Part III.

Reflections on the Space Age
My sincere thanks to Steven Dick, Roger Launius, and the entire space history and space policy communities for inviting an old dilettante like myself to this event. Some of you good people I’ve not seen since we commemorated the 40th anniversary of Sputnik, and some of you doubtless I shall not have occasion to meet again. That alone makes this a somewhat melancholy affair for me. But I also have a sense that the 50th anniversary of the birth of the Space Age is draped with a certain melancholy. Do you sense a mood of disappointment, frustration, impatience over the failure of the human race to achieve much more than the minimum extrapolations made back in the 1950s, and considerably less than the buoyant expectations expressed as late as the 1970s? After all, one modest prediction went like this: “There are few today who do not look forward with feelings of confidence that spaceflight will some day be accomplished. All that we require is to make rocket motors somewhat larger than those already in existence . . . the pooling of skills already available, and a good deal of money We may reasonably suppose that a satellite vehicle is entirely practicable now and that travel to the moon is attainable in the next fifty years.”¹ That was Dr. Hugh Dryden in 1953, on the occasion of the 50th anniversary of the Wright brothers’ flight. (Indeed, if all of us interviewed by the media this month have accomplished anything I think we have at last disabused journalists of the notion that the Eisenhower administration was “surprised” by the first satellite launch.) But what that means is that all the satellites, space probes, and human missions launched over 50 years amount pretty much to what Dryden took for granted would happen. Moreover, the fact that the Moon landing was achieved just 16 years after he wrote this only compounds the disappointment that it proved to be a dead end.

That disappointment is also evident, I think, in the false expectation I expressed this past spring in an essay written for the Foreign Policy Research Institute. I began it like this:

It has gone down in history as ‘the other world series’: a championship match even more shocking than the Milwaukee Braves’ upset victory over the New York Yankees in baseball’s 1957 Fall Classic. That shot literally ‘heard ’round the world’ was Sputnik I, the first artificial Earth satellite that gave birth to the Space Age, and its 50th anniversary this October 4th is sure to inspire worldwide attention. By contrast, another anniversary of equal importance was all but ignored this past March. The birth certificate of that other age born 50 years ago was the Treaty of Rome which founded the European Community. Its charter members numbered just six and pledged only to coordinate some economic policies. But 50 years later Europe is a Union, not just a Community, counts 27 members, and has so deepened and broadened its purview that Europe today has become a veritable state of mind.²

In retrospect it has indeed been European integration—a boring, bureaucratic enterprise for the most part—that worked a metamorphosis across a whole continent over 50 years, whereas any global consciousness or Spaceship Earth mentality inspired by astronautics has worked no metamorphosis in national or international affairs. So perhaps it is fitting that the Sputnik anniversary passed without the great global eclat I predicted. For if Space Age technology had enabled a great portion of the human race to imagine itself a family sharing a fragile planet and cosmic destiny, then one might have expected a global celebration on the scale of that staged for Y2K. Instead, we got World Space Week sponsored by the United Nations Office for Outer Space Affairs. But the U.N. does Space Week every year between October 4 and October 10, the day the Outer Space Treaty was signed in 1967. And since the U.N.’s special attraction this year was Valentina Tereshkova, the first female cosmonaut, it reduced our species’ first escape from its planet to a human interest story.

In the classroom October 4, I asked my 120 students if they knew the significance of the date. A few senior-citizen auditors and exactly one undergraduate knew the answer. My survey of Web sites was also deflating. SearchEngineLand.com reported that Google temporarily altered its logo in honor of Sputnik (and perhaps to hype its Lunar X Prize of $30 million to a private

inventor of a Moonship). But then, Google also alters its logo in honor of St.
Patrick’s Day and Halloween. Other Internet portals treated the anniversary,
if at all, like any other feature story. Nor did Web surfers display much interest
outside of techie and trekkie blogs. *InformationWeek.com* invited discussion of its
brief story on Sputnik and received exactly zero posts. The anniversary page on
Makezine.com received just four posts, one of which was this forlorn message:
“I was happy to see a Sputnik post on this historic day. Thanks.” Another site
reported the European Space Agency’s plan to launch 50 miniature “nanosats”
in honor of the anniversary, but complained, “the event has not been widely
covered. I found only very short pieces of information, such as a press release
from Arianespace.”

The *New York Times* essay on the anniversary was elegant, insightful, and
graceful because John Noble Wilford wrote it. But his tone was nostalgic,
and he closed with decidedly downbeat judgments from Gerald Griffin, John
Logsdon, and Alex Roland, plus Neil Armstrong’s lament over “external
factors or forces which we can’t control.” Indeed, if the commentary of space
experts has had any unified theme it is that politics and economics—both
foreign and domestic—have always dictated the scale and trajectory of space
programs, rather than a revolutionary technology transforming politics and
economics. In short, there has been no paradigm shift but instead international
behavior as usual. To be sure, one could point to the Outer Space Treaty,
international conventions on geosynchronous satellites, telecommunications,
remote sensing, scientific cooperation, and so forth. But those achievements
are simply comparable to what the otherwise rival nation states of the 19th
and 20th centuries did when they established regimes to govern telegraphy,
undersea cables, postal service, maritime law, standard time zones, air travel,
radio, and rules for global commons such as the seabed and Antarctica.

Another noteworthy tribute (noted by John Krige as well) ran in the *USA
Today* science supplement on September 25. After making the conventional
point that turning civilian spaceflight into a race undercut its appeal after
Apollo, the author quoted Roger Launius to the effect that support for human
spaceflight has always been “a mile wide and an inch deep.” That apt remark
reminded me of the chapter in *Critical Issues in the History of Spaceflight*
in which Launius listed five rationales for space technology (noted also by Asif Siddiqi):
1) human destiny and perhaps the survival of our species; 2) geopolitics and

national prestige; 3) military defense; 4) applications and economics; and 5) science and discovery. (Another whimsical way of listing those rationales is to say human beings do five things in space: work, play, fight, boast, and worship.) It seems in retrospect that what happened between 1955, when the IGY satellite program was announced, and 1961, when Yuri Gagarin orbited, was the elevation of prestige to an inordinate, artificial primacy in that mix of rationales. That spawned a crash program that space enthusiasts believed was, or should be, the norm when in fact it was a grotesque aberration made even worse by the 1970s decision to throw the baby (Apollo/Saturn hardware) out with the bathwater.

Where we stand today with respect to global vs. national identities and rationales for spaceflight can be deduced by recalling two wise sayings from the otherwise not-always-wise Robert S. McNamara. First, he said space is not a mission or a cause; it is just a place. Second, he said the budget is the strategy. So let us look at humanity’s budget. Let us indeed “follow the money.” According to The Space Foundation’s latest estimates the world’s allocations for activities in the place called outer space totaled $74.5 billion in 2006.6 By coincidence, that is almost identical to the supplemental appropriations the White House requests every year for Iraq. (Hence, space advocates need no longer rely on the quip that U.S. consumers spend more on tobacco or cosmetic surgery than the space program because they need only observe that the U.S. government spends more existing tax revenue on one dubious exercise in overseas state-building than the whole world does on space exploration.)

Equally significant is the fact that just under $60 billion, or about 80 percent of global investment in space, is America’s share, so ipso facto the priorities of the human race are really the priorities of one nation state. I understand where Neil DeGrasse Tyson and Jim Garvin are coming from when they say that America has been standing still, that China, Japan, and India may spark the next space race, and that a manned mission to Mars will likely plant “a whole sheaf of flags” in the ruddy dust. But apart from such high-profile human endeavors as the ISS or planetary exploration, space technology remains overwhelmingly a national activity overwhelmingly dominated by the United States.

ESA contributes $3.5 billion or just below 5 percent, and all other national programs (led by Japan and China) about $11.4 billion or 15 percent. The motives of ESA derive largely from science and applications. The motives of national programs such as those of Japan, China, India, and France run mostly to defense, economics, and prestige. Needless to say, no one spends a euro or a yen on “human destiny and the survival of the species.”

The breakdown of American spending, precisely because of its scale, is even more telling. The biggest chunk—$22.5 billion—goes to the Pentagon, with another $20.5 billion going to black programs such as those of the National Reconnaissance Office and Geo-spatial Intelligence Agency. Thus, about $43 billion, or 58 percent of humanity’s space budget, is spent on the defense of the U.S. and its allies. Perhaps that is necessary. It is a fundamental tenet of the national strategy that the United States maintain hegemony in the aerospace theater, and most other nations would much rather have America police that global commons than to see it contested or dominated by some other nation. But in the context of rationales and priorities, those budget numbers are the most telling evidence that defense outweighs all other spaceflight put together, several times over. By contrast, NASA, which is responsible for the human spaceflight program, science and exploration, satellite applications, new launch technologies, test-bed technologies, and even the “human destiny and survival” rationale if we count astrobiology and asteroid research, receives $16.6 billion. That amounts to 28 percent of U.S. space spending and 22 percent of global space spending.

To put it another way, if we add NASA’s budget to that of the ESA and estimate that a third of the various national budgets are devoted to civilian pursuits, we arrive at a sum of about $24 billion or 32 percent of the Space Foundation’s global figure. That means 68 percent—more than two-thirds—of planet Earth’s space effort serves national defense and prestige. And that means the answer to today’s question—“Has the Space Age fostered a new global identity?”—is “No.”

Has the Space Age at least fostered—especially among young people—a sense of awe, wonder, curiosity, and impatience to know, an urge to explore and a rekindled faith in progress, the future, and human nature, or perhaps even a postmodern, gnostic religious vision conflating transhuman evolution, biological or post-biological immortality, space colonization, and contact with extraterrestrials? Those have been stock themes of science fiction authors like Isaac Asimov, Ray Bradbury, and Arthur C. Clarke, none of whom could be considered a crackpot. Indeed, it was Captain Jacques Cousteau, not exactly a cult leader, who took the occasion of NASA’s 1976 conference on “Why Man Explores” to echo Konstantin Tsiolkovskii’s conviction that, in conquering gravity, humanity would conquer death. Perhaps the Space Age will alter the consciousness of a critical mass of people. Perhaps, as William Sims Bainbridge eloquently contends, such a quasi-religious consciousness may give rise to a new social movement transforming the scale and priorities of the human presence in space.

Perhaps, but not yet. Twice this year I myself was thrilled to experience anew the awe and wonder so many felt at the dawn of the Space Age. The first experience was a stroll on the surface of Mars! I luckily visited NASA headquarters on May 17, the very day Dr. Alfred McEwen of the University of Arizona revealed “Mars As You’ve Never Seen Before,” courtesy of the Mars Orbiter and Phoenix rovers Spirit and Opportunity. The second experience a few weeks later occurred while I was on a VIP tour of JPL courtesy of Blaine Baggett, who is producing a documentary for the 50th anniversary of Explorer 1, America’s first satellite. *Pace* Howard McCurdy (whose brilliant analysis of robots consigns them to the dying industrial age of human culture), I marveled at the magical robotic spacecraft designed and assembled in the hills above Pasadena. It is they who have made what Carl Sagan called the Golden Age of planetary exploration; and it is they who bear witness to what Samuel Florman called “the existential pleasures of engineering.” Yet I also watched troop after troop of children on school field trips to JPL and could not help but wonder whether it made any impression on them. Can youth today feel the tingle that Homer Hickam felt the night Sputnik passed over West Virginia? Or have today’s kids been so jaded by the far more spectacular virtual reality of Nintendo and Dreamworks that NASA cannot compete? Or will the excitement of virtual reality instead render brilliant young people impatient to accelerate the human thrust into space?

On young people—and the future—I have no authority to speak. But as an historian with some authority to pronounce on the past 50 years, I would suggest that the trajectory spaceflight has taken reflects the fact that the nation that drove the enterprise, the United States, has been perversely burdened by its responsibilities as defender of most of the world and is perversely ill-suited to what spaceflight requires. Not as ill-suited as that fraudulent technocracy, the Soviet Union, but ill-suited nonetheless. Given the costs, lead-times, and distances involved, the pioneering of space requires a coherent, sustainable, long-term approach, predictably financed and supported by a patient people willing to sacrifice and delay gratification even over a generation or more. Americans do not fit that description. Likewise (and I defer here to political scientists such as John Logsdon) the U.S. government does not exactly fit the description of a streamlined technocracy, given its checks and balances, contesting parties, rival bureaucracies, frequent elections and personnel turnovers, mixed public and private sectors, gigantic distractions both foreign and domestic, and reliance in all cases on a meandering, manipulable public opinion. Indeed, given those handicaps and the mistakes and false starts bound to occur in a venture of such scope and novelty, perhaps Sir Arthur C. Clarke was correct when he recently said, all disappointment aside, that a great deal has been accomplished in the first 50 years of the Space Age. Not least, I would stress, the cosmic advances in space science which, so far at least, have been strangely ignored in our proceedings.

Will the United States continue to dominate humanity’s agenda in space? Or will we pass the baton to others, such as several countries in Asia? Or will
some new, genuinely cheap and safe launch technology emerge to permit rapid
expansion of the human footprint in space without any government having
to lead? When and if that occurs, then private and corporate activity may
indeed become an independent variable capable of transforming geopolitics and
geo economics. When and if that occurs, a new generation of the sort McCurdy
awaits may indeed hearken to Siddiqi’s plea that we cease fearing our own
imaginations. When and if that occurs, a tired old baby-boomer such as I will
eagerly take Charles Murray’s advice “to get a grand mission . . . give it to a new
generation, and get the hell out of the way.”

8. Charles Murray, and Catherine Bly Cox, Apollo: Race to the Moon (New York, NY: Simon &
In his paper in this volume, J. R. McNeill writes that “It is in fact too soon to tell what the real significance of the Space Age may be. At the moment, space exploration, space flight, space research, all seem at most secondary next to the dominant trends of contemporary history. . . . The big things would probably be much the same, for better or for worse.” He adds “space programs changed the history of our times, but not (yet) in any fundamental ways.” Walter McDougall in his paper adds that he senses “that the fiftieth anniversary of the birth of the Space Age is draped with a certain melancholy. Do you sense a mood of disappointment, frustration, impatience over the failure of the human race to achieve much more than the minimum extrapolations made back in the 1950s, and considerably less than the buoyant expectations expressed as late as the 1970s?”

I beg to disagree, at least in part. The assignment for this paper was to discuss this question: “Has the Space Age fostered a new global identity, or has it reinforced distinct national identities? How does space history connect with national histories and with the histories of transnational or global phenomena . . . ?” It is an interesting mental exercise to imagine what today’s world would be like, at least in the urbanized Northern hemisphere, if all space systems were shut down for 24 hours. I believe that we would quickly realize that those systems have become deeply integrated into the infrastructure of the modern world, and that neither the modern nation state nor the global economy could operate effectively without them. If the overall history of most of the past 50 years has not been fundamentally affected by the development of space capabilities, it is my view that the history being made today and in the recent past is in meaningful ways a product of how nation states and the private sector have incorporated the possibilities made available through space technology into their everyday operations.1 In this sense, the ability to operate in outer space is part of history, not an independent variable shaping it.

THE IMPACTS OF SPACE DEVELOPMENT

That reality may be part of the problem in identifying the impact of space development during its first half-century. As various capabilities have become operational, they have been subsumed into the larger pattern of human activity and not usually thought of separately as “space.” McNeill suggests that “Some things would have been a bit different without spy satellites, communications satellites, weather satellites, earth-observation satellites, and so forth,” but, in his view, not dramatically different. He asks whether “the current surge of globalization has derived some of its momentum from an enhanced awareness that we are all in the same boat, all stuck on the same small blue dot spinning through the darkness? Or could it owe something to instantaneous communications via satellites?” His view is that “the best answer is: yes, but not much. If no one had ever seen photos of the earth from space, and if information from India and Indonesia still arrived by telegraph and took a day or two to reach other continents instead of a second or two, would globalization be substantially different?”

For at least the latter of his two questions, my answer would be “yes.” It is really difficult to imagine today’s world absent instantaneous information flow, and space systems are a crucial part of the global information transmission network that makes such flow possible. Whether the view of Earth from cosmic distances—Earthrise over the barren lunar surface or the “pale blue dot” most recently glimpsed by the Cassini spacecraft as it orbits Saturn—has created a global consciousness is more debatable. Certainly, the Earthrise image became the icon of the environmental movement in the 1970s and references to “Spaceship Earth” still appear in admonitions of the Green movement. But, as McDougall comments, “any global consciousness or Spaceship–Earth mentality inspired by astronautics has worked no metamorphosis in national or international affairs.”

Somewhat the same can be said for the other space capabilities that McNeill cites. For nations with global or regional security interests—during the Cold War, the United States and the Soviet Union, and today an additional small number of other nation states—the ability to obtain near-real-time information on potential security threats is a stabilizing element in international security affairs. But space-derived intelligence information is merged with intelligence from other sources, and it is not possible to measure its independent contribution to avoiding or ameliorating (or abetting) conflict. Information regarding the variables determining short- and longer-term weather patterns obtained from meteorological satellites is integrated with other information; there are many projections of the billions of dollars and hundreds of lives not lost due to better weather forecasts.2

McNeill does not discuss the impact of satellites delivering positioning, navigation, and timing services. But such satellites, most notably to date the U.S. GPS system, have become the basis for a global utility with multiple applications from guiding precision weapons to their targets to providing the timing information that makes the Internet possible. Again, one does not often think of the space-based source of these capabilities; what matters is the application, not the means that enables it.

Though not the focus of this and the other papers in this volume, it would be remiss to avoid discussing the impact of space capabilities on warfighting in an assessment of the importance of the last 50 years of space development. So far, only the United States has made its approach to power projection and fighting wars strongly dependent on the use of space systems. It is well beyond the scope of this paper to discuss whether that commitment to space as a military tool was a wise one, endowing the United States with decisive military advantages. But certainly space capabilities are central to what has been described in the United States as a “revolution in military affairs.”

It is instructive to observe that countries pursuing rapid social and economic development—China and India are probably the best examples—are investing significant amounts of their scarce financial and human resources in space development. They seem convinced that space capabilities can have fundamental impacts on their future history.

I conclude, then, that by its contributions to the various ways in which everything from international conflicts to day-to-day life unfolds, space development has indeed been a significant influence in recent human history, though one whose specific contributions are difficult to separate out. Comparing a world today without the capabilities provided by space systems to one in which those systems are fully integrated would, I believe, support the validity of this judgment.

Fornty Years of Frustration

McDougall senses a feeling of “melancholy” because space development has not moved beyond what was predicted for it more than a half century ago. I would substitute the word “frustration” for “melancholy.” Both visionaries such as Arthur C. Clarke and hard-nosed analysts at the Rand Corporation by the early 1950s had indeed spelled out most of the various domains in which space capabilities, once they were technologically and financially achievable, could contribute to human life in important ways. What happened in that decade is interesting to remember. First of all, these space visions became part of popular culture well before the first satellites were launched. Those raised in

the 1950s (I was among them) had available in print, in film, and on the then-new medium of television multiple images of a future transformed by space activity. The 1952 Collier’s cover declaring “Man Will Conquer Space Soon” was typical of the message we were receiving.4

At the same time, the leaders of the two Cold War superpowers decided that developing the technologies needed to operate in space were linked to their countries’ core national interests. More quickly than anyone could have anticipated at the start of the decade, the U.S. and Soviet governments provided the funds needed to develop a broad array of space capabilities, primarily, as McDougall notes, on the basis of national security considerations. But to those steeped in the space visions of the decade, it seemed that the predictions of Clarke, von Braun, and their colleagues might soon become reality. We did not sense the contingent character of government commitment to space, which linked space to broader geopolitical interests.

The acme of this linkage was, of course, Project Apollo. As I wrote in 1970, by his decision to use American trips to the Moon as a way of symbolizing U.S. power vis-à-vis the Soviet Union, President John F. Kennedy “linked the dreams of centuries to the politics of the moment.”5 By backing up his decision to go to the Moon with a war-like mobilization of human and financial resources to achieve the lunar landing goal, Kennedy created a sense that what was in fact a crash program aimed at a specific political goal was instead a U.S. national commitment to achieve on an accelerated schedule the various elements of the 1950s space vision. This sense was reinforced by NASA Administrator James Webb’s argument to Kennedy that the real goal was “preeminence”—a clearly leading position in all areas of space activity. Not only human spaceflight, but all areas of space science and applications, grew rapidly in the 1960s.

Thus it is not surprising that the space community in 1969, as the Apollo goal was achieved, proposed to take the next steps, including large space stations, a lunar base, human missions to Mars, and increasingly ambitious robotic missions. Their expectations were quickly dashed, as President Richard Nixon in March 1970 announced that “We must think of [space activities] as part of a continuing process . . . and not as a series of separate leaps, each requiring a massive concentration of energy.” The president added “Space expenditures must take their proper place within a rigorous system of national priorities. . . . What we do in space from here on in must become a normal and regular part of our national life and must therefore be planned in conjunction with all of the other undertakings which are important to us.”6

This perspective was bound to frustrate those who, in the immediate aftermath of the lunar landings, thought that the government commitment to space that had fueled Apollo would continue. What is unfortunate is that this frustration continues today; in the almost four decades since Nixon set forth the policy that has in effect guided civilian space decisions since, the space community has not adjusted its expectations to a much slower-paced but perhaps ultimately more sustainable approach to space development. Apollo created a large government-industrial-scientific complex optimized for carrying out fast-paced development and operation efforts. That complex exists, albeit in a diminished form, today, and it continues to be frustrated that its aspirations are not fully supported by the White House, Congress, and ultimately the American public. That the space community still hopes to recapture something approaching the Apollo approach to space is what is “melancholy.” As Howard McCurdy has commented

The reality of space travel depleted much of the vision that originally inspired it. Space-flight engineers have not developed technologies capable of achieving the dream; advocates have not formulated alternative visions capable of maintaining it. At the same time, no alternative vision of sufficient force has appeared to supplant the original dream. Advocates still embrace the original vision of adventure, mystery, and exploration. They continue to dream of expeditions to nearby planets and the discovery of habitable worlds. The dreams continue, while the gap between expectations and reality remains unresolved.7

That being said, I think one can look back at what has been accomplished over the past 50 years and agree with the late Sir Arthur C. Clarke’s observation: “On the whole, I think we have had remarkable accomplishments during the first 50 years of the Space Age. Some of us might have preferred things to happen in a different style or time frame, but when our dreams and aspirations are adjusted for reality, there is much we can look back on with satisfaction.”8

What About Space Exploration?

McNeill comments that “Space exploration, as opposed to the totality of space programs, could well be relegated to the status of historical footnote. . . . [E]xploration programs are another matter: they are especially expensive and they probably won’t cure cancer or defeat terrorism, so they are at high risk of being phased out. . . . If

so, in time space exploration will be forgotten, a dead end, a historical cul-de-sac.” He adds “On the other hand, it could be that space exploration will thrive, find new budgetary champions in the corridors of power.” McNeill suggests that “Space exploration may survive on one or another basis, but it still will not loom large in terms of human history unless something really new and interesting happens.” If that occurs, “then the first 50 years of space exploration will look like the beginning of something of epic significance.” If it does not, “it will look like a small step for mankind that led nowhere, and did not amount to much in the balance before being consigned to the dustbin of history.” McNeill concludes, and I concur, that “It is indeed too soon to judge whether the whole enterprise is a gigantic folly diverting money and talent from more urgent applications, a noble calling consonant with our deepest nature, or something else altogether.”

In the first 50 years of the Space Age, only 27 Americans ventured beyond Earth orbit to begin the exploration of the solar system by voyages to the Moon. In reality, that sentence is not completely accurate. While many space advocates saw Project Apollo as the beginning of a long period of human space exploration, the political leaders who provided the funds for Apollo certainly did not do so out of a commitment to space exploration. Given the dead-end character of Apollo and the fact that it was driven by geopolitical considerations, I do not think there is much that can be said about its historical contributions as an exploratory undertaking. The history of human space exploration is yet to be written. Whether it will begin to be written in the next few decades is today’s most pressing space policy question.

McNeill cites one of his colleagues, Felipe Fernandez-Armesto, as suggesting that space exploration has been a “gigantic folly.” He is not alone in that view. The Economist recently commented that “a scandalous amount of money has been wasted on the conceit that voyaging across the cosmos is humanity’s destiny.” Aerospace executive Rick Fleeter in October 2004 criticized advocates of space exploration for taking “as axiomatic that space’s highest and true calling is achieving societal goals of research and exploration into the unknown.” In Fleeter’s view, “Hauling this burdensome baggage of an aristocratic calling, now bankrupt both ideologically and financially, is not helping space—it is hindering our community from reaching our potential to

9. McNeill is talking here about both human and robotic space exploration. It is my view that robotic exploratory missions of some character will continue for the foreseeable future, although ambitious multi-billion dollar undertakings may be few. To me, the key issue is whether governments in the early 21st century will support human exploration beyond Earth orbit.

10. Two people—Eugene Cernan, and John Young— both made a trip to lunar orbit without landing and a second trip to the lunar surface. One person—James Lovell—went into lunar orbit on the Apollo 8 mission and then looped around the Moon on the ill-fated Apollo 13 mission.

serve humanity.” This is so, he argued, because these “old ideas are rigid and anachronistic, no longer pointing us to a brighter tomorrow, but rather back toward a dead end of technological progress for its own sake.”

I suggest that there is no compelling evidence one way or the other to assess the validity of these assertions, since the actual experience of human space exploration is so limited. In addition, the belief that sending humans beyond Earth orbit is the correct next step in space development is gaining political acceptance around the world. Leaders of the United States and, more recently, France have committed their countries to the support of human exploration, beginning with a return to the Moon before 2020 and including eventual voyages to Mars. To me, the issue is whether this round of human exploration will be designed to answer, at least for this century, the question of whether such steps are indeed a “gigantic folly,” or part of future human history.

The requirements for sustained human exploration beyond Earth orbit were perceptively stated by Harry Shipman in his 1989 study, *Humans in Space*. Shipman says that the future of human activity beyond Earth orbit depends on the answer to two questions:

1. Can extraterrestrial materials be used to support life in locations other than Earth?

2. Can activities of sustained economic worth be carried out at those locations?

Depending on the answer to those questions, Shipman suggests, the following outcomes are probable:

<table>
<thead>
<tr>
<th>CAN IN SITU MATERIALS BE USED TO SUPPORT HUMAN LIFE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
</tr>
<tr>
<td>Space science only</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>Research and tourism</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAN SPACE COMMERCE EMERGE?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
</tr>
<tr>
<td>Robot mines, factories, and labs</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>Full space settlement</td>
</tr>
</tbody>
</table>

13. Rick Fleeter, *Space News*, October 18, 2004: 10. Fleeter’s remarks were in response to an op-ed essay I had published in the same venue two weeks earlier.

Humanity may be at a branch point in future space development, one that could provide the answers to Shipman’s questions. There is on the table a bold proposition, put forth by U.S. President George W. Bush in January 2004—that the nations of the world, led by the United States, accept as the guiding purpose of their governments’ space programs carrying out “a sustained and affordable human and robotic program to explore the solar system and beyond.” It seems as if space leaders in other spacefaring countries, and those eager to become more active in space, are also embracing exploration beyond Earth orbit as an essential element in their future activities. For example, 14 space agencies in May 2007 issued a statement of Global Exploration Strategy that argued “This Global Exploration Strategy will bring significant social, intellectual and economic benefits to people on Earth.” The document argued that “space exploration is essential to humanity’s future.” It added that [Emphasis added by the author.] “Opportunities like this come rarely. The human migration into space is still in its infancy. For the most part, we have remained just a few kilometers above the Earth’s surface—not much more than camping out in the backyard.”

The key words here are “opportunities like this come rarely.” I would go even further. Never before has a major government, in this case the United States, committed itself to an open-ended vision of space exploration. The pressing issues are: Will the United States sustain that commitment in coming years? Will other countries join the United States in such a long-term exploratory effort? Or will others follow a different path, developing an exploration program of their own? Finally, will space exploration by humans prove not to be sustainable, and thus will humans focus their space efforts on robotic exploration and space applications that provide direct benefits here on Earth?

These are the key questions for the next period of spaceflight. Only after they are answered can we state with any assurance that space exploration was “a false start that led no where and did not amount to much in the balance before being consigned to the dustbin of history.”

Other outcomes are also possible, as space dreamers have reminded us. Looking back 50 years from now, it may be that our evaluation of the historical significance of space exploration can be much more definitive, and much more positive.

16. NASA; Canadian Space Agency, European Space Agency; CNES; DLR; Italian Space Agency; British National Space Center; Russian Space Agency, Roscosmos; Ukrainian Space Agency; Indian Space Research Organization; Chinese National Space Administration; Korean Aerospace Research Institute; Japanese Aerospace Exploration Agency; JAXA; and Australian Commonwealth Scientific and Industrial Research Organization.

17. Each of the 14 agencies issued the document in some form. See, for example, www.nasa.gov/pdf/178109main_ges_framework.pdf., p. 3 (accessed April 6, 2008).
Chapter 20

Has There Been a Space Age?

Sylvia Kraemer

Our conference opened with the observation by John Logsdon that how one remembers the Space Age depends mightily on who does the remembering. I would add that how we remember the Space Age today is also likely to depend on one’s angle of repose, or that point in our shared history at which we have acquired sufficient stability to pause and to reflect on the relative importance of striking features in the cultural and political/economic landscape that surrounds us.

So I will begin with some observations that cause me to question whether U.S. or global space activity since Sputnik warrants its characterization as defining an “age.” Whether space has fostered globalization or increased nationalism is part of this question. Then I will comment on the ways in which space activity has nonetheless left an indelible and lasting mark on our world.

When we refer to any development as defining an age of human history, we imply that it has been a singular agent of historical change. The notion that space activity is one such development may appeal to those who equate events that receive extensive media attention with the things that are historically important. And space activity has certainly helped to shape the careers of millions of engineers, scientists, and managers in corporate America and within the federal government and many of our universities. For these individuals space activities have defined a substantial portion of their lives.

But space activity has some strong competition as a claimant to defining our world. First, I would offer the Cold War, in which space was an important salient but not principal provocateur. That role of preeminence is held by ideology—ours as well as that of the Soviet Union. No less important were the post–World War II geopolitical changes wrought by the emergence of the United States as the world’s dominant “superpower” and the regional realignments in Europe, the Middle East, and Southeast Asia. As we know only too well, those realignments have challenged our military, economic, and diplomatic independence to an arguably unprecedented degree. I also think a strong case can be made for the emergence, popularization, and ramifications of digital communications and information technologies as the defining phenomenon of the “age” following the end of the Cold War.
The panel was also asked to consider whether space activity fostered a new global identity, or reinforced distinct national identities. Here I think a two-handed response is unavoidable. On the one hand, nations do take pride in being able to demonstrate to everyone that they, too, can launch and sustain space missions, including human missions. Along with this we have the national security implications—not only for the United States, but for everyone else—of being able to deliver catastrophic weapons to adversaries’ soil and military assets wherever they might be. The same can be said for nations’ ability to spy on each other continuously from space and to use satellites for tactical advantages in the field with space-based surveillance and targeting.

Has the ability to amplify national military capabilities in space, one of the most visible manifestations of national technological capacity, strengthened nationalism? We tend to assume it has, but I think that notion is debatable. We might recall the premise, built into President Eisenhower’s space policy and illustrated in the case of the Soviet Union, that international belligerence is less sustainable when nations can accurately assess one another’s military capacities. So we can debate whether the enhancement of military capabilities by space weaponry, reconnaissance, and targeting actually fosters nationalism or simply elevates the geopolitical balance of powers to a higher plane.

And now, to the other hand: Our ability to observe Earth from space has unquestionably reinforced our understanding that Earth is a solitary and probably unique traveler through space, its natural plenitude the single greatest treasure bequeathed to humankind, whether by a divine creator or the mysterious “fickle finger of fate.” But the indirect contribution to globalization may be more important than this more obvious visual paradigm.

To begin with, Earth imagery from space has brought to fruition the historic process of global discovery that began in earnest during that previous “Age of Reconnaissance” of the 14th and 15th centuries. Secondly, by engaging scientists from around the world in the shared investigation of Earth’s dynamic climate and physical geography, as well as the relationship of its dynamic processes to those of the Sun, space activity has reinforced the cosmopolitanism of intellectual life—an essential component of genuine “globalization.”

I believe that the contribution of space activity to globalization has been far greater than its contribution to nationalism. Indeed, space travel has been largely a product of nationalism, rather than one of its sources. And I believe that a symbiotic relationship between space activity and globalization will prevail over whatever uses individual nations may wish to make of their ability to operate in space. This is because the nation state is being overtaken by the globally invested corporation as the primary means of aggregating economic and allied political interests. Moreover, thanks to now ubiquitous “outsourcing,” the functions of government are increasingly carried out by corporations wielding enough financial power to buy favorable, or at least neutral, government policies.
Space activity has contributed to this process by enabling virtually instant communication of information and wealth across national boundaries. If the more adventurous super-rich like Richard Branscomb have their way, in the future we will move around the globe with a speed comparable to that at which information and money now move around the world. We might even be able to travel around the globe in less time than it takes today to get by air from New York to Boston. If and when that day occurs, the great cities of the world will have more in common with each other than they have with their respective hinterlands, and space travel will have, indeed, reshaped us into one world.
Chapter 21

Cultural Functions of Space Exploration

Linda Billings

Culture: a “historically transmitted pattern of meanings embedded in symbols, a system of inherited conceptions expressed in symbolic forms by means of which [people] communicate, perpetuate and develop their knowledge about and attitudes toward life.”

What role has space exploration played in the cultural environment of the U.S. and the world? What has space exploration meant, or done, for the vast majority of people on Earth outside the space community? Has this role or function varied across cultural boundaries (for example, gender or nationality), time, or space? Where, or what, has space exploration been in public discourse? Has space exploration had subcultures as well as a dominant culture? In short, what cultural functions has space exploration performed? How have people remembered, represented, and made use of space exploration?

All these questions may be addressed from a broad range of perspectives. The papers in this volume illustrate in a variety of ways that space exploration means different things to different people at different times and in different geographical and sociocultural places. Official and dominant cultural narratives of space exploration are not the only sites where meaning is constructed. The so-called “public” makes meaning out of space exploration in its own ways. Just how space exploration has affected aspects of social life such as material culture, education, aesthetics, values and attitudes, and religion and spirituality is an interesting question in its own right. In her paper in this volume, University of California, Irvine, historian Emily Rosenberg documented how the Apollo-era U.S. space program influenced art and architecture and produced “space spectaculars” for the newly dominant mass medium of television. “Space was the star of this historical moment,” she said. Ultimately, she concluded, space exploration might mean many things, or it might mean nothing. National Air and Space Museum historian Martin Collins noted that the traditional narrative

of space exploration as a lone, heroic, and progressive enterprise “still resonates, but in a much diminished way.”

In a 1945 letter to President Eisenhower accompanying the now-famous July 1945 report, *Science: The Endless Frontier*, White House Office of Scientific Research and Development Director Vannevar Bush wrote “The pioneer spirit is still vigorous within this nation. Science offers a largely unexplored hinterland for the pioneer who has the tools for this task. The rewards of such exploration both for the nation and the individual are great. Scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress.”

By substituting the words “space exploration” for “science” in this passage, Vannevar Bush’s post-World War II rhetoric becomes indistinguishable from the rhetoric of contemporary space exploration advocates. An example of current rhetoric is a so-called “elevator speech” developed by NASA’s Office of Strategic Communications Planning in 2007 to offer a rationale for the civilian space program:

> NASA explores for answers that power our future. NASA exploration powers inspiration that engages the public and encourages students to pursue studies in challenging high-tech fields. NASA exploration powers innovation that creates new jobs, new markets, and new technologies that improve and save lives every day in every community. . . . NASA exploration powers discovery that enables us to better understand our Solar System and protect Earth through the study of weather and climate change, monitor the effects of the Sun and detect objects that could collide with Earth.

> Why explore? . . . Because exploration powers the future through inspiration, innovation, and discovery.

In considering what space exploration has meant, or done, for the vast majority of people who are not a part of the “official” space community, what role do these official narratives play? Do people construct their own narratives and make their own meanings, in consideration of their own, specific cultural boundaries of gender, nationality, time, or space? Media commentaries on the 50th anniversary of the launch of Sputnik and the beginning of the Space

Age tended to repeat familiar and official narratives. The New York Times reported, for example, “Sputnik changed everything: history, geopolitics, the scientific world. It launched careers, too. . . . Sputnik lifted us into the future.” The Houston Chronicle asserted, “Today the U.S. reigns over a growing cast of nations . . . on a vast new frontier,” framing contemporary space exploration as the geopolitical enterprise it was depicted to be in the 1960s. Writing in the Los Angeles Times, Matthew Brzezinski (author of Red Moon Rising: Sputnik and the Hidden Rivalries that Ignited the Space Age) characterized space exploration since Sputnik as geopolitics as usual.

In contrast, the Toronto Globe and Mail offered a different 50th anniversary perspective on the meaning of space exploration. In an editorial entitled “Venturing into space and finding Earth,” the paper made the claim that “the most significant achievement of the space age is a better understanding of the vulnerability of our own home planet.”

University of California, Santa Barbara, cultural studies scholar Constance Penley is one of a small number of researchers who have explored alternative or subordinate narratives of space exploration. To young people and others for whom the official narrative of space exploration may not have been meaningful, she noted during comments at this meeting, the makers of Star Trek offered an alternative narrative, “a sustainable and inclusive vision” of a human future in space.4 Star Trek producers have done a better job than NASA has of articulating a widely appealing vision. Today young people “are not interested in space unless they can participate in some way,” Penley said, and while NASA “lives and dies by popular culture,” they have just barely begun to engage with 18-35-year-olds via now-dominant social networks such as MySpace that provide broad opportunities for participation. Penley mentioned NASA Ames Research Center’s creation of a meeting and working space on the social networking site Second Life and Ames’s hosting of a public “Yuri’s Night” party in 2007 as first steps toward a more participatory space program. She also mentioned private-sector initiatives to expand public participation in space exploration, such as the Google-sponsored Lunar X Prize competition to land a robotic explorer on the Moon.

During the meeting, Yale University historian, Bettyann Kevles showed how artists working in a range of media, from science fiction to dance to music, have interpreted and remembered the Space Age, making space exploration meaningful in ways not typically considered outside the space community. Kevles played an excerpt of a jazz suite composed and performed by saxophonist Jane Ira Bloom under commission by NASA’s space art program. It is not clear what interest space exploration holds for contemporary artists.

Margaret Weitekamp, the Curator at the National Air and Space Museum in charge of the museum’s Social and Cultural Dimensions of Spaceflight collection, offered her views on how social and cultural products of the Space Age tell a story of space exploration that may converge with and diverge from the official narrative that tends to be embodied in the space hardware and technology that people typically think of as artifacts of the Space Age.

Finally, Alan Ladwig contributed a unique perspective to the discussion on what space exploration means to different sorts of people. As a NASA official in the 1980s and 1990s, Ladwig managed a variety of programs including the space agency’s Teacher in Space and Journalist in Space programs and the Shuttle Student Involvement Program. These programs were intended to give people outside the traditional aerospace community a chance to engage directly in the experience of spaceflight. The space agency was not enthusiastic about implementing these programs, and in fact NASA did not proceed with the Journalist in Space program. Ladwig advocated organizing public events to engender public discussion about what space exploration means to different sectors of society. Precedent has been set: In the 1970s, the Committee for the Future held a series of syn-cons (synthetic convergences) to find out what space exploration means to different sectors of society; the National Commission on Space, appointed by President Reagan in 1985 to develop a long-term plan for space exploration, held public forums around the country in 1985 and 1986 to solicit public opinion about the human future in space; and in 1992, NASA Administrator Daniel S. Goldin presided over a nationwide series of town meetings designed for the same purpose.

With China’s efforts in space exploration typically framed in public discourse as a “race” with the West, it is clear that what we call the Space Age has not yet fostered a new global identity. Will 21st century space exploration achieve this goal? Here at the beginning of the new century, it is clear that the enterprise of space exploration has gone global. Will a new global identity emerge?

The 21st century cultural environment for space exploration is radically different from the cultural environment that nurtured the U.S. space program through its first 50 years. It remains to be seen whether NASA can, or will, respond to shifting public interests and concerns and give the people the kind of space program they want. The first step in reconfiguring the space program to survive and thrive in the 21st century is to involve citizens in the process, to ask what sorts of visions they have for a human future in space.

About the Authors

Linda Billings is coordinator of communications for NASA’s Astrobiology Program in the Science Mission Directorate on assignment to NASA under an Intergovernmental Personnel Agreement with the SETI Institute of Mountain View, CA. As astrobiology communications coordinator, Dr. Billings is responsible for reviewing, assessing, and coordinating communications, education, and public outreach activities sponsored by the Astrobiology Program. From September 2002 through December 2006, Dr. Billings conducted science and risk communication research for NASA’s Planetary Protection Office. From September 1999 through August 2002, she was Director of Communications for SPACEHAB, Inc., a builder of space habitats. Dr. Billings has three decades of experience in Washington, DC, as a researcher, journalist, freelance writer, communication specialist, and consultant to the government. She was the founding editor of Space Business News (1983-1985) and the first senior editor for space at Air & Space/Smithsonian Magazine (1985-1988). She also was a contributing author for First Contact: The Search for Extraterrestrial Intelligence (New American Library, 1990). Dr. Billings was a member of the staff for the National Commission on Space (1985-1986). Her freelance articles have been published in outlets such as the Chicago Tribune, Washington Post Magazine, and Space News. Dr. Billings’s expertise is in mass communication, science communication, risk communication, rhetorical analysis, journalism studies, and social studies of science. Her research has focused on the role that journalists play in constructing the cultural authority of scientists and the rhetorical strategies that scientists and journalists employ in communicating about science. She earned her B.A. in social sciences from the State University of New York at Binghamton, her M.A. in international transactions from George Mason University, and her Ph.D. in mass communication from Indiana University’s School of Journalism.

Andrew J. Butrica earned his Ph.D. in history of technology and science from Iowa State University in 1986. He then worked at the Thomas A. Edison Papers Project and the Center for Research in the History of Science and Technology in Paris. Subsequently, as a contract historian, he has researched and written Out of Thin Air, a history of Air Products and Chemicals, Inc., a Fortune 500 firm; Beyond the Ionosphere, a history of satellite communications; To See the Unseen, a history of planetary radar astronomy that won the Leopold Prize of the Organization of American Historians; and Single Stage To Orbit: Politics, Space
Technology, and the Quest for Reusable Rocketry, which was recently published by Johns Hopkins University Press and won the 2005 Michael C. Robinson Prize of the National Council on Public History. In addition, he was the historian on NASA’s X-33 Program and currently is a historian on the Defense Acquisition History Project responsible for researching and writing the fourth volume of From the Reagan Buildup to the End of the Cold War, 1981–1990.

Martin J. Collins is a curator in the Smithsonian National Air and Space Museum. He received his Ph.D. from the University of Maryland in history of science and technology. Book publications include Cold War Laboratory: RAND, the Air Force, and the American State (2002); Showcasing Space, edited with Douglas Millard, Volume 6, Artifacts series: Studies in the History of Science and Technology (2005); and After Sputnik (2007), editor. He is currently working on a history of satellite telephony and globalism in the 1990s.

Jonathan Coopersmith is an associate professor of history at Texas A&M University, where he has taught the history of technology since 1988. He received his D.Phil. in 1985 in Modern History at Oxford University. His books include The Electrification of Russia, 1880-1926 and, with coeditor Roger Launius, Taking Off: A Century of Manned Flight. Currently, his main areas of research are the history of the fax machine from the 1840s to the present and the close links between communication technologies and pornography.

Steven J. Dick is the Chief Historian for NASA. He obtained his B.S. in astrophysics (1971) and his M.A. and Ph.D. (1977) in history and philosophy of science from Indiana University. He worked as an astronomer and historian of science at the U.S. Naval Observatory in Washington, DC, for 24 years before coming to NASA Headquarters in 2003. Among his books are Plurality of Worlds: The Origins of the Extraterrestrial Life Debate from Democritus to Kant (1982), The Biological Universe: The Twentieth Century Extraterrestrial Life Debate and the Limits of Science (1996), and Life on Other Worlds (1998). The latter has been translated into Chinese, Italian, Czech, Polish and Greek. His most recent books are The Living Universe: NASA and the Development of Astrobiology (2004) and a comprehensive history of the U.S. Naval Observatory, Sky and Ocean Joined: The U.S. Naval Observatory, 1830–2000 (2003). The latter received the Pendleton Prize of the Society for History in the federal government. He is editor of Many Worlds: The New Universe, Extraterrestrial Life and the Theological Implications (2000), editor (with Keith Cowing) of the proceedings of the NASA Administrator’s symposium Risk and Exploration: Earth, Sea and the Stars (2005), and (with Roger Launius) of Critical Issues in the History of Spaceflight (2006) and Societal Impact of Spaceflight (2007). He is the recipient of the Navy Meritorious Civilian Service Medal. He received the NASA Group Achievement Award for his role in NASA’s multidisciplinary program in astrobiology. He has served as chairman of the Historical Astronomy
Division of the American Astronomical Society as president of the History of Astronomy Commission of the International Astronomical Union, and he as president of the Philosophical Society of Washington. He is a member of the International Academy of Astronautics.

Slava Gerovitch is a lecturer in the science, technology and society program at the Massachusetts Institute of Technology. His research interests include the history of Soviet science and technology during the Cold War, especially cosmonautics, cybernetics, and computing. His book *From Newspeak to Cyberspeak: A History of Soviet Cybernetics* (2002) received an honorable mention for the Wayne S. Vucinich Book Prize for an outstanding monograph in Russian, Eurasian, or East European studies from the American Association for the Advancement of Slavic Studies. His articles appeared in the journals *Technology and Culture*, *Social Studies of Science*, *Science in Context*, and *The Russian Review* and in the collections *Science and Ideology*, *Cultures of Control*, and *Universities and Empire*. His most recent article on human-machine issues in the Soviet space program was published in the collection *Critical Issues in the History of Spaceflight* (2006). He is the recipient of the 2007-2008 Fellowship in Aerospace History from the American Historical Association. He received two doctorates in the history and social study of science and technology from the Russian Academy of Sciences (1992) and from MIT (1999).

James R. Hansen is professor of history in the department of history at Auburn University in Alabama, where he teaches courses on the history of flight, history of science and technology, space history, and the history of technological failure. He has published nine books and three dozen articles on a wide variety of technological topics including the early days of aviation, the first nuclear fusion reactors, the Moon landings, and the environmental history of golf course development. His books include *First Man: The Life of Neil A. Armstrong* (2005); *The Bird is on the Wing: Aerodynamics and the Progress of the Airplane in America* (2003); *The Wind and Beyond: A Documentary Journey through the History of Aerodynamics in America* (Vol. 1, 2002), *Spaceflight Revolution* (1995), *From the Ground Up* (1988), and *Engineer in Charge* (1987). Hansen earned a B.A. degree with high honors from Indiana University (1974) and an M.A. (1976) and Ph.D. (1981) from The Ohio State University. He served as historian for NASA Langley Research in Hampton, Virginia, from 1981 to 1984, and as a professor at the University of Maine in 1984–85. Professor Hansen has received a number of citations for his scholarship, including the National Space Club’s Robert H. Goddard Award, Air Force Historical Foundation’s Distinction of Excellence, American Astronautical Society’s Eugene Emme Prize in Astronautical Literature (twice), American Institute of Aeronautics and Astronautics’s History Book Award; and AIAA Distinguished Lecturer. He has served on a number of important advisory boards and panels, including the Research Advisory Board.
of the National Air and Space Museum, the Editorial Advisory Board of the Smithsonian Institution Press, the Advisory Board for the Archives of Aerospace Exploration at Virginia Polytechnic Institute and State University, the Museum Advisory Board of the U.S. Space and Rocket Center in Huntsville, Alabama, and the board of directors of the Space Restoration Society. He is a past vice-president of the board of directors of the Virginia Air and Space Museum and Hampton Roads History Center in Hampton, Virginia.

Robert G. Kennedy, III, PE, took Heinlein’s advice about a liberal education to heart. He is a registered professional mechanical engineer (robotics specialty for military, nuclear, and industrial applications) in Tennessee and California. He minored in Soviet studies and holds a special master of arts in national security studies, and speaks, reads, and writes Russian, Latin and, to a lesser degree, Arabic and Classical Greek. In 1994, he was selected as the American Society of Mechanical Engineers Congressional Fellow for that year, working for the Subcommittee on Space in the United States House of Representatives. Also in 1994, he was invited to present Robert A Heinlein: The Competent Man at the Library of Congress. In 1997, he published, manufactured and distributed the Russian CD-ROM 40th Anniversary of Sputnik: Russians in Space. Also in 1997-1999, he served on the Where To? panel in the inaugural issues of The Heinlein Journal published by The Heinlein Society. He is an amateur military historian, published artist and writer on strategic affairs in the Journal of the British Interplanetary Society among other venues, and past chair of the American Society of Mechanical Engineer’s (ASME) Technology & Society Division. He currently resides with his spouse and numerous cats under his own vine and fig tree in the Manhattan Project city of Oak Ridge, Tennessee.

Bettyann Kevles is a lecturer in the history department at Yale University. She writes about science, technology, and popular culture. Her most recent book, Almost Heaven: The Story of Women in Space, (paperback revised edition MIT Press 2006), is a cross-cultural exploration of the lives and ambitions of women who have traveled into orbit. During 2000, she held the Charles A. Lindbergh Chair in Space History at the Smithsonian’s National Air and Space Museum. Almost Heaven was selected as the best science book of 2003 by the American Library Association, and in 2005 she was awarded the Educator’s Award for the book by Women in Aerospace. Before joining the faculty at Yale, she lived in Pasadena, California, where she wrote a regular science column and science book reviews for the Los Angeles Times, taught at the Art Center College of Design, and became an active member of the Planetary Society.

Sylvia K. Kraemer served as NASA Chief Historian from 1983-1990 and as NASA’s Director of Policy Development, Director of Interagency Relations, and Chair of Inventions and Contributions Board from 1990-2004. She obtained
her Ph.D. in history from The Johns Hopkins University. Among many other publications, she is the author of NASA Engineers and the Age of Apollo (1992).

John Krige is an historian who specializes on the place of science and technology in the postwar reconstruction of Europe. He received his Ph.D. in physical chemistry at Pretoria in 1965 and his Ph.D. in philosophy at Sussex in 1979. He was a member of a multinational team that wrote the history of CERN and the leader of the project that produced a two-volume history of the European Space Agency. Krige is the editor of the journal History and Technology and has served on the editorial board of the several other journals. His current research deals with the use of science and technology as instruments of U.S. foreign policy during the Cold War, notably in its relations with Western Europe. His new book, American Hegemony and Postwar Reconstruction of Science in Europe, was published by the MIT Press in 2006. He also edited (with Kai Henrik Barth, Georgetown University), Vol. 21 of OSIRIS entitled Global Power Knowledge. Science and Technology in International Affairs (University of Chicago Press, 2006). In 2005, Krige was the Charles A. Lindbergh Professor of Aerospace History at the National Air and Space Museum in Washington, DC. In May 2005, he was awarded the Henry W. Dickinson medal by the (British) Newcomen Society for the Study of Technology and Society. In Fall 2006, Krige was a Visiting Fellow at the Shelby Cullom Davis Center for Historical Studies at Princeton University.

Monique Laney is a Ph.D. candidate in the American studies program at the University of Kansas. Her dissertation explores the immigration and integration process of German families associated with Project Paperclip and Wernher Von Braun who moved to Huntsville, Alabama, in the 1950s. For this investigation, she uses oral histories, archival material, newspaper clippings, literature, and film. Currently Ms. Laney is finishing a pre–doctoral Smithsonian fellowship at the National Air and Space Museum in Washington, DC. She holds an M.A. degree in American studies from the Johann Wolfgang Goethe-Universität, Frankfurt, Germany, and her research interests include national identity, U.S. immigration history, history and memory, German Americans after WWII, and the cultural and social impact of the U.S. on Germany and vice versa. Her first publication, “The New York Times and Frankfurter Allgemeine Zeitung: Two Perspectives on the War in Iraq,” appeared in Safeguarding German-American Relations in the New Century: Understanding and Accepting Mutual Differences, eds. Kurthen, Hermann; Antonio V. Menendez-Alarcon; and Stefan Immerfall (Lanham, Maryland: Lexington Books-Rowman & Littlefield, 2006).

Roger D. Launius is a member of the division of space history at the Smithsonian Institution’s National Air and Space Museum in Washington, DC. Between 1990 and 2002, he served as Chief Historian of NASA. A graduate of Graceland College in Lamoni, Iowa, he received his Ph.D. from Louisiana
State University, Baton Rouge, in 1982. He has written or edited more than 20 books on aerospace history, including Critical Issues in the History of Spaceflight (NASA SP-2006-4702, 2006); Space Stations: Base Camps to the Stars (Smithsonian Books, 2003), which received the AIAA's history manuscript prize; Reconsidering a Century of Flight (University of North Carolina Press, 2003); To Reach the High Frontier: A History of U.S. Launch Vehicles (University Press of Kentucky, 2002); Imagining Space: Achievements, Possibilities, Projections, 1950-2050 (Chronicle Books, 2001); Reconsidering Sputnik: Forty Years Since the Soviet Satellite (Harwood Academic, 2000); Innovation and the Development of Flight (Texas A&M University Press, 1999); Frontiers of Space Exploration (Greenwood Press, 1998, rev. ed. 2004); Spaceflight and the Myth of Presidential Leadership (University of Illinois Press, 1997); and NASA: A History of the U.S. Civil Space Program (Krieger Publishing Co., 1994, rev. ed. 2001). He served as a consultant to the Columbia Accident Investigation Board in 2003 and presented the Harmon Memorial Lecture on the history of national security space policy at the United States Air Force Academy in 2006. He is frequently consulted by the electronic and print media for his views on space issues, and has been a guest commentator on National Public Radio and all the major television networks.

Cathleen Lewis is curator of International Space programs at the Smithsonian Institution’s National Air and Space Museum, specializing in Soviet and Russian programs. Her current research is on the history of the public and popular culture of the early years of human spaceflight in the Soviet Union. She has completed degrees in Russian and East European Studies at Yale University and is currently writing her dissertation, The Red Stuff: A History of the Public and Material Culture of Early Human Spaceflight in the U.S.S.R., 1959-1968 in the History Department at George Washington University.

John M. Logsdon is director of the Space Policy Institute at George Washington University’s Elliott School of International Affairs, where he is also Research Professor and Professor Emeritus of Political Science and of International Affairs. From 1983-2001, he was the director of GW’s Center for International Science and Technology Policy. A faculty member at GW since 1970, he also taught at the Catholic University of America from 1966-1970. He holds a B.S. in physics from Xavier University (1960) and a Ph.D. in political science from New York University (1970). Dr. Logsdon's research interests focus on the policy and historical aspects of U.S. and international space activities.

Dr. Logsdon is the author of The Decision to Go to the Moon: Project Apollo and the National Interest and is general editor of the eight-volume series Exploring the Unknown: Selected Documents in the History of the U.S. Civil Space Program. He has written numerous articles and reports on space policy and history and authored the basic article on the topic of “space exploration” for
ABOUT THE AUTHORS

Dr. James H. Logsdon has lectured and spoken to a wide variety of audiences at professional meetings, colleges and universities, international conferences, and other settings, and has testified before Congress on several occasions. He has served as a consultant to many public and private organizations and is frequently consulted by the electronic and print media for his views on space issues. Dr. Logsdon is a member of the NASA Advisory Council and of the Commercial Space Transportation Advisory Committee of the Department of Transportation. In 2003, he served as a member of the Columbia Accident Investigation Board. He is a recipient of the Distinguished Public Service and Public Service Medals from NASA, the 2005 John F. Kennedy Astronautics Award from the American Astronautical Society, and the 2006 Barry Goldwater Space Educator Award from the American Institute of Aeronautics and Astronautics. He is a Fellow of the American Institute of Aeronautics and Astronautics and the American Association for the Advancement of Science, and a member of the International Academy of Astronautics and former Chair of its Commission on Space Policy, Law, and Economics. He is a former member of the Board of Directors of the Planetary Society and member of the Society’s Advisory Council. He is faculty member of the International Space University and former member of its Board of Trustees. He is on the editorial board of the international journal *Space Policy* and was its North American editor from 1985–2000. He is also on the editorial board of the journal *Astropolitics*.

Dr. Logsdon has served as a member of a blue-ribbon international committee evaluating Japan’s National Space Development Agency and of the Committee on Human Space Exploration of the Space Studies Board, National Research Council. He has also served on the Vice President’s Space Policy Advisory Board, the Aeronautics and Space Engineering Board of the National Research Council, NASA’s Space and Earth Sciences Advisory Committee, and the Research Advisory Committee of the National Air and Space Museum. He has served as the Director of the District of Columbia Space Grant Consortium. He is former Chairman of the Committee on Science and Public Policy of the American Association for the Advancement of Science and of the Education Committee of the International Astronautical Federation. He has twice been a Fellow at the Woodrow Wilson International Center for Scholars and was the first holder of the Chair in Space History of the National Air and Space Museum.

Robert MacGregor is currently a graduate student in the history of science program at Princeton University. Before coming to Princeton he studied at Rice University in Houston, Texas, where he received a B.S. in chemical physics and a B.A. in history. Robert has also studied at Moscow State University in Russia where he studied Russian language, history, and culture. His current work focuses on the processes in the U.S. government that lead to the formation of NASA between the launch of Sputnik in October 1957 and the signing into
law of the National Air and Space Act in July 1958. In the future, he plans to delve into the history of the Soviet space program and the early amateur rocket societies in Germany, the United States, and the Soviet Union.

Hans Mark became Deputy Administrator of NASA in July 1981. He had previously served as Secretary of the Air Force from July 1979 until February 1981 and as Under Secretary of the Air Force since 1977. Dr. Mark was born in Mannheim, Germany, June 17, 1929. He came to the United States in 1940 and became a citizen in 1945. He received his bachelor’s degree in physics from the University of California, Berkeley, in 1951 and his doctorate in physics from the Massachusetts Institute of Technology in 1954. In February 1969, Mark became director of NASA’s Ames Research Center in Mountain View, California, where he managed the Center’s research and applications efforts in aeronautics, space science, life science, and space technology. He has taught undergraduate and graduate courses in physics and engineering at Boston University, Massachusetts Institute of Technology, and the University of California (Berkeley and Davis campuses). Following completion of graduate studies, Dr. Mark remained at MIT as a research associate and acting head of the Neutron Physics Group, Laboratory for Nuclear Science until 1955. He then returned to the University of California, Berkeley, as a research physicist at the University’s Lawrence Radiation Laboratory in Livermore until 1958. He subsequently served as an assistant professor of physics at MIT before returning to the University of California’s Livermore Radiation Laboratory’s Experimental Physics Division from 1960 until 1964. He then became chairman of the University’s Department of Nuclear Engineering and administrator of the Berkeley Research Reactor before joining the NASA team. Dr. Mark has served as a consultant to government, industry, and business, including the Institute for Defense Analyses and the President’s Advisory Group on Science and Technology. He has authored many articles for professional and technical journals. He also coauthored the books Experiments in Modern Physics and Power and Security, and coedited The Properties of Matter under Unusual Conditions. He also published The Space Station: A Personal Journey (Duke University Press, 1987), and The Management of Research Institutions (NASA SP-481, 1984). When Dr. Mark left NASA in 1984, he became Chancellor of the University of Texas system, a post he held until 1992. He then became a senior professor of aerospace engineering at the University of Texas at Austin. In July 1998, he took a job at the Pentagon as the director, defense research and engineering. In January 2001, he returned to the department of aerospace engineering and engineering mechanics and the University of Texas at Austin.

Walter A. McDougall is the Alloy-Ansin professor of international relations and history and the University of Pennsylvania. His honors include the Pulitzer Prize for history, election to the Society of American Historians,
ABOUT THE AUTHORS 421

J. R. McNeill was born in Chicago on October 6, 1954. He studied at Swarthmore College and Duke University, where he completed a Ph.D. in 1981. Since 1985 he has taught some 2,500 students at Georgetown University in the history department and school of foreign service, where he held the Cinco Hermanos chair in Environmental and International Affairs before becoming University professor in 2006. His research interests lie in the environmental history of the Mediterranean world, the tropical Atlantic world, and Pacific islands. He has held two Fulbright awards, a Guggenheim fellowship, a MacArthur grant, and a fellowship at the Woodrow Wilson Center. He has published more than 40 scholarly articles in professional and scientific journals. His books are *The Atlantic Empires of France and Spain, 1700-1765* (Chapel Hill: University of North Carolina Press, 1985); *Atlantic American Societies from Columbus through Abolition* (coedited, London: Routledge, 1992); *The Mountains of the Mediterranean World* (New York: Cambridge University Press); *The Environmental History of the Pacific World* (edited, London: Variorum, 2001); *Something New Under the Sun: An Environmental History of the Twentieth-century World* (New York: Norton, 2000), co–winner of the World History Association book prize, the Forest History Society book prize, and runner–up for the BP Natural World book prize, and translated into six languages; and most recently *The Human Web: A Bird’s-eye View of World History* (New York: Norton, 2003), coauthored with his father William H. McNeill. He also edited or coedited five more books, including the *Encyclopedia of World Environmental*
History (New York: Routledge, 2003). He is currently working on a history of yellow fever in the Americas from the 17th through the 20th centuries.

Michael J. Neufeld is chair of the Space History Division of the National Air and Space Museum, Smithsonian Institution, Washington, DC. Born in Canada, he received history degrees from the University of Calgary and the University of British Columbia followed by a Ph.D. in modern European history from The Johns Hopkins University in 1984. Before Dr. Neufeld came to the National Air and Space Museum in 1988 as an A. Verville Fellow, he taught at various universities in upstate New York. In 1989-1990 he held Smithsonian and NSF fellowships at NASM. In 1990, he was hired as a Museum Curator in the Aeronautics Division, where he remained until early 1999. After transferring to the Space History Division, he took over the collection of German World War II missiles and, from 2003-2007, the collection of Mercury and Gemini spacecraft and components. In fall 2001, he was a Senior Lecturer at The Johns Hopkins University in Baltimore. He was named Chair of Space History in January 2007. In addition to authoring numerous scholarly articles, Dr. Neufeld has written three books: The Skilled Metalworkers of Nuremberg: Craft and Class in the Industrial Revolution (1989), The Rocket and the Reich: Peenemünde and the Coming of the Ballistic Missile Era (1995), which won two book prizes, and Von Braun: Dreamer of Space, Engineer of War, which is forthcoming in September 2007. He has also edited Yves Béon’s memoir Planet Dora (1997) and is the coeditor of The Bombing of Auschwitz: Should the Allies Have Attempted It? (2000).

Emily S. Rosenberg is professor of history at the University of California, Irvine. Two of her books, Spreading the American Dream: American Economic and Cultural Expansion, 1890-1945 and Financial Missionaries to the World: The Politics
and Culture of Dollar Diplomacy, 1900-1930, deal with the intersections of culture and economics in U.S. international relations. Her most recent book, *A Date Which Will Live: Pearl Harbor in American Memory* (also translated into Japanese), examines the issue of collective historical memory in a media age. She is a coauthor of *Liberty, Equality, Power: A History of the American People* (5th ed., 2007). She has served as president of the Society for Historians of American Foreign Relations (SHAFR); an editor of the *Oxford Companion to United States History*; a board member of the Organization of American Historians; and coedits the *American Encounters, Global Interactions* book series for Duke University Press.

Michael Soluri is a New York City–based photographer. His work has been published in editorial magazines like *Wired, Time, Discover, BBC Horizons*, and *GEO*, as well as in corporate, institutional, and nonprofit multimedia communications. He is a contributing editor and photographer for *Discover, Space.Com* and *Ad Astra*. Profiled in *Photo District News* and on *Space.Com* for his expertise in the photography and editing of human and robotic space exploration, he has lectured at the Smithsonian Institute and at the National Science Foundation. In an 18-month photographic documentation of the last service mission to the Hubble Space Telescope, Soluri secured exclusive access to the integration of flight hardware, EVA tools, engineering personnel, and the crew of SM4 that resulted in the first creatively controlled portrait session of an astronaut crew in more than 25 years. He was also invited by the crew to present a photo seminar on making more communicative, insightful photographs during their historic mission to the Hubble Space Telescope. In addition, since 2005, Soluri has been following and documenting the project scientists and technicians with NASA’s New Horizons mission to Pluto and the Kuiper Belt. Currently published in eight languages, Soluri is coauthor and picture editor of *What’s Out There—Images from Here to the Edge of the Universe* and *Cosmos—Images from Here to the Edge of the Universe*, for which he secured Stephen Hawking to write these books’ forewords. He was a contributing editor for *The History of Space Travel*, a special edition of *Discover* commemorating 50 years of spaceflight. A former professor of photographic studies at the Rochester Institute of Technology, Soluri is currently adjunct faculty at Pratt Institute in New York City. He holds an MFA in photography from the Rochester Institute of Technology.
Margaret A. Weitekamp is a Curator in the Division of Space History at the National Air and Space Museum, Smithsonian Institution, in Washington, DC. As curator of the Social and Cultural Dimensions of Spaceflight collection, she oversees over 4,000 individual pieces of space memorabilia and space science fiction objects. These social and cultural products of the Space Age—including toys and games, clothing, stamps, medals and awards, buttons and pins, comics and trading cards—round out the story of spaceflight told by the museum’s collection of space hardware and technologies.

Her book Right Stuff, Wrong Sex: America’s First Women In Space Program (published by the Johns Hopkins University Press) won the Eugene M. Emme Award for Astronautical Literature given by the American Astronautical Society. The book reconstructs the history of a privately funded project that tested female pilots for astronaut fitness at the beginning of the Space Age. In addition, Weitekamp has also contributed to the anthology Impossible to Hold: Women and Culture in the 1960s, ed. Avital Bloch and Lauri Umansky (New York University Press, 2005). Weitekamp won the Smithsonian Institution’s National Air and Space Museum Aviation/Space Writers Award in 2002 and served as an interviewer for The Infinite Journey: Eyewitness Accounts of NASA and the Age of Space (Discovery Channel Publishing, 2000). She spent the academic year 1997-1998 in residence at the National Aeronautics and Space Administration Headquarters History Division in Washington, DC, as the American Historical Association/NASA Aerospace History Fellow. She is a 1993 Mellon Fellow in the humanities. Weitekamp received her B.A. summa cum laude from the University of Pittsburgh and her Ph.D. in history at Cornell University in 2001. Before joining the Smithsonian Institution, Weitekamp taught for three years as an assistant professor in the women’s studies program at Hobart and William Smith Colleges in Geneva, New York.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>American Academy of Arts and Sciences</td>
</tr>
<tr>
<td>ABM</td>
<td>Antiballistic Missile</td>
</tr>
<tr>
<td>ABMA</td>
<td>Army Ballistic Missile Agency</td>
</tr>
<tr>
<td>AEC</td>
<td>Atomic Energy Commission</td>
</tr>
<tr>
<td>ARPA</td>
<td>Advanced Research Projects Agency</td>
</tr>
<tr>
<td>ASAT</td>
<td>Anti-Satellite</td>
</tr>
<tr>
<td>CalV</td>
<td>Cargo Launch Vehicle</td>
</tr>
<tr>
<td>CERN</td>
<td>European Organization for Nuclear Research</td>
</tr>
<tr>
<td>CIA</td>
<td>Central Intelligence Agency</td>
</tr>
<tr>
<td>CLV</td>
<td>Crew Launch Vehicle</td>
</tr>
<tr>
<td>CNES</td>
<td>French National Space Agency (Centre Nationale des Études Spatiales)</td>
</tr>
<tr>
<td>CNSA</td>
<td>China National Space Administration</td>
</tr>
<tr>
<td>CNTA</td>
<td>China’s National Tourism Administration</td>
</tr>
<tr>
<td>COPUOS</td>
<td>United Nations Committee on the Peaceful Uses of Outer Space</td>
</tr>
<tr>
<td>COSPAR</td>
<td>Committee on Space Research</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOT</td>
<td>Department of Transportation</td>
</tr>
<tr>
<td>EEO</td>
<td>Equal Employment Opportunity</td>
</tr>
<tr>
<td>ELDO</td>
<td>European Launcher Development Organization</td>
</tr>
<tr>
<td>ELV</td>
<td>Expendable Launch Vehicle</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESRO</td>
<td>European Space Research Organization</td>
</tr>
<tr>
<td>EVA</td>
<td>Extra Vehicular Activity</td>
</tr>
<tr>
<td>FSA</td>
<td>Farm Securities Administration</td>
</tr>
<tr>
<td>GLONASS</td>
<td>GLObal Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PAO</td>
<td>Public Affairs Office</td>
</tr>
<tr>
<td>PSAC</td>
<td>President’s Science Advisory Committee</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>SAC</td>
<td>Strategic Air Command</td>
</tr>
<tr>
<td>SALT</td>
<td>Strategic Arms Limitation Talks</td>
</tr>
<tr>
<td>SAO</td>
<td>Smithsonian Astrophysical Observatory</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic Aperture Radar</td>
</tr>
<tr>
<td>SDI</td>
<td>Strategic Defense Initiative</td>
</tr>
<tr>
<td>SEI</td>
<td>Space Exploration Initiative</td>
</tr>
<tr>
<td>SIG (Space)</td>
<td>Senior Interagency Group for Space</td>
</tr>
<tr>
<td>SLBM</td>
<td>Submarine-Launched Ballistic Missile</td>
</tr>
<tr>
<td>SOHO</td>
<td>Solar and Heliospheric Observatory</td>
</tr>
<tr>
<td>SRTM</td>
<td>Shuttle Radar Topography Mission</td>
</tr>
<tr>
<td>START</td>
<td>Strategic Arms Reduction Treaty</td>
</tr>
<tr>
<td>TCP</td>
<td>Technological Capabilities Panel</td>
</tr>
<tr>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>UAH</td>
<td>University of Alabama in Huntsville</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational Scientific and Cultural Organization</td>
</tr>
<tr>
<td>USAAF</td>
<td>United States Army Air Force</td>
</tr>
<tr>
<td>USAF</td>
<td>U.S. Air Force</td>
</tr>
<tr>
<td>VAB</td>
<td>Vehicle Assembly Building</td>
</tr>
<tr>
<td>VDNKh</td>
<td>Exhibition of Achievements of the National Economy</td>
</tr>
<tr>
<td>VSE</td>
<td>Vision for Space Exploration</td>
</tr>
<tr>
<td>WPA</td>
<td>Work Projects Administration</td>
</tr>
</tbody>
</table>
Reference Works, NASA SP-4000:

Management Histories, NASA SP-4100:

Mudgway, Douglas J. William H. Pickering: America’s Deep Space Pioneer. NASA SP-2008-4113,
Project Histories, NASA SP-4200:

Swanson, Glen E., ed. “*Before This Decade is Out . . .*” *Personal Reflections on the Apollo Program*. NASA SP-4223, 1999.

Center Histories, NASA SP-4300:

General Histories, NASA SP-4400:

Monographs in Aerospace History (SP-4500 Series):

No monograph 28.

Dryden Historical Studies

Electronic Media (SP-4600 Series)

Shuttle-Mir: the United States and Russia Share History’s Highest Stage. NASA SP-2001-4603, 2002. This CD-ROM is available from NASA CORE.

Conference Proceedings (SP-4700 Series)

Societal Impact (SP-4800 Series)
INDEX

Numbers in bold indicate pages with illustrations

A

Abadzis, Nick, 248
Abernathy, Ralph, 362–63
Abraham, Itty, 32
Abstract expressionism, 182–83
Acronyms and abbreviations, 425–27
Adams, Ansel, 285–86n26
Adams, Robert, 331–32
Adler, Hans, 68–69
Adorno, Theodor, 189
Advanced Research Projects Agency (ARPA), 55; Project Defender, 128
Aelita, 254, 256–60, 257n11
Africa: economic growth, 13; migration from, 4, 5, 6, 8, 9, 10
African Americans: in Huntsville, Alabama, 91, 94–104, 95n16, 105; Spaceship Earth and, 177–78; treatment of in Germany, 100–101, 100–101n31–32
Air Force, U.S., 349–50
Alabama A&M, 102–3, 102n35, 103n37
Alas, Babylon (Frank), 64
Aldrin, Buzz, 278, 279, 280, 300, 330
Alien “others,” 178
ALSOS, Project, 349
Amaldi, Edoardi, 42, 43
American Academy of Arts and Sciences (AAAS): Committee on Space, 141, 142, 147, 148, 151; Committee on Space Efforts and Society, 135; effects of space efforts, studies of detection of, 148; effects of space efforts, studies of evaluation and feedback of information about, 149–50; effects of space efforts, studies on anticipation of the, 142–47, 150–54; goal of, 135, 150–52; historians involvement in studies, 142–43; historical analogies, 141–47, 150–54; mission of, 136; NASA-funded study, 135–36, 138–39, 141–42; Railroad and the Space Program, The (Mazlish), 141–47, 150–51; Second-Order Consequences (Bauer, Rosenbloom, and Sharp), 142, 148; Social Indicators (Bauer), 142, 149–50; technology transfer from space program to civilian use, 146
American exceptionalism, 24, 354, 355–60, 360n17, 384–85
American Patent Law Association, 68
American space program. See United States space program
Americas, exploration of and migration to, 4, 8
Ames Research Center, 411
Anderson, Ray, 242
Andrews, James, 119
Andrews, Scott, 304–7, 334–35
Anthropocene, 13
Anti-ballistic Missile (ABM) Treaty (1972), 128, 129, 130
Antiballistic missile defense system, 124
Antiballistic Missile Treaty (SALT I), 127, 129
Anti-satellite (ASAT) missile events, 112, 112n4, 113, 113n5, 128
Apollo program: activity level during, xii, xiii, 364, 400–401; conspiracy theories about Moon landing, 375–84; disasters and operational crises, 184, 203; employment numbers, 164; Giantstep–Apollo 11 Presidential Goodwill Tour, 169; indigenous technologies, 22, 22n9; justification of, 28; Launch Complex 34, 334–35, 335; photographs from, 321–22, 328, 330, 330–31, 334–36, 335, 337; significance of, 356–57; space race as Cold War battleground, 127; technology and national prowess, 26–27
Apollo 4, 337
Apollo 7, 300, 302–3, 335
Apollo 8, 402n10
Apollo 11, 278, 279, 280, 282, 362–63, 376, 377
Apollo 12, 278–80, 281, 284–85, 322, 376
Apollo 13, 170, 184, 376, 402n10
Apollo 14, 322
Apollo 15, 322
Apollo 16, 322, 330, 331
Apollo 17, 280, 285–86n26, 307, 322, 337
“Apollo: A Prophecy” (Kahn and Selesnick), 328
Apollo Prophecies, The (Kahn and Selesnick), 327–31, 329
Arai, Akino, 249
Arcade Fire, 247–48
Arcades Project, 191
Architectural styles, 180–82
Arendt, Hannah, 193
Ares–I Crew Launch Vehicle, 116n14
Ares–V Cargo Launch Vehicle, 116n14
Ariane launcher, 43, 45, 52
Armstrong, Neil, 135, 169, 278, 280, 282, 391
Army Air Force, U.S., 349
Army Ballistic Missile Agency, U.S., 356
Asia, 8, 13
Asimov, Isaac, 63–64, 158, 346, 347, 393
Astounding Science Fiction, 345
Astrofuturists, 158–60, 168
Astronauts as cultural icons, 207
Atlantis, 319
Atomic Cafe, 242
Atomic diplomacy, ix n1, 57–58, 64–69
Atomic Energy Acts, 57, 64–65, 67, 68–69
Atomic Energy Agency, 62
Atomic Energy Commission (AEC): DOD’s relationship with, 67; laboratories, 57, 57n8; liaison committees, 66–67; mission of, 67–68; NASA and, ix n1, 64–65, 66; ROVER program, 69; as technocracy, 56–57, 69–70
Atomic Peace Ship, 62–63
Atoms-for-Peace program, 62
Auger, Pierre, 42, 43
Australia, 4, 5, 8
Avedon, Richard, 310n58

B

Baggett, Blaine, 394
Bainbridge, William Sims, 393
Ballet Russes, Les , 258
Bangladesh, 113
Batalov, Nikolai, 257
Battle Beyond the Stars, 262n29
Baudrillard, Jean, 188, 193
Bauer, Raymond A., 139, 140, 142, 143, 147, 150
Bean, Alan, 278–80, 281, 285, 286
Becher, Bernd, 333
Becher, Hilla, 333
Bechtle, Otto, 78
Belgium, 50
Bell, David, 191–92
Benjamin, Marina, 209
Benjamin, Walter, 191, 193
Benson, Michael, 322–23, 332
Bergaust, Erik, 76
Bethe, Hans, 61
Between Two Ages (Brezinski), 174
Beyond, Visions of the Interplanetary Probes (Benson), 322
Bezmolnvaia zvzda, 262
“Big history” movement, x
Billings, Linda, xii, 409–12, 413
Bilstein, Roger E., 361
Biosphere, 13–14
Blipp!, 248
Bloom, Jane Ira, 411
Blue Streak ballistic missile, 44
“Blue-marbled” Earth, 280, 285–86n26
Bonestell, Chesley, 159, 286–87, 288
Boorstein, Daniel, 188–93, 188n9, 201
Boulding, Kenneth, 143, 175
Bowles, Bill, 334
Boym, Svetlana, 411
Braun, Martin, 334
Brzezinski, Matthew, 411
Buck–Morss, Susan, 238
Bundy, McGeorge, 40
Buran space shuttle, 23n12
Bush, George W., 34, 113, 130, 134, 372, 404
Bush, Vannevar, 361, 410
Butrica, Andrew J., 121–34, 413–14
Brezinski, Zbigniew, 174

Calotype, 276
Canticle for Leibowitz, A (Miller), 64
Canyon de Chelly, Arizona, 287, 289
Cape Canaveral, Florida, 166, 334–35, 335
Capitalism and the Space Age, 231–35, 233
Capricorn One, 380
Carpenter, M. Scott, 354
Carter, Jimmy, 128
Cassini spacecraft, 281, 338
Castro, Fidel, 373
Caute, David, 238
CCCP, 245
Cemosphere, 181
Center for Culture and Technology (Motorola), 198
Central Intelligence Agency (CIA), 349
Central Scientific Research Institute of Machine Building, 217
Century of Flight, 94, 106
CERN (European Organization for Nuclear Research), 42, 48
Cernan, Eugene, 285–86n26, 327, 330, 402n10
Chadwick, James, 341
Chaikin, Andrew, 358
Challenger, 133, 152, 184, 203, 280, 304
Chandler, Alfred, 146
Chase Econometrics, 371
Chelomei, Vladimir, 225
Chertok, Boris, 22n11, 222, 227–28
China: aeronautics theme park, 109, 110, 120; anti-traditionalism, 117,
120; energy use, 12; exploration of and migration to, 4; international community, integration in, 113; liberal nationalism, 117, 120; national identity, 109–20; nationalities in, 110; nativism, 117, 120; Olympics, 120; pragmatic nationalism, 116–17, 120; rocketry birthplace, 26; science fiction interests, 115; space benefactor club, 113; space exploration, enthusiasm for, 114–15; urbanization, 12

China National Tourism Administration (CNTA), 109–10

China Space Technology Group, 109

China’s Quest for National Identity (Dittmer and Kim), 110, 111

Chinese space program: achievements of, 18, 35; ASAT missile events, 112, 112n4, 113, 113n5; budget of, 392; development of, ix, 399, 412; founding father, 19; hero images and celebrity status, 119–20; indigenous technologies, 23, 33; ISS, exclusion from, 113, 114; justification of, 29; missile and rocket development, 33, 111; Moon missions, 115–16; NASA officials’ visit to, 113–16; nationalism and, 17, 27, 109, 117–18, 119–20; public support for, 114–15, 119–20; satellite launches, 113; Shenzhou V, 111, 118, 119; technology and national prowess, 27

Citizen’s Action Committee for Space, 345

Clark, Katerina, 219

Clarke, Arthur C., 158, 174, 393, 399, 401

Clinton, Bill, 376

Clinton, George, 247

Clinton, Hillary Rodham, 372

Close, Chuck, 333

Cochran, Thomas, 146

Cold War: satellite use during, 127–28; space exploration and, 6–7, 55–56, 405; space race as Cold War battleground, 127–28, 158–67, 368; spy satellites, significance of, 14–15

Collective memory, 205–6, 205–6n13

Collier’s, 77, 86, 169, 349, 400

Collins, Martin J., xi, 185–202, 231–32, 409–10, 414

Columbia, 130, 131, 152, 203, 318

Columbus, Christopher, 4

Coming of Post-Industrial Society (Bell), 191–92

Commercial Space Launch Act, 133, 371

Commercial Space Policy (NASA), 133

Commercial Technology Program (NASA), 29

Commercialization and militarization of oceans, 126

Commercialization and militarization of space, 123, 126–33, 371–72. See also Private space industry

Committee for the Future, 412

Committee on Space Research (COSPAR), 45

Common Market, 47

Communication satellites, 14, 15

Communications Satellite Corporation (Comsat), 170

Concentration camps, 81–82, 86, 106. See also Mittelbau-Dora labor camp

Concorde, 47

Confucius, 109–10

Congress, U.S.: Manned Space Flight Subcommittee, 170; Science Committee, 171

Conquest of Space, The (Bonestell and Ley), 159

Conrad, Charles Pete, 278–80, 281, 285
Conservative space agenda, 121–34, 365, 366–72
Conspiracy theories, 353–54, 373–84
Conspiracy Theory, 380–81
Constellation program, 333–34
Constructivism, 257, 257n12, 258–59, 258n17
Cooper, L. Gordon, 354
Coopersmith, Jonathan, 135–54, 414
Cootner, Paul, 145
Cornog, Robert, 345
Corporate universities, 198
Cosmism, 25
Cosmonaut myth, 214–17, 216
Cosmonaut Training Center, 229, 230
Cosmos Pavilion, 231
Cotton, Charlotte, 332, 333
Council of Social Advisors, 150
Courreges, André, 179
Cousteau, Jacques, 393
Cronkite, Walter, 169
Crossbow and Overcast (McGovern), 81
Crutzen, Paul, 13
Cuban Missile Crisis, 165
Cultural memory, 206–10, 236
Culture: astronauts as cultural icons, 207; Googie style, 180–83; Media Age, 167–72, 208; Mid-Century Modernism, 179–83; narrative and image control, 217–21; Russian capitalism and the Space Age, 231–35, 233; Soviet Union space program, 211–14; Space Age and, 208–10; space exploration and, xi–xii, 118–19, 409–12; Spaceship Earth, 175–78, 208; symbols of Space Age, 232–33, 233; Technetronic Age, 172–79
Cunningham, Randy, 145
Cunningham, Walt, 300, 303
Curtis, Edward, 287–88, 290, 292

D

da Gama, Vasco, 4
Daddario, Emilio Q., 148
Daguerre, Louis-Jacques-Mandé, 276
Daguerreotypes, 276, 276n10
Dale, Dick, 244
Damon and Naomi, 248
DARPA (Defense Advanced Research Projects Agency), 15
Date Which Will Live, A (Rosenberg), xi
Day, Dwayne, 152
Day the Earth Stood Still, 176
de Hevesy, George, 341n1
de Salignac, Eugene, 295–96, 297, 304, 334
de Tocqueville, Alexis, 342, 342n3
Dean, Gordon, 64
“Death of God” controversy, 174
de Camp, L. Sprague, 346, 347
Defender, Project, 128
Defense, U.S. Department of (DOD): budget of, NASA and, 125; creation of, 349; history programs of, 151, 153–54; NASA’s relationship with, 64, 65–67
Defense Advanced Research Projects Agency (DARPA), 15
Degh, Linda, 380–81
Democracy in America (de Tocqueville), 342, 342n3
Destination Moon, 159, 173, 350
Destruction of the European Jews, The (Hilberg), 82
Diagalev, Sergei, 258
Dick, Steven J., 414–15
DIRECT v2.0, 116n14
Disasters and operational crises, 146, 184, 203
Discovering Chinese Nationalism in China (Zheng), 110, 111–13
Discovery, 305, 307, 315–16, 316
Disney theme parks and TV, 75, 86, 109, 159, 176, 180, 181
Dittmar, Mary Lynne, 380
Dittmer, Lowell, 110, 111
Dole, Elizabeth Hanford, 133
Doolittle, James H., 58, 58n11
Dora (Michel), 85
Dora labor camp, 19, 31, 71, 73, 80, 81–82, 84, 85–86, 89, 98–99
Dornberger, Walter, 71, 72–73, 76, 78–81, 86; V-2, 78–81, 79
Draper, John, 276n10
“Dream, The” (Rousseau), 324, 325
Dryden, Hugh, 389

Eagle Nebula “Pillars of Creation,” 280
Eakin, Paul, 205
Earth: “blue-marbled” Earth, 280, 285–86n26; “Earthrise” photo, 175, 193, 398; iconic images of, 280; photographs of, 321, 337, 406; Spaceship Earth, 175–78, 208, 390, 398
Earth-observation satellite system, 113
Easterbrook, Greg, 357
Eastman, George, 298
Ecological awareness, 176
Economic growth, 13
Education: corporate universities, 198; Huntsville, opportunities in, 102–3, 102nn35–36, 103n37; National Defense Education Act (NDEA), 55, 162–63
Eisele, Donn, 300, 302
Eisenhower, Dwight D.: Atoms-for-Peace program, 62; education, federal aid for, 162–63; foreign policy and nuclear technology, 61–64, 406; government spending, 59–60; space program commitment, 366, 368; space program funding, 166; Sputnik launch and reaction to, 58–61, 160–63, 355–56; Western Europe, relationship with, 40
Eisenstein, Sergei, 264, 268n35
Ekster, Alexandra, 257, 257n12
Encyclopedia of Human Spaceflight, 227
Energy use, 12–13
England, Kyler, 246
Enterprise, 176–77, 178
Environmental turbulence, 13–14
Essen war-crimes trial, 84–85
Etzioni, Amitai, 166, 361–62
Europa, 43, 44
Europe: economic growth, 13; energy use, 12; expeditionary science, 16; exploration of and migration to, 4; integration, 390; space program development, ix; U.S. ties to, 40
European Launcher Development Organization (ELDO), 43, 46, 47, 48, 51
European Organization for Nuclear Research (CERN), 42, 48
European Space Agency (ESA): achievements of, 19, 35, 35n42; budget of, 392; fair return principle, 49; membership of, 18–19; science programs as mission of, 46; Sputnik anniversary celebration, 391
European space program: civil dimension of, 42–45; fair return principle, 49–50; foreign policy, 47–48; industrial policy, 48–49, 50; launchers developed by, 43–45, 44; military control and funding for, 42–43; regional capability and identity through, 39–41; regional integration and national interests, 49–50, 390; regional integration through, 40; satellites as focus of, 46; science projects, collaboration on, 45–46; strength of nation and interest
in collaboration, 50; U.S. role in, 40–41, 45–46, 51–53
European Space Research Organization (ESRO), 46, 47, 48, 50
Exact Change publishers, 248
Exhibition of Achievements of the National Economy, 242
Expedition 7 Soyuz launch, 306
Expedition 8, 308, 309
Expeditionary science, 16
Exploration and migration:
biological adaptations, 8; challenges and liberation in, 8–10, 359;
expeditionary science, 16; Paleolithic, 4–6, 7; pathogenic load, 8, 9–10;
reasons for, 5–7; risks of, 5, 7; social and cultural evolution, 9
Explorer 1, 272, 274, 275, 355, 394
Explorer 6, 280
Explorer project, 355

Fair return principle, 49–50
Farm Securities Administration (FSA), 336
Federation of American Scientists, 345
Fëdorchenko, Aleksei, 265, 266–68
Fedorov, Nikolai, 25
Fernandez-Armesto, Felipe, 3, 402
Fiedler, Margaret, 246
Films: Laika-inspired, 239, 243–44; NASA productions, 239; Russian films, 255, 265–70; Soviet films, 253–64, 254n1, 269–70
Finan, William F., 68–69
Fine arts photography, 320–31, 324, 325, 326, 327, 329, 330
First on the Moon (Pervye na lune), 265, 266–68, 269
Fixsen, Guy, 246
Fleeter, Rick, 402–3
Fleming, Arthur S., 62

“Flight into the Future” (Heinlein and Laning), 349
Flint, James, 248
Florman, Samuel, 394
Fly Me to the Moon, 159
Fogel, Robert, 145–46, 151
Fontcuberta, Joan, 249, 323–26, 324, 326
Forbidden Planet, 178
Ford, Gerald R., 128
Fort Bliss, Texas, 90
Fossil fuels, 12
Foster, Clyde, 102–4
Foundation trilogy (Asimov), 63–64
Founding fathers, 19–20, 30–32, 211
FrameworkCT, 116n14
France: achievements of space program, 18; Ariane launcher, 43, 45, 52; collaborative military projects, 43; expeditionary science, 16; fair return principle, 50; military dimension of space program, 42; missile and rocket development, 33; movie theaters in, 255; NASA’s role in space program of, 46; National Space Agency Centre Nationales des Études Spatiales (CNES), 45; space exploration commitment, 403; Symphonie telecommunications satellite, 52; technology, influence of ideology on, 121
Frank, Pat, 64
Freund, Paul, 136
Fritzsche, Peter, 206
Frontier thesis, 24, 118, 123–24, 123–24n9, 383
Frozen Lighting (Die gefrorenen Blitze) (Mader), 84
FSB, 235
Fulbright, J. William, 362
Full Moon (Light), 321
Fuller, Buckminster, 175
Gagarin conferences, 211
Gagarin Parties, 231
Galbraith, John Kenneth, 56n7, 194n23
Galloway, Eilene, 64–65, 64n31
Gardner, Alexander, 284
Garvin, Jim, 392
Gefrorenen Blitze, Die (Frozen Lighting) (Mader), 84
Geheimnis von Huntsville (Secret of Huntsville) (Mader), 84, 86
Gemini program, 165, 328, 330
Gemini 4, 280, 300, 327, 330
Gemini 9, 300, 327, 330
Gemini 12, 300, 330
Gender issues, 177–78
Geographical and geologic documentation, 284–91, 285, 289, 290
Geo-spatial Intelligence Agency, 393
Germany: African American soldiers, treatment of, 100–101, 100–101n31–32; Allied occupation of, 101, 105; anti-German prejudice, 82–83; Essen war-crimes trial, 84–85; fair return principle, 50; foreign policy, 47–48; indigenous technologies and space program achievements, 22, 22n9, 22n11; Jews in, treatment of, 81–82, 98, 98n25, 99; missile and rocket development, 31–32, 33, 71–86, 118–19; Mittelbau-Dora labor camp, 19, 31, 71, 73, 80, 81–82, 84, 85–86, 89; Nordhausen, 71–72, 72, 72n2, 76, 77, 80, 81–82, 85, 86; science fiction interests, 115, 118–19; scientific and technological collaboration, 47–48, 50; Spacelab collaboration, 46; Symphonie telecommunications satellite, 52
Gerovitch, Slava, xi, 119, 203–36, 415
Gerstenfeld, Virginia, 346, 350
Ghandi, Indira, 21
Giantstep–Apollo 11 Presidential Goodwill Tour, 169
Gingrich, Newt, 124–26, 370
Glenn, John H., Jr., 165, 168, 169, 280, 299, 354
Glenn Research Center (Lewis Research Center), 294–96, 295, 298, 313
Global consciousness, 175–76
Global economy, 13
Global Exploration Strategy, 404
GLObal Navigation Satellite System (GLONASS), 234–35
Global Positioning Satellite (GPS), 195–96, 233–35, 399
Global village, 187–88
Globalization and global identity, 113; emergence of, 191–95, 194n23–24; impact of space science and technology, 397–99; ISS and, 33–34; multinational corporations, 197–200; satellite communication and, 15; space activity contribution to, xii, 406–7, 412; Space Age and, x–xi; space exploration and, 34–35, 200–202
GLONASS (GLObal Navigation Satellite System), 234–35
Glushko, Valentin, 223, 225, 225–26
Goddard, Robert, 30–31
Goddard Space Flight Center, 316, 317
Goldin, Daniel S., 134, 412
Goldwater, Barry, 122, 366
Golovanov, Iaroslav, 222
Googie style, 180–83
Googie’s Coffee Shop, 181
Google, 390–91, 411
Gorbachev, Mikhail, 223
Gorillaz, 245
GPS (Global Positioning Satellite), 195–96, 233–35, 399
Graham, Daniel O., 126, 129
Graham, John, Jr., 180
Great Britain: achievements of space program, 18; Blue Streak ballistic missile, 44; collaborative European space program, interest in, 47; collaborative military projects, 43; Common Market, request to join, 47; expeditionary science, 16; military dimension of space program, 42; missile and rocket development, 33; space policy, 47
Great Society programs, 122, 165, 357–58, 362, 366–67, 368
Green, Jonathan, 298, 301
Griffin, Michael, 113–14, 115–16, 365
Grisson, Virgil I., Jr., 354
Gross, Bertram M., 149
Gross, H. R., 165–66

Haage, Ulrike, 240
Haber, Heinz, 75
Habermas, Jürgen, 385
Habitus (Flint), 248
Halström, Lasse, 239, 243–44
Hannon, Neil, 247
Hansen, James R., 109–20, 415–16
Harvard Business School, 141
Haskell, Douglas, 181
Health and Human Services, U.S. Department of, 125
Health revolution, 10–11
“Hearts of Space,” 240
. . . the Heavens and the Earth (McDougall), 119, 175
Heinlein, Robert, 344–51; education of, 345–46; engineering employment, 346; “Flight into the Future,” 349; health of, 343, 346; influence of, 341, 347, 350–51; inventive devices attributed to, 344; literary style and techniques, 158, 344–45; political interests, 347, 349; Revolt in 2100, 347–49, 348; Rocket Ship Galileo, 350; science interests of, 345–46; Solution Unsatisfactory, 345; Space Cadet, 349
Hereford, Sonnie, III, 96–97, 99–100, 101, 103
Heritage Foundation, 129
Hermann, Rudolf, 80
Hero images and celebrity status: Chinese space program, 119–20; Laika, 237–38, 239–41; Russian space program, 228–31, 229; Soviet Union space program, 214–17, 216, 224–26, 225; United States space program, 163–64, 167–70; von Braun, 83–84, 86, 93
Hickam, Homer, 394
High Frontier, Project, 129
Hilberg, Raul, 82
Hill, Stephen, 240
Hill, J. K., 284, 287, 289, 307
Himmler, Heinrich, 76, 80
Hine, Lewis, 310–11, 312, 314
Hiroshima, 63
Historical analogies, 141–47, 150–54
History: Americans’ interest in, 381–82; reality, memory, and meaning, xi–xii; truth, 383. See also Memory; Narratives
History and Theory, 143
History News Network, 153
History News Service, 153
History Office (NASA), 151–52
Hitler, Adolph, 76, 78, 80
Holocaust, 73, 81–82, 85, 86
Home Planet, The, 321
Homo erectus, 4–5
Itokawa, Hideo, 19
Ivanova, Natalia, 230
Ivanovskii, Oleg, 226–27
Ivins, William, 274, 281, 283

Jackson, William Henry, 284
Jameson, Frederic, 186, 188
Japan: energy use, 12; Olympics, 170
Japan Aerospace Exploration Agency (JAXA), 30
Japanese space program: achievements of, 18, 35, 35n42; budget of, 392; founding father, 19; indigenous technologies, 33; justification of, 29–30; missile and rocket development, 33; nationalism and, 17, 27
Jefferson, Thomas, 16, 369
Jet Propulsion Laboratory, 356, 394
Jetsons, 173, 182
J.F.K., 373
Jiuquan Satellite Launch Center, 114
Johnson, Lyndon: conspiracy theories about Kennedy assassination, 373; liberal government agenda, 357–58; space exploration, reasons for, 6–7; space program funding, 165, 368; spaceflight, success of, 360; Sputnik launch, reaction to, 58, 161
Johnson Space Center, 166, 171
Johnson in Space program, 412
Jupiter launcher, 116n14
Jupiter-C Redstone rocket (Explorer One), 272, 274, 275, 355
Justice, U.S. Department of, Office of Special Investigations, 85, 86, 89

K
Kahn, Nicholas, 327–31
Kamanin, Nikolai, 217–19, 220, 222
Kammler, Hans, 76, 77
Karth, Joseph, 365–66
Kaysing, Bill, 379
Kennedy, John F.: conspiracy theories about assassination of, 373, 384; frontier analogies, 123, 123–24n9; liberal government agenda, 357–58; Media Age and, 168; Moon landing, support for, 58, 163, 400; motivation from challenges by, 164; space program funding, 164–65, 368; space race as Cold War battleground, 127, 163–64; Sputnik launch, reaction to, 161
Kennedy, Robert G., III, 341–52, 416
Kennedy Space Center: Launch Operations Center, 166; Orbiter Processing Facilities, 315–16, 316; protest of launch at, 362–63; Space Shuttle photographs, 316, 318, 319, 319–20; visitor center, 109
Kevles, Bettyann, 411, 416
Keyworth, George, 131
Khodataev, Nikolai, 259–60
Khrushchev, Nikita, 56n5, 161, 162, 214–15, 223, 224
Khrushchev, Sergei, 225
Kilgore, DeWitt Douglas, 178
Killian, James R., 58–59n13, 60, 62, 160
Kim, Samuel S., 110, 111
Kingsolver, Barbara, 185
Kinison, Sam, 358–59
Kistiakowsky, George, 63
Klimuk, Petr, 229
Kloka, 249
Klushantsev, Pavel, 263–64, 268
Koch, Ed, 365
Komarov, Vladimir, 211
Komisarenko, Zenon, 259–60
Korolev, Sergie: anniversary celebration of, 211; anonymity of, 214; celebrity status of, 211; contributions of, 223; dispute with
other engineers, 225; as founding father, 19, 20; narrative and image control, 218, 219; Tsiołkowski, meeting with, 212–13
Korolev conferences, 211
Kosmicheskii reis (Spaceflight), 260–62, 261, 264, 268, 268n35
Kosmos kak predchuvstvie (Space as Premonition), 265–66, 267
Kraemer, Sylvia K., xii, 405–7, 416–17
Kranzberg, Melvin, 138
Krige, John, xii, 37–53, 417
Kubrick, Stanley, 174, 175
Kundera, Milan, 237, 240
Kuttner, Henry, 347

Labor force photographs, 309–16, 312, 313, 314, 315, 316, 317
Ladwig, Alan, 412
Laika: anniversary celebration of, 211; books inspired by, 248–49; celebrity status of, 237–38, 239–41; controversy over spaceflight of, 238–39; film inspired by, 239, 243–44; launch of, 239–40, 242–43, 244, 245, 246–48, 249, 251–52; musical groups named for, 239, 244–46; Soviet tributes to, 241–42, 247; space capsule for, 241, 239; spaceflight of, 7; theatrical production inspired by, 248; Web sites devoted to, 249
Laika (Abadzis), 248
Laika (musical group), 245–46
Laika and the Cosmonauts, 244–45
Lambright, Henry, 152
Land, Edward H., 58–59
Landscapes without Memory
(Fontcuberta), 323
Laney, Monique, 89–107, 417
Lang, Daniel, 76
Lang, Fritz, 258
Laning, Caleb, 349, 350
Large Astronomical Satellite, 46
Laser weapons, 128
Launius, Jeffrey Hilliard, 375–76
Launius, Roger D., 353–85, 417–18; astronauts as cultural icons, 207; Columbia investigation, 152; justification of space exploration, 28; mythology of spaceflight, 209; narratives of space exploration, xi, xii; rationales for space technology, 391–92; Spaceflight and the Myth of Presidential Leadership, 122–23
Lautner, John, 181
Lee, Peggy, 159
LeFevre, Mike, 311–12
Left-leaning government agenda, 357–58
Left-leaning space agenda, 123–24, 360–66
Lem, Stanislaw, 218, 262
Lenin, Vladimir, 214, 215, 253–54, 254n1
Leningrad Cowboys, 244, 245
Lewis, Cathleen S., 214, 253–70, 418
Lewis Research Center (Glenn Research Center), 294–96, 295, 298, 313
Ley, Willy, 71–74, 75, 78, 81, 86, 158, 159
Liberal government agenda, 357–58
Liberal space agenda, 123–24, 360–66
Life, 168–69
Light, Michael, 321, 323, 332
Lilienthal, David, 70
Link, O. Winston, 307
Literary and social movements and technology development, 118–19
Loader, Jayne, 242
Logsdon, John M., xii, 152, 391, 394, 397–404, 418–19
Look, 169
Lorenzini, Michael, 334
Lovell, Amoree, 237, 246
Lovell, James, 300, 402n10
Lucid, Shannon, 114–15
Lucky Dragon 5 (Japanese fishing boat), 63
Luna III, 277, 278
Lunacharsky, Anatolii, 253, 256
Lunar Orbiter 1, 280
Lunar X Prize, 390–91, 411
Lundquist, Charles A., 89n2
Lyotard, Francois, 188, 201

M

M16, Eagle Nebula “Pillars of Creation,” 280
MacGregor, Robert R., ix n1, 55–70, 419–20
Machine in the Garden, The (Marx), 147
MacLeish, Archibald, 175
Macmillan, Harold, 47
Mader, Julius, 84, 86
Magellan, Ferdinand, 4
Mahan, Alfred T., 126
Mailer, Norman, 174, 175, 301
Making of the Atomic Bomb, The (Rhodes), 341–43
Malaysia, 27, 27n25
Man on the Moon, A (Chaikin), 358
Manhattan District, 67
Manhattan Project, 341, 345, 349
Manned Space Flight Subcommittee, 170
Murakami, Haruki, 248
Marcuse, Herbert, 193
Mare’s Nest, The (Irving), 81
Mariner 10, 338
Mark, Hans, 420
Market capitalism, 190
Mars, 264
“Mars As You’ve Never Seen Before,” 394
Mars Exploration Rovers, 287–88, 394
Mars Project (von Braun), 78
Marshall, William S., 152
Marshall Space Flight Center, 83, 90
Marx, Leo, 147
Massacre, 247, 248
May, Ernest R., 154
Mazzlish, Bruce, 135, 137, 141–44, 145, 147, 150, 154
McArthur, Megan, 290–91, 293
McCandless, Bruce, II, 280
McCormick, John, 161
McCreton, Niki, 248
McCurdy, Howard E.: Columbia investigation, 152; conspiracy theories, 378; mythology of spaceflight, 118, 209, 365, 401; robots, analysis of, 394; Spaceflight and the Myth of Presidential Leadership, 122–23
McDivitt, James, 300
McDougall, Walter A., 420–21; criticism of space exploration goals, 367, 368–69; . . . the Heavens and the Earth, 119, 175; reflection on Space Age, xii, 389–95, 397; separation of civil and military dimension of space exploration, 41; Space Age as salutation, ix n1; Sputnik launch and reaction to, 55–56; technocracy concept, 56, 369
McEwen, Alfred, 394
McGovern, James, 81
McLeod, Ken, 243
McLuhan, Marshall, 189
McMahon Act, 65. See also Atomic Energy Acts
McNamara, Robert S., 392
McNeill, John R., x, 3–16, 397, 398–99, 401–2, 402n9, 421–22
McNeill, William H., x
Mecano, 244
Media Age, 167–72, 208
Memory: accuracy of, 203–4, 240–41; collective memory, 205–6, 205–6n13; counter-memory, 226–28; cultural memory, 206–10, 236; identity construction through, 204–5; institutionalization of, 206; privatization of, 224, 226–28; reality, meaning, and, xi–xii; recall of, 204, 240; Russian space program, 228–31, 229; Soviet narrative, collapse of, 224–28; Soviet Union space program, 211–14, 235–36
“Men from Mars,” 341, 341n1
Mercury, 338
Mercury 7, 354
Mercury program, 162, 165, 169
Meridiani Planum, 288, 290, 291
Merkulov, Yuri, 259–60
Metropolis, 258
Metschan, Stephen, 116n14
Mezhplanetnaia revolutsia (Interplanetary Revolution), 259–60, 260
Mezhrabpom–Rus, 256, 256n8
Michel, Jean, 85
Mid-Century Modernism, 179–83
Midwestern Research Institute (MRI), 371
Mighty Sparrow, 242–43
Militarization of space, 123, 126–33
Military Industrial Commission, 227
Miller, Walter M., Jr., 64
Milton, John, 3
Milward, Alan, 49–50
Minta Gimnasium, 341n1
Mir space station, 228, 230
Missile and rocket development, 21, 21n8, 30–31, 33; birthplace of, 26; Blue Streak ballistic missile, 44; China, 33, 111; France, 33; Germany, 31–32, 33, 71–86, 118–19; Great Britain, 33; Japan, 33; ROVER program, 69; service branch responsible for, 349–50; Soviet Union, 33; technology for, 21; United States, 33; von Braun, 71–74, 75–78, 83–86, 355
Missile Defense Agency, 130
Missile Technology Control Regime (MTCR), 21
Mississippi Test Facility, 146–47
Mittelbau-Dora labor camp, 19, 31, 71, 73, 80, 81–82, 84, 85–86, 89, 98–99
Mittelwerk weapons plant, 71, 73, 81–82, 81n13, 84, 85, 89, 98–99
“Model schizophrenia,” 219
Modernism, 179–83
Mondale, Walter “Fritz,” 150, 362
Moon: China’s missions to, 115–16; conspiracy theories about landing, 375–84; landing on, support for, 58, 163, 400; photographs of, 277–80, 278, 279, 281, 282, 284–85, 286, 321; return to, 403; space walks on, ix; success of program, 184
Moon, The, 264
Moon Girl Collection, 179
Moon-Doggle, The (Etzioni), 166
Moorthy, R. S., 198
Morse, Ralph, 303
Moscow Institute of Artistic Culture (INKhUK), 259
Mote in God’s Eye (Niven and Pournelle), 347
Motorola, 197–200, 199
Motorola University, 198
Motorola University Press, 198
Moxy Früvous, 247
MTS billboard campaign, 232–33, 233
Multinational corporations, 197–200
Mumford, Lewis, 174, 193
Muncy, James A. M., 125
Murray, Charles, 395
Music: Laika-inspired, 239–40, 242–43, 244, 245, 246–48, 249, 251–52; technology for, 241
“Muttnik, the First Dog in Space,” 248
Mutual assured destruction (MAD) strategy, 127, 129
Muybridge, Edward, 284
My Life as a Dog, 239, 243–44
Myth of the Machine, The (Mumford), 193

N

Nagasaki, 63
Narratives: American exceptionalism, 24, 354, 355–60, 360n17, 384–85; conspiracy theories, 353–54, 373–84; cosmonaut myth, 214–17, 216; master narratives, 350, 384–85; NASA, image creation by, 167–72, 208–10; reality, memory, and meaning, xi–xii; Soviet counter-narratives, 221–23, 226–28; Soviet master narrative, 217–21; Soviet narrative, collapse of, 224–28; Star Trek narrative, 411; U.S. space program narratives, 353–85. See also Culture; Memory
National Advisory Committee for Aeronautics (NACA), 55, 355–56
National Aeronautics and Space Act (1958), 45, 57, 64–69, 355
National Aeronautics and Space Administration (NASA): atomic diplomacy and, ix n1, 57–58, 64–69; budget of, 125–26, 164–66, 356, 362–63, 364, 372, 393; Commercial Space Policy, 133; Commercial Technology Program, 29; criticism of goals of, 63, 360–72; DOD’s relationship with, 64, 65–67; employment numbers, 164, 356; European space program, role in, 40–41, 45–46, 51–53; films produced by, 171; formation of, 55–58, 64–69, 162, 355–56; History Division, x; History Office, 151–52; history use by, 151–52; image creation by, 167–72, 208–10; industrial photographs, 316, 318, 319, 319–20; institutional culture of, 210; intellectual property rights, 68–69; international collaboration policy, 45, 51–53; justification of, 28–29, 48–49, 410; labor force photographs, 309–16, 313, 315, 316, 317; laboratories, 57, 57n8; liaison committees, 66–67; national prestige and, 58, 63; Office of Public Affairs, 171; Office of Strategic Communications Planning, 410; photographers, 304, 307–9, 309n55; reform of, calls for, 133–34; return on R&D investment, 371; space race, entrance into, 162; Spinoff, 28–29; Sustaining University Program, 141; as technocracy, 56–58, 69–70; technology transfer from space program to civilian use (spinoffs), 146, 169, 171, 173; Technology Utilization Program, 28; transition of NASA into, 55
National Aeronautics and Space Council, 66
National Aero–Space Plane (NASP), 124
National Air and Space Museum, 171, 336; Space History Division, x
National Archives, xii
National Commission on Space, 412
National Defense Education Act (NDEA), 55, 162–63
National Planning Association, 141
National Policy on the Commercial Use of Space, 132
National Reconnaissance Office, 393
National Science Foundation, 61, 336
National Security Council (NSC), 60–61, 131
National Space Agency Centre Nationales des Études Spatiales (CNES), 45
National Space Council, 133
National Space Policy (National Security Decision Directive 42), 131–32
Nationalism and national identities: Chinese space program, 17, 27, 109, 117–18, 119–20; Indian space program and, 17, 27; Russian space program, 17, 24–25; space activity contribution to, xii, 406; Space Age and, x–xi, 176–77, 184; space programs and, 17–19, 23–27, 27n25, 33–35; technology and national prowess, 26–27, 58–64; U.S. space program, 17, 24
Nation-State by Construction, A (Zhao), 110, 116–18
NATO Science Committee, 42
Naval Research Laboratory, 356
Navy, U.S., 349–50
Nebo zovët (Sky Calls), 262–63, 262n29
Ne’eman, Yuval, 19
Neher, Franz Ludwig, 78
Neisser, Ulric, 203
Nelson, Amy, 237–52, 422
Neufeld, Michael J., 71–87, 118–19, 422
Neustadt, Richard E., 154
New Economic Policy (NEP), 256, 256n8, 258–59
New Horizons mission, 313n63, 315n63, 316, 317
New natural, 185
New Soviet Man, 215
New York City Department of Bridges/Plant and Structures, 295–96, 297, 304
New York World’s Fair, 180
New Zealand, 4, 5–6, 8
News media photographers, 301, 303–7
Niépce, Joseph Nicéphore, 276
Nigeria, 113
Nimoy, Leonard, 178
Niven, Larry, 347
Noble, David, 56n7
Nora, Pierre, 206
Nordhausen, Germany, 71–72, 72, 72n2, 76, 77, 80, 81–82, 85, 86
North Korea, 19n2
Nuclear and Space Talks (NST), 129
Nuclear programs and weapons: atomic diplomacy, ix n1, 57–58, 64–69; Atomic Peace Ship, 62–63; Atoms-for-Peace program, 62; indigenous technologies, 32; perception of, 63–64; proliferation of, 23n14; ROVER program, 69; U.S. foreign policy and, 61–64

Of a Fire on the Moon (Mailer), 174, 301
Office of Commercial Space Transportation, 133
Office of Defense Mobilization (ODM), 62; Science Advisory Committee (SAC), 58, 58–59n13
Office of Research and Intelligence Reporting, 61
Office of Scientific Research and Development, White House, 410
Office of Special Investigations, U.S. Department of Justice, 85, 86, 89
Office of Strategic Communications Planning, 410
Office of Technology Assessment, 150
Olympics, 120, 170, 217
On the Beach (Shute), 64
O’Neill, Gerard K., 24
Operating Manual for Spaceship Earth (Fuller), 175
Operation Paperclip. See Paperclip, Project
Opportunity, 394
Oral histories, 90–92, 93–94
Ordway, Fred, 84, 85
Orient Express, 124
Orientalism (Said), 111
O’Sullivan, T. H., 283, 284, 285, 307
Oushakine, Serguei, 230–31
Outer Space Treaty, 177, 390, 391
Ouyang Ziyang, 27

P

Pakistan, 113
Pal, George, 350
Panuik, Orhan, 203, 207
Paperclip, Project: hometown for German team and families, 90;
purpose of program, 72, 89; “rocket scientist” term use, 92n6; screening process for, 74; service branch responsible for, 349; space history shaped by, 86; unveiling of, 74
Pathfinders (Fernandez-Armesto), 3
Patrushev, Nikolai, 235
Pearl Harbor, 345n9, 373, 374
Pearson, Drew, 84
Peenemünde rocket center, 71, 73–74, 76, 77, 80–81, 81n13, 82, 84, 85–86
Pelevin, Viktor, 266, 266–67n34
Penley, Constance, 209, 411
Penn, Irving, 310n58
Pentagon, 393
Pentagon of Power, The (Mumford), 174
People’s Commissariat of Foreign Trade, 256
Peru, 113
Pervye na lune (First on the Moon), 265, 266–68, 269
Petrograd workers’ councils, 256
Photographer and the American Landscape, The (Szarkowski), 284
snapshot photography, 297–301, 299; transitions to new programs, 333–36; visual expression, 274; visual reporting, 274
Photojournalism, 296–97, 301, 303–7
Pichel, Irving, 350
Pickering, William, 272, 275
Pidgeon, Walter, 178
Planet of Storms (Planeta bur’), 263, 263–64, 263n30, 268
Pluto mission, 313n63, 315n63
P.M., 74
Pohl, Frederick, 347
Polanyi, Michael, 341n1
Polo, Marco, 4
Polynesia, 4, 5–6, 7
Pond, 246
Ponomareva, Valentina, 220–21
Pool, Ithiel de Sola, 149
Polovich, Pavel, 220
Population explosion, 11
Postmodernity, 189, 201–2
Pouroulle, Jerry, 347
Pousette-Dart, Richard, 183
Powell, Colin, 100–101n32
Powell Survey, 287
President’s Science Advisory Committee (PSAC), 55, 58–59n13, 61
Price, Don, 56–57n7
Private space industry, 33, 116, 116n14, 371–72, 390–91, 411
Project Paperclip. See Paperclip, Project
Protazanov, Iakov, 256–57, 256n9, 257n11, 258–60
Proxmire, William, 164, 362
Pulp Fiction, 244, 245
Putin, Vladimir, 228–30, 229, 234

R

R-7 intercontinental ballistic missile, 211
Rabi, Isidor I., 47, 58–59n13
Rabinovich, Isaak, 257
Racial issues, 177–78. See also African Americans
Rafferty, Kevin, 242
Rafferty, Pierce, 242
Railroad and the Space Program, The (Mazlish), 141–47, 150–51
Railroads and American Economic Growth (Fogel), 145–46
RAND, Project, 349
Rand Corporation, 399
Rapoport, Robert N., 148
Rauschenberg, Robert, 183
Ray, Charles, 95–96, 97–98, 106
Ray Anderson and the Homefolks, 242
Reagan, Ronald: commercialization of space, 124, 130–33, 371; conservative space agenda, 121, 125, 126; National Aero-Space Plane (NASP), 124, 126; National Commission on Space, 412; Space Station Freedom, 126; Star Wars speech, 129; Strategic Defense Initiative (SDI), 124, 126, 129–30
Redstone Arsenal, 90, 92n7
Remembering the Space Age: 50th Anniversary Conference, x–xiii
Representation: challenges of, 187–95; GPS, 195–96; Iridium, 196–200, 199; new order of experience, 185–87
Restricted Data, 67
Revolt in 2100 (Heinlein), 347–49, 348
Rhodes, Richard, 341–43
Richter, Max, 240
Riedel, Paul, 311, 313, 334
Rieger, Bernhard, 26
Right Stuff, The (Wolfe), 184
Right-leaning space agenda, 121–34, 365, 366–72

Q

Qian Xuesen, 19
Quayle, Dan, 133–34
Rights revolution, 122
Robotic space probes, ix, 402n9
Rocket Ship Galileo (Heinlein), 350
Rocket Team, The (Ordway and Sharpe), 85
Rockets. See Missile and rocket development
Rockets (Ley), 73
Rockets, Missiles, and Space Travel (Ley), 73
Rockets and Space Travel (Ley), 73
Rodchenko, Aleksandr, 259
Roddenberry, Gene, 176
Roland, Alex, 358, 368, 391
Roosevelt, Franklin D., 373, 374
Rosenberg, Emily S., xi, 157–84, 208, 209, 409, 422–23
Rosenbloom, Richard S., 142
Rosenzweig, Roy, 381–82
Ross, Jerry, 115
Rousseau, Henri, 324
ROVER program, 69
Rudenko, Sergei, 220
Rudolph, Arthur, 80, 85, 89–90, 89n1
Rumsfeld, Donald, 130, 166
Russia: capitalism and the Space Age, 231–35, 233; expeditionary science, 16; films, 255, 265–70; rocketry development, 349n16; science fiction interests, 265–70; space exploration, conflict as beginning of, 6–7; technological utopianism, 25
“Russian Satellite,” 242
Russian space program: achievements of, ix, xiii; hero images and celebrity status, 228–31, 229; indigenous technologies, 22; ISS visits by Malaysian and South Korean cosmonauts, 27, 27n25; memorialization, 226; nationalism and, 17, 24–25; photographs of, 306, 307–9, 308; public support for, 235
S
Sacks, Oliver, 204
Sagan, Carl, 174, 337, 394
Sahl, Mort, 83
Said, Edward W., 111
Saint-Simon, Claude Henri de Rouvroy, le comte de, 121
Saint-Simonians, 121
Salgado, Sebastian, 332–33
Salsbury, Stephen, 146
Salyut 3 space station, 227–28
Sanders, August, 310n58
Santa Monica Bay, 325, 325
Sarabhai, Vikram, 19
Satellites: advance in, ix; anti-satellite (ASAT) missile events, 112, 112n4, 113, 113n5, 128; China as space benefactor club, 113; Cold War use of, 127–28; Earth-observation satellite system, 113; European space program focus on, 46; GLONASS, 234–35; GPS, 195–96, 233–35, 399; indigenous technologies, 21; launch capabilities of nations, 21, 21n6; military purpose of, 41; national prestige and launch of, 60–61; overflight freedom, 60n18; significance of, 14–15; spy satellites, 14–15, 160; Symphonie telecommunications satellite, 52
Saturday Evening Post, 169
Saturn, 281, 287, 288, 338
Schirra, Walter M. “Wally,” 300, 302, 354
Schmitt, Harrison, 285–86n26
Schneeberger, Jon, 303
Schultze, Charles, 362
Schweigende stern, Der (Silent Star), 262
Science Committee, 171
Science fiction interests: China, 115; Germany, 115, 118–19; Heinlein’s influence on, 347; history-changing events and, 341–44; Russia, 265–70;
Science: The Endless Frontier (Bush), 410
Scientific Research Institute No. 88, 217
Seattle Century 21 Exposition Space Needle, 180
Seattle World’s Fair, 180
Second nature, 186, 202, 232
Second-Order Consequences (Bauer, Rosenbloom, and Sharp), 142, 148
Secret of Huntsville (Heimniss von Huntsville) (Mader), 84, 86
Seitz, Fred, 42
Selesnick, Richard, 327–31
Senior Interagency Group (SIG Space), 131
Sequence (Serra), 336–37
Serra, Richard, 336–37
Sexton, John, 318–20, 332, 333
Sharp, Laure, 142
Sharpe, Mitchell, 85
Shatner, William, 176
Shenzhou V, 111, 118, 119
Shepard, Alan B., Jr., 163, 165, 168, 280, 354
Shipman, Harry, 403
Shute, Nevil, 64
Shuttle Radar Topography Mission, 325, 325
Siberia, 4, 5, 10
Siddiqi, Asif A., 17–35, 206–7, 211, 212, 224, 227, 227n77, 423
Silent Star (Schweigende stern, Der), 262
Sky Calls (Nebo zovët), 262–63, 262n29
Slave labor system, 98–99
Slayton, Donald K. “Deke,” 354
SLV-3 rocket, 21, 21n8
Smith, Adam, 369
Smith, Michael, 96, 98–99
Smithsonian Institution, xii
Snapshot photography, 297–301, 299
Snoop Dogg, 247
Social Indicators (Bauer), 142, 149–50
Solaris, 218
Solnetseva, Iuliia, 257
Soluri, Michael, 271–339, 423
Solution Unsatisfactory (Heinlein), 345
South Korea, 19n2, 27, 27n25
Soviet Exhibition of People’s Economic Achievements, Moscow, 231
Soviet Union space program: achievements of, 18, 34–35; ASAT missile events, 128; collapse of, 224–28; cosmonaut myth, 214–17, 216; counter-narratives, 221–23, 226–28; founding father, 19–20; hero images and celebrity status, 214–17, 216, 224–26, 225; indigenous technologies, 22–23, 22n11, 23n12, 32; manipulation of by Khrushchev, 56n5; memory and mythology of, 211–14, 235–36; missile and rocket development, 33; narrative and image control, 217–21; reasons for success of, 58–59; space race as Cold War battleground, 127–28, 158–67, 368; technology and national prowess, 400
Sovkino, 256, 257, 257n11
Soyuz 1 mission, 211
Soyuz 15 mission, 227–28
Soyuz rockets, 306, 307–9, 308
Space Age: changes on Earth during, 10–14; culture and, 208–10; curiosity and urge to explore inspired by, 393–94; historical analysis by USA Today, 37–39; individual memories and visual representations, 157–58; legitimacy as “Age,” 405; nationalism and national identities and, x–xi, 176–77, 184; as salutation, ix, ix n1; significance of, 14–16; spiritual meaning of, 174
Space and American Imagination (McCurdy), 118
Space as Premonition (Kosmos kak predchuvstvie), 265–66, 267
Space Cadet (Heinlein), 349
Space exploration: activity level of, xii, xiii, 7–8, 364, 400–401; advance in, ix; biological adaptations, 9, 10; challenges and liberation in, 9–10, 359; Cold War and, 6–7, 55–56, 405; conflict as beginning of, 6–7; consequences of, studies of, 152; continuation of, 15–16, 393–95, 401–4; cost of and funding for, 33, 392–93, 402; cultural preoccupation with, 157–58, 399–400; culture and, xi–xii, 118–19, 409–12; as folly, 3; globalization and global identity and, 34–35, 200–202; history of, 86–87; human spaceflight, xiii; mythology of, 18–35, 206–7, 209; pathogenic load, 9–10; political economy of, 144–46; private space industry, 33, 116, 116n14, 371–72, 390–91, 411; public involvement in, 409–12; public support for, 37–38; rationales for, 391–92; risks of, 7, 8; robotic space probes, ix, 402n9; significance of, 14–16; social and cultural evolution, 9
Space Exploration Initiative (SEI), 134, 152, 372
Space Foundation, 392, 393
Space Frontier Foundation, 125
Space Launch Commercialization Act, 133
“Space Man—The Story of My Life” (von Braun), 77
Space Needle, 180
Space programs: founding fathers, 19–20, 30–32; historical basis to support, 25–26; indigenous technologies, 20–23, 21n6, 22n9, 22n11, 23n12, 32–33; justification of, 27–30; nationalism and national identities and, 17–19, 23–27, 27n25; women and, 19n3. See also specific programs
Space Shuttle program: activity level during, 364; commercialization and militarization of space through, 123, 130–33; conservative space agenda and, 125, 134; criticism of, 364, 365; development of, justification for, 49; launch photographs, 305, 307, 309n55; liberal space agenda support for, 123; Orbiter Processing Facilities, 315–16, 316; photographs of, 318, 318–20, 319; Student Involvement Program, 412
Space Station Freedom, 126
Space suits, 346–47
Space telescopes, ix
Space Week, 390
Spaceflight (Kosmicheskii reis), 260–62, 261, 264, 268, 268n35
Spaceflight and the Myth of Presidential Leadership (Launius and McCurdy), 122–23
Spacelab, 46
Spaceship Earth, 175–78, 208, 390, 398
Spain, 49, 50
Special Assistant for Science and Technology, 55, 59
Speer, Albert, 80, 85
Spinoff (NASA), 28–29
Spinoffs, 146, 169, 171, 173, 360
Spirit, 394
Spiritual meaning of Space Age, 174
Sputnik: anniversary celebration, 211, 390–91; importance of, ix, ix n1; launch of, 7n8; launch of, reaction to, 55–56, 58–61, 158, 160–63, 167, 355–56, 410–11; technology and national prowess, 26
Sputnik (musical group), 246
“Sputnik” (photo installation), 249
“Sputnik” (song), 249
Sputnik Foundation, 325–27, 326
Sputnik II, 6, 7, 161, 211
Sputnik Sweetheart (Murakami), 248
“Sputniks and Mutniks,” 242–43
Spy satellites, 14–15, 160
Stalin, Joseph, 214–15, 224, 254
Star Trek, 176–77, 178, 411
Staver, Robert, 74
Steinheimer, Richard, 307
Steinhoff, Ernst, 80
Stennis Space Center, 146–47
Stephenson, Robert Louis, 343
Stevenson, Earl P., 139
Stoy, Rasputin, 245
Strand, Paul, 291, 294
Strategic Air Command (SAC), 162
Strategic Arms Reduction Treaty (START), 130
Strategic Defense Initiative (SDI), 124, 126–30, 345
Strauss, Lewis, 62, 66, 68
Student Involvement Program, 412
Submarine-launched ballistic missile (SLBM), 349–50
Sultan, Tippu, 26
Sun, Laiyun, 113–14
Sun Xuecai, 120
Supreme Council of the National Economy, 256
Surveyor 3 spacecraft, 285, 286
Sustaining University Program (NASA), 141
Symphonic telecommunications satellite, 52
Szarkowski, John, 284
Szilard, Leo, 341–43, 341n1, 362

Tachikawa, Keiji, 30
Talbot, William Fox, 276
Tarkovsky, Andrei, 218
Taub, Bill, 304
Taylor, Frederick Winslow, 56–57n7
Teacher in Space program, 412
Teague, Elwood, 345
Teague, Olin “Tiger,” 165, 170, 171
TeamVision Corp., 116n14
Technetronic Age, 172–79
Technological Capabilities Panel (TCP), 60, 60n18
Technology: economics and, 144–45; impact of space science and technology on American life, 135–36, 138–39, 141, 397–99; influence of ideology on, 121; literary and social movements and technology development, 118–19; national prowess and, 26–27, 58–64, 400; rationales for space technology, 391–92; technological utopianism, 25; transfer from space program to civilian use (spinoffs), 146, 169, 171, 173, 360
Technology Utilization Program (NASA), 28
Technostructure, 56n7
Television, 169, 182
Teller, Edward, 341n1
Tennessee Valley Authority (TVA), 70
Tensions of Europe network and research collaboration, 153
Tereshkova, Valentina, 390
Terkel, Studs, 311–12
Thailand, 113
Thelen, David, 381–82
Things to Come, 345
Thinking in Time (Neustadt and May), 154
Time Machine, The, 350
Tolstoy, Aleksei, 254, 258, 259
Transparency International, 149
Transportation, U.S. Department of (DOT), 132–33
Trickle down economics, 125
Truman, Harry, 349
Tsander, Fridrikh, 211
Tsereteli, Nikolai, 257
Tsiolkovskii, Konstantin, 24–25, 211–14, 213, 234, 253, 261–62, 270, 393
Tsiolkovskii conferences, 211
Turner, Frederick Jackson, 24, 126, 383
2001: A Space Odyssey, 174, 379
Tyson, Neil DeGrasse, 392

U-2 spy plane flights, 160
Uchitel, Aleksei, 265–66, 268
UFO sightings, 168
Ulam, Stanislaus, 69
Uncompromised Integrity, 197–98
United Nations: Committee on the Peaceful Use of Outer Space (COPUOS), 177; Educational, Scientific and Cultural Organization (UNESCO), 47–48; Office for Outer Space Affairs, 390; Space Week, 390
United Space Alliance technician, 315–16, 316

United States: activist government spending, 357–58; American exceptionalism, 24, 354, 355–60, 360n17, 384–85; anti-satellite (ASAT) missile events, 112; conservative movement, 121–22; foreign policy, 51–53; foreign policy and nuclear technology, 61–64; Germans, treatment of in, 101, 105; globalization and, 194–95, 194n23–24; liberal government agenda, 357–58; military advantages, 399; rights revolution, 122; science fiction interests, 63–64, 115, 158–60, 177–78; slave labor system, 98–99; trickle down economics, 125
United States space program: achievements of, 18, 34–35; activity level of, xii, xiii, 7–8, 364, 400–401; anti-German prejudice, 82–83; commercialization and militarization of space, 123; conservative space agenda, 121–34, 365, 366–72; conspiracy theories, 353–54; continuation of, 393–95, 401–4; disasters and operational crises, 146, 184, 203; founding fathers, 19, 30–32; frontier thesis, 118, 123–24, 123–24n9; funding for, 392, 393; hero images and celebrity status, 163–64, 167–70; ideological debate over, 122–23; indigenous technologies, 22, 22n9, 32–33; industrial policy, 48–49; justification of, 28–29, 48–49, 410; liberal space agenda, 123–24, 360–66; management of, 146–47; military dimension of, 41–42, 399, 406; narratives of, 353–85; national prestige and, 58–64; nationalism and, 17, 24; political economy of, 145–46; public involvement in, 409–12; public support for, 118, 363; reform
of, calls for, 133–34; space race as Cold War battleground, 127–28, 158–67, 368; Spacelab collaboration, 46; Sputnik launch and reaction to, 55–56; technology and national prowess, 26–27, 58–64, 400. See also specific programs
University of Alabama, Huntsville, 102–3, 102nn35–36
Urbanization, 11–12
USA Today, 37–39

V

V-2 (Dornberger), 78–81, 79
V-2 rocket, 98–99; capture of, 31; development of, 71–86; Mittelbau-Dora labor camp, 19, 31, 71, 73, 80, 81–82, 84, 85–86, 89, 98–99; Peenemünde rocket center, 71, 73–74, 76, 77, 80–81, 81n13, 82, 84, 85–86
Valier, Max, 119
Van Allen, James, 272, 275, 355, 364
Van Allen Radiation Belts, 355, 362, 364
Vanguard project, 60–61, 355; Vanguard One launch-explosion, 271–72, 273; Vanguard TV-3 rocket, 161
Vaughan, Diane, 152
Venezuela, 113
Virtual factory, 198–200, 199
Visible Hand, The (Chandler and Salsbury), 146
Vision for Space Exploration (VSE), 34, 134, 152, 372
von Braun, Wernher: activity level of space exploration, xiii; anti-German prejudice, 83; as Disney advisory, 75, 159; Explorer One launch, 272, 275; as founding father, 19, 31–32; hero image and celebrity status of, 83–84, 86, 93; I Aim at the Stars, 83; Mars Project, 78; memoirs of, 75–78, 80; Mittelbau-Dora labor camp, 19, 31, 84, 86; Nazi activities of, 74, 76, 83; rocket development, 71–74, 75–78, 83–86, 355; space exploration, support for by, 24, 158; space history written by, 84; “Space Man—The Story of My Life,” 77; spaceflight dreams of, 75–76; Sputnik launch, reaction to, 160; SS membership of, 74, 76, 84–86; surrender to Americans, 76; University of Alabama, Huntsville, 102–3, 102n36; vision of space exploration, 183; “Why I Chose America,” 77
von Karman, Theodor, 341n1
von Neumann, John, 341n1
von Renouard, Ed, 280
Vostok mission, 227
Voyage to the Planet of Prehistoric Women, 263n30
Voyage to the Prehistoric Planet, 263n30
Voyager 1, 280
V-weapons literature, 81

W

Wallace, George, 122
Walpi village, 288, 290
Walt Disney and Disney Corporation, 75, 86, 109, 159, 176, 180, 181
War and Remembrance (Wouk), xi
War of the Worlds, 350
Warfighting, 399
We Never Went to the Moon (Kaysing), 379
Weaver, Bruce, 304
Webb, James E., 138, 141, 165, 361, 368, 400
Weight (Winterson), 248–49
“Weimar Culture and Futuristic Technology” (Neufeld), 118–19
Weinberger, Caspar, 49
Weitekamp, Margaret A., 309–10, 334, 412, 424
Wenchang Satellite Launching Center, 109, 110, 120
West Wing, 363, 366
When the Sleeper Wakes (Wells), 343–44
When Worlds Collide, 350
White, Ed, 280, 300, 327, 330
White, Minor, 320
White Castle, The (Pamuk), 203
White House Office of Scientific Research and Development, 410
Whole Earth Catalog (Brand), 176, 193
“Why I Chose America” (von Braun), 77
Wigner, Eugene, 341n1
Wilford, John Noble, 376, 391
Winterson, Jeanette, 248–49
Wolfe, Tom, 184
Women: in Huntsville, Alabama, 106–7; space programs and, 19n3; Spaceship Earth and, 177–78
Wonder of It All, The, 207
Working (Terkel), 311–12
World Set Free, The (Wells), 342, 344
Wouk, Herman, xi, xii

Y

Yang Liwei, 119, 120
Yao Ming, 120
Young, John, 330, 331, 402n10
Yurchak, Alexei, 231

Z

Zhao, Suisheng, 110, 116–18, 120
Zheng, Yongnian, 110, 111–13
Zhou Enlai, 14, 14n25
Zhuravlev, Vasilii, 260–61, 268
Zubrin, Robert, 24, 364
Zuni woman, 290, 292