Intrinsic DX centers in ternary chalcopyrite semiconductors

“Why metastable intrinsic defects cause open-circuit-voltage limitation and how they can be avoided”

Stephan Lany and Alex Zunger

NREL/PR-590-43272
Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory.
V_{OC} saturation in CIGS

$V_{OC} = E_g - 0.5 \text{ eV}$

Higher V_{OC}:
- Higher η for single-junction
- Needed for TF tandem
- Reason: Recombination due to deep defects \[3\]

Defects levels (I) – Example: Orbital interaction in the H$_2$ molecule

- **Superposition**
 - ρ_1 and ρ_2
 - ψ_1 and ψ_2

- **Anti-bonding**
 - $+ -$

- **Bonding**
 - $+ +$

The diagram illustrates the overlap of orbitals ψ_1 and ψ_2 leading to superposition, anti-bonding, and bonding states.
Defects levels (II): Se-vacancy in CuInSe$_2$
Intrinsic DX centers in CIGS
DX centers: *Electron traps formed due to lattice relaxations*

In II-VI, **DX centers require** extrinsic impurities. In CIGS, **native defects** (In$_{Cu}$, Ga$_{Cu}$) exhibit **DX behavior**.

Evolvement of ionic structure, electron-level, and energy during the transition into the deep DX state
Critical Fermi levels for electron-trapping

$\text{In}_{\text{Cu}} \ (\text{Ga}_{\text{Cu}})$ exists isolated or in complexes, e.g., $(\text{In}_{\text{Cu}}-2\text{V}_{\text{Cu}})$ [1]

Transition

\[
\begin{align*}
\text{In}_{\text{Cu}}^{2+} + 2e & \rightarrow \text{In}_{\text{DX}}^0 & 0.9 \text{ eV} \\
(\text{In}_{\text{Cu}}-\text{V}_{\text{Cu}})^+ + 2e & \rightarrow (\text{In}_{\text{DX}}-\text{V}_{\text{Cu}})^- & 1.1 \text{ eV} \\
(\text{In}_{\text{Cu}}-2\text{V}_{\text{Cu}})^0 + 2e & \rightarrow (\text{In}_{\text{DX}}-\text{V}_{\text{Cu}})^2^- & 1.3 \text{ eV}
\end{align*}
\]

Electron-trapping due to DX centers occurs mainly in wider-gap CuIn$_{1-x}$Ga$_x$Se$_2$ alloys with $x \geq 0.3$

VOC limitation by In$_{Cu}$, Ga$_{Cu}$, V$_{Se}$ and their complexes with V$_{Cu}$

In$_{Cu}$, Ga$_{Cu}$: VOC is limited by the transition that causes atomic reconfiguration.

V$_{Se}$-V$_{Cu}$: The negative (acceptor) configuration exhibits deep trap level. Both types of defects limit VOC below ~1 eV.

How to avoid V_{OC} limiting metastable defects?
Formation energies vs growth conditions

\[\Delta H_{D,q}(\mu, E_F) = [E_{D,q} - E_{\text{host}}] + [\mu_{\text{host}} - \mu_D] + q \cdot E_F \]

CuInSe₂ stability condition
\[\Delta \mu_{\text{Cu}} + \Delta \mu_{\text{In}} + 2\Delta \mu_{\text{Se}} = \Delta H_f(\text{CIS}) \]

Competing phases
e.g., \[3\Delta \mu_{\text{Cu}} + 2\Delta \mu_{\text{Se}} \leq \Delta H_f(\text{Cu₃Se₂}) \]

- Minimize \(\text{In}_{\text{Cu}}, \text{Ga}_{\text{Cu}}, \) \((\text{In}_{\text{Cu}} - 2V_{\text{Cu}}) \)
- Minimize \(V_{\text{Se}}, (V_{\text{Se}} - V_{\text{Cu}}) \)
- Cu-rich / Se-rich growth
Trade-offs for minimizing V_{OC} limiting defects

Minimizing defects: Se-rich / Cu-rich
e.g., phase-equilibrium with Cu$_3$Se$_2$

Type inversion: Se-poor / III-rich (Cu-deficient) [1]

Other causes of V_{OC} limit. : band-offset [2], …?

Conclusions

- Intrinsic donor-type defects In$_{\text{Cu}}$, Ga$_{\text{Cu}}$, and V$_{\text{Se}}$, and their complexes with V$_{\text{Cu}}$ cause metastability, but also act to limit V_{OC}

- Growth conditions which minimize these defects (Cu-rich/Se-rich) are very different from those currently used

- Overcoming V_{OC} limitation requires to address other issues and trade-offs

References

Stephan_Lany@NREL.gov