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SUMMARY

This progress report summarizes the research work performed at the
Catholic University of America on the research grant entitled "Distributed
Active Control of Large Flexible Space Structures," funded by NASA/Goddard
Space Flight Center, under the grant number NAG 5-749, during the period of
March 13, 1986 to September 13, 1986.

In this report we first update the research work relevant to the
project. Then the research accomplished during the above period will be
stated. The report is then concluded by a discussion of current and future

research work.
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SYMBOLS AND NOTATION

bd (My5 ML «oo5 M) = M)
O M
LO 0

MT = Transpose of the matrix M
0 = an (mxn) zero matrix

mxn

In = an (nxn) identity matrix

;(t) a d x(t)




1. Introduction

The advent of 3 space transportation system, such as the space shuttle
makes it possible to conceive of very large satellites and spacecraft which
could be carried into space and deployed, assembled, or constructed there
for such diverse purposes as communications, surveillance, astronomy, space
exploration, and electric power generation [2]. These large space
structures (LSS) concepts range from central rigid bodies, to the solar
electric propulsion spacecraft and the generic polar platform. Two control
problems for LSS are attitude control and shape control [24]. The former
involves maintaining a given orientation of the spacecraft, e.g9., with
respect to the sun or earth; the latter involves maintaining the shape of
critical structures of LSS. LSS are distributed parameter systems that
possess many low resonant frequencies and have very stringent requirements
for shape, orientation, alignment, vibration suppression and pointing
accuracy. These requirements lead the control designers te the concept of
active control of LSS with various sensors and actuators located about the
structure and operating through on-line computer controllers to tailor the
performance and behavior of the system.

There has been considerable interest in the area of active control of
LSS [1])-{24). A number of control schemes were proposed for large flexible
space structure (LFSS), but they all represent one form or another of modal
control [11]. Two main modal control schemes are the coupled Modal Control
and Independent Modal Space Control (IMSC). The former employs an active
controller consisting of a state estimator and a state feedback lawj the
latter controls each mode independently by means of the modal filter [13].
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In this report we first update the research in active control of LFSS
to provide a mathematical framework for the project. Then the modelling of
a generic polar platform is developed using finite element method. After
that some project research results are presented. We then discuss the
current and future research effort. A conclusion will summarize the report.
2. Updated Research

In this section we first present the mathematical description of large
space structures (L.SS) and then discuss the two main control schemes for
this type of structures.

2.1 Mathematical Description of LSS
The LSS may be described as a continuum by the following partial

differential equations

2

M(p)a—‘—‘ép—'t-)- + L u(P,t) = f£(P,t) (2.1)

at
where u(P,t) = displacement of an arbitrary point P
L= Linear differential self-adjoint operator of
order 2p, expressing the system stiffness.
M(P) = distributed mass
f(P,t) = distributed control force
Equation (2.1) must be satisfied at every point P in the domain D. The

displacement of u(P,t) is subject to the boundary conditions

Bi u{P,t) = 0 for i=1,2,...,p (2.2)
where 8i are linear differential operator of order ranging from

0 to (2p-1) .



The associated eigenvalue problem is formulated by

L ¢r(P) = A, M(P) @r(P)

(2.3)
for r=1,2,...,00
with the boundary conditions
Bi ¢r(P) = 0 (2.4)
for i=1,2,...,p; r=1,2,...,%0

where xris the rth eigenvalues and or(p)is the eigenfunction associated
with A Sometimes ¢r(p)is called the mode shape.
Equations (2.3) and (2.4) can be solved to obtain the solutions of , and
Y

o, and in addition, if the operator L is positive definite, then all

eigenvalues are positive. The mode frequency (or natural frequency) is

defined as

1

w, = xr) ; r=1,2,... (2.5)

using expansion theorem [11), the solution of u(P,t) can be obtained as

oQ

u(P,t) = Z <br(P) ur(t) (2.6)

r=1
where ur(t) satisfies



a (t) + mz ua (8) = £_(v) . (2-7)
r X Y r

for r=1,2,...

and
f(t)y = ‘/; (p) £(p,t) 4D (2.8)
r r
D

In practice, the infinite series in (2,6) is truncated as

M
u(P,t) = }: 0 (P) u (b) (2.9)
r=1
where M is chosen to be sufficiently large so that u(P,t) can be represented
with good fidelity.
Since M may be quite large, it is not reasonable to control all M
modes. Hence we select N modes to control. These N modes are called

Controlled Modes. The remaining R modes (R = M-N) are called Residual Modes

(uncontrolled modes).

Equation (2.7) can be transformed into the state equation form as

follows
: = 2.10
xc(t) AC xC(t) + fC(t) ( )
= 2.11
Xp (t) AL x (€) + £ (€) ( )
- - - T
= ... 2.12
where xc(t) [ul u2 .. uN ul u2 uN] ( )
- - . T
= ... 2.13
xp(t) (el Une2 o0 M Unel a2 uy! (2.13)
T
= 2.14
£e (£, £, -0 £ 05 0] ( )
T
= 2.15
fr EfN+1 SIS fu %1xr! ¢ )
0 ' bd ( 2 w mz)
{ Wyi "W eeei T
AL = _Tq.L__i.-}-_-_-E (2.16)
I | 2 2 2
Opxr (P 0Ne1?  Una2ito Wy
= b e e e — (2.17)
& 1 ‘ o '
| R ! RxR
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Discrete Actuators: Since it is impossible to implement distributed
control forces, the distributed control force f(P,t) is realized by k

discrete point force actuators

k
£(P,t) = 2: §(P-P,) F, (t) (2.18)
i=1

where 6(P-Pi) is a spatial Dirac Delta function.

Substituting (2.18) into (2.8) yields

k
£.(t) -= i;; o (P) F (t); r=l,2,... (2.19)

Now using (2.19) we obtain

fc(t) = BCF(t) (2.20)
and Fo(t) = BF(t) ' (2.21)
- ]
0 (B)) 9 (Py) ... 0 (P)
0,(B1) 0,(P,) <. 0, (P)
B = : : : (2.22)
0y (B)) 0 (B,) .. @ (P)
L Oka
# 1
One1 (Br) O (Bp) -oe B, (BY)
W2 (By) O o (Py) wee Bp H(Py)
= ) : 2.23
B, . (2.23)
0y (B) 9y (B ... 8,(R)
oMxk J_




- T

Discrete Sensors: Suppose there are s discrete sensors consisting of p

(2.24)

velocity sensors, located at p locations Pv P

1 Pyos cees Pvp and q

displacement sensors, located at q locations PDI’ PDZ’ ceny PDq' Using

(2.9) we can express the velocity sensor output as
M

= = ¢ Y 2.25
Yy = G(Ry ) rgl  (Byg) G, (8) ( )
for j =1,2,..., p, and the displacement sensor output as
M
= u(P_.,t) = ¢ (P_.) u (t) (2.26)
Yoy = U(Bp eE) FZ'I £ (Bpy) U

for j =1,2,..44 q.

If we define the sensor cutput vector as

T
= e . . 2.27)
y(t) [yly2 Yp Yp+l yp+2 qu] (
then using (2.23) and (2.26), we can write
y(t) = chc(t) + CR"R(‘) (2.28)
where
Cc = bd[CCU CCD] (2.29)
CR = bd[CRU CRD] (2.30)
and - 3
Ql(Pvl) oz(Pvl) .ee ¢N(Pvl)
¢ (P.) ®_(P._) ... ¢ .(P_)
c _11 .vz 2 .vz N .vz (2.31)
cv . . .
) ..
) l(PVP) °2(Pvp) QN(PVPU
¢
1(P01) °2(P01) toT QN(PDl).1
c = [P1®p)  0,Bp) o ey(Ppy) (2.32)
cD . . :
- P
R L Pt o Dq)‘
® et Pyr) a2 Byy) L OBy
) (P .) ¢ (P,) ... (P )
v2
) N+l V2 N+2 V2 (2.33)
Cav ~ _ .
fml(l’vp) ® ne2 (Pyp) “""M‘PVp’j




RD

QN+1(

On+1

®n+1
-

P

P

(

D1

D2

P
bq’

(

¢N+2 PDl

(

On+2Pp2

®y+2 Ppg

)

)

)

QM(PDZ)

@M(PDq)

The development in this section can be now summarized by the following modal

state equation in matrix form

y(t)

= 1

C
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2.2 The Coupled Modal Control Scheme

In this scheme, the active controller consists of two parts:

a) a state estimator that accepts the sensor output y(t) and produces
an estimate Xc(t) of the controlled state Xc(t) and

b) a linear state feedback control law that multiplies the estimated
controlled state Xc(t) by constant gain to produce the actuator input F(t).

The state estimator can be of the Luenberger type that is described by
[{15]
A

A
xc(t) = (Ac - GcCc)xc(t) + BCF(t) + ch(t) (2.36)

The state estimator error is defined as

A

ec(t) = xc(t) - xc(t) (2.37)
Therefore

. A A

ec(t) = x(t) - xc(t) = (Ac - Gccc)ec(t) + GCCRxR(t) (2.38)

The linear state feedback law is defined by

A
F(t) = Kc xc(t) (2.39)

Now substituting (2.39) into (2.34) and (2.38), we obtain the composite

state equation as follows:

F . ) B K (o] x . (t)

x_(t) AtBK. Xe el
: - t 2.40
é.(t) o) A G.C. G Cp ec(t) ( )
B B K A X (t)

an(t) | Prc RC R | | R

The objective of the couple modal control scheme is to select Kc and GC such

that the composite system (2.40) is asymptomatically stable. 1In (2.40) the
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control spillover is represented by BR and the observation spillover is
represented by CR' The coupled modal control scheme is illustrated in

Figure 1.

2.3 The Independent Modal Space Control Scheme (IMSC)

The IMSC scheme was developed by Meirovitch and others [10] to control
each mode independently. First an auxiliary variable Ur(t) is defined by
= ) ¥ 2.4
vr(t) 1/“’r ur(t) ( 1)
Therefore us{ng (2.7) we can write
. . __ 2
vr(t) = l/u,rur(t) = mr ur(t) + fr(t) (2.42)

Now using (2.41) and (2.42), we obtain

xr(t) = Arxr(t) + Nr (2.43)
where 0 ©
A = t (2.44)
r -w o
r
=(o0 £ )T (2.45)
W Y
and x_ = [u v ]T (2.46)
r 1 4 r !

The essence of the IMSC is to choose Nr such that Nr depends only on m;

alone:
W = W (w ) (2.47)
r r r

The optimal design of Nr was discussed in [12].

Modal Filter; To implement the IMSC scheme, the modal displacements
ur(t) and modal velocities ur(t) are required. A device, called modal
filter accepts the measurements of displacement u(P,t) and velocity u(P,t)

at every point P at all time and produces the modal displacement "r(t) and
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modal velocity ur(t). The mathematical representation of a modal filter is

given by
u (t) = /'M(P) ® (P) u(P,t) dD (2.48)
r D r
ﬁr(t) = l)J[M(P) ¢_(P) a(pP,t) dD (2.49)

It is noted that distributed sensors are needed to obtain the
displacements u(P,t) and velocities u(P,t).

Implementation of IMSC usinq discrete activators and sensors

The implementation of IMSC requires distributed control, i.e. Control
forces are applied at every point of the structure, and also requires
distributed sensors, i.e. the displacements and velocities are measured at
every point. This is however not realizable in practice. Thus discrete
actuators and discrete sensors are used instead.

Let us consider the problem of controlling N modes by means of discrete

actuators. The actuator forces can be treated and distributed by writing

N
f(p,t = F.(t § (P-P.) (2.50)
(P,t) j; 5(8) 8 (PP,

substituting (2.50) into (2.8) yields
N

f (t)y = ZO (Pj) F. (t) (2.51)
r 591 r 3

Introducing the matrix B as

[ '
ol(Pl) ol(Pz) e ol(PN)
oz(Pl) OZ(PZ) e 02(PN)
B = . . . (2.52)
_?N(Pl) oN(Pz) vee @N(PN)‘
we obtain
f(t) = B F(t) (2.53)
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where

f(t)

[Fy fy wens Fyl (2.54)
F(t) = [F) Fy vous Bl (2.55)

Suppose B is nonsingular, then the actual control vector F(t) can be

synthesized from the generalized control vector f(t) by
F(t) = B f() (2.56)

Next let us assume there are m sensors capable of measuring
displacements and velocities at the discrete points P=Pk (k=1,2,...,m).
Then from these measurements the entire displacement pattern u(P,t) and
velocity pattern u(P,t) can be estimated by using various interpolation
functions. The structure of the IMSC scheme using discrete actuators and

sensors is shown in Figqure 2.

2.4 Evaluation of the control schemes

The design of the coupled modal control scheme is straight forward
since it is simply a pole placement problem if the observation spillover is
negligible. Indeed if we set CR=0 in (2.4), then the eigenvalues of the
composite system are the eigenvalues of (Ac+ che; (AC-GCCc)and AR due to
block triangularity. There are several techniques such as in [15,16 ] that
help the control designer to select KC and Gc such that AC+BCKC and AC-GCCc
have desired eigenvalues. The control spillover is represented by

xR(t) = ARXR(t) + BRKc[xc(t) + ec(t)] (2.57)

Since ec(t) and xc(t) will decay to zero, the control spillover will cause

unwanted excitations of the residual modes, but it cannot shift the residual

mode frequencies, Consequently the control spillover results in some
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unwanted oscillations of the residual modes. So when the observation
spillover is absent, then the control spillover degrades the system
responses but cannot destabilize the system.

When observation spillover exists, then instability may occur when some
of the eigenvalues of the composite system (2.40) are unstable.

The control and obsesrvation spillover can be minimized if the
actuators and sensors are located at (or very near to) the zero of the mode
shapes of the residual modes. This concept is limited since it creates
uncontrollable and unobservable triple (AC, BC’ Cc) that hinders the design
of state estimators and state feedback laws. In addition, the freedom to
locate sensors and actuators arbitrarily is rarely available to the designer
since these locations are often already determined by structural
considerations.

It is well known [12] that the IMSC scheme is capable of eliminating
control and observation spillover. However it requires the implementation
of distributed actuators and distributed sensors that unfortunately cannot
be provided by the current state-of-the-art. Conseguently, discrete
actuators and discrete sensors have to be used. A question that is still
not clearly answered is how many discrete actuators and sensors are
necessary for a successful implementation of the IMSC scheme. In addition,
the IMSC scheme when being implemented by discrete actuators also has
control spillover into the uncontrolled modes. However as pointed out in
[(12], the control spillover effect is not very important.

Both control schemes, the coupled modal control and the IMSC require
that a closed-form solution of the eigenvalue problem exist. Unfortunately
the vast majority of continuous systems leads to eigenvalqe prgblems th;t do

not have closed-form solutions, owing to nonuniform mass or stiffness
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distributions. Hence in this case, it is necessary to seek approximate
solutions of the eigenvalue problem.

3. Modeling of the Polar Platform

One of the project activities is to obtain a model for a generic polar
platform whose physical parameters are given in Table 1.

A NASTRAN finite element analysis package (McNeal Schwendler version)
was employed to model the platform and its appendages by 52 modes. The
model is illustrated in Figure 3, The platform itself was modeled by 28
nodes, the solar panel and the astromast by 16 nodes and the engineering
medule by 8 nodes.

In the developed model, the‘payload éarried by each module was assumed
to be distributed uniformly throughout all nodes. Also the engineering
module was assumed to be very rigid as compared to the platform or the solar
panel.

The model considers only those degrees of freedom of the platform that
contribute to its bending and torsional vibrations.

Table 2 lists the first ten modes of vibrations. The first two natural
frequencies are the first rigid body modes in pitching and rolling. The ‘
remaining modes are the flexible modes of the platform.

It can be seen that the flexible modes are very low and highly
condensed over a narrow band between 0.054Hz and 0.448 Hz. A sample of the
first three modes of vibrations are shown in Fig. 4-6.

4., Project Research Results

In this section we will present some research results obtained by the

principal investigators during the research period stated in the summary.

One of the project objectives is to evaluate several candidate control
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schemes in order to select the most appropriate control scheme for the LFSS.
The study of coupled-modal control and Independent Modal Space Control
involves in such problems as pole allocation, eigenvalue assignment, state
estimator design, canonical transformation ete. ... . During the
investigation of the above topics, some results have been found and are
summarized below.

4.1 Canonical Transformation

Canonical transformation has been proven to be very useful in the
design of state estimators and state feedback. In [14] two canonical
transformations were developed for a class of time-varying multivariable
control systems. Since most physical systems such as LFSS are time-varying
in nature, this type of time-varying cancnical transformations will be very
helpful in design of more practical control schemes for LFSS.

4.2 Eigenvalue Assignment and Pole Allocation

The eigenvalue assignment or pole allocation problem is very essential
to the control of LFSS since it is related to the system stability. Two
common problems in control system design for LFSS are the selection of a
state feedback gain to shift the natural modes of the LFSS to a set of
desired damping modes, and the design of a state estimator whose eigenvalues
can be arbitrarily assigned. These two problems can be treated as
eigenvalue assignment or pole allocation problems. In [16] it was shown
that eigenvalues can be arbitrarily assigned to a class of time-varying
multivariable systems. Canonical transformation developed in [14] was
employed to design the state feedback gain. The distributed control problem
was considered in [17] where a control scheme was developed to arbitrarily
allocate closed-loop poles to a distributed time-invariant system that is

controlled by several pairs of sensors and actuators.
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4.3 State Estimator Desiqgn

State estimator design is very crucial to the control of LFSS since the
controlled state vector has to be estimated for the coupled modal control
case and the modal state for the IMSC case. In [18] a new algorithm was
proposed to design reduced-order state estimators for a class of
time-varying multivariable control systems that are uniformly observable.
The result in [18] is an extension of that in [15] where a full-order state
estimator was designed.

4,4 Simulation of Control Schemes

Since the generic polar platform is relatively a complicated structure,
we start the study of the control scheme by considering the control of a
simply supported beam with one actuator and one sensor. Complete
understanding of the control of this simply supported beam will help us to
gain some insight of the control of the complete structure. The beam

dynamics are modelled by the Euler-Bernoulli partial differential equation

2
4
m -évi u(x,t) + EI -g-z u(x,t)
3t IX

f(x,t) (4.1)

For simplicity we set the mass m, the moment of inertia I, the modulus of
elasticity E and the length of the beam to unity. The boundary conditions

for this simply supported beam are

u(0,t) = u(l,t) = 0O (4.2)
32 2%
--iu(o,t) = —-Eu(l,t) = 0 (4.3)
3x IxX
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The eigenvalue solutions for this case are

W (kﬂ)z (4.4)

and
Qk

sin (kwx) (4.5)

The beam is controlled by a single point actuator at x = 1/6:

f(x,t) = (1/2)°5 §(x ~ 1/6) f£(t) (4.6)

and the displacement is measured by a single point sensor located at x =
S/6:

y(t) = u(/6,t) (4.7)

Using the Matlab and the control tool box software package, an active
controller was designed to control the first three modes of the beam. To

minimize the follgging unweighted energy

J = [[E(t)+0.1f2(t)]dt (4.8)

where 0 3
E(t) = 172 ¥ (wzkui ¥ ui ) (4.9)

k=1

the control gain was determined to be

Kc = [-3.87 -3.86 -3.86 -1.01 -6.08 -20.3] (4.10)

A state estimator was designed to estimate the controlled modes. The
state estimator gain GC given below:

GC = [711.8 52.34 -7.39 10.06 -3.97 1.98]T (4.11)
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will assign stable eigenvalues to the state estimator. Several simulation
runs were made to study the performance of the active controllers and the
effect of the control and observation spillover.

In all simulation runs, an impulse disturbance was created to excite
the system. Figqures 8 and 9 present the effects of control and observation
spillover. We note that when spillover exists, the displacement did not
reach the zero steady state, It has an oscillation with small amplitude
caused by control spillover into the uncontrolled modes. Even though the
observation exists in this case, the system is till stable. fig. 10 and 11
display the sensor output and actuator input when no spillover exists. MWe
notice that the displacement was decayed to zere. The control spillover
into the 4th and Sth uncontrolled modes is illustrated in Fig. 12 and 13,
respectively. The eigenvalues of the composite system [Equation (2.40)] for
all possible cases of spillover are given in Table 2a. Table 2b shows the
eigenvalues of the closed-loop system, the state estimator, controlled
subsystem and uncontrolled subsystem.

In Table 3a we note that when no observation spillover exists, the
eigenvalues of the composite system consist of the eigenvalues of the
closed-loop system, the state estimator, and the uncontrolled subsystem.
This agrees with the discussion made in Section 2.3.

5. Current and Future Research

Continuing the research stated in Section 4, we currently focus on the
study of spillover minimization. As we have seen, the system simulation
results showed that the system performance is degraded at the presence of

control spillover. The LFSS can also become unstable if the observation



spillover exists, Therefore spillover minimization study is very crucial to
the control of LFSS. We are investigating the minimization of the spillover
by

(a) Proper locating of actuator and sensors.

(b) Determining a sufficient number of actuators and sensors needed.

(c) Applying the IMSC method to the generic polar platform,

The above study is carried out mostly by simulating the system for
various situations using system simulation languages in order to set up a
guideline for selecting and locating actuators and sensors.

Af ter the contrel of the simply-supported beam has been studied
throughout, we will apply the resulting control scheme to the complete
generic polar platform., Several control issues such as given below should
be addressed in the future research:

(a) Evaluation of the application of coupled-modal control and IMSP to
the generic polar platform in terms of feasibility, reliability, spillover,
and computational effort.

(b) Implementation of an adaptive control scheme for the system.

(c) Study of a robust controller when the system parameters are not
well-known and when unpredictable disturbances are expected.

6. Conclusion

In this report we first updated the research related to project. The
modelling of the generic polar platform using finite element method was
discussed. We then presented some preliminary results of the control system
study using computer simulation and some theoretical research results of
such problems as eigenvalues, state estimator, and state feedback design.

Current research effort was discussed and future research activities were

assessed.
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The First Mode of Vibration
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FIGURE 5 :

The Second Mode of Vibration
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MODE 1 (8,834 H2)

FIGURE 6: The Third Mode of Vibration
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MODE 4 (9,689 H2)

FIGURE 7: The Fourth Mode of Vibration
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PARAMETER

OVERALL LENGTH OF THE PLATFORM

PLATFORM WIDTH
PLATFORM HEIGHT

LENGTH OF SOLAR ARRAY
WIDTH OF SOLAR ARRAY

NUMBER OF MODULES

MASS/MODULE

LENGTH OF ENGINEERING MODULE
HEIGTH OF ENGINEERING MODULE
MASS OF ENGINEERING MODULE

LENGTH OF STRUCTURAL MEMBERS
STRUCTURAL MEMBER OUTER DIAMETER
STRUCTURAL MEMBER INNER DIAMETER
STRUCTURAL MEMBER MATERIAL
DESITY OF THE ASTROMAST SUPPORTING

THE SOLAR ARRAY

ASTROMAST FLEXURAL RIGIDITY
ASTROMAST TORSIONAL RIGIDITY

TABLE 1: Physical Parameters of the

MODE

10

TABLE 2: The First

frequency

0

5.397

5.457

8.956

1.404

3.635

3.837

4.190

4.301

4.488

VALUE

45 ft
6 ft
6 ft
60 ft
15 ft
6
600.00 kg
9 ft
6 ft
5000.00 kg
6 ft
1 in.
0.875 in.
Aluminium

2.2 ka/ft

15.20 x1061b ing
S £"x10 1b in

Generic Polar Platform

in Hz

X

X

Ten Modes of Vibrations
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ORIGINAL
OF

PAGE IS
QUALITY

. & ob. spill no ob. spillover no contr. spiil.
2 + O.,88831 | -0.0137 + 0.38831 +
2 — 0.883831 | -0.0137 - 0.838831 -
1 ' + 0.885841 O101 + 83541 +
3 ¥ 1.57911 0 ~0.0101 ~ 0.884841 D101 - &1 -
- Uiﬂ” + O.SBBéif —02.0170 + G.21351  -0.0170 + 218351 wlul +
—0.0137 - 0.88851 0 —0,0170 - 0.21351 P -0,0170 - O.21851 P10~
~0L 0097+ 0,E3621 | -0.0088 + 0.09881 ‘—D.unsd + 0.09831 L0137+
~0L. 0099 — 5,88821 1 ~0,0048 - D.0%881 | -0.,0053 ~ 0.09881 L0137 -
=0, 01467 + D.El&éig -0.0118 + 2.37481 '-0.0118 + ©.39481 . - +
~0L.0167 = 0.218861 1 -0.0113 - 0.39481  -0.0118 - 0.39431 L0068 ~ 0 ,09881
=i, 058 + 0.0?881} —0.0337 + 0.38151 ;-0.0339 + 0.381%1 —i.ui,n + G3,21351
=068 - 0.098812 ~3.0339 - O.381%1 1 -0.2339 - 0.38151 | -0.0170 - 0.21851
—).033? + G.38141 . 0 o+ 1.57711% O+ 1.57711 | -0.0339 + 0.38151
D337 -~ 0.38141 | 0 - 1.57211 0= 1.E37911 | -0.0339 - 0.33131
Au)ild + 0.374%1% ; O+ 3.85311 O+ Z.85311 [ -0.0118 + 0.39481
-,0118 - 0.~“491§ 0o- 3.E5311 O o~ 3.55311 | -0.0118 - 0.394381
-0, 0000 + 3.55311 O+ Z.456741 O+ 22,4674 O+ R.ST31L1
LA AR TS LTS B 3.q3311? 0= 2.48741 1 0 o~ 24868741 - 3.325311
l
TABLE 3a: Eigenvalues of the Composite System
closed-loop system state estimator control. subsystem uncontr. subsys.
1 .0E+DOZ2 *
-3, 0137 + .5B&3 -0 ,0101 + O.885%41 O o+ O.09371 O 4+ 1.57914%
~0, 0137 - -.88331; -0.0101 - 0.83641 0= DU0RRT : 00—~ 1.37711
-2.0118 + ).394815 -0.,0170 + 0.21851 O o+ 0.38831 ; O+ 3.55311
~-0.0118 —~ 0.39481 ¢« ~0.0170 - 21851 | D - 0.88331 0 - 355311
-0, 00468 + 09881 ».033F + :.38151 ’ O+ 0.37431 ! 0O o+ 2
-, 00588 - C.U?SBI‘ -0 ,.033%9 ~ 0,38151 1 0o—- D.39481 0 - 344741
- L

TABLE 3b:

Subsystem, and Uncontrolled Subsystem

Eigenvalues of the Closed-Loop System, State Estimator, Controlled




