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S M R Y  

T h i s  p rogres s  r e p o r t  summarizes t h e  research work performed a t  t h e  

Ca tho l i c  Universi t y  of h e r i c a  on t h e  research g ran t  e n t i t l e d  'Distributed 

Active Control  of Large F l e x i b l e  Space S t ruc tu res , '  funded by W W G o d d a r d  

Space F l i g h t  Center, under the  gran t  number NAG 5-749, dur ing  t h e  pe r iod  of 

March 19, 1986 t o  September 19, 1986. 

I n  t h i s  r e p o r t  w e  f i r s t  update  t he  r e sea rch  work relevant to  t h e  

p r o j e c t .  

s t a t e d .  The r e p o r t  is then concluded by a d i scuss ion  o f  current and future 

research work 

Then t h e  research accomplished du r ing  t h e  above per iod  w i l l  be 
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SYMBOLS MJD NMATl ON 

MI 0 ... 
0 M 2 . . .  
. .  
. .  
. .  
0 0  

= an (mxn) zero matrix 3* Omxn 

4.  In = an (nxn) ident i ty  matrix 

5. x ( t )  = 9 x ( t )  
dt 

0 

0 

MN 
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1. Introduction 

The advent of a space transportation system, such as the space shuttle 

makes i t  possible to conceive of very large satellites and spacecraft which 

could be carried into space and deployed, assembled, or constructed there 

for such diverse purposes as comnunications, surveillance, astronomy, space 

exploration, and electric power generation 121. These large space 

structures (LSS) concepts range from central rigid bodies, to the solar 

electric propulsion spacecraft and the generic polar platform. Two control 

problems for LSS are attitude control and shape control (241. The former 

involves maintaining a given orientation of the spacecraft, e.g., with 

respect to the sun or earth; the latter involves maintaining the shape of 

critical structures of LSS. LSS are distributed parameter systems that 

possess many low resonant frequencies and have very stringent requirements 

f o r  shape, orientation, alignment, vibration suppression and pointing 

accuracy. These requirements lead the control designers to the concept of 

active control of LSS with various sensors and actuators located about the 

structure and operating through on-line computer controllers to tailor the 

performance and behavior of the system. 

There has been considerable interest in the area of active control o f  

LSS [11-[243. A number o f  control schemes were proposed for large flexible 

space structure (LFSS), but they all represent on0 form or another of modal 

control 1113. Two main modal control schemes are the coupled Modal Control 

and Independent Modal Space Control (IMSC). 

controller consisting o f  a state estimator and a state feedback law; the 

latter controls each mode independently by means of the modal filter [13]. 

The former employs an active 
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I n  th is repor t  we f i r s t  update the research i n  ac t i ve  con t ro l  o f  LFSS 

t o  provide a mathematical framework f o r  the pro ject .  

a generic polar p la t form i s  developed using f i n i t e  element method. 

that  some pro jec t  research r e s u l t s  are presented. We then discuss the 

current and fu tu re  research e f fo r t .  

2. UDdated Research 

Then the modell ing o f  

A f te r  

A conclusion w i l l  sumar ize  the repor t .  

I n  th is sect ion we f i r s t  present the mathematical descr ip t ion o f  l a rge  

space s t ructures (LSS) and then discuss the two main cont ro l  schemes f o r  

th is  type o f  structures.  

2.1 Mathematical DescriDtion o f  LSS 

The LSS may be described as a continuum by the fo l low ing  p a r t i a l  

d i f f e r e n t i a l  equations 

2 

M ( p p  u ( P f t )  + L u ( P , t )  = f ( P , t )  2 a t  
(2.1) 

where u(P,t) = displacement o f  an arb i t ra ry  po int  e 
L =  Linear d i f f e r e n t i a l  se l f -ad jo in t  operator o f  

order 2p, expressing the system s t i f fness .  

M(P) = d i s t r i bu ted  mass 

f (P , t )  = d i s t r i bu ted  cont ro l  force 

Equation (2.1) must be s a t i s f i e d  at  every po int  P i n  the domain D. The 

displacement o f  u(P,t) ir subject t o  the boundary condi t ions 

ai u ( ~ , t )  = 0 for i=1f2f...fp 

where Bi are l i nea r  d i f f e r e n t i a l  operator o f  order ranging f r o m  

0 t o  (Pp-1). 

(2.2) 
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The essocieted eigenualue problem 

L @,(PI = x, M(P) (Pr(P) 

€or r=112,.. . ,w 

with the boundary conditions 

Bi = 0 

for i=112f...1p; r=l12,...,d 

is formulated by 

(2.3) 

( 2 . 4 )  

where x is the rth eigenvalues and (0 (p )  is the eigenfunction associated 

with 1 . Sometimes @ (p)is called the mode shape. 
r r 

r r 

Equations (2.3) and (2.4) can be solved to obtain the solutions of and r 

and in addition, if the operator L is positive definite, then all 
@ r  

eigenvalues are positive. The mode frequency (or  natural frequency) is 

defined as 
4 

using expansion theorem [ l i l ,  the solution of u(P,t) can be obtained as 

r=l 
where ur(t) satisfies 
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for r=1,2,. . . 

I n  pract ice,  the i n f i n i t e  ser ies i n  (2.6) i s  truncated as 

u(P,t) = : 
r=l 

(2.9) 

where M i s  chosen t o  be s u f f i c i e n t l y  large so that u(P,t) can be represented 

w i t h  good f i d e l i t y .  

Since M may be qu i te  large, i t  is not reasonable t o  con t ro l  a l l  M 

modes. Hence we select  N modes t o  control .  These N modes are c a l l e d  

Control led Modes. The remaining R modes (R = M-N) are ca l l ed  Residual Modep 

(uncontrol led modes). 

Equation (2.7) can be transformed in to  the s ta te  equation form as 

fo l lows 

T . .  
where xc(t) = fu, u2 ... u1 u2 ... UNI (2.12) 

WIECEDWQ PAGE BLANK MOT FILMED - 7 -  



Discrete Actuators: Since i t  is impossible to implement distributed 

control forces, the distributed control force f(P,t) is realized by k 

discrete point force actuators 

where S(P-Pi) is a spatial Dirac Delta function. 

Substi tuting (2.18) into (2.8) y i e l d s  

k 

i=l 
f (t) - =  1 @,(pi) ~ ~ ( t ) ;  r=1,2,. r 

Now using (2.19) we obtain 

B =  C 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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T and F ( t )  = IF1 F2 .... FkI  (2.24) 

Discrete Sensors: Suppose there are s discrete sensors consis t ing o f  p 

ve loc i ty  sensors, located a t  p locat ions Pvl Pup, ..., pup and 9 

displacement sensors, located a t  q locat ions PD1, PD2, ..., PDqe 

(2.9) we can express the veloci ty sensor output as 

Using 

(2.25) 

f o r  j = 1,2,.. ., p, and the displacement sensor output as 
M 

F l  
= u(P ,t) = 1 @=(PDj) u p )  (2.26) 

Dj 

for  j = 1,2,..., q. 

i f  we def ine the sensor output vector as 

T 
y(t) = [Y, Y2 - - .  Yp YPl Ype2 - . -  Ywsl I 

then using (2.25) and (2.261, we can wr i te  

where 

(2.27) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 
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The development in this section can be now summarized by the following modal 

state equation in matrix form 

C A [j = 1 - 0 
Y ( t )  = [ cc 

0 

A R ][:I + (2.34) 

(2.35) 
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2.2 The CouDled Modal Control Scheme 

In this scheme, the active controller consists of two parts: 

a) a state estimator that accepts the sensor output y(t) and produces 

an estimate Xc(t) of the controlled state XC(t) and 

b) a linear state feedback control law that multiplies the estimated 

controlled state XC(t) by constant gain to  produce the actuator input F(t). 

The state estimator can be of the Luenberger type that is described by 

E 151 

(2.36) 

The state estimator error is defined as 

eC(t) = xC(t) - xC(t) A 
(2.37) 

Theref ore 
0 

0 A h 
eC(tl = x(t) - xc(t) = (AC - 0 c c  C )e c (t) t GCCRxR(t) (2.38) 
The linear state feedback la is defined by 

A F(t) = KC xC(t) (2.39) 

Now substituting (2.39) into (2.34) and (2.381, we obtain the composite 

state equation as follows: 

0 
AC+BCKC BCKC 

GCCR A -G C c c c  0 

A 
'RKC BRKC R 

The objective o f  the couple modal control scheme ir to select KC and Gc ouch 

that the composite system (2.40) is asymptomatically stable. In (2.40) the 
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control spillover is represented by BR and the observation spillover is 

represented by CR. 

Figure 1. 

2.3 The IndeDendent Modal %ace Control Scheme (IMSC) 

The coupled modal control scheme is illustrated in 

The IMSC scheme was developed by Meirovitch and others [ l o ]  to control 

each mode independently. First an auxiliary variable U (t) is defined by r 
v p  = 1/0 q t )  (2.41) 

Therefore using (2.7) we can write 
2 
r 

Now using (2.41) and (2.421, we obtain 

i r p  = l / U r  iir(t) = - w u p  + f r ( t )  (2.42) 

(2.43) 

(2.44) 

= [ O  'r 

T and xr = [ur vr1 

T 
f r 'Wrl  (2.45) 

(2.46) 

The essence o f  the IMSC is to choose Ur such that Wr depends only on 0; 

alone: 
wr = W r ( w r )  (2.47) 

The optimal design of Wr was discussed in 1121. 

Modal Filter; To implement the IMSC scheme, the modal displacements 

ur(t) and modal velocities ur(t) are required. 

filter accepts the measurements o f  displacement u(P,t) and ueiocity u(P,t) 

at every point P at all time and produces the modal displacement ur(t) and 

- 12- 
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modal velocity ur(t). 

given by 

The mathematical representation o f  a modal filter is 

( 2 . 4 8 )  

( 2 . 4 9 )  

I t  is noted that distributed sensors are needed to obtain the 

displacements u(P,t) and velocities u(P,t). 

Implementation of IMSC usins discrete activators and sensors 

The implementation of IMSC requires distributed control, i.e. Control 

forces are applied at every point of the structure, and also requires 

distributed sensors, i.e. the displacements and velocities are measured at 

every point. 

actuators and discrete sensors are used instead. 

This is however not realizable in practice. Thus discrete 

Let us consider the problem o f  controlling N modes by means of discrete 

actuators. The actuator forces can be treated and distributed by writing 

substituting (2.50) into (2.8) yields 
N 

Introducing the matrix B as 

B =  

we obtain 

... 8 

f(t) = B F(t) 

- 1 3  - 

( 2 . 5 0 )  

( 2 . 5 1 )  

( 2 . 5 2 )  

(2.53) 



where 
T f(t) = If, f2 .... f,l 
I F(t) = [F, F2 .... FNl 

(2.54) 

(2.55) 

Suppose B is nonsingular, then the actual control vector F(t) can be 

synthesized from the generalized control vector f(t) by 

F(t) = B* f(t) (2.56) 

Next let us assume there are m sensors capable of measuring 

displacements and velocities at the discrete points P=Pk (k=1,2,...,m). 

Then from these measurements the entire displacement pattern u(P,t) and 

velocity pattern u(P,t) can be estimated by using various interpolation 

functions. The structure of the IMSC scheme using discrete actuators and 

sensors is shown in Figure 2. 

2.4 Evaluation of the control schemes 

The design of the coupled modal control scheme is straight forward 

since i t  is simply a pole placement problem if the observation spillover is 

negligible. 

composite system are the eigenvalues o f  ( A c t  BCKi; (AC-GCCC)and AR due to 

block triangularity. There are several techniques such as in [15,16 1 that 

Indeed if we set CR=O in (2.4), then the eigenvalues of the 

help the control designer to select KC and Gc such that 6tcC+BcKc and Ac-QcCc 

have desired eigenvalues. The control spillover is represented by . 
(2.57) 

Since eC(t) and x (t) will decay to zero, the control spillover will cause 

unwanted excitations of the residual modes, but i t  cannot shift the residual 
C 

mode frequencies. Consequently the control spillover results in some 
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unwanted oscillations of the residual modes. So when the observation 

spillover is absent, then the control spillover degrades the system 

responses but cannot destabilize the system. 

When observation spillover exists, then instability may occur when some 

of the eigenvalues of the composite system (2.40) are unstable. 

The control and obsesrvation spillover can be minimized if the 

actuators and sensors are located at (or very near to) the zero o f  the mode 

shapes of the residual modes. This concept is limited since it creates 

uncontrollable and unobservable triple (AC, Bc, Cc) that hinders the design 

o f  state estimators and state feedback laws. In addition, the freedom to 

locate sensors and actuators arbitrarily is rarely available to the designer 

since these locations are often already determined by structural 

considerations. 
I 

I t  is well known 1121 that the IMSC scheme is capable of eliminating 

control and observation spillover. However i t  requires the implementation 

of distributed actuators and distributed sensors that unfortunately cannot 

be provided by the current state-of-the-art. Consequently, discrete 

actuators and discrete sensors have to be used. A question that is still 

not clearly answered is how many discrete actuators and sensors are 

necessary for a successful implementation of the IMSC scheme. In addition, 

the IMSC scheme when being implemented by discrete actuators also has 

control spillover into the uncontrolled modes. However as pointed out in 

[12], the control spillover effect is not very important. 

Both control schemes, the coupled modal control and the IMSC require 

- that a closed-form solution of the eigenvalue problem exist. Unfortunately 

the vast majority o f  continuous system% icads to eigenvaiue problems that do 

not have closed-form solutions, owing to nonuniform mass or stiffness 
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d is t r i bu t i ons ,  Hence i n  t h i s  case, i t  i s  necessary t o  seek approximate 

solut ions of the eigenvalue problem. 

3. Modelinq o f  the Polar Platform 

One of the p ro jec t  a c t i v i t i e s  i s  t o  obtain a model f o r  a generic polar 

plat form whose phys ica l  parameters are given i n  Table 1. 

A MSTRAN f i n i t e  element analysis package (McNeal Schwendler version) 

was employed to  model the plat form and i t s  appendages by 52 modes. 

model i s  i l l u s t r a t e d  i n  Figure 3. 

The 

The plat form i t s e l f  was modeled by 28 

nodes, the so lar  panel and the astromast by 16 nodes and the engineering 

module by 8 nodes. 

I n  the developed model, the payload ca r r i ed  by each module was assumed 

t o  be d i s t r i b u t e d  uni formly throughout a l l  nodes. Also the engineering 

module was assumed t o  be very r i g i d  as compared t o  the p la t form or the solar 

panel . 
The model considers only those degrees o f  freedom o f  the p la t form that 

cont r ibute t o  i t s  bending and tors ional  v ibrat ions.  

Table 2 l i s t s  the f i r s t  ten modes o f  Vibrations. The f i r s t  two na tura l  

frequencies are the f i r s t  r i g i d  body modes i n  p i t c h i n g  and r o l l i n g .  The 

remaining modes are the f l e x i b l e  modes o f  the plat form. 

I t  can be seen that  the f l e x i b l e  modes are very low and h igh ly  

condensed over a narrow band between 0.054Hz and 0.448 Hz. A sample o f  the 

f i r s t  three modes o f  v ibrat ions are shown i n  Fig. 4-6. 

4. Project  Research Resul t t  

I n  th is sect ion we w i l l  present some research r e s u l t s  obtained by the 

p r inc ipa l  investigators during the research period s ta ted  in the summary. 

One o f  the p ro jec t  object ives i o  t o  evaluate several candidate cont ro l  
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schemes in order to select the most appropriate control scheme for the LFSS. 

The study of coupled-modal control and Independent Modal Space Control 

involves in such problems as pole allocation, eigenvalue assignment, state 

estimator design, canonical transformation etc. ... . During the 

investigation of the above topics, some results have been found and are 

sumar i zed bel ow. 

4.1 Canonical Transformation 

Canonical transformation has been proven to be very useful in the 

design of state estimators and state feedback. In 1141 two canonical 

transformations were deweloped for a class of time-varying multivariable 

control systems. Since most physical systems such as LFSS are time-varying 

in  nature, this type o f  time-varying canonical transformations will be very 

helpful in design of more practical control schemes for LFSS. 

4.2 Eisenvalue Assiqnment and Pole Allocation 

The eigenvalue assignment or pole allocation problem is very essential 

to the control of LFSS since i t  is related to the system stability. Two 

comon problems in control system design for LFSS are the selection of a 

state feedback gain to shift the natural modes of the LFSS to a set o f  

desired damping modes, and the design of a state estimator whose eigenvalues 

can be arbitrarily assigned. These two problems can be treated as 

eigenvalue assignment or pole allocation problems. In E161 it was shown 

that eigenvalues can be arbitrarily assigned to a class o f  time-varying 

multivariable systems. Canonical transformation developed in [141 was 

employed to design the state feedback gain. The distributed control problem 

was considered in [17] where a control scheme was developed to arbitrarily 

afiocate closed-loop poles to a distributed time-inuariant system that is 

con trolled by several pairs o f  sensors and actuators. 
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4.3 State Estimator Desisn 

State estimator design is very crucial to the control of LFSS since the 

controlled state vector has to be estimated for the coupled modal control 

case and the modal state for  the IMSC case. In 1181 a neu algorith was 

proposed to design reduced-order state estimators for a class of 

time-varying multivariable control systems that are uniformly observable. 

The result in [18] is an extension o f  that in 1151 where a full-order state 

estimator was designed. 

4.4 Simulation of Control Schemes 

Since the generic polar platform is relatively a complicated structure, 

we start the study of the control scheme by considering the control of a 

simply supported bean with one actuator and one sensor. Complete 

understanding of the control of this simply supported bean will help us to 
I 

I gain some insight o f  the control of the complete structure. The bean 

dynamics are modelled by the Euler-Bernoulli partial differential equation 

2 
u ( x , t )  + E1 ---- a4 u ( x , t )  = f ( x , t )  a 

a t  ax 
4 m ---- ( 4 . 1 )  

For simplicity we set the mass m, the moment of inertia I, the modulus of 

elasticity E and the length of the bean to unity. The boundary conditions 

for this simply supported bean are 

2 

2 
a -  

ax 

2 

2 
a - - -u(O,t)  = - - - u ( l , t )  = 0 

ax 

- i a  - 



and 

The eigenvalue solutions for this case are 
2 

w = (kn) k 

Ok = s i n  ( k i x )  

The beam is controlled by a single point actuator at x = 1/6: 

.s 
f ( x , t )  = (1/2) 6 ( x  - 1/61 f ( t )  ( 4 . 6 )  

and the displacement is measured by a single point sensor located at x = 

W 6 :  

y(t) = u(W6,t) (4.7) 

Using the Matlab and the control tool box software package, an active 
I 

controller was designed to control the first three modes o f  the bean. To 

minimize the following unweighted energy 

J J E ( t 1  t 0.1f2(t)ldt (4.8) 

the control gain was determined to be 

KC = [-3.87 -3.86 -3.86 -1.01 -6.08 -20.31 (4.10) 

A state estimator was designed to estimate the controlled modes. The 

state estimator gain G given below: C 

Gc = 1711.8 52.34 -7.39 10.06 -5.97 1.981 (4.11) 
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w i l l  assign s tab le eigenvalues t o  the s tate estimator. Several s imulat ion 

runs were made t o  study the performance o f  the ac t ive  cont ro l le rs  and the 

e f f e c t  o f  the contro l  and observation sp i l lover .  

I n  a l l  simulat ion runs, an impulse disturbance was created t o  exc i te  

the system. 

sp i l l ove r .  

reach the zero steady state. 

caused by cont ro l  sp i l lover  i n t o  the uncontrol led modes. 

observation ex i s t s  i n  t h i s  case, the system i s  t i l l  stable. Fig. 10 and 11 

display the sensor output and actuator input when no sp i l lover  ex is ts .  We 

no t i ce  that  the displacement war decayed t o  zero. 

i n t o  the 4 t h  and 5 th  uncontrol led modes i s  i l l u s t r a t e d  i n  Fig. 12 and 13, 

respect ive ly .  The eigenvalues o f  the composite system [Equation (2.4011 f o r  

a l l  poss ib le  cases o f  sp i l lover  are given i n  Table 2a. 

eigenvalues o f  the closed-loop system, the s ta te  estimator, con t ro l led  

subsystem and uncontrol led subsystem. 

Figures 8 and 9 present the e f f e c t s  o f  control  and observation 

We note that when sp i l l ove r  exists,  the displacement did not 

I t  has an o s c i l l a t i o n  w i t h  small amplitude 

Even though the 

The contro l  sp i l l ove r  

Table 2b shows the 

I n  Table 3a we note that when no observation sp i l lover  ex is ts ,  the 

eigenvalues o f  the composite system consist o f  the eigenvalues o f  the 

closed-loop system, the s tate estimator, and the uncontrol led subsystem. 

Th is  agrees w i t h  the discussion made i n  Section 2.3. 

5. Current and Future Research 

Continuing the research stated i n  Section 4, we current ly  focus on the 

study o f  sp i l l ove r  minimization. 

r e s u l t s  showed that the system performance i s  degraded at  the presence o f  

con t ro l  sp i l l ove r .  The LFSS can also become unstable i f  the observation 

As  we have seen, the system simulat ion 



spillover exists. Therefore spillover minimization study is very crucial to 

the control of LFSS. We are investigating the minimization of the spillover 

by 

(a) Proper locating of actuator and sensors. 

(b) Determining a sufficient number o f  actuators and sensors needed. 

(c) Applying the IMSC method to the generic polar platform. 

The above study is carried out mostly by simulating the system for 

various situations using system simulation languages in order to set up a 

guideline for selecting and locating actuators and sensors. 

After the control of the simply-supported bean has been studied 

throughout, we will apply the resulting control scheme to the complete 

generic polar platform. 

be addressed in the future research: 

Several control issues such as given below should 

(a) Evaluation of the application of coupled-modal control and IMSP to 

the generic polar platform in terms of feasibility, reliability, spillover, 

and computational effort. 

(b) Implementation of an adaptive control scheme for the system. 

(c) Study of a robust controller when the system parameters are not 

well-known and when unpredictable disturbances are expected. 

6. Conclusion 

In this report we first updated the research related to project. 

modelling o f  the generic polar platform using finite element method was 

discussed. 

study using computer simulation and some theoretical research results o f  

such problems as eigenvalues, state estimator, and state feedback design. 

Current research effort was discussed and future research activities were 

The 

We then presented some preliminary results o f  the control system 

assessed. 
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FIGURE 4: The First Mode of vibration 
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FIGURE 6 :  The Third Mode of Vibration 
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FIGURE 7 :  The Fourth Mode of v ib ra t ion  
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PARAMETER VALUE 

OVERALL LENGTH OF THE PLATFORM 
PLATFORM WIDTH 
PLATFORM HEIGHT 
LENGTH OF SOLAR ARRAY 
WIDTH OF SOLAR ARRAY 
NUMBER OF MODULES 
MASS/MODULE 
LENGTH OF ENGINEERING MODULE 
HEIGTR OF ENGINEERING MODULE 
MASS OF ENGINEERING MODULE 
LENGTH OF STRUCTURAL MEMBERS 
STRUCTURAL MEMBER OUTER DIAMETER 
STRUCTURAL MEMBER INNER DIAMETER 
STRUCTURAL MEMBER MATERIAL 
DESITY OF THE ASTROMAST SUPPORTING 
THE SOLAR ARRAY 
ASTROMAST FLEXURAL RIGIDITY 
ASTROMAST TORSIONAL RIGIDITY 

45 ft 
6 ft 
6 ft 
60 ft 
15 ft 
6 

600.00 kg 
9 ft 
6 ft 

6 ft 
1 in. 
0.875 in. 
Aluminium 

5000.00 kg 

2 15.20 x10 lb in2  
2 . 2  kq/gt 

5 M x 1 0  6 lb i n  

TABLE 1: Physical Parameters of the Generic Polar Platform 

MODE frequency. i n  Hz 

0 

5.397 x 

5.457 x 

8.956 x lo-* 

1.404 x 10-1 

3.635 x 10-1 

7 3.837 x 10-1 

8 4.190 x 10-1 

9 4.301 x 10-1 

10 4.488 x 10-1 

TABLE 2:  The F i r s t  Ten Modes of Vibrat ions  
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TABLE 3a: Eigenvalues of the Composite System 

iio contr. spill. 

TABLE 3b: Eigenvalues of the Closed-Loop System, State Estimator, Controlled 
Subsystem, and Uncontrolled Subsystem 

- 38 - 


