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Abstract

A general form of the momentum equation is presented. Because the solution is presented
as an integral along a flow line, it is here referred to as an “extended” Bernoulli equation. The
equation, as presented, is valid for unsteady, compressible, rotational, elasto-viscoplastic flows
measured relative to a noninertial (translationally and/or rotationally accelerating) coordinate
system, whose motion is known. Though all of these concepts have long been separately
addressed in the educational literature of fluid and solid mechanics and dynamics, they are
usually not available from a single source, as the literature prefers to reduce the problem to
special-case solutions for instructional purposes. Two examples that make use of the extended
Bernoulli equation in noninertial reference frames are solved. The consequences of failing to
properly account for noninertial effects are discussed.
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1. Introduction

The Bernoulli equation is perhaps the most famous and widely used equation in fluid

mechanics, relating the pressure, p, in a flow to the local velocity, V, and gravity potential. It

was derived by considering a balance of momentum along a streamline, for the special case of

steady, incompressible, inviscid  flow in an inertial reference frame, with gravity as the only

significant body force. The Bernoulli equation may also be derived from considerations of

energy conservation, since, for inviscid  flows, there is no energy loss. The Bernoulli equation

is given as

v2 + p + pghpT = constant , (1)

where p is the flow density, g is the acceleration due to gravity, and h is the vertical height of

the flow relative to some reference location. Furthermore, if the flow is irrotational, the constant

of eqn (1) will be the same for all streamlines throughout the flow. The real world is rarely so

kind as to satisfy all the restrictive conditions under which eqn (1) was derived. Yet, because

the influence of these nonideal  (compressible, viscous, rotational, accelerational) terms is often

small, the engineering world makes great use of eqn (l), often modifying it in an ad hoc manner

when nonideal  effects rear their ugly head.

We endeavor here to pull together various equations and constructs from the literature into

a single framework, to present an unsteady, compressible, rotational, elasto-viscoplastic,

noninertially referenced momentum equation with no presuppositions. The importance of each

term can then be examined at the time of application to ascertain when discarding or

approximating it is appropriate. Because our primary interest in the subject lies in the area of

noninertial coordinate systems, examples of this variety, which make use of what might be called

an extended Bernoulli equation, are presented.

All of the concepts relating to the momentum equation that are discussed in this report

are readily available in one form or another throughout the educational literature of fluid

mechanics, solid mechanics, and dynamics. They are, however, not always found in a single
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location. Furthermore, in an effort to teach textbook examples and solve textbook problems, the

educational literature quickly reduces the governing equation to certain well-known academic

cases, often failing to give full coverage to the general case involving viscous (or rotational),

compressible, accelerating, nonsteady flows in noninertial coordinate systems.

For example, Shames [l] generally does an excellent job of covering most aspects of the

momentum equation and noninertial reference frames, though it is done in terms of finite-sized

control volumes and not streamline-sized “flow tubes.” Potter and Foss [2] cover all the relevant

equations regarding the forces and accelerations upon a material point in a flow, but fail to tie

the equations together into a generalized unsteady Bernoulli equation. Kelley [3] derives an

extended Bernoulli equation, but only for the case of nonviscous flows in inertial coordinate

systems. Currie [4] also derives a restrictive form of the extended Bernoulli equation, valid only

for irrotational flow in an inertial reference frame. The very thorough Schlichting [SJ, because

of its emphasis on boundary layers, does not even address the issue of noninertial coordinate

systems. Greenspan [6] examines the momentum equation in a noninertial frame, but only for

the special case of purely rotating frames, as might be found in the case of rotating fluid

problems. In addition to addressing the steady-state Bernoulli equation for streamlines, Lamb [7],

like Shames [l], also covers aspects of noninertial frames, but on an integrated volume basis.

Thus, this report is intended merely to serve as a handy repository of several important

well-established concepts that might otherwise need to be tracked down in a multiplicity of texts

and chapters.

2. The Momentum Equation and Special Cases
The momentum equation on a continuum element of material, which can be found in

many texts (e.g., Potter and Foss [2]), is given as

DV= .siij - vp

Dt
+ VQ, ,

P

where DID? denotes the material derivative (discussed in following section); V is the vector

velocity of the material element, as measured in an inertial reference frame; p is the element
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pressure; p is the element density; Q, is the body force potential; V is the vector gradient

operator; sij is the deviatoric-stress tensor arising from any type of elasto-viscoplastic constitutive

behavior; and sij,  j is index notation for &@xj,  denoting the following vector condensation of the

deviatoric-stress tensor:

as, + asv aszz
sijj=(_ - -

ax dy + az

Eqn (2) is a general

special cases derive.

For example, when deviatoric stresses, sij, are zero, as in the case of an inviscid  fluid, the

form of the momentum equation from which many commonly employed

momentum equation, eqn (2), becomes the well-known Euler’s equation,

p = - VP + VQ,
Dt T- -

(4)

For a body in equilibrium, where the material accleration,  DVIDt, is everywhere zero, but where

deviatoric stresses, sG , may arise from elastic strains in the body, eqn (2) reduces to the

equilibrium equation of solid mechanics,

oG,j + p v<D = 0 , (5)

where crV,  j is the absolute-stress tensor condensation resulting from the combination of the

pressure gradient and deviatoric-stress condensation. On the other hand, if the flow is

accelerational, but the deviator+ stresses in eqn (2) arise solely from Newtonian viscosity, p, in

which shear stress is proportional to the associated velocity gradients (and assuming the validity

of Stokes’ hypothesis), then the deviatoric-stress condensation can be expressed in terms of

velocity gradients (e.g., Schlichting [5]) to give the famous Navier-Stokes equation,

DV
P-

Dt
= pV@ -vp + pvw + $V(V*V)  . (6

.

For incompressible viscous flow, the last term of eqn (6) will vanish, since, for incompressible

flow, the divergence of velocity is identically zero. This incompressible form of eqn (6) is known
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as the incompressible Navier-Stokes equation. Eqns (4)-(6)  each represent a useful special-case

solution of the general momentum equation, eqn (2).

3. Lagrangian vs. Eulerian  Acceleration
Focusing on the left side of eqn (2),  the material (also known as total or substantive)

acceleration, DVIDt,  denotes the acceleration experienced by “any one” particle of material as

it traverses the flow field. In essence, it is the acceleration that would be measured by an

infinitesimal accelerometer immersed in and traveling with the surrounding flow. The

acceleration, DVIDt,  is associated with a Lagrangian description of the flow field, in which

V = V(x,y,z,t).  In the Lagrangian description, x, y, and z are variables that, when taken as spatial

coordinates (x,y,z),  define a particular material particle present at that coordinate at some given

reference time, to. Once a material particle is defined (i.e., once the variables x, ,y, z are fixed

to particular values), the behavior of that particle becomes a function of time only and derivatives

with respect to time (e.g., acceleration) describe the time rate of change as perceived by the

material particle in question. The DIDt  operator denotes these Lagrangian temporal derivatives,

for the special case where the particular material point (x,y,z)  is defined when the reference time,

to, is set to the current time, t, such that DVIDt  = d/dt(v[x(t),y(t),z(t),t]).

Often, however, it is (mathematically or experimentally) more convenient to measure flow

properties (like acceleration) at fixed locations in space, rather than moving with a material

particle. This framework is associated with the Eulerian  description of the flow field, in which

V = V(x,y,z,t). Unlike the Lagrangian description, however, in which the coordinates (x,y,z)  define

a material particle at some reference time, to, the Eulerian  variables X, y, and z define points that

are forever fixed in coordinate space, even as material flows through that space. The measure

of flow acceleration in this description, referred to as the local  acceleration, is performed at a

fixed point in space and denoted aV/at  since spatial coordinates X, y, and z are held constant

when computing the time rate of change. Lumley [8] provides an excellent comparison of these

two frameworks. All undergraduate fluid mechanics texts derive the equations interrelating these

two frameworks, which are simply presented here as
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(7)

In addition to the local acceleration, it is seen that the material acceleration is composed of terms

known as acceleration of transport, or convective acceleration, given by the last term of eqn (7).

This equation reveals how conditions in a flow field at all points fixed in space can be steady

<iWilt  = 0), while, at the same time, any material element of that flow experiences all manner of

accelerations as it traverses the field (DV/Dt# 0).

Furthermore, a number of texts (e.g., Potter and Foss [2]) also present a form of eqn (7)

that has been manipulated via vector mechanics, to yield

+ (VxV)xV . (8)

This form is especially interesting because it separates the V 2 inertial-force term from the

vorticity-induced term involving cross products. For flows that are irrotational, all terms

involving vorticity, V x V, will vanish. Furthermore, the inertial-force term is the genesis of the

V2 dependence of the Bernoulli equation, eqn (1).

4. Noninertial Reference Frames
In the momentum equation, eqn (2), the material acceleration must be measured with

respect to an inertial reference frame. However, both experimentally and analytically (e.g., as

in the case of potential flow), it is often more convenient to measure coordinates with respect to

a body of interest within the flow field. If the body moves with constant velocity, then such

body coordinates serve also as an inertial reference system. If, however, the forces of the flow

upon the body serve to accelerate the body, the body coordinates are no longer inertial and

eqn (2) is no longer valid as measured in the body coordinate frame.

.
Any undergraduate dynamics text (e.g., Beer and Johnson [9]) and many fluid mechanics

texts (e.g., Shames [l] and Potter and Foss [2]) derive or present the equation for acceleration of

a particle, when the kinematics of particle motion are measured with respect to a noninertial
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reference frame xyz.  Using the notation of Figure 1, in which the noninertial frame xyz moves

with respect to an inertial reference frame XYZ by way of translation vector S(t) and rotation

vector Q(t), while the kinematics of the particle motion in question are measured with respect

to xyz by the displacement vector R(t), one obtains
.

d2SA=a+-
dt2

+ 2QxVvZ  + Qx(L2xR) + $xR , (9)

where A is the total acceleration with respect to XYZ,  Vxiz = dRldt  is the velocity measured in the

noninertial xyz frame; and a = DVxy, /Dt is the material acceleration, as measured in xyz.

Since eqn (2), the momentum equation, can only be valid when applied in an inertial

frame, eqn (9) provides the means to apply eqn (2) with respect to the inertial XYZ, even when

the flow kinematics (e.g., R and V) are measured with respect to a translating and rotating xyz,

which are perhaps attached to a body of interest. Realizing that the inertial acceleration, A, in

eqn (9) corresponds to the material acceleration, DVIDt, presented on the left side of the inertially

constrained eqn (2), we have by substitution

DV + d2SA = -  -
0: dt2

+ 252xVxyI  + Qx(QxR)  + $xR =
sijj - vp

* + V@ . (10)
P

Substitution of eqn (8) for the noninertial xyz material acceleration, DV,,/Dt,  and some simple

rearrangement gives the following result:

avaYz + d2S

at-z
+ (VXV,~)XV~~  + 2QxVqZ  + SZx(QxR)  + $xR

= V@+
sij.j - vp vviz

P
-2. (11)

Eqn (11) is valid at all points in a compressible, elasto-viscoplastic, rotational, nonsteady flow

subject to conservative body forces, as measured in a reference frame undergoing time-dependent

translational and rotational motions.
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a

Figure 1. Depiction of the noninertial reference frame xyz translating (S) and rotating ($2)
with respect to inertial frame XYZ. Flow kinematic variables R, Vxyz, and a are
measured with respect to the noninertial xyz frame.
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The first two terms of eqn (11) represent the inertial XYZ rigid-body translational

acceleration of the material point in question. The third term, involving vorticity, V x V,

represents acceleration resulting from flow vorticity, as measured in xyz.  The remaining terms

on the left-hand side represent Coriolis, centripetal, and rotational accelerations arising strictly

from the time-dependent rotational motion of the noninertial reference frame xyz.  On the

right side of eqn (1 l), the traditional Bernoulli force terms (body, pressure, and inertial) as well

those involving deviatoric-stress gradients are found.

5. Extended Bernoulli Equation
While the term “Bernoulli equation” describes only the relation given in eqn (l), it is

popular to use the term “Bernoulli” to describe the momentum equation when integrated along

a contour in a flow field, even if the restrictive conditions (steady, incompressible, inviscid  flow

in an inertial reference frame, with gravity as the only significant body

for eqn (1) have been relaxed. In this spirit, eqn (11) may be integrated

contour fixed in noninertial xyz space (thus translating and rotating with

force) that are in force

along an arbitrary flow

S and 52 in XYZ space)

and the result referred to as an extended Bernoulli equation. The contour integration yields

4

+ 2QxVW+ Qx(kR) + dS2_xR *CR = (a - I&/2)1; +
1

4
dt I

where the vector increment G% is made to follow the path of the contour throughout the

integration. This result is valid for nonsteady, compressible, rotational, elasto-viscoplastic flows

in a noninertial reference frame. Note that a minor vector manipulation has been performed upon

the vorticity integral term. Furthermore, the gradient integrals of inertial and body forces on the

right-hand side of eqn (12) were reduced to a difference in the values of V2/2 and Q, between the

two endpoints of the contour. The pressure gradient integral may also be a function of the

contour endpoint values, (p/p), but only if the flow is incompressible; otherwise, the term must

be integrated along the contour. Unfortunately, the deviatoric-stress integral must, in general, be
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explicitly performed, as it does not represent a gradient potential. The contour of integration in

eqn (12) may be any arbitrary three-dimensional contour. However, the resulting equation,

because of the vector mathematics, will be scalar.

Different types of problems will employ different terms of this equation. For example,

problems of fluids involving turbomachinery will allow the first integral to be discarded if the

problem, when viewed in a rotating coordinate system can be made to appear steady. For

irrotational flows, such as are found in many applications of potential flow theory, the second

integral may be discarded. Even when the flow is rotational, if the integration contour is, at a

particular instant in time, also a streamline (i.e., everywhere parallel to the velocity vector), the

second integral also disappears, as V x dR will be zero at all places along a streamline. For the

problem of linearly accelerating bodies within a flow field, the noninertial body-coordinate

system xyz  need not rotate and the third integral may therefore be discarded for problems of this

type. Typical conditions that could justify elimination of terms on the right-hand side of the

equation would involve negligible body forces andor shear stresses (inviscid, nonelastic).

Several examples involving the use of eqn (12) are now investigated. Because our

primary interest in the subject lies in the area of noninertial coordinate systems, we will focus

on problems of this type.

6. Nonsteady Potential Flow Around a Sphere
The use of flow potentials to solve a variety of steady flow problems is a well-established

procedure in fluid mechanics textbooks. Mention is usually made of nonsteady potential flow

by showing an equation involving a time-derivative of the potential, but nonsteady potential-flow

problems are not typically solved or explained in textbooks. One reason becomes quickly

apparent, when it is considered that most potential flow fields extend infinitely in at least one

direction. In particular, any time-dependent variation of a potential flow field will often involve

time-dependent variations at infinity. Time-dependent velocities involve accelerations, and

accelerations require forces. And though steady flow around a fixed body is inertially equivalent
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to that body’s uniform motion through a quiescent medium, it is most definitely not true that

the force required to accelerate a body through a medium at rest (e.g., the universe) is identical

to the force required to accelerate the universe around the at-rest body.

Fortunately, eqn (12) allows one to overcome this difficulty. An unsteady potential flow

problem, in which the universe is allowed to accelerate about a fixed-in-space potential-flow

body, can be solved, as long as it is realized that the potential-flow body is fixed in noninertial

xyz space-a coordinate system that is, in effect, accelerating equal and opposite to the

acceleration of the potential-flow far-field. In this way, the net far-field acceleration is zero and

the unsteady motion of a body through an inertial flow field is truly modeled. This argument

is valid for both linear and rotational far-field accelerations.

The potential-flow solution for invisicid, nonrotational, incompressible, uniform flow

about a rigid sphere is published in many textbooks (e.g., Potter and Foss [2], Shames [ 11).  The

flow field, in polar (r&J) coordinates, is given by

Vr = Ucose (1 -$r3)  , a n d

ve = -Usin (1 + r,3/r3) , (13)

where U represents the uniform free-flow velocity about a sphere of radius r,, fixed at the origin

of the coordinate system (with the flow traveling from the -x toward the +x direction). To make

this flow unsteady, allow the free-flow velocity to be a function of time, U(t). Recall, to avoid

the complication of trying to force the universe to accelerate around the sphere, that the potential-

flow coordinate axes, xyz,  attached to the sphere, are in fact simultaneously traveling toward the

-x direction with a nonsteady velocity of magnitude U(f).

Realize that this problem does not involve vorticity, employs a noninertial reference frame

that does not rotate, has negligible body forces, has no shear stresses (inviscid), and is

incompressible. The extended Bernoulli equation for this problem then becomes
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Rz ‘av
R --g + !z).dR = -(!$+!I)~ ,J 4

(14)

where R, and R, are the endpoints of the integration contour. If the integration contour is chosen

to be the (straight line) stagnation contour traversing from (-m,O,O)  to (-r, ,O,O), the only velocity

component of relevance to the integral is the x component, so that

V&t) = -ur le=n = U(t) (1 + $3) (for xc-i-O,y=z=O)  .

The terms from the right-hand side of eqn (14) may thus be evaluated as follows:

(15)

dx

TO finish the solution, aV,lat needs to be evaluated from eqn (15) and substituted into

P= - sm! + (v’ + P,
)p 27’

(16)

eqn (16). Time-dependent potential flows (and others) often have the virtue of being separable

in space and time, as in V,.(x,t)  = U(t) -g(x). If the one-dimensional (1 -D) contour length is

infinite in extent, the spatial integral of the time derivative, in this separable case, may be

expressed as

-‘a avI
-‘o v

_At+J,dX.
__ at -00

Alternately, if the 1-D contour were of finite  length, eqn (17) could be expressed as

b

b avs“dX=
n at

(17)

(18)

The right side of eqn (18) is composed of the free-stream acceleration multiplied by the contour

length as well as a quotient factor. The quotient factor is the average velocity along the contour

divided by the free-stream velocity, and, in the case of a stagnation contour, it will generally fall

in the range from zero to unity, depending on the details of the flow.
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In the present case, eqn (17) is utilized for the evaluation of eqn (16). It is noted that

there is a canceling of the dU/dr term, which is necessary to avoid computing the force necessary

to accelerate the universe. For the considered flow integrated along the specified contour,

eqn (16) may be evaluated as

P NJ2 + Pro dU
stag -pm =2 - -  ’2 dr

(19)

Thus, if the time-dependent velocity of the sphere is known, the stagnation pressure may be

evaluated with eqn (19). That pressure varies from what would be predicted by the Bernoulli

equation, eqn (l), by a term involving the acceleration rate of the sphere. If the acceleration of

the sphere is positive, the stagnation pressure is seen to be higher than the Bernoulli pressure,

while, if the sphere is decelerating, the stagnation pressure is less.

7. Nonsteady Solid Eroding-Rod Penetration
The problem of eroding-rod penetration has been examined by a number of researchers

in recent years. The seminal works on subject were done independently by Alekseevskii [lo] and

Tate [l l] more than 30 years ago. Tate, in subsequent work [ 12-131,  examines the flow field

associated with long-rod penetration in more detail. In the course of the work [ 121, the effect and

magnitude of the noninertial influence are calculated for his idealized flow potential. Tate

concludes that, when the long-rod penetration process can be considered as quasi-steady, the

noninertial effects may be neglected. Since then, a thorough and insightful analysis of the

relevant balance equations was performed by Wright and Frank [ 141.  Their analysis computes

surface and volume integrals over the relevant region in the vicinity of the rod/target interaction

zone and was able to show that the target resistance term of Alekseevskii [lo] and Tate [l l]

encompasses more than just a simple measure of target strength.

A more recent treatise on the subject, which instead relies upon a force/momentum

balance along the centerline contour only, is that of Walker and Anderson [ 151. Upon assuming

certain reasonable velocity fields in the tip of the rod and in the target crater, they proceed to

solve the momentum equation in glorious detail, directly in the inertial XYZ laboratory frame of
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reference, to include noninertial effects. The analysis presented here is not intended to supplant

the esteemed work of Walker and Anderson. Rather, it is intended to show that the concepts

derived herein may be very simply applied to the same problem to a similar end. Furthermore,

the manner in which an accelerating coordinate system, attached to the rod/target interface,

affects the overall result should be apparent in a more direct way.

In the eroding-rod problem (see Figure 2), a solid rod, of density pR,  instantaneous length

L, and velocity V, penetrates into a semi-infinite block of density pT. The rod is assumed to

support a uniaxial-stress state in the longitudinal direction of the rod. The eroding interface is

traveling into the target at velocity U. Furthermore, employing the assumed velocity profiles

suggested by Walker and Anderson, there is a small plastically deforming region located at the

eroding tip of the rod, of length S, where the velocity linearly transitions from the rigid-body rod

velocity of V to the interface velocity of U. On the target side of the interface, the crater

geometry (Figure 3) is locally considered a hemisphere of radius R in polar (r,(3) coordinates,

with the target flow velocity, u, along the axis of symmetry decaying as

uu= a2-1
‘[(Tr-l] (RcrcaR)  , (20)

while remaining zero at all distances r at and beyond a,R. The parameter a defines an extent of

plasticity in the target, with a > 1 defining a finite-sized plastic zone in the target, and a + 1’

denoting the limiting case of infinitesimally thin plastic zone. Along the axis of symmetry of

the noninertial xyz coordinate system of Figure 3, z = I - R. Both the projectile and target plastic-

flow zones may be considered incompressible, despite the axial velocity gradients, because of an

associated radial divergence of the flow field.

Because V, U, and L are changing with time t, the reference frame attached to the

rod/target interface will be a noninertial frame xyz  traveling at the time-dependent velocity U.

Though Walker and Anderson considered the general case of time-varying s and a, these

geometry parameters are held constant for simplicity. From the perspective of the interface
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Figure 3.

Plastic Zone Plastic Zone
in Rod in Target

Figure 2. Geometry of the solid eroding-rod problem.

. R

-aaR-1
+ ( a - l ) R  +
-. ._ .A*.\‘\ \

‘\
?
\

Assumed target flow pattern in target, per Walker and Anderson [15].  Note that,
along the axis of symmetry, the crater coordinate, r, is related to interface
coordinate, z, by z = r - R.
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coordinate system xyz,  the velocity as a function of axial coordinate z, along the centerline of the

problem, can be given as

V - U -L5z< -s

-(V - U) zls -sIz<O

vz = &[(Zi’-11-U  Olz<(a-1)R

-u zZ(a-l)R . (21)

This flow field is schematically shown in Figure 4. Specifying the extended Bernoulli equation,

eqn (12),  along the contour defined by the axis of symmetry, for this case of h-rotational (along

the axis of symmetry), incompressible flow with only rectilinear accelerations, the extended

Bernoulli equation reduces into a 1-D integration in z, yielding

2oxz,x  + Ozz z
- dz .

P
(22)

The factor of 2 on the oxzr term arises because of symmetry, for which oXzJ and cryZ,r  are equal

on the axis of symmetry. Furthermore, because the integration contour is aligned with the z axis

and the flow is incompressible, the CJ=,~ integral will amount to a difference of (0,/p) between

the contour endpoints. This equation is, of course, identical to the momentum equation derived

by Walker and Anderson, though expressed in the noninertial xyz,  coordinates, rather than the

laboratory XYZ coordinate frame.

First, limit the fixed integration contour to the elastic portion of the solid rod, spanning

the range -L I z c -s, and solve eqn (22) in light of the velocity field specified by eqn (21).

Because the rod velocity at z = -s and z = -L are identical, the contribution of the V 2 gradient

integral is zero. Further, because the stress state in the rod is assumed uniaxial in z, the shear-

stress-gradient integral will be exactly zero. Finally, note how the dU/dt  acceleration terms from

V, and the noninertial frame acceleration cancel out. Thus, one obtains
.

15



.

Figure 4. Schematic depicting the assumed velocity field along the axis of symmetry of the
eroding rod and target.
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p (L -s) = $(-Y,-0)  ,
R

where YR is the yield strength of the rod, being exactly the uniaxial-stress state (where tension

(23)

is defined as positive) at the elastic-plastic interface [i.e., oZ(z = -s) = -YR].  This is the

high-sound-speed limiting result of Walker and Anderson (since it was not here accounted for

the finite wave speed at which acceleration information travels down an elastic bar). They noted

further that, were the size of the rod’s plastic zone, s, a negligible percentage of the overall rod

length, L, eqn (23) reduces to the Alekseevskii-Tate rod deceleration equation, dV/dt  = -YR/(pRL).

Despite any decelerations of the noninertial frame traveling at velocity U with the rod/target

interface, the rod deceleration equation is totally independent of interface velocity U.

Secondly, reconsider eqn (22) over a different integration contour, still along the axis of

symmetry but spanning from -L I z c 0, thereby including the complete rod in the integration.

The terms of eqn (23) are thus retained, while adding to them the terms that arise from the small

plastic zone at the tip of the eroding rod. Denoting the axial stress a,, at the rod/target interface,

as %a~~ one obtains

iz(L-$ + (!p!)+ + 4s = -; + +i - p(-‘R ) + (v - u)2 . (24)
R R R 2

This result is identical to the result of Walker and Anderson, for the case of constant plastic zone

extent, s. It can be solved for the compressive stagnation stress at the rod/target interface and,

by making use of a substitution of eqn (23), results in

-%g =
pR(v-u)2  + y dv dU PR s

2
R--f__.( dt 1dt 2

(25)

If the extent of the rod’s plastic zone, s, is small compared to rod length, L, or if the penetration

process is steady (i.e., velocity derivatives zero), the last term in eqn (25) becomes negligible and

the remaining terms become identical to the expression proposed by Tate [l l] for the stagnation

stress on the rod side of the rod/target interface.
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Turning to the

throughout the target.

obtain

target, the integration contour is defined to be along the axis of symmetry

That is, eqn (22) is integrated between 0 I z 200, in light of eqn (21), to

-L!pp& + q-” + [-!g + J!F)L~~_l)R

= _ (-u)2 - 02 + O-Gg + 2 (a-l)R a% & + 2
2 f

m aoX &
IPT g 0 ax x (a-r)R ax ’ (26)

The last term of both sides of the equation (the rigid-body acceleration tern-r  on the left, and the

shear-stress integration on the right) are both zero, since the target material beyond the region

of plastic extent, z 2 (a - l)R, is essentially undisturbed. Solving for the axial stagnation stress

on the target side of the rod/target interface gives

-41ag
PTU2 dU a - 1 _ 2(a-1)R  aoU &= - + &I?--

2 dt a+1 Ioax *
(27)

Since this paper is primarily concerned with the kinematics of nonsteady flow fields, it

is not intended to delve into the constitutive relations by which the shear-stress integral along the

centerline contributes to the stagnation pressure beneath an eroding rod. Walker and

Anderson [15] may be consulted for these details for those interested. Suffice it to say that the

terms in eqn (27) correspond identically to their terms associated with target stresses, for the

special case of fixed extent of target plasticity (i.e., constant a). Furthermore, they note that, for

the limiting case of small crater radius, R + 0 (corresponding to truly 1-D penetration), the shear-

stress integral becomes the sole modification to the Bernoulli stagnation pressure. For the

fixed-a case, this shear-stress integral becomes a positive constant related to the yield strength

of the target material and is traditionally given the name target resistance, denoted R, One may

infer from the result of Walker and Anderson that, in addition to the target’s inertial head

(prU*/2),  it is the target’s shear-stress field, rather than the acceleration of target material under

the penetrator, that is the primary contributor to interface pressure on the target side of the

interface, when the penetration process is nearly steady.
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By limiting the scope of problem complexity and by achieving algebraic expediency via

the use of a noninertial rod/target interface coordinate system, the primary result of Walker and

Anderson, who spent quite a number of journal pages exhaustively addressing this subject, has

been recreated in the span of several paragraphs. For those who don’t wish to dwell on the solid-

mechanics aspects of their derivations, the parts of the problem dealing with accelerations and

noninertial frames can be grasped here, in their essence.

8. Consequences of Noninertiality
The means of accounting for the noninertiality of a reference system have long been

established and are embodied in eqn (9). Failure to properly take these terms into account,

however, will lead to erroneous calculations in various forms. Consider the two example

problems examined in the preceeding  text to see the consequences of improperly applying the

momentum equation in a noninertial frame.

For the accelerating sphere problem, failing to subtract out the dU/dt  acceleration of the

noninertial xyz frame would have added a term to the stagnation pressure, eqn (19), of magnitude

p - dU/dt  multiplied by the contour length, call it E. Obviously, for a contour of infinite length,

the error would be infinite, resulting from the fact that the pressure being computed arose from

accelerating the whole mass of the universe about the sphere. If the contour length were finite,

the added pressure term, being proportional to contour length, is like the situation existing within

a (inviscid) wind tunnel. Additional pressure head needs to be supplied to the tunnel in order

to accelerate the flow through the tunnel test section. A quick inspection of the form of eqn (19)

(augmented on the right side by p 1. dU/dt ) reveals that, as the pressure differential is raised

across the test section, the flow velocity will accelerate to eventually reach a new equilibrium

velocity. The length of the test-section contour, I, denoting the length (and thus mass) of the

flow to be accelerated, will govern the time constant of the acceleration. So, in the case of the

problem of an accelerating sphere, improperly ignoring the noninertiality of the reference frame

actually changes the problem to one of a sphere fixed in a wind tunnel.
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For the eroding-rod problem, the consequences of ignoring the noninertiality of the

interface coordinate system produce a different set of errors. The consequences upon the rod

deceleration equation, eqn (23), would literally be to replace dV/dt  with d(V - u)/dt, as in

For a symmetric impact of like materials at speeds above the elastic limit, U will typically be on

the order of V/2. In such a case, the effect on rod deceleration will be an error on the order

of 100%. For cases where U is a larger percentage of V, as in the case of high-density-rod

penetration, the error in the deceleration calculation is correspondingly increased.

On the target side of the interface, failure to account for the acceleration of the coordinate

system will introduce a -p,*Z*dU/dt  contribution to right side of the momentum balance

equation, eqn (27), as in

-%ag PT u2 &J a - 1 _= - + pTR--
2 d t  a+1

- p,l; . (2%

Here, E denotes a contour length of target material to be integrated [assumed greater than or equal

to (a - 1) R], and dU/dt is negative for a decelerating rod. The first warning flag is that the last

term of eqn (29) is proportional to the contour length which, for a semi-infinite target, is infinite

in length. Such an improper inertial interpretation again leads to a calculation of the force to

accelerate the universe with respect to the rod/target interface. If, on the other hand, the

thickness of the target were finite, or if the integrated contour length, I, were arbitrarily made

finite, eqn (29) though quite incorrect, might seem less obviously so. If length I of the integrated

contour were large enough to dominate the other terms of eqn (29), leading to

one might erroneously conclude that the normal interface stress, os,Og, is primarily supported by

the “apparent” deceleration of target material relative to the rod/target interface, rather than by
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the inertial head and elastic shear-stress distribution within the target. In reality, the true effect

of interface deceleration [second term on the right side of eqns (27) and (29)] has just the

opposite effect (i.e., opposite sign): when the interface and associated target material are

traveling at velocity U, a deceleration of the interface actually lowers the stagnation stress

because not only is U made lower in the process, but also the associated target material is

inertially tending to travel at U and resists any decrease in interface velocity. This resistance of

target material to decelerate (i.e., the inertia of the plastically entrained crater material) would

have the effect of superimposing an axial-tension field on top of the steady-state (inertial)

compression distribution. Thus, the act of interface deceleration actually lowers the interface

stress.

Another reality check, which would indicate the inappropriateness of eqn (30), is the

inference that a positive acceleration of the rod/target interface would be met with tension at the

interface. Such accelerations invariably occur, when the penetration of a multilayered target

transitions from a high-density target element to a lower density element of comparable strength.

Yet, it is known that such a transition is not accompanied by tension at the rod/target interface.

Thus, in the case of an eroding rod undergoing deceleration, it may be concluded that a proper

accounting of the noninertial behavior of the rod/target interface is crucial to a proper formulation

of the overall problem.

9. Conclusions
Once the groundwork for the extended Bernoulli equation, eqn (12), has been laid, the

solution to actual problems can often proceed quickly. All of the concepts necessary to develop

this equation have existed in the educational literature of fluid and solid mechanics and dynamics

for many years, if not centuries. However, all of the applicable terms contributing to the

equation are not generally located in a single source, as the educational literature prefers to

expeditiously reduce the governing momentum equation to special-case solutions for instructional

purposes. These special-case limitations often include steady, incompressible, irrotational, or

inviscid  flows in inertial reference frames.
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The momentum equation along an integration contour within a general flow field has been

herein rederived. By placing no restrictions on the type or manner of flow, the equation has been

presented, using the popular terminology, as an “extended” Bernoulli equation. The equation,

as presented, is valid for unsteady, compressible, rotational, elasto-viscoplastic flows measured

relative to a noninertial (translating and/or rotating) coordinate system, whose motion is known.

Of particular interest were flows measured relative to noninertially translating coordinate

systems. As such, two example problems of this variety have been solved in this report. The

effect of coordinate system noninertiality introduces additional terms into the momentum

equation, which are only ignored at the peril of the investigator. In the case of a rigid sphere

accelerating within a quiescent inviscid  medium, a failure to consider the noninertial terms has

the effect of solving a different, though valid, problem of a stationary sphere in a wind tunnel.

In the case of the solid eroding-rod problem, by comparing the present analysis to that

of Walker and Anderson [15] (who solved the identical problem in the inertial laboratory frame

of reference), it was observed that choosing a convenient coordinate system (even if noninertial)

can significantly simplify the algebraic manipulation of the governing momentum equation.

However, if misapplied, the consequence of failing to account for the acceleration of the eroding

interface produces significant errors, numerically and conceptually. First, the rod deceleration

rate is miscalculated, often by a factor of 2 or greater. Also, in the target, the basic

understanding of the problem is completely distorted, by failure to properly account for the

noninertiality of the interface reference frame. In reality, the inertial head and elastic shear-stress

distribution within the target are primarily responsible for the buildup of interface pressure, while

the interface deceleration, because of the target-material inertia in the plastically entrained zone

of the target, actually ameliorates the interface stress. From the point of view of the noninertial

frame however, one might erroneously conclude that the interface deceleration was actually the

primary cause for the buildup of stress on the target side of the interface-a conclusion totally

opposite from and in contradiction to the properly formulated (inertial) momentum balance.
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This report presents a general form of the momentum equation that is extremely useful

for solving a great variety of problems that might not otherwise fall into idealized categories.

The solved examples help to illustrate the power of choosing a convenient frame of reference in

which to solve a given problem. However, the examples also serve to emphasize the vital

importance of properly accounting for effects of accelerating reference frames.
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