible

length

bites

can - swim

has - fins

has - skin

moves - around

- -

Sample Run 5

VALUE FIRED

0

0

1

1

1

1

1

1

46.38 1

1

0

4.90 1

0

0

0

0

1

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT ostrich

Conclusion:

THERE IS ENOUGH EVIDENCE (0.90) TO SUGGEST THAT canary

39

Appendix 9: Some Additional Rules

(((has beard) human) man

((man (eats) (can-sing)) human

((ape kills - humans (moves - around)) monster

- .99)

.99)

- 9)

4 0

Appendix 10: DETAILS OF MESSAGE ARRIVALS ON NODE 9

NODE CONCLUSION : fish

SOURCE SOURCE
NODE CONCLUSION

6 animal

4 animal

has fins

can swim

- 7

8 -

ARC NUMBER
TYPE MESSAGES

or 2 0 1

o r 201

and 196

and 201

~~ ~ ~ ~ _ _ _ _ _ ~ ~ ~ ~ ~ ~

Appendix 11: Frequency of Node Firings Report

NODE# NODE CONCLUSION ZERC

33 lives on trees 46
3 1 can sYng-
29 ha s-be a rd
26
25
23
22
20
1 8
1 6
1 4
11
1 0

8
7
5
3
2
1

27
1 2
30
28
24
1 7

9
6
4

34
2 1
1 9
1 5
1 3

age-
talks
suckles young
warm-blooded
long legs
can Tly
ha s-w i ng s
edigle
length
bites
can swim
has-fins
eats
breathes
moves around
has sEin
age-< 1 0 0
length > 5
man
human
mammal
bird
fish
animal
animal
ape
ostrich
canary
salmon
shark

48
57
52
46
52
42
45
53
5 1
40
46
48
42
5 1
50
4 4
47
48
7 3
6 5
92
9 3
9 1
87
93
8 2
8 2
9 2
9 1
9 0
9 3
9 2

NON-ZERO TOTAL

50
48
36
43
5 0
4 2
54
5 1
43
45
5 5
47
48
5 4
45
47
5 3
5 0
46
2 2
28
0
0
2
9
2
1 5
1 2
0
5
5
2
0

9 6
9 6
9 3
9 5
9 6
9 4
9 6
9 6
9 6
9 6
9 5
9 3
9 6
9 6
9 6
9 7
9 7
9 7
9 4
9 5
9 3
9 2
9 2
9 3
9 6
9 5
9 7
94
9 2
9 6
9 5
9 5
9 2

Appendix 1 2 : Partitioned Graph for Output 'APE'

(INPUT - NODES

(2 3 (SUCKLES YOUNG))
(1 (HAS SKIR))
(5 (EATS))

(2 2 (LONG ZEGS))
(2 6 AGE)^

(3 (BREATHES))
(2 (MOVES AROUND))

(2 9 (LIVES - - ON TREES))
I

! (OTHER - NODES

4 2

(* (3 0 APE 0 . 9 (((2 9 0 . 3)) ((2 7 0 . 3)) ((2 4 0.3)))))
((4 ANIMAL 0.9 (((1 0 . 3)) ((2 0 . 3)) ((3 0 . 3)))))
((6 ANIMAL 0.9 (((2 0.3)) ((3 0.3)) ((5 0.3)))))
((2 4 MAMMAL 0 .9 (((2 2 0 . 3)) ((6 0.3)(4 0 . 3)) ((2 3 0 . 3)))))

(ELSE-NODES)

(NOT - NODES)

Ref e rences

Ackerman, W.B. 1982. Data Flow Languages. IEEE Computer 15.2:
15-25.

Chisvin, L. 1988. Using Discrete Event Simulation to Predict the
Network Communication Performance of Message-Based Data F l o w
Multiprocessor Systems. Master‘s Thesis, Worcester Pdlytechnic
Institute, Worcester, MA.

Green, P.G. and W.R. Michalson. 1987. Real-Time Evidential
Reasoning and Network Based Processing. Proceedin s of the IEEE
First Annual International Conference - on Neura * Networ s,Vc 2,
pp. 3-EmZ-5.

Johnson, S. 1988. Validation of Highly Reliable, Real-Time
Knowledge-Based Systems. Proceedings of the 2nd Annual Workshop on
Space Operations Automation and Robotics (SOAR 88).

Michalson, W.R., Green, P.E., Duckworth, R.J. 1987. Evidence Flow
Graphs: A Unified Representation for Distributed Artificial
Intelligence Systems. Worcester Polytechnic Institute Report
EE87IMP10.

Michalson, W.R. 1988. A Computing Architecture for Real-Tim.e
Decision Making. Ph.D. Dissertation, Worcester Polytechnic
Institute, Worcester, MA.

Nguyen, T.A., Perkins, W.A., Laffey, T.J. and Pecora, D. 1985.
Checking .an expert system knowledge base for consistency and
completeness. IJCAI9, pp. 376-378.

Nguyen, T.A., Perkins, W.A., Laffey, T.J. and Pecora, D. 1987.
Knowledge .base verification. - AI Magazine, Vo1.8, NO.^., e
65-79.

Law, A.M. and Larme C.S. 1984. An Introduction - to Simulation
m g m S C m T & - - -
O’Keefe, R.M., Balci, O., and Smith, E.P. 1987. Validating Expert
System Performance. IEEE Expert, Vo1.2, NO.^., pp. 81-89.

Russell, E.C. 1983. Building Models with Simscript 11.5. CACI,
Inc., Los Angeles, CA.

Stachowitz, R.A., Chang, C.L., Stock, T.S., and Combs, J.B. 1987.
Building Validation Tools for Knowledge-Based Systems.
- of the First Annual Workshop on S ace
Robotics (S0-7), pp. 709%
2491, Houston, T X . , August 1987.

Suwa, M., Scott, A.C. and Shortliffe, E.H. 1982. An approach to
verifying completeness and consistency in a rule-based expert
system. AI Magazine, Vo1.3, No.4, pp. 16-21. -

Report Documentation Page

I . Report No. 2. Government Accession No.

NASA CR-181810
4. Title and Subtitle

Evidence Flow Graph Methods for Validation and
Verification of Expert Systems

17. Key Words (Suggested by Authorls))

7. Authorls)
Lee A. Beckerr Peter G. Greenr and Jayant Bhatnagar

18. Distribution Statement

9. Performing Organization Name and Address

Worcester Polytechnic I n s t i t u t e
Worcester, MA 01699

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages

Unclassified 45 Unclassified

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hamptonr VA 23665-5225

22. Price

A0 3

5. Supplementary Notes

Langley Technical Monitor: Sally C. Johnson

Final report

3. Recipient's Catalog No.

5. Report Date

July 1989

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-66-21-01
11. Contract or Grant No.

NAG1-809

13. Type of Report and Period Covered

Contractor Rewrt
14. Sponsoring Agency Code

6. Abstract

This final report'describes the results of an investigation into the use

This was approached by developing a translator to convert
of evidence flow graph techniques for.perforrning validation and verification
of expert systems.
horn-clause rule bases into evidence flow graphs, a simulation program, and
methods of analysis.
which contained errors.
identifying a variety of problems, for example that the order of presentation
of input data or small changes in critical parameters could affect the output
from a set of rules.

These tools were then applied to a simple rule base
It was found that the method was capable of

.Knowledge-Based Systems
Expert Systems
Software Validation

Unclassified - Unlimited

