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ABSTRACT

In this paper, we investigate a coding scheme for error control in data communication
systems. The scheme is obtained by cascading two error-correcting codes, called the inner
and outer codes. The error performance of the scheme is analyzed for a binary symmetric
channel with bit-error rate ¢ < 1/2. We show that, if the inner and outer codes are chosen
properly, extremely high reliability can be attained even for a high channel bit-error rate.
Various specific example schemes with inner codes ranging from high rates to very low
tates and Reed-Solomon codes as outer codes are considered, and their error probabilities
‘are evaluated. They all provide extremely high reliability even for very high bit-error rates,
say 107! to 1077, Several example schemes are being considered by NASA for satellite

and spacecraft down-link error control.
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1. Introduction

In this paper we present and analyze a coding scheme for error control
for a binary symmetric channel with bit-error rate € < 1/2. The scheme is
achieved by cascading two linear block codes, called the inner and outer
codes. The inner code, denoted C1, is a binary (n1,k1) code with minimum
distance d1. It is designed to correct t1 or fewer errors and simultaneously
detect Ay (A, 2> tq) or fewer errors where ty+24+1 < dq [1-5]. The outer code,
denoted C,, is an (nz.kz) code with symbols from the Galois Field GF(ZQ) and
minimum distance d,. If each code symbol of the outer code is represented by

2), then the outer code

a binary 2-tuple based on a certain basis of GF(2
becomes an (n22,k2l) linear binary code. For the proposed coding scheme, we
assume that the following conditions hold:

ky = m& , (1)
and

n, = mm, , (2)
where m, and m, are two positive integers.

The encoding is performed in two stages as shown in Figures 1 and 2.
First a message of ko2 binary information digits is divided into k, bytes of
% information bits each. Each 2-bit byte (or binary 2-tuple) is regarded as
a symbol in GF(2%). These k, Dytes are encoded according to the outer code C,
to form an n,-byte (n22 bits) codeword in C,. At the second stage of
encoding, the n2—byte codeword at the output of the outer code encoder is
divided into mo segments of m, bytes (or m,l bits) each. Each m1—byte segment
is then encoded according to the inner code Cqy to form an n1-bit codeword.
This n,-bit codeword in C4 is called a frame. Thus, corresponding to a

message of k,f bitsat the input of the outer code encoder, the output of the

inner code encoder is a sequence of m, frames of ny bits each. This sequence



of m, frames is called a block. The entire encoding operation results in a

binary (m2n1,k21) linear code C which is called a cascaded code. If mq=1

(i.e., each segment consists of a single %-bit byte), the cascaded code C
becomes a concatgnated code [6]. A concatenated code with varying binary
linear block inner code can be regarded as a cascaded code with No=my and
m2=1. Therefore there exist cascaded codes which asymptotically meet the
Varshamov-Gilbert bound for all rates [7].

The decoding for the proposed scheme also consists of two stages as
shown in Figures 1 and 3. The first stage is the inner code decoding.
Depending on the number of errors in a received frame, the inner code decoder

performs one of the three following operations: error-correction, erasure and

leave-it-alone (LIA) operations. When a frame in a block is received, its

syndrome is computed based on the inner code C1. If the syndrome corresponds
to an error pattern e of tqy or féwer errors, error correction is performed by
adding € to the received frame. The n1—k1 parity bits are removed from the
decoded frame, and the decoded m1—byte segment is stored in a receiver buffer
for the second stage of decoding. A successfully decoded segment is called a

decoded segment with no mark. Note that a decoded segment is error-free, if

the number of transmission errors in a received frame is t, or less. If the
number of transmission errors in a received frame is more than A1, the errors
may result in a syndrome which corresponds to a correctable error pattern
with ty or fewer errors. In this case, the decoding will be successful, but

the decoded frame (or segment) contains undetected errors. If an

uncorrectable error pattern is detected in a received frame, the inner code

decoder will perform one of the following two operations (See section 2.2):

1. Erasure Operation -- The erroneous segment is erased. We will call




such a segment an erased segment. Note that this operation creates

my symbol erasures.

2. Leave-it-alone (LIA) Operation -- The erroneous segment is stored in

the receiver buffer with a mark. Note that a marked segment may

contain error-free symbols,

Whether the erasure operation or the LIA-operation is performed depends on
the degree of error contamination in the erroneous segment. Since the outer
code C2 has a fixed minimum distance, it is desired to devise a strategy to
choose between these two operations so that the minimum distance of the outer
code is used most effectively in correcting symbol erasures and errors. A
simple strategy may by devised based on the concepts of correcting symbol
erasures and errors [2-5]. For a code to be able to correct e or fewer symbol
erasures and t or fewer symbol errors, its minimum distance d is at least
e+2t+1. This implies that, to correct one symbol erasure, one unit of the
minimum distance of the code is needed. However, to correct a symbol error,
two units of the minimum distance of the code are needed. In the proposed
scheme, when an erasure operation is performed, my symbol erasures are
created. To correct these m, symbol erasures, mq units of the minimum
distance of the outer code are needed. When a LIA-operation is performed, the
marked segment contains one to m, symbol errors. As a result, 2 to 2m1 units
of the minimum distance of the outer code are required to correct these
symbol errors. It is clear that, to minimize the consumption of minimum
distance of the outer code, we would perform the LIA-operation when the
number of symbol errors in an erroneous segment is less than Lm1/2J+1, and
perform fhe erasure operation when the number of symbol errors in an

erroneous segment is greater than |m,/2]. Hence we may use the following




strategy to choose between the erasure operation and the LIA-operation: If
the probability that an erroneous segment contains more than Lm1/QJ symbol
errors is relatively small compared to the probability that the erroneous
segment contains Lm1/gj or less symbol errors, the LIA-operation is
performed. Otherwise, the erasure operation is performed. The joint
probability distribution that a received frame is decoded successfully (or
detected to contain an uncorrectable error pattern) and the corresponding
segment contains w symbol errors is derived in Section 2.1 (or 2.2).

The inner code decoding described above consists of three operations: the
error correction, the erasure and the LIA operations. An inner code decoding
which performs only the error-correction and erasure operations is called an

erasure-only inner decoding. On the other hand, an inner code decoding which

performs only the error-correction and LIA operations is called a LIA-

only inner decoding. In this paper we mainly consider the erasure-only inner

decoding and the LIA-only inner decoding. Which of these two decodings gives
better performance will be discussed in Section 2.2. A combined erasure-and-
LIA inner decoding is discussed in Section 5.

As soon as mo frames in a received block have been processed, the second
stage of decoding begins and the outer code decoder starts to decode the ms
segments which are stored in the buffer. Symbol errors are contained in the
segments with or without marks. Each erased segment results in mq, symbol
erasures. The outer code C2 and its decoder are designed to correct the
combinations of symbol erasures and symbol errors. Maximum-distance-separable
codes with symbol from GF(22) are most effective in correcting symbol
erasures and errors.

Now we describe outer code decoding process. Let i and h be the numbers

of erased segments and marked segments respectively. The outer code decoder




declares an erasure (or raises a flag) for the entire block of m, segments if

either of the following two events occurs:

(i) The number i is greater than a certain pre-designed threshold
Tes with Tes 5_(d2-1)/m1 .
(ii) The number h is greater than a certain pre-designed threshold

Tog (1) with Tgo(i) < (dp=1-myi)/2 for a given i.

If none of the above two events occurs, the outer code decoder starts the
error—éorrection operation on the mo decoded segments. The m1i symbol
erasures and the symbol errors in the marked or unmarked segments are
corrected based on the outer code Co. Let tz(i) be the error-correction
threshold for a given i where
Tep (1) < to(1) < (do-1-myi)/2 . (3)

If the syndrome of m, decoded segments in the buffer corresponds to an error
pattern of m1i erasures and t2(i) or fewer gymbol errors, error-correction is
performed. The values of the erased symbols, and the values and the locations
of symbol errors are determined based on a certain algorithm. If more than
iz(i) symbol errors are detected, then the outer code decoder again declares
an erasure (or raises a flag) for the entire block of m, decoded segments.

When a received block is detected in errors and can not be successfully
decoded, the block is erased from the receiver buffer and a retransmission
for that block is requested. However, if retransmission is either not
possible or not practical and no block is allowed to be discarded, then the
erroneous block with all the parity symbols removed is accepted by the user
with alarm. An important feature of the proposed scheme is that the decoding

information of the inner code decoder is passed to the outer code decoder,




This makes the outer code decoding more efficient.

In the rest of this paper, the error performance of the proposed
cascaded coding scheme 1is analyzed. Interleaving the outer code is
considered. We show that, if the inner and outer codesAare chosen properly,
extremely high reliability can be attained even for high bit-error rate, say
€=1O_2. Various specific example schemes with inner codes ranging from high
rates to very low rates and Reed-Solomon codes as outer codes are considered,
and their error probabilities are evaluated. They all provide extremely high
reliability. Several of these specific schemes are being considered by NASA-

GSFC for satellite and spacecraft down-link error control [8].

2. Probabilities of Correct Decoding, Incorrect Decoding and Decoding

Failure for a Frame

In this section, we analyze the inner code decoding. We assume that
the channel is a binary symmetric channel with bit-error rate e < 1/2. Let
Pg1) be the probability that a decoded segment is error-free. A decoded
segment is error-free if and only if the corresponding received frame

contains t1 or fewer errors. Thus

p(1) - ::1 QY eta-o™™. (4)
i=0Q
Let PgL) be the probability of an incorrect decoding for a frame. This
is actually the probability of an error pattern of A1+1 or more errors whose
syndrome corresponds to a correctable error pattern oftq or fewer errors.
Let Pé;) be the probability of a frame erasure, and let Pé}) be the

probability that a LIA operation is performed on a frame. Let Pél) be the




probability that a decoded segment with or without a mark contains errors.
Then
(1) (1) (1) (1) _
Po " * P’ *Peg” * Py =1, (5)
and

p{1) = p{D) + p{)). (6)

Note that Pé1) + Pgl) is the probability that a received frame is decoded

successfully (correctly or incorrectly), and Pé;) + Pé;) represents the

probability of a decoding failure.

Let A§1) and B§1) be the numbers of codewords of weight i in the inner

code Cq and its dual code C? respectively. Let wgign) denote the number of
?

binary n-tuples with weight j which are at a Hamming distance s from a given

binary n-tuple with weight i. The generating function for w%ign) (9] is

T3 wRmxdy® = (rex)m et (7)
j=0 s=0 I

It was proved by MacWilliams [9] that

S IS LN CE T B N EY DR S
Py + Pio’ = iEO Ay jEO sEO wj’s(n1)e (1-e)™ , (8)
n
-, M
-2 r1.zo B{") (1-2¢)} P (1-1,n-1), (9)
1-

where r‘1=n1—k1 is the number of parity-check bits of the inner code, and

PS(',-) is a Krawtchouk polynomial [4,p.129] whose generating function is

TP (1,mY¥8 = (1e"7ia-nt, (10)
8=0 '



Equations (8) and (9) are useful for computing Pc“) + Pi(;) if a formula for
A(i” or B(i” is known, or min(k1,r*1) is small enough (say less than 30) to be
feasible to compute A(i1) or B(i” by generating all the codewords in C1 or CT.

Hereafter, we mainly consider the'LIA-only inner decoding and the
erasure-only inner decoding (A combined inﬁer decoding is discussed in
section 5). For the LIA-only inner decoding, the LIA-operation is performed

whenever an uncorrectable error pattern in the received frame is detected. In

this case, the frame erasure probability Pé;) is "zero". For the erasure-only
inner decoding, it is obvious that Pe(g) = 0.
If Pé}v) (or Pé;)) is known, then Pé;) (or Pé}')) and Pé;,) can be computed

from (4) to (6) and (8) (or (9)).

2.1, Detail Error Probabilities for a Decoded Segment with no Mark

A successfully decoded segment may contain errors. For 0 LwX< My, let
Péj& be the joint probability that a segment is successfully decoded and the

number of symbol (or byte) errors in the decoded segment is w. It is clear

that
1 1
O - o)
and
(1) _ =1 o)
Pie” = L Pe,w . (11)

w=1

To obtain the probability of a correct block decoding, we need to know Pe(;lg
for 0 < w < my. In this section we will derive a formula for Pe(,1v3 .

For a binary n1—tuple v, we divide the first k1-m12 bits into my R-bit
bytes. For 1 <h< mq, let ih be the weight of the h-th -bit byte of v. Let

.’Lm1+1 be the weight of the last ry=n;-k; bits. Then the (m;+1)-tuple, (i,,




iny weey im1+1), is called the weight structure of V.
Suppose that a frame u is transmitted and an error pattern & with weight
structure (J,, oy o jm1+1) occurs. The probability of occ‘ur'rence of e is
P(e) = (1—e:)n1 m1;1(s/(1—e))jh . (12)
h=1
Suppose that there is a codeword Vv in Cy which is at a distance ty or less
from e. Since the minimum distance of C, is assumed to be greater than 2t1,
such a codeword Vv in Cq is uniquely determined. Then the inner decoder
assumes that the frame u+v was sent, and the error pattern e+v occured. The
decoded segment is the first k,-bit of u+v. If Vv is a nonzero codeword, the
decoding is incorrect, and the first k1—bit of Vv represent the errors
introduced by the inner code decoder. If there is no such codeword v in C1 ’
then the inner code decoder perf‘érms either the LIA-operation or the erasure-
operation. Conversely, for a codeword v in C1 whose weight structure is
(14 ,i2,--',im1+1), there are
[ W] w;1m1+1: (ry) (13)
h=t “h*°h my+1° 5my +1
error patterns e's with weight structure (j1, j2. vee, jm1+1) such that the

weight structure of v+e is (89, 85y *°, sm1+1). Let Ai“)1 be the

K- IR PN
number of codewords in C; with weight structure (i,, i,, +*-, im1+1)'b For 0 <
w< mq, let
I, = (i, 1y, eeo, im1+1) :0< iy <& for1 <h<mg, Oiim1+1 <ry
and exactly w components of (11. ié, e, 1m1) are nonzero.} .

(14)

Then, Pe“v; is given below:
’

-1 O.—



r
(1) _ (1) S 1
Pe’ T . : Al yinyeee,i + -z_ Z 3 L
(1qsigpeee,ip +1)st 1022 my+1 jq=0 Im.=0 Jp, +1=0
1 1 1
m ; (i )
1 (i) m,+1
L [ owy Ps] cwy T e
(519525""Sm1+1)est1 h=1 h?*~h m1+1' m1+1
m : :
n 1 J
.« (1-g) | [hH1(e/(1-e)) h, (15)
where
St1 = { (81’ 52’ 0'.’ sm1+1) H Oishi 9;, fOY’ 1 ihim1, Oism1+1 ir‘1
m1+1
and h£1 s, <t 1l. (16)

The formula given by (15) is useful if either (1) the dimension of Cqys kg, is
small enough (say ky; < 30) to be feasible to compute the detail weight
distribution, {Agxliz""'im +1}, by generating all the codewords in
C1, or (2) the dimension of1CT » 'y, 1s small enough to be feasible to
compute the detail weight distribution of C# and the number of element in I,
is small enough to be feasible to enumerate all the elements in Iw and
compute {Agxziz""'im1+1} by using the generalized MacWilliams' Identity
[4].

Next we will express the probability Réﬂz in terms of the detail wgight
distribution of the dual code CT of Cqy. Let H be a subset of {1,2,---,m1}f
Let Fé1)(H) be the probability that for heH, the h-th 2-bit byte of a decoded
segment is error-free. Let H be the complement of H in {1,2,---,m1+1}f Define
the following set:

IH) = {(iq, 15, e=e, im1‘+1): iy, = 0 for heH, 0 < 1, < & for heH-{m +1},
and 0 i'im1+1 <rql. (17)

Then, we have that

_11_




(1) (1) L % ™
Pe (H) = . . 2 . Ai i e s e i .Z ....z . Z
(rdgoeeody )el(H) T 02050 tng et 3q=0 3 =0 Im,+1=0
m ; (i )
1 (iy) mq+1
. L [mowy o] w71 e
(51,52,"’,Sm1+1)est1 h=1 h*~h m1+1’ m1+1
m .
n 1 J
« (1-e) ' [ 1 (e/(1-en°P ], (18)
h=1 :
Define
s .
= J (m i
Qg(i,n,m,Y) A (3) Pg—yCim) (19)
t
Qc(i,n,m,Y) = 20 Qg (i,n,m,Y) . (20)
S=
It follows from (10) and (19) that
s n+m
1+ -t . I Qs(im,m,"Ye., (21)
. S=
Let B§1). be the number of codewords in C'L with weight structure
Liadaeeesdy a !
(i1’12""’im1+1)' Then we have Lemma 1.
Lemma 1:
(1) -ry % % ' (1) ' iy
Pe'/(H) =2 ' I oo T Bl i, eee,d [ m (1-2¢) 1]
11.0 im1=0 im1+1=0 1 2 m1+1 heﬁ
%|H|
+ (1-¢) « Q. ( I iy, ny-L|H|, &]H|, e/(1-¢)) , (22)
t,t i M
heH
where |H| denotes the number of elements in H.
Proof: See Appendix A. _ - AA

..12_



For 0 < s < myq, let Us be the sum of Pé1)(H) where H is taken over all the

subsets of {1,2,---,m1} with s elements. Define

i
, je) = T (1-2¢) 0] (1-e)%8
1m1+1 € HE{1§2,---,m1} [hgﬁ( e) 1] (1-¢)

|H] = s

Us(i1,i2,"'

. Gtx( L ip, ny-is, &s, €/(1-€)) . (23)

heH
Then it follows from (22) and (23) that
_ ry L % % ™
Og=2 'T © e+ I
i4=0 1i,=0 1m1=0 1m1+1= 0
B{1) - UaCiqodpyoeeyi oq5€) - (24)
11’i2"'°'1m1+1 stt172 my 1 i

In the sum ﬁs’ error patterns with m1-s—1 or less symbol (or byte) errors in

a decoded segment are counted more than once. In fact,

- p(1) s+1) p(1) s+2) p(1) e M (1)
s Pe,m1-s +( 1 ) Pe,m1-s—1 +( ) Pe.m1—s—2 * * (m1—s) Pe,O :
(25)
Using the principle of inclusion and exclusion [10], we have that
P o 3 (nph (M3 g (26)
e,] - h my=j+h °*

For O L£J XL My, define

] ,_,yh (M~J+h .
% ( 1) ( h ) Um1—j+h(i1’i2’...'im1+1,E).v

(27)

Ti(iq,ip,000,1 jE) =
Jjrores2e "Tmy 41 -

Then it follows from (24) to (27) that we have

-1 3—




Theorem 1:

r
1y _, T b & L () o .

Prs =2 I I s+ L I R : T.(17,i0,000,1 1E)

e, s . : i i oo, 12+20 ’ +1

J 1420 io= in, 0 In,+1=0 10120 tmye1 J ™
(28)
AA
It is feasible to obtain detail weight distribution {B§I)i cee i

121207 i 49

by generating all the codewords in CT for relatively small rq, say less than
30. Note that the number of terms to be added in the right-hand side of (23)

my

s ) » and therefore the number of terms to be added or subtracted in the

is (
' m

right-hand side of (27) is at most 2 1. For small my, Tj(i1,12,---,im1+1;e)

can be easily computed and added for each codeword generated. If the dual

code of C1 contains the all-one vector, then Péi% can be computed by

generating every codeword in the even-weight subcode and using
Tj(i1,12,"‘,im1+1;e) + Tj(g_i1,g_izg"',r1-im1+1;5)
ic

instead of T5(11,12,---,im1+1;e). From (11) and (28), P(1) can be computed.

2.2, Detailed Error Probability for a Marked Segment

In this section we will evaluate the probability of symbol errors in a

marked segment. Let féé?w be the joint probability that a segment is marked

and the number of erroneous symbols in the marked segment is w. Then

my
g p(l) (29)

p(1) _
ef w=1 el,w °

-14-



In the following, we consider the LIA-only inner decoding. Define

J, = {(jl,jz,.o-,jm1+1) :0<J, <% for1 <h<m, O Sdmger LT
and there are exactly W nonzero components in (j1.j2.-'°,jm1) }

(30)

Then it follows from the definition oflég)w that
H

m Ko=fw & % r
PCI) o (1) [1-(1-e)4T%(1-¢) | = T .. I )
el,w = W 1,20 i =0 i_ ,.=0
1 my m1+1

m .
1 (i) J -]
M r or[m ow Peh-e) ]
12120 ’ m1+1 Jw St1 h=1 Jh'%h

i+ Iny+1 173y +1
- Wy s (rpe (1-€) , (31)
m1+1’ m1+1
where St1 is defined by (16). The first term of (31) represents the
probability that there are exactly w erroneous symbols (or bytes) in the
first m, bytes of areceived frame, and the second term is the probability

that the syndrome of these symbol errors corresponds tc an error pattern of

t1 or fewer errors. Define

1y %
m.3€) = z n o {(1-2e) © -(1-e)*}, (32)
1 He{1,2,++,my} heH

[H] = w

Rw(i1,i2,°",i

where the summation is taken over all the subsets of {1,2,---,m1} with
exactly w elements. Then Fég)w can be expressed in terms of the detail weight
R ’

distribution of the dual code of C1.

_1 5_




Theorem 2:

kq=2w m
P = - T () D-a-ef
- 1
~2 TR g 2B, e T
e e B , ,
iy=0 1m1‘0 1m1+1‘0 1072 my+1
m1+1

« Po (L 1i,-1, ne=1)R,(iq,i5,0°,i  ;e) } . (33)

t(E 7t MRy I m,i€) b 33
Proof: See Appendix B. AA

An important question is which provides better performance, "the LIA-
only inner decoding," or "the erasure-only inner decoding ?" LIA-only inner

decoding may be reasonable only if

m

LD (1)

T P < pl1) |

W= Lm1 /2J+1 eZ,w v es

If -
T (1) _ o(1)
P « 1= p{M) —p(1)

wsLm1/2J+1 eL,w c ic

where Eég)w is computed under the assumption that the inner code decoding is
a LIA-only inner decoding, then a LIA-only inner decoding provides better

performance than the erasure-only inner decoding.

3. The Probability of a Correct Block Decoding

In this section, we will evaluate the probability that a block of mo
segments will be decoded correctly by the outer code decoder. Let Pe(j,m,h)

denote the probability that there are h segments with marks and j symbol

-16-



errors in a set of consisting of m decoded segments with or without marks. It

follows from the definition of Pe(j,m,h) that

Pe(3,1,0) = P{1) for 0 < j < my, (34)
Pe(3,1,1) = PS5, for 0 < § < my, (35)
P.(§,1,0) = Po(3,1,1) = 0, for § > my, (36)
and
min(j,mq)
Pe(dumn) = I P(j=w,m=1,h) P{1) + Po(gmw,m-1,n-1) P{Y) L (37

From (34) to (37), Pg(j,m,h) can be computed readily.
The probability that, after the inner code decoding of a block of
frames, there exist i erased segments, h marked segments and j symbol errors

in the marked and unmarked (or decoded) segments is
(72) 18171 P_(5,mp-1,h) (38)
i es e\J,Mmp71,0) . 3

Therefore, the probability of correct decoding of a block, denoted Pc' is

given by
Tes m, (1) iTez(i) ta(1)
Po = I, ({°) [Pgg’] nEo jEO Pe(J,myo=i,h) . (39)

Let P,4 and Per denote the probabilities of a block erasure and an

incorrect decoding respectively. Then

P,+P__+P =1 . (40)

It follows from definitions that the following equality and bound hold:

-1 7_




- Tgs M2y p(1)qi {Tel(i) fa Mt RN
Pes * Per = jog i [Pes heo j=t2%i)+1 Pe(Jsmy-i,h)
mo-1 m,-1 m,~1-h
2 (1)9hp(1)  p(1)y"2
L P pi174pl
* hsTel(i)+1( h )L el 1 ¢ *Pie ) }
Mo m . -1
+oor G el ()" (1)
i=T_ +1
es
TeS m2 (1) i Tez(i) n2_m1i
P.. < I (%) ([P y L P.(j,m,-1,h) . 42
e&r — =0 (17) [Peg’] h=0 j=dy=mqi-t,(i) AL ) (h2)

The right-hand side of EqJMI) provides an upper bound on the probability of
a block erasure (or decoding failure), and the right-hand side of (42) gives
an upper bound on the probability of an incorrect block decoding.

To the authors' knowledge, no feasible procedure for computing Per or
Pes has been derived except for the special case where the outer code is a

binary code (£=1) and used only for error detection and n1-k1+n2—k2 is small,

say less than 25 [11]. If the outer code is used for both error correction
and detection, detailed information on the weight distribution of outer

codewords with specified bit patterns is required in general.

4, Interleaving

In this section, we investigate how interleaving affects the error
performance of the cascaded scheme. Suppose that the outer code Cr, is
interleaved in such a way -that each symbol (or %-bit byte) in a segment is

from a different outer code codeword as shown in Figure 4. Hence the
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interleaving depth (or degree) is m,. Each symbol-column (an n,x4 submatrix)
in the first my columns of the code array is called a section. Note that a
section is simply a codeword in the outer code C2. The k1k2 bits in the first
k2 rows and k1 columns are used as information bits. The code array consists
of n, frames and is transmitted row by row. As for the decoding, after n,
received frames have been decoded by the inner code decoder, the Ny decoded

segments are arranged into an array as shown in Figure 5 which is called a

decoded segment-array. Note that an erased segment creates one symbol erasure
in each section. A decoded segment with or without mark may contain symbol
errors which are distributed among the my sections of a decoded segment-
array, at most one symbol error in each section. Therefore, each section in a
decoded segment-array may contain symbol erasures and errors. Now each
section is decoded based on the outer code C,. Note that buffers are needed
to store code arrays at both transmitter and receiver.

For 1 <u i_m1, let Ee(u) be the probability that the u-th symbol of a
decoded segment with no mark is erroneous. If the inner code C1 is quasi-
cyclic by every s-bit shift where s divides ¢, then Ee(u) is independent of
u. It follows from the definition that

po(w) = p{1) + p{1) - p{D(quyy (43)
where Pé1)({u}) is given by (18) or (22). Hence 5e(u) can be computed from
either (8) and (18) or (9) and (22).

Let Beﬁ(u) be the probability that the u-th symbol of a marked segment
is erroneousf For simplicity, the LIA-only inner decoding is consideredf
Define

J(u) = (Jy2dpeveradpeq) 20 L Ip L8 for 1 ChCmy, k0
and 0 ijm1” Lrpd. (bh)

Modifying the derivation of (31) or (33), we have that

_19_




_ . i,,ih,000¢,1
i,=0 1m1 0 1m1+1‘0 1022 my +1
m
1 J -J
h h h
.+ I b I w (8)e " (1-¢)
J(u) st1 [h=1 JpheS ]
(g, 41) Jmy+ P17m,+1
- W s (rpe T (1-e) (45)
’Jm1+1’ m,+1
and
- -r 2' 2' r’1
Peg(w) =1 - (me)b =2 1§ . roB{M
il=0 im1 =O m1+130 1 2 m1+1
m1+1 m1+1

+ I (1-2e) M -0t (1-20) Y] Pe (I tn71e m1)
(46)
[See Appendix C for the derivation of (46)].

Since the outer code is interleaved by a depth of my, the u-th symbol of
every segment is from the u-th section for 1 < u < my. Let Ec(u), Ees(u) and
P r.(u) denote the probabilities of a correct decoding, an erasure and an
incorrect decoding for the u-th section respectively. Then formulas or bounds
for Ec(u), ﬁes(u) and Eer(u) can be derived from those for P,, P.q and P,. by

es

the following replacement: m1i +i, my>n, and

-i nz_i-h

IIP.(J,me-i,h) » I (20) 1 ( (B
hj ¢ 2 h h j s J-s

nz—i-h-s

- [p(w1°r1-P{1)-p{1) -5 (w)]

¢ [pgg (WIS} g, (wyIn=(I7s)
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The restrictions on thresholds T,g, Tek(i) and t2(i) can be relaxed as
follows:

Teg < dom1 »  Teg(i) < (dp-1-i)72  and  ty(1) < (dy-1-i)/2 .

Let Pc be the probability of a correct decoding for all interleaved my
sections. Let Per and Pes be the probability phat an incorrect decoding

occurs for at least one of the interleaved my sections and that of a block

erasure, respectively. Then

P.. < max m,P_ (u) (47)
T e T
and
1 -P,=P_ +P < max my(P_.(u) + P__(u)) . (u8)
c er es "1<u<m1 1‘ er es '

Let E;;:F;; denote the right-hand side of (48).

Next we present a formula for Pc and another upper bound on Perf For
simplicity, we only consider the erasure-only inner decoding in which t2(i)
is independent of i and is denoted t,.

For a binary m,-tuple (a1, as, ***, a

n s 1€t p(1) denote the

e,a1,---,am1

probability that a segment is not erased and the u-th symbol of the decoding
segment is error-free if and only if au=0 in the inner code decoding. A
computing procedure for Pé}g1""’am is shown in Appendix Df For a positive
1

integer n and integers jh with 1 < h < m such that 0 < jh < n, let

Pe,j1,j2,...,3m1(n) be defined by

a
(1) o b L
[ L m4 Pe,a1,a2,---,am x1-X2 xm1 ]
(a1’a2""’am1)€{0'1}
n n n jm1

(n) K102 Xl (19)

T hX coe T P e
3970 3270 =0 310320 """+ I,

Then P, (= 1_Per’pes) is given by
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Tes n, t2 t2 t2
P,= I ; I o T

z Po 5. 4 wee i (no-i) . (50)
¢ j-p 1 31=0 j5=0 jm1=0 ©:31032: %" 23, 2

It is feasible to compute Pc for small my, t2 and relatively small min{k1,
n1-k1}-

For 1 < u < my and a in GF(ZZL

let pg(u,a) be the probability that a
segment is not erased and the u-th error symbol of the decoded segment is a.

A procedure for computing pe(u,a) is stated in Appendix E. Then we have that

Pe (W = I Pelu,a) . (51)
aeGF(2%)~{0} |

In Appendix F, the following upper bound on Per is derived.

n,-i min{t2,n2-i-w}

T .
es n2 n2—1
P < ¢ (, T y
er — i=0 (1 ) w=dy=1 ¥ h=0
No—i-w W my
(2, r (%) 1 P(u,i,%,h,), (52)
j=wth-t, 37 u=1
where ’
= i i+w+h-d n,—i-w-h
B(u,i,w,n,3) = [PSL)17 I, (w)] 2[pg(u,0)] 2
) .
w—-j 2%-2 +d~i-w
. 1-p§7" L [pg(u, ¥ 27, (53)
qz

where Y is a primitive element of GF(22L
Let P, be defined as follows:
(1) For the case where the outer code is not interleaved, Fer denotes the
right-hand side of (42), and
(2) for the case where the outer code is interleaved by a depth m,, ﬁer

denotes the right-hand side of (47), if an erasure-only inner decoding
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is used and t2(i) is independent of i, and otherwise, ﬁer denotes the
right-hand side of (52).
It follows from (42), (47) and (52) that

<P

Per' - ‘er*

For most cases of the example schemes considered in the next section, the

right-hand side of (52) is considerably tighter than that of (47).

5. Example Schemes

In the following we consider various specific example schemes using
cascaded coding for error control. In these example schemes, the inner codes
range from high rates to very low rates, and the outer codes are Reed-Solomon
(RS) (or a shortened RS) codes with symbols from GF(21). The outer code is
either interleaved or not interieaved. The inner codes with their parameters
and generator polynomials are listed in descending order of the rates in
Table 1. The first three inner code, C1(1) to C1(3) are shortened distance-y
Hamming codes. The next three codes, c1(u) to C1(6) are obtained by
shortening the even subcodes of primitive BCH codes of length 63. The forth
and fifth codes, C,(4) and C4(5), can be decoded with a table look-up
decoding. The sixth éode C,(6) is majority-logic decodable in two steps [1],
and its decoder can be implemented easily. C1(7) is a quadruple=-error
correcting Goppa code [12]. The eighth code is an extended primitive BCH
code. In fact, is is also a Reed-Muller code and is majority-logic decodable.
C1(9) is the extended (24,12) Golay code which is widely used for satellite
and deep space communications. C1(1O), c,(12) and C,(13) are low-rate
biorthgonal codes (or first-order Reed-Muller codes). C;(11) is a quadruple-

error correcting one-step majority-logic decodable code [1].
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For various combinations of code parameters and bit-error rates, the sum
of the probability of a block erasure (decoding failure) and that of a
decoding error, P, +P.. [given by (41) or (50)], and upper bound ﬁer [{defined
in the previous section] on the probability of a decoding error are given in
Tables 2 to 5 and Figures 6 and 7. The degree of interleaving, denoted Id, is
either 1 or my. Thresholds, Tel and tz, which are independent of the number
of erased segments are considered here. The parameter, m1Tes/Id+2t2+1, is
used as a measure of the complexity of the outer code.

Symbol "E" (or "L") shown in Tables 2 to 5 indicates that an erasure-
only inner decoding (or a LIA-only inner decoding) is used. For a comparison,
we also consider a combined erasure and LIA inner decoding where the LIA-
operation is performed whenever an uncorrectable error pattern whose weight
is even (or odd) is detected in a received frame for odd (or even) ty. In
Table 2 symbol "E-L" indicates that the combined inner decoding is used. For
the combined inner decoding, formulas for Pék), Pe&l& and pez(u) are given
in our NASA Technical Report [8]. In Table 2, the computation results for the
combined inner decoding are given only for the cases where either d2 or
mlTes/Id+2t2+1 is smaller than that for either the erasure-only inner
decoding or the LIA-only inner decoding.

Example schemes shown in Table 2 are obtained as follows: Given the
inner code Cy(i) with 1 < i1 < 7, ny=252 or 255, Id=1 or my; and the type of
inner code décoding, the values of to, Tes and Tez are cﬁosen to minimize
myTeg/I4*2t5+1 under the condition that

Pes * Pep (or F;;:E;:) <107
for bit-error rate ¢ = 10_2, and then the minimum value of d, is chosen to

satisfy the following condition

5 =10
Pep <10
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for g = 10-2. Only the example schemes with rates greater than 0.6 and d2_i

33 are listed in Table 2. In the column of Pes+P Py @0 entry marked "*" igs

e
given by the upper bound of (48).

In Tables 3 to 5, Pes+Per and 5erare shown for cascaded coding schemes
in which the inﬁer code is C1(i) with 1 < 1 < 13, the outer code is an
interleaved RS code with a depth of my, and an erasure-only inner decoding is
used. Parameters T,  and t, are chosen to minimize the values of Peg*Pep for
a certain bit-error rate ¢ under the restriction that §er 5_10—10 for every
bit-error rate € listed in the Tables.

In Table 3 the outer code is the NASA standard (255,223) RS code over
GF(28) and the rates are greater than 0.6. For comparison, the case with no
inner code is shown in the first row. In Table 4 the rates are less than 0.6
and greater than 0.4, and example schemes with lower rates are given in
Table 5.

In Figure 6 (or 7), the curves of Peg*Pgop (or ﬁer) vs. € are shown for

five representative example schemes listed in Tables 3 to 5.

6. Conclusion

In this paper, we have investigated a cascaded coding scheme for error
control. An important feature of the scheme is that the decoding information
of the inner code decoder is passed to the outer code decoder. This makes the
outer code decoding more effective. Error performance of the scheme is
analyzed. If the inner and outer codes are chosen properly, extremely high
reliability can be achieved even for a high channel bit-error rate. Many
example schemes are being evaluated. Some high-rate example schemes are being

considered by NASA for satellite down-link error control, and some low-rate
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example schemes are being considered for spacecraft down-link error control.
A major advantage of the proposed cascaded coding scheme, especially
with interleaving, is its robustness against unpredictable bursts.
This paperApresents first serious effort in analyzing the error
performance of a cascaded coding scheme which includes concatenated coding as

a special case.
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APPENDIX A

Proof of Lemma 1

Let |H| = u. It follows from (7) that

A1) my 9 g (i)

J
o A5 et oD T W th]
(11,12,“’,lm1+1)€I(H) 1’ 2? m1+1 h=1 Jh‘O Sh 0 h

™ 1
. L W s (r)X
Jm1+1=1 sm1+1=1 m1+1’ m-|+1

(i 1)

- . a1, .
(i1,12,---,im1+1)eI(H) Aiiigeee, In i+t

m1+1 m1+1
n,- ) ih r i
. (1+xy) b=l (x+Y)h=1

= (1+XY)2‘u L ](.1)1 seee §
(11,12,0--,im1+1)eI(H) 1232000 iy 4

m1+1 m1+1
n,-fu- I i i
1 L iy L iy
o (14XY) - h=1 (x+y)=1 . (A-1)

The set of codewords in C1 whose weight in the h-th £-bit byte is zero for
every h in H is a linear (n1,k1—2u) subcode of C1. Let C1(H) denote the
linear (n1—2u,k1-2u) code obtéined from the above subcode by deleting the u
zero 2—bi£ bytes for the u positions in H. Let A§1)(H) denote the number of

codewords of weight i in C,(H). Then
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A(1)(H) = Z A§1). eee i ] (A—Z)
: (1901000 sl ¢)eT(H;1) H10322 " o dmpos
where
I(H;i) = {(iq,ipyec,i ) s (iq,15,%0e,i1 +1)€I(H) and
112 my 1 102 m, 1
m1+1

I i,=1 } .
h=1 0 .

The right-hand side of (A-1) can be rewritten as

nq-fu -u-i
aan® o AW @ aanT et (A-3)

i=0
Let 821)00 be the number of codewords of weight i in the dual code of C1(HL
Then, by MacWilliams' identity tu], (A-3) can be rewritten as

- 1 -fu-i . ~fu-1 .
2T (1exy)tu A BN+ a0t ™ T et
1=

(A-14)

It follows from (21), (A-1) and (A-4) that

m .
z A",y 1 [ wglh)(z)xjhysh ]
(1108000 0ip 4 )eI(H) 2177207 "+ my+1 h=1 "§p=0 8;=0 h*>h
(i )
. §1 r W, my+1 l"1))(Jm1+1y~jm1+1
Jm1+1’1 Sm1+1=1 m1+1' m,+1
-y MR ) mptust g O s
= 2 I Bj (H)(1+X) (1-X) zo Qg(i,ny=8u,u,X)Y” . (A-5)

i=0 s= |

Taking the terms on both sides of (A-5) for which the degree of Y is t1 or
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less and substituting "1" for Y, we have that

% % "1
o Y RTINS JECTIYS SN
(11-12r“"1m1+1)€I(H) 1072 TTm*1 34=0 Jm1=o Jm1+1=0
m1+1
: m : (i ) I J
T (i) mq+1 ¢ Jn
. Z [ It WJ- hs(l)] . WJ- 1 s (l"1)' Xh—1
(51752’...ysm1+1)€st1 h=1 h' h m1+1’ m1+1
T T 1) ny-fu-i i= .
=2 ;20 B; '/ (H)(1+X) (1-X) Qt1(1,n1—2u,lu,X) . (A-6)
i= )

Substituting ¢/(1-e) for X and multiplying the left-hand side of (A-6) by
n
(1=€) 1, we obtain the right-hand side of (18). Therefore we have that
n;=%4u

1 T
p{ ) =2 L

B{1) (1) (1-2¢) 1 (1-¢)2U By, (1my=2u,u,e/(17e))
i

0
(A-T)
Since a generator matrix of the dual code of C1(H) can be obtained from a

parity-check matrix of C1 by deleting all columns corresponding to the h-th

2-bit positions for heH, the following relation holds.

(1) (1) (A-8)
B; H)= L By /. ;
i (0 I;(H) Met2etttedm 4

where
I;(H) = {(11'i2’°"'im1+1) :0<iy <L for1 <h<my,

0 <i <ry,and ¢ i, =1 1} .
=m+1 =1 heg N -

Then, expression (22) of Lemma 1 follows from (A-7) and (A-8).
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APPENDIX B

Proof of Theorem 2

Let F(X1,X2,---,Xm1+1:Y) be defined as f‘ollows_:

F(X,,X Y) % % ;1 alh)
12420 ’Xm1+1’ i1=0 im1=o m1+1‘0 J‘1'12"” .m1+1

m
Tt L (i) ]
-0 [T T s(2)x hy®n
h=1 "j,;=0 s,=0 Jh

ry ry (im1+1) Imy+1 Imy+1
[z Tt W, s (PXp 4q Y ] . «(B-1)
jm1+1=1 sm1+1=1 Jm1+1’ mq+1 1

It follows from (7) and generalized MacWilliams' identity [4,p.147] that

F(Xy,X Xg. oY) = 1 : SN
19429 °°°%, +1 =, _ see 1 fr,000,1
: 1 iy=0 1m1=0 m1+1=0 1020 m.,+1
my -1y i, 17 img 1 i, +1
WL 90T RO Qe 1) (490
-ry L % T
= 2 1 ix-ool'iz -O i 2 zo §':]|312,.a0 1m +1
1 m, my+1 17
my 2-ip iy P17 4m, 41 I, +1
o[ th(Hxh) (1-Xp) ] (1+xm1+1) (1_Xm1+1) '
m1+1 m1+1
n,~ I i I i
1 h h
« (1+y) b=l T qoph=t T (B-2)

Let H be a subset of {1,2,---,m1} and FH,t1(x1'x2""'xm1+1'Y) be the sum of
the terms of F(X1,x2,---,xm1+1,Y) for which the degree of Xp is nonzero for

heH and is zero for he{1,2,---,m1}-H, and the degree of Y is t1 or less.
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Using (10), and (B-2), we have that

( X Yy =2 1 ; ; ;1 {1
F Xo X oo = cee v .
H,t 12420 "*ma+1? L 7 _A - 17,15,000,1
1 1 i,=0 1m1‘0 1m1+1-0 1022 my+1
t m,+1 . .
1 1 -1 i
elzpP(z 1.,nYS ] 1 [ (1+x) Pa-x)h -
[s=0 S'phar R ) heH[ h h ]
r=ip 4 im1+1
C Ky ) (% 4y (B-3)

Let Fu,t1(x1’X2""’xm1+1’Y) be defined as the sum of
FH’t1(X1,X2,---,Xm1+1,Y) over all the subsets, H's, of {1,2,---,m1} with

exactly w elements. Then the second term of (31) is equal to
4
- (1-e) ' F (e/(1=€),e/(1=),oee,e/(1-€),1) . (B~4)
w,t1

It follows from (B-3), the definition of R, given by (32) and the following

identity [4, p.153]:

t
sEOPs(i,n) = P, (i-1,n-1) , (B-5)

that (B-4) is equal to

i
Ki=2W & ] r mq+1
L T ees T g1 (1-2e) |

_ - i i eoe §
i1-0 im1—0 im1+1 0 1' 2° 4 m1+1

_2—r1(1_€)

m1+1
. Pt1(h£ ih-1,n1-1)Rw(i1,i2,---,im1;e)

..33_




APPENDIX C

Derivation of (46)

Let Fu(X1,X2,---,Xm1+1,Y) be the sum of terms of F(x1,X2,---,Xm1+1,Y)

defined in Appendix B for which the degree of Xu is nonzero and the degree of

Y is t, or less. Using (10) and (B-2), we have that

ry % 4 o (1)
F (X, X,e00,X,Y) = 2 1% cee L L Bi li,,eee,1
i4=0 1m1=0 my+1” =0 172 mq+1
t mq+1
1 1 8-i i
N 3 i)Y ] 1 () Ra-x Tt
s=0 1<h<m,
~ h=u

r1—i +

81 i 1 1n 41
C LX) MO0 - 1] () T ey Y

(c-1)
The second term of (45) is equal to
Ny
- (1-e) © F,(e/(1-€),e/(1=€),+e2,e/(1-€),1) .

Then (46) follows from (B-5).
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APPENDIX D

p(1)

A formula for computing €,81,8p,° % ,a,

1

Let H be a subset of {1, 2, e«», m1}. For small my, say less than 11,
{Pe(H) : He {1, 2, e, m.l} } can be found as shown in section 2.1. Then it

follows from the principle of inclusion and exclusion [10] that

(1) _ Yy e)-s -
Pe""‘1""‘.2""'%1 ko Dl rew e -
|B[=s

where W = { i [ai= 1,1 <1 <myl and H = {1, 2, +«», m, }-H.
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APPENDIX E

A procedure for computing pg(u,a)

For 1 <u < my, 0< i <8 and a € GF(2£), let A§1)(u.a) (or
Bg)(u,a)) be the number of codewords in C, (or the dual code of C4) whose u-
th symbol is a and whose binary weight excluding the u-th symbol is i. Let Qe
be the f-th bit of the binary representation of a, and let |a| be the weight

of the binary reprensentation of a. It follows from the definition of pe(u,a)

that

n1'2 n1‘2 )
pou,a) = £ a{"(u,0) £ 1

i=0 j=0 j'=0

ty ty-s
1M (Ja]) n,=s-s'
(D)¢n. - S8+8" 1.0y | -
I g Wi g i et e . E)

For relatively small k4, say less than 25, {A§1)(u,a)| 0 <i<ny-2} for an
a in GF(22) can be found by generating 2k1-2 codewords of C1f

A procedure for computing peﬁha) which is more convenient for k1 iy
kqy will be derived below. By the generalized MacWilliams' identity [4,

p.147], we have that

A" (u,q) = 2 M) :%ozggép(gg)aé1)(u'B)Pi(h'n1—2)f§1 Pap(Besl)
(E-2)
By [4,p.151], we have that
L f%1“f8f (Ja]+|B]=|a*+B])/2
I Paf(Bf,1) = (-1)°7 = (-1) , (E-3)

f=1

and



ny -4 -g-i . n,-%-h ~%-h
I P (-0 () ent < (a0 T Taexh (en™ T N -ph
1=0
(E-4)
It follows from (7), (E-2), (E-3) and (E-4) that
ny -t ng~dongmh . % 2 (|a]) -
(1) w{i)(n,-2) xJys I T Wy og(e) x3'yS
R IR A A ACIR 105 Mins ]
- -k [ n1‘2,
MY Y ey 1@ £ o B (u,8)
h=0 BeGF(2")
- /2 -%-h -%-h

eyl IBl=larB /2 MR h Gapy™ (1-)h

-(n. -k ny =%
P L 2. BY(u,8)
h=0 geCGF(2%)
(Ja|+|8]=|a+B])/2 n,=%-h M
cepleltleltlesslzymTih o ACHCRIE NETIR I o
S=
(E-5)
where

- - n+m
(1+x)P R(xey)P eyl (-y)d - I Q4(1,n,h,mX)Y°
S=
2 T wih) myxd
Qé(i,n,h,m,x) = fEO Ps_f(i,n) jEO wj,f(m)x
Taking the term on both sides of (E-5) for which the degree of Y is t, or

less substituting €/(1-¢) for X and 1 for Y and multiplying the both sides by

n
(1=-¢) 1, we obtain the following formula from (E-1):
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n1—2
(1-e)* ¢ (1-2¢)h

-(ns=kq)
pe(u,a) =2 1

T

1

ZO Qé(h,n1—2,|a|,2,e/(1-s))
S=

(Ja]*|B]-]a*+8])/2

B{') (u,8) (-1) (E-6)

Lot

BeGF(2%)

If Cy is a shortened cyclic code, min{z,n1—k1} columns of a generating
matrix corresponding to the u-th symbol position are linearly independent,
and for a symbol B, {Bﬁ1)(u,8)| 0<h g_n1—l} can be found by generating

min{n1—k1-2,0}
2 codewords of the dual code of C1.
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Appendix F

Derivation of (52)

At first an upper bound on Eer(u) will be derived. Let us number the
segment in a decéded segment-array (Fig. 5) from 1 to N,. Suppose that the
number of erased segments after the inner code decoding is Tes or less. Let
E, be the set of the erased segment numbersf For f ¢ Eg, let ep be the error
symbol at the u-th symbol position of the f-th decoded segment, and let e =
(e1, €5y **°, en2). Note that ep is the symbol error at the f-th symbol
position of the u—-th section of a decoded segment-array. Suppose that the u-
th section of a segment-array is decoded incorrectly by the outer code
decoder. Then the u-th section is decoded into an outer codeword ;c + v,
where Vc is the actual transmitted outer codeword and v is the nonzero outer

codeword induced by the outer code decoding. Let Ve be the f-th symbol of V.

Define the following sets associated to Vv and e.

WO 2 | vp=0, €8], (F-1)

H(E,¥) 2 { £ | ep =0, vo=0, £ ¢Eg}, (F-2)
and

JEV 2 {f | ep=vpe0, f€E ] (F-3)

When a section is decoded based on the outer code Cy, only t, or fewer

symbol errors and Tes or fewer erasures are corrected. Hence, the following

inequality holds:

[H&, V)| + W] - [3(&, D] <ty (F-4)
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For given 1 < u < my, Egc{ 1,2, *=+, ny}, v e Cp, HE{ 1,2, **+, n,}
and J<{ 1,2, s, n2} such that H is disjoint from Eg and W(v), JSW(V) and
[H| + [w(@)]| - [J] £ toy let Pe(u,ES,G,H,J) be the probability of the
occurrence of an error pattern e induced by the inner code decoding for

which H(e,v)=H and J(e,v)=J. Then

_ L - -i-w-h
Po(u,Eg,7,H,8) = [P{) 10, (W 1P (u, 001 2
RENCR?S fgw(v)_J(1—Pé;)—pe(u,vf>). (F-5)

where i=|Eg|, w=[W(V)| and h=|H| (see Figure 8).
Let W be a subset of {1,2,---,n2}-Es-H such that W=2J, dy-i < [w| and
[w|+h-j Lty Let C2(Es,w) be defined as the following subset of codewords

in C2:

CZ(ES'W) = { (V“: V2’ see, Vn ) € C2 I

2
ve#0 if f € W and only if f € WUEG}.  (F-6)
For V e C,(Eg,W), W(V) = W. Let w denote |W|. Next we estimate
) P (u,E.,V,H,J).
vecz(Es’w) e ’ s) 1 1

Since i < Toq and t, < (dz-j—Tes)/2, we have that

dy > 1+ 2t + 1. (F-T7)
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Since d, < w+i and h+w-j < t,, it follows from (F-7) that
jZi+w-d2_>_0 .
Let J' be a subset of J such that

[0 =1 +w=-ad,.

For any a; ¢ GF(ZR)-{O} with f € J', consider two different codewords

= (vy, Vo, **e, Vv, ) and V' = (v, vy =--, v'z) in C2(ES,W) such that vg

n2 n

(F-8)

(F-9)

<!

vé = ap for f ¢ J'. Since the weight of v-v' is at least d,, we have that

Ve # v% , for f e ESU W - J'f
It follows from a well known inequality and (F-10) that

I I pe(u,ve)
VE{VECZ(ES,W)|Vf=af for fed'} fed

= I pglu,ap) z I_pelu,ve)
feJ! Ve{VsCZ(Es.W)lvfeaf for fegrjfed=d’

< 1 (u,ae) I

= regrler s

ve{veCo(E_,W) |ve=a, for feJ'}
2'\"s f/<er

j+d2"i.w .
feJEJ'[pe(u,vf)] /(j+d2-1—w)

¢ 1 plnag) 252 Tpgcuy®y e
u,a u,Y .
= pegiPe £’ =0 Pell,
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It follows from (51) and (F-11) that

- itu=dy 2%-2 gy 3 *dpi=w
-z I pe(u,ve) < [pg(w)] I [pglu,yd)] (F-12)
VEC2(ES,W) fed - q=0
Thus it follows from (53) that
Pe(u,Eg,V,H,J) < P(u,i,w,h,]) (F-13)

- L e
VECZ(ES’W)

Since 5er(u) is the sum of _

I Pe(u,Es,V,H,J) taken over all possible
vsCz(Es,w)

. ES, W, H and J, we have that

- Tes (“2 ny-i
Per(u) < I T

n2—i) mi?:{tznnz'i'W}
—j=0 1 wedy-1 ¥ h=0

No—i-w W _
(2 (")F(u,i,w,h,3). (F-11)
B 7 jawth-t,

Por 1s bounded above by the expression obtained from the right-hand side of
m

1 _
(F-1%) by replacing P(u,i,w,h,j) with 21 P(u,i,w,h,j).
u= :
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Table 1

Inner Codes

Inner codes (nj,k1) 1n3§:€§§de 2 my d4 t, |Generator polynomial}
(1) shortened ge | (55.48)  0.873 8 6 4 1 [(1+X)y(x)
¢ (2) shortened de | (56,48)  0.857 8 6 A 1 [(1+0)(1+xexT)
Cq(3) | For e tode | (30.24) 800 8 3 4 1 [0 (1+X3+X7)
cq(u) | shorfened . | (61,18) 787 8 6 6 2 |(1+0)4(X)e5(X)
¢ (5) shortened o | (53,40) 755 8 5 6 2 |(1+X)47(X)e5(X)
c,(6) | shorfemed 1 (59,40) 0.678 8 5 8 3 |(1+X)¢;(X)e3(X)eg(X)
C,(7) | Goppa code (64,140) 1625 8 5 9 y
¢ (8) extended oqe | (32,16 500 8 2 4 3
C(9) | SXERSd e | (24,12) 500 6 2 8 3
c,(10)| Diorthogonal | (g uy o500 ¥ 1 4 1
cy(11) s??;%igeiode (51,24) 471 8 3 10 b (1+xzz;§§;:§:fif5(X)
C,(12)| biorthogonal | (44 5 313 5 1 8 3
c,(13) | blorthogonal | (35 ) 188 6 1 16 T

The generator polynomials are given only for shortened cyclic codes, and

¢i(X) is the minimum polynomial of ol with a as a root of 1+x+x5,
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