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1. Introduction 

The U.S. Army Research Laboratory is currently investigating smart munitions technologies as a 
means of improving the lethality and accuracy of future generations of munitions.  One of the 
focuses of the current effort is the development of integrated multidisciplinary design 
technologies such as structural dynamics, computational fluid dynamics (CFD), and guidance, 
navigation, and control (GN&C).  These multidisciplinary design technologies allow complex 
munition systems to be studied and visualized within high-performance computational 
environments to determine the nonlinear interaction of critical engineering parameters using 
high-fidelity physics.  This allows detailed design trades to be performed on system 
subcomponents, resulting in reduced development costs and higher performance munitions. 

As part of this effort, the performance of a smart materials canard actuator has been investigated 
using a multi-disciplinary design approach.  Figure 1 shows a schematic of the design examined 
as part of the current study, although this represents only one of many possible approaches.1  The 
canard itself is a hollow aeroshell structure that pivots about a rotational hinge that is attached to 
the main body and canard aeroshell.  The hinge is strategically located to minimize the hinge 
moments.  In the design shown in figure 1, the hinge has been located near the canard mid-chord 
position close to the expected location of the canard center of pressure for supersonic flight.  To 
provide actuation of the fin, two beams consisting of piezoelectric material have been placed 
inside the aeroshell.  These beams are attached to the munition body and to the outer tip of the 
canard aeroshell.  The internal geometry of the aeroshell provides enough clearance so that when 
the beams are deflected in an opposing manner, the canard rotates about the hinge, providing a 
deflection of the canard.  By incorporating the canard actuator within the canard aeroshell, 
volume intrusion of the GN&C package into the munition payload is minimized. 

The early phases of the actuator design process focused on static (steady-state) performance of 
the canard actuator.  Important design considerations included the development of actuator 
concepts capable of producing the required canard deflection angles while producing enough 
available torque to overcome the externally applied aerodynamic torque.  The computational 
capability discussed here was utilized in this phase of the effort to determine the magnitude and 
variability of the applied aerodynamic hinge moments across the flight envelope as well as to 
minimize their effect by proper location of the hinge itself. 

In the current phase of the investigation, the time-dependent dynamic response of the smart 
material canard actuator has been investigated by applying a coupled CFD/GN&C/structural 
model to the candidate configuration.  The CFD approach allows the instantaneous aerodynamic 

                                                 
1Rabinovitch, O.; Vinson, J. R.  Smart Fins:  Analytical Modeling and Basic Design Concepts.  Mechanics of Advanced 

Materials and Structures 2003, 10 (3), 249–269. 
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Figure 1.  Candidate smart material canard actuator design. 

 
torque acting on the canard surface to be accurately determined due to the combined effects of 
angle of attack, canard deflection, and canard deflection rate.  Using the instantaneous 
aerodynamic torque derived from CFD, the canard motion is subsequently determined from 
solutions of the rigid body equations of motion of the canard structure, the control laws, and the 
structural modeling of the piezoelectric actuator in a fully coupled manner.  A description of the 
computational modeling approach is presented in the following section. 

A generic smart cargo munition has been chosen as a candidate vehicle for the smart material 
canard actuator.  Figure 2 shows a schematic of the smart cargo munition.  The munition has four 
deflecting canards on the nose of the projectile, with four fixed tail fins.  To accurately determine 
the aerodynamic loads on the canard including the interference effect of the body on the canard, 
the aerodynamic flow field for the complete munition body has been simulated.  In the current 
report, results are first presented examining the open-loop performance of the canard actuator 
system in the presence of aerodynamic torque.  The open-loop results demonstrate the need for 
feedback control of the flexible canard actuator system due to the externally applied 
aerodynamic torque.  Closed-loop control with feedback and integral control are then presented.  
The effect of variations in the gain for the integral controller is examined and the results 
demonstrate that acceptable performance of the canard actuator can be obtained by the 
appropriate selection of the integral controller gain. 
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Figure 2.  Generic smart cargo munition. 

2. Computational Approach 

The flow field about the canard-controlled smart munition has been predicted using an overset 
grid approach2, 3 that allows relative motion between bodies in close proximity.  The method 
utilizes a near-body grid system of interconnecting grids that conform to various pieces of the 
bodies surrounded by an outer off-body Cartesian-based grid system.  The interconnecting near-
body grids overlap and intergrid connectivity is established using a Chimera overset gridding 
approach.  This significantly reduces the demands on grid generation, as each body component 
can be gridded independently.  The outer off-body Cartesian grid system encompasses the near-
body grid system and extends to the outer boundary of the computational domain.  The off-body 
grid system typically consists of several levels of grid refinement, with the most refined grids in 
proximity to the near-body grids and increasingly less refined grids further away from the body. 

Figure 3 shows the near-body and a portion of the off-body grid systems used for the 
computation.  The surface grids for the near-body grid system is shown in figure 4.  For the main 
body, four grids were used.  These included a main-body grid, a nose-cap grid, a grid that 
wrapped around the base corner, and a simple Cartesian grid along the base axis to remove the 
base axis singularity.  For each canard, four additional grids were utilized.  The four grids 
included a main canard grid, tip and root-cap grids, and a box grid encompassing the main 
canard grid and the tip and root-cap grids.  A closeup of the canard grids is shown in figure 5.  A 
similar grid structure was used for the fin grids, shown in figure 6, with the exception that the 

                                                 
2Renze, K. J.; Buning, P. G.; Ragagopalan, R. G.  A Comparative Study of Turbulence Models for Overset Grids; AIAA Paper 

No. 92-0437, January 1992. 
3Meakin, R. L.  A New Method for Establishing Inter-grid Communication Among Systems of Overset Grids; AIAA Paper 

No. 91-1586, June 1991. 
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Figure 3.  Near-body and off-body grid system. 

 

 
Figure 4.  Near-body surface grid. 

fin-collar grid was used for the permanently mounted fins in place of the root-cap grid used on 
the canards.  Approximately 10.9-million grid points were used in the complete CFD grid system 
with 1.2-million points used in near-body grid systems encompassing each of the canards. 

Solution of the compressible Reynolds-averaged Navier-Stokes equations is accomplished using 
a three-factor, diagonal-implicit, first-order accurate time-stepping scheme that employs second-
order accurate central differencing in space.  The Baldwin-Barth one-equation turbulence model 
has been utilized.  Characteristics-based inflow/outflow boundary conditions have been applied 
on the boundaries of the domain.  On the body surface, no-slip, adiabatic boundary conditions 
are imposed.
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Figure 5.  Near-body surface grid near canard. 

 

 

 

Figure 6.  Near-body surface grids near tailfins.
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The original code also included a six degree of freedom (6-DOF) rigid-body dynamics (RBD) 
capability for coupled CFD and RBD calculations.  Using an interface provided within the code, 
the original 6-DOF RBD capability was replaced with a generalized 6-DOF RBD and GN&C 
capability.  The GN&C capability employs an element-based approach for constructing complex 
control schemes and includes common fundamental control elements such as summers, 
comparators, gains, and integrators, as well as more advanced components such as proportional 
navigation elements.  For the current application, the GN&C capability allows control schemes 
for the canard actuator to be easily constructed so that the canard deflection can be controlled. 

The results from analysis based on classical plate and lamination theories and constitutive 
modeling of the piezoelectric material have been used to characterize the structural response of 
the smart material actuator.1  For the current framework, the results are used to determine the 
appropriate torsional spring constant of the smart material canard actuator structure.  Consistent 
with the applied theory, the available applied torque from the canard actuator varies linearly with 
the applied voltage. 

The aerodynamics, RBD, control, and structural response are fully coupled in the computational 
method and the contributions of each are evaluated at each time step of the computation.  
Although the implementation allows inner iteration at each time step, this feature was not applied 
in the current computations.  Approximately 15,000 time steps were used in each of the current 
simulations.  The bulk of the computational time was consumed in the evaluation of the 
aerodynamics and addition of the control and RBD added little to the overall computational cost. 

 

3. Results 

The computational capability was applied to examine the time-dependent response of the smart 
material canard actuator.  For the computations presented here, the initial state of the projectile 
was fixed at 0° angle of attack and a flight velocity of Mach 2.  The initial deflection angle of the 
canards was also fixed at 0°.  The initial conditions represent the initial state of the projectile 
prior to a commanded maneuver.  The deflection of the canard is initiated with a commanded 
deflection of 10°.  The focus of the investigation was the response of the canard itself as part of 
an overall maneuver.  However, the time scale of the canard response is necessarily smaller than 
the response time of the munition.  Only the response of the canard itself is examined here, 
although the technique is capable of predicting the resulting response of the complete munition.
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When the smart material canard actuator is deflected on the laboratory benchtop, it is possible to 
obtain a calibration of the necessary voltage to obtain a desired deflection.  With this calibration, 
it is possible to command a particular deflection and the canard will produce the desired 
deflection after a finite response time that is determined by the inertial properties of the canard 
and actuator system.  However, in flight, there is an additional external torque that is applied to 
the canard actuator system from the aerodynamic torque acting on the external surface of the 
aeroshell.  This aerodynamic torque is variable and completely dependent on the flight condition 
of the projectile, i.e., flight velocity, angle of attack, and canard deflection angle. 

The control diagram for the open-loop response is shown in figure 7.  The two primary inputs 
and outputs of the control loop are the commanded deflection of the canard INδ  and the 
instantaneous deflection of the canard  respectively.  The aerodynamic torque 
represents an external disturbance to the system and dependent on the external state of the 
projectile, specifically, the flight Mach number, angle of attack, and roll angle.  The dynamic 
response of the canard is represented by the plant model and is a function of the moment of 
inertia of the canard about the hinge axis, I, the damping produced by the friction in the hinge, V, 
and the elastic response of the smart material actuator represented by the torsional spring 
constant K.  Parameters used for the current computations are shown in table 1. 

(t),δ AEROT  

KVssI
1

2 ++
)t(δINδ

AEROT

+ +
K

KVssI
1

2 ++
)t(δINδ

AEROT

+ +
K

 

Figure 7.  Control diagram for open-loop response. 

Table 1.  Canard actuator physical properties. 

I, Canard moment of inertia about hinge (kg-mm2) 0.5866 
K, Torsional spring constant (N-m/rad) 0.52888 

V, Frictional damping coefficient (N-m-s/rad) 1899.0 
 
Figure 8 shows the predicted open-loop (no feedback) response of the canard using the 
multidisciplinary computational approach for a commanded deflection of 10° from an initial 
canard deflection angle of 0°.  Because of the inertial properties of the canard, the deflection 
takes about 0.5 ms  to reach its steady-state deflection of about 5°.  This is only half of the 
commanded response because of the aerodynamic torque that opposes the applied torque of the 
canard actuator.  For the open-loop system, the steady-state response of the canard is dependent 
on the local flow conditions and a different response will be obtained if the angle of attack or 
Mach number is changed.  Clearly, this will not provide adequate controllability for the canard 
and the munition.
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Figure 8.  Open-loop response of canard. 

 
The desired response of the canard can be obtained through the use of feedback control.  
Feedback control allows additional voltage to be applied to the canard actuator so that the 
commanded deflection is obtained.  Figure 9 shows the feedback control loop used for 
controlling the canard in the current study.  The feedback control loop contains several blocks 
that characterize the response of the canard.  Again, the two primary inputs and outputs of the 
control loop are the commanded deflection of the canard INδ  and the instantaneous deflection of 
the canard )t(δ , respectively.  The feedback of the time-dependent canard deflection )t(δ  
occurs on the lower leg of the control loop.  Although not specifically modeled in the current 
simulation, smart materials themselves could be utilized as a sensor for feedback of the 
instantaneous canard deflection as part of the current actuator design.  A comparator extracts the 
difference between the commanded deflection and the instantaneous canard deflection and sends 
the output through an integral control element.  The integral control element contains a gain 
that controls the amplitude of the output of the integral control element.  This gain must be 
properly specified to obtain acceptable control.  The output from the integral control element is 
summed with the external aerodynamic torque that is subsequently input to the final control 
element which characterizes the dynamic behavior of the canard.  This dynamic behavior 
includes the inertial, mechanical damping, and elastic properties of the smart material actuator.  
It should be noted that the external aerodynamic torque is the instantaneous torque and includes 

CI  
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Figure 9.  Control diagram for closed-loop response. 

contributions from both the static and dynamic aerodynamic moments.  The aerodynamic torque 
also serves as an input to the control loop; however, the torque represents an external disturbance 
to the system that acts independently to the operation of the system. 

A series of computational results of the response of the smart material canard actuator with 
closed-loop feedback was obtained for different levels of integral controller gain .  Figure 10 
shows the predicted response of the canard with the feedback control and an optimal value of the 
integral controller gain.  The commanded canard deflection is obtained to within half a degree 
after about 0.5 ms with the steady-state response obtained at about 1.0 ms.  There is little under- 
or over-shoot in the predicted response.  Even with the integral control, there is still some time 
lag in the response because of the inertial properties of the fins.  Using the feedback control law 
with an appropriately selected gain, the smart material actuator should provide adequate control 
for the munition. 

CI

 

Figure 10.  Closed-loop response, IC = 10,000/s.
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Figure 11 shows the response of the canard with the gain for the integral controller set too low.  
Here, the canard eventually obtains the commanded canard deflection, but the response is slower 
than desired, and the canard may not be able to provide the munition with adequate control.  
However, if the gain for the integral controller is too high, the system becomes overdriven.  As 
shown in figure 12, the response is oscillatory, and, if the gain is high enough, the response is 
divergent.  The results shown here clearly demonstrate that the gain for the integral controller 
plays an important role in the response of the canard. 

 

 

Figure 11.  Closed-loop response with low gain, IC = 2500/s. 

 
An important design consideration for the smart material canard actuator is the applied torque 
that must be produced by the actuator so that the commanded deflection can be obtained.  The 
applied torque produced by the smart material canard actuator can be determined using the 
predicted results.  The applied torque for the open-loop response is simply the product of the 
torsional spring constant and the commanded deflection as shown in equation 1. 

 INapplied KT δ= . (1) 

For the steady-state response of the smart material canard actuator in the absence of an applied 
aerodynamic torque, the applied torque counteracts the torsional stiffness of the actuator beams 
to produce the commanded deflection.  However, in the presence of aerodynamic loads, the 
applied torque has to overcome both the aerodynamic torque and the torsional stiffness of the 
actuator beams.  Thus, the actual steady-state deflection is typically less than the commanded 
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Figure 12.  Closed-loop response with high gain, IC = 65,000/s. 

 
deflection.  For the closed-loop response, the applied torque is adjusted through the use of the 
integral controller in order produce the commanded deflection.  The time-dependent response of 
the applied torque can be computed using equation 2. 

 . (2) ∫ −=
t

0
INCapplied dt))t((KIT δδ

Figure 13 shows the applied torque as a function of time for the case where the gain is 10,000 
(1/s).  Also shown is the applied torque for the open-loop case.  The integral controller increases 
the applied torque as a function of time until the commanded deflection is attained.  There is very 
little overshoot in the applied torque which implies that the use of the integral controller does not 
significantly increase the maximum applied torque requirements for the smart material actuator 
compared with torque required to attain the steady-state commanded deflection.  The applied 
torque for the closed-loop case is increased (in this case nearly doubled) compared with the 
open-loop applied torque due to the additional torque requirement from the aerodynamic torque.  
In the absence of any aerodynamic torque, the open-loop applied torque is sufficient to produce 
the commanded deflection. 

A significant benefit of the coupled approach is that the instantaneous aerodynamic torque is 
utilized to determine the response of the smart material canard actuator.  The predicted 
aerodynamic torque includes all the relevant instantaneous effects, including canard deflection 
angle, deflection rate, and angle of attack of the munition subject to the full three-dimensional 
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Figure 13.  Applied torque for optimal gain. 

 
interference effects of the body.  There is no assumed form for the aerodynamic torque as the 
computational approach produces a single integrated value for the aerodynamic torque which 
represents all of the combined effects.  The downside of the coupled approach is that parametric 
studies can be computationally intensive because the aerodynamic computation (the largest 
computational expense) needs to be performed for each case.  Some of the computational 
expense of these parametric studies can be reduced by modeling the relevant aerodynamic effects 
using the computational results as a guide.  This requires that the aerodynamic torque be 
modeled using an assumed functional form and the parameters defining this functional form be 
evaluated using the CFD predictions.  Such analysis was performed as part of this study. 

For the case of 0° angle of attack, the following linear aerodynamic model for the aerodynamic 
hinge moment can be proposed: 

 ref
2
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This model accounts for the aerodynamic moments due to both the canard deflection angle δ  
and the canard deflection angular rate .  The rate is nondimensionalized by the flight velocity 
V and the characteristic length , which is chosen here as the projectile body diameter.  
Additional aerodynamic moment contributions may be present if the projectile is at angle of 
attack; however, these are not included for the current analysis. 

δ

The equation of motion for the open-loop response can be written as shown in equation 4.
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Using this model for the aerodynamic moment, the equation of motion for the open-loop 
response can be written as shown in equation 5. 
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Equation 5 is a second-order ordinary differential equation with constant coefficients.  The 
solution is shown in equation 6. 
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The analytical solution of the governing equation 6 can be used to determine both of the 
aerodynamic moments by fitting the computed open-loop response (shown previously in figure 8) 
using a nonlinear least-squares approach to determine the parameters a  and b .  Using the fitted 
response, the aerodynamic moment coefficients  and 

δ
can be extracted using equations 

7 and 8.  Figure 14 shows both the computed open-loop response and the fitted result using 
equation 6.  The fitted result is a good representation of the computed response.  From the fit of 
the open-loop response, it was determined that  and 

δ
.  The 

value of  determined from the fitting was very close to the predicted  from static 
computations of the canard deflection at 5° canard deflection angle.  Additionally, these static 
predictions showed a generally linear trend with canard deflection angle although some slight 
nonlinearity was observed for canard deflection angles approaching 10°.  Nonetheless, the static 
torque using from the fitted open-loop response was within 15% of the predicted static 
torque over the range of canard deflection angles between –15 and +15°.   The closed-loop 
response can also be fit in a similar manner to determine the aerodynamic coefficients but the 
fitting procedure is more complicated because of the complex form of the analytical solution for 
the closed-loop solution which is the basis of the fitting procedure.

δmC

Cm =δ
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mCδmC

C δm
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Figure 14.  Comparison of computed motion and fit of 
computed motion. 

 
Using these estimates for the aerodynamic coefficients, analytical solutions for the closed-loop 
response were obtained and compared with the response obtained from the coupled 
computational procedure.  Figure 15 shows a comparison of the actuator response from the 
coupled computation and the results of the closed-form solution obtained using the aerodynamic 
coefficients determined from the open-loop response.  The results show good agreement.  
However, when the solutions for higher gain (IC = 35,000/s) are compared, as shown in figure 16, 
some variation between the two sets of results is noted.  In particular, the frequency of the 
response for the modeled aerodynamics is higher, and the damping rate is lower.  The results 
demonstrate that the approximate model is not universally valid, particularly for the off-design 
conditions.  Thus, the full multidisciplinary design capability is needed to accurately assess the 
response of the smart material canard actuator across a more complete range of conditions. 

The analytical solution can also be used to determine the relative importance of the aerodynamic 
damping.  Figure 17 shows a comparison of the open-loop response predicted using the coupled 
simulation and the analytical solution without the aerodynamic damping included.  Without 
aerodynamic damping, the response is oscillatory.   The oscillatory motion is damped due the 
small amount of frictional/structural damping.  Without aerodynamic damping, additional 
frictional/structural damping would likely be needed to improve the open loop performance.  The 
aerodynamic damping plays a similar role in the closed-loop performance.  Figure 18 shows a 
comparison of the closed-loop response predicted using the coupled simulation and the analytical 
solution of the closed-loop performance with no aerodynamic damping.  In this case, the 
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Figure 15.  Comparison of closed-loop actuator response from 
coupled simulation and analytical solution using 
modeled aerodynamic torque, IC = 65,000/s. 

 

 

Figure 16.  Comparison of closed-loop actuator response from 
coupled simulation and analytical solution using 
modeled aerodynamic torque, IC = 35,000/s.
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Figure 17.  Comparison of open-loop actuator response from 
coupled simulation and analytical solution with no 
aerodynamic damping. 

 

 

Figure 18.  Comparison of closed-loop actuator response from 
coupled simulation and analytical solution with no 
aerodynamic damping, IC = 10,000/s.
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response with no aerodynamic damping is unstable.  Thus, for the range of parameters examined 
here, the aerodynamic damping must be considered when the actuator performance is modeled, 
and, in particular, when the integral controller gain is selected.  The results also imply that the 
integral controller gain is sensitive to the rate-dependent aerodynamics because the rate-
dependent aerodynamics provide additional damping for the system.   

 

4. Conclusion 

Using a multidisciplinary approach, the time-dependent response of a smart material actuator 
concept has been evaluated.  The results show that a closed-loop feedback control law is required 
to produce the desired deflection because of the interaction of the externally applied 
aerodynamic loads with the flexible structure that is inherently part of the smart material actuator 
design.  The multidisciplinary approach provides a means of properly designing and tuning the 
control law to provide optimal control of the canard actuator system.  This demonstrates the 
utility of the approach as a sophisticated but cost-effective means of evaluating control strategies 
for future munition systems. 
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List of Symbols, Abbreviations, and Acronyms 

δmC   Variation of nondimensional aerodynamic torque with canard deflection angle 

δmC   Variation of nondimensional aerodynamic torque with canard deflection angular  
rate 

I   Moment of inertia of canard about hinge axis 

CI   Gain for integral controller 

K   Torsional spring constant 

δmK   Variation of dimensional aerodynamic torque with canard deflection angle 

δmK   Variation of dimensional aerodynamic torque with canard deflection angle 

  Reference length based on munition diameter 

refS   Reference area for aerodynamic coefficients based on munition cross-sectional 
area 

t   Time 

AEROT   Aerodynamic torque 

appliedT  Applied torque 

V   Structural damping coefficient 

∞V   Freestream air velocity 

 

Greek Symbols 

INδ   Commanded canard deflection angle 

)t(δ   Instantaneous canard deflection angle 

δ   Angular velocity of canard deflection 

δ   Angular acceleration of canard deflection 

ρ   Freestream air density 
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