
Results From the Porting of 
the Computational Fluid Dynamics 
Code F3D to the Convex Exemplar 

(SPP-1000 and SPP-1600) 

by Daniel M. Pressel 

ARL-TR-1923 March 1999 

Approved for public release; distribution is unlimited. 



. 

The findings in this report are not to be construed as an official 
Department of the Arn~y position unless so designated by other 
authorized documents. 

Citation of manufacturer’s or trade name-s does not constitute an 
offkial endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return 
it to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5067 

ARL-TR-1923 March 1999 

. 

Results From the Porting of 
the Computational Fluid Dynamics 
Code F3D to the Convex Exemplar 
(SPP-1000 and SPP-1600) 

Daniel M. Pressel 
Corporate Information and Computing Center, AFU 

Approved for public release; distribution is unlimited. 



Abstract 

This report discusses the continuing efforts to port the F3D computational fluid dynamics 
code to RISC-based SMPs. originally, this program was optimized for Cray vector 
supercomputers such as the Cray C90. Previous attempts to run this code on SGI Power 
Challenges, Convex Exemplars, as well as systems from SUN and Digital Equipment 
demonstrated a level of performance that was so low as to be utterly useless (in many cases 
it became necessary to kill the job before the first time step had completed). After making a 
concerted effort to port the program to an SGI Power Challenge (RSOOO processor), 
acceptable levels of performance were finally achieved (Pressell997). Using this version of 
the code as the starting point, an effort was made to produce a program that ran efficiently on 
both systems from SGI and Convex. Unfortunately, a number of limitations with the Convex 
Exemplar were discovered that limited the success of this effort. 

ii 



Acknowledgments 

The author wishes to express his gratitude to Sally Parker of the Space and Naval Warfare 

Systems Command (SPAWAR) Systems Center, San Diego, CA (who came into work on numerous 

weekends and holidays to reboot the system after it had crashed), and Sharon L. Shaw of Hewlett- 

Packard (HP)/Convex for their assistance in providing the resources necessary to carry out this 

project. Additionally, he wishes to thank Karen Heavey, Jubaraj Sahu, Ph.D., James Collins, Ph.D. 

(formerly of the U.S. Army Research Laboratory [ARL]), Walter Sturek, Ph.D., and Charles 

Nietubicz for their contributions to the success of this project. 

This work was made possible by the grant of computer time by the Department of Defense 

(DOD) High Performance Computing Modernization Program. Additionally, it was funded as part 

of the Common High Performance Computing Software Support Initiative (CHSSI) administered 

by the DOD High Performance Computing Modernization Program. 

The author also wishes to thank Chuck Kennedy and the people of the Survivability/Lethality 

Analysis Directorate (SLAD), ARL, for giving him access to their Silicon Graphics Inc. (SGI) 

Challenge computer. He also wishes to thank SGI for loaning ARL the additional hardware required 

to perform runs out to 36 processors on this system and 18 processors on the Power Challenge 

located at the ARL Major Shared Resource Center (MSRC). 

. 

. . . 
111 



bTENTIONALLY LEFT BLANK. 

iv 



Table of Contents 

1. Introduction ............................................................................................................. 1 

2. The Architecture of the SGI Power Challenge ..................................................... 3 

3. The Architecture of the Convex Exemplar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~................ 4 

4. Performance Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

4.1 Serial Performance .............................................................................................. 7 
4.2 Parallel Performance Using a Single Hypemode ................................................ 14 
4.3 Parallel Performance Using Multiple Hypemodes .............................................. 15 

5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

6. Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

8. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~.....~..~..............................~............~.....~ 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . 
111 

vii 

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . ..~............................................................................. ix 

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Glossary .................................................................................................................... 43 

Distribution List ...................................................................................................... 45 

Report Documentation Page ................................................................................... 49 



. 

INTENTIONALLY LEFT BLANK. 

vi 



List of Figures 

Figure m 

1. 

2. 

3. 

4. 

5. 

6, 

7. 

8. 

9. 

10. 

11. 

12. 

The Simple Approach to Processing a Plane of Data Using Two Loops That 
Sweep Through the Plane in Orthogonal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using a Common Outer Loop When Processing a Plan of Data Using Two 
Loops That Sweep Through the Plane in Orthogonal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Using Blocking to Improve Performance When Processing a Plane of Data 
Using Two Loops That Sweep Through the Plane in Orthogonal Directions........... 

An Alternative Approach to Using Blocking to Improve Performance When 
Processing a Plane of Data Using Two Loops That Sweep Through the Plane 
in Orthogonal Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

An Example of Multiple Levels of Blocking ~........................................................... 

Performance Results for the 1 -Million Grid-Point Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Performance Results for the 3-Million Grid-Point Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Performance Comparison Between Using Optimation Techniques That 
Are Well Suited and Appropriate for Use on Any RISC-Based SMP, and 
Using Additional Techniques That Are Specifically Designed to Overcome 
the Limitations of the Convex Exemplar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Comparison of the Predicted and Measured Levels of Performance for SGI 
Challenge and Power Challenge Systems (l-Million Grid-Point Test Case)............ 

A Comparison of the Predicted and Measured Levels of Performance for One, 
Two, and Four Hypemode Subcomplexes on a Convex SPP 1600 (1 -Million 
Grid-Point Test Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Comparison of the Predicted and Measured Levels of Performance for SGI 
Challenge and Power Challenge Systems (3-Million Grid-Point Test Case)............ 

A Comparison of the Predicted and Measured Levels of Performance for One, 
Two, and Four Hypemode S&complexes on a Convex SPP 1600 (3-Million 
Grid-Point Test Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

8 

9 

10 

11 

13 

21 

22 

23 

32 

33 

34 

35 

vii 



. 

. 

INTJWTIONALLY LEFT BLANK. 

. . . 
Vlll 



. 

List of Tables 

Table 

1. Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2. Predicted Speedup for a Loop With 15 Units of Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

PaJg 

26 

31 

. 

ix 



. 

hTENTIONALLY LEFI- BLANK. 

. 

X 



1. Introduction 

This project was begun as a result of an effort to run a large memory (1.5 GB) computationally 

intensive job on a Silicon Graphics Inc. (SGI) Power Challenge. The code that was selected for this 

effort was an implicit 3-D CF’D solver known as P3D (Sahu and Steger 1990). It was already known 

that, for the specified problem, this code required a bit under 9 CPU* ruin to run on a Cray C90 

(when using one processor) (a bit over 10 CPU min if run as an out of core solver on the same 

hardware, when using the solid-state dislc to hold the data not currently resident in main memory).+ 

Attempts to run the in-core solver version of this code on an SGI Power Challenge (75 MHz, and 

again using just one processor) required over 5 hr of CPU time. Obviously, this was not an 

acceptable situation. While there were many theories as to what was causing this problem, the 

correct answer was that codes that are well-tuned for Cray vector processors are rarely, if ever, well- 

tuned to run on RISC-based systems (especially in regard to taking full advantage of cache). There 

were some who expressed concerns that this incompatibility either could not be overcome or would 

require the use of a different algorithm. Our experience indicated that extensive implementution- 

level tuning could overcome most, if not all, of the performance problems. This was an important 

conclusion since it allowed us to use the new systems without changing the algorithm (Pressell997). 

Once a reasonable level of serial performance had been achieved, there were discussions on how 

the program should be parallelized. This was far from being a trivial consideration since 

traditionally implicit CFD codes are considered to be inherently diffkult to parallelize. The two 

most commonly used techniques are: 

(1) Switch to an explicit algorithm, which is easy to parallelize. 

* Note: All items in bold type are defined in the Glossary. 

’ The test case only involved computing 10 time steps. Production runs frequently involve processing hundreds or even 
thousands of time steps and, generally, take many hours to finish 

1 



(2) Use domain decomposition (frequently, this will require significant changes to the algorithm 

if one is to avoid serious degradation to the convergence properties of the algorithm). 

A thorough analysis of the problem indicated the possibility that a third solution might exist. 

This solution was based on two concepts: 

(1) The original version of F3D is highly vectorizable. 

(2) Vectorization is a form of parallelism that works at the loop level. 

Therefore, in theory, it should be possible to parallelize F3D (and probably most vectorizable 

programs) using other forms of parallelism that work at the loop level. Traditionally, this has not 

been considered to be the most useful of observations since: 

(1) Loop-level parallelism does not in general support the use of large numbers of processors. 

Additionally, on traditional MPPs, one needed hundreds, if not thousands, of processors to 

achieve supercomputer levels of performance. 

(2) On many architectures, it is difficult to show parallel speedup when using this approach. 

Furthermore, even when such speedup is demonstrated, the absolute level of performance 

tends to be so low as to make the effort useless. 

However, technology keeps changing and an analysis of the SGI Power Challenge indicated that 

it was an example of a class of computers that should be ideally suited for use with loop-level 

parallelism. This class of computers is known as RISC-based cache-coherent shared memory SMPs. 

The Convex Exemplar is marketed as being another member of this class of computers. 

While there are a number of architectural differences between the two machines, it was hoped 

that this approach to optimizing and parallelizing F3D could be made to work efficiently on both the 
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SGI Power Challenge and on the Convex Exemplar This report will discuss how this effect was 

approached, what the results were, and the reason for those results. 

2. The Architecture of the SGI Power Challenge 

Before one can discuss the results of this effort, it is helpful to have a short introduction to the 

architectures involved. The SGI Power Challenge can be thought of as the prototypical RISC-based 

cache-coherent shared memory SMP. As such, it will be discussed first. From the hardware 

perspective, it has the following properties: 

(1) Powerful RISC-based processors. In this case, RSOOO processors rated at 300 MFLOPS 

each. 

(2) This version of the Power Challenge had up to 18 processors and up to 16 GB of memory, 

although one could not configure a system with both 18 processors and 16 GB of memory. 

(3) Each processor had a large off-chip cache (4 MB). 

(4) Hardware protocols maintain the coherency between all of the caches and main memory. 

This is a key requirement if shared memory is to be implemented entirely in hardware. 

(5) Shared memory is entirely implemented in hardware. All of the boards are connected by a 

common system bus that implements a snoopy bus protocol for cache coherency. This bus 

gives a uniform memory access time. The speed of the bus is a key limiting factor in 

determining how many processors can run in a system at one time without running out of 

memory/bus bandwidth. 



From the OS perspective, SMP means that the combination of the OS and the hardware have 

been designed in such a way as to allow any processor to safely execute any portion of the kernel of 

the OS. This is key to avoiding points of contention that would otherwise limit system performance. 

3. The Architecture of the Convex Exemplar 

The Convex Exemplar is also based on powerful FUSC processors (HP-PA 7100 for the 

SPP-1000 and HP-PA 7200 for the SPP-1600). Each processor has a large off-chip data cache 

(1 MB) and a separate large off-chip instruction cache (1 MB). The designers of this system realized 

that a common system bus connecting all of the boards in a system could severely constrain the 

performance and scalability of their system. Therefore, they chose to use a more complicated design. 

Some of the key properties of this design are: 

(1) Processors are grouped into Hypemodes, with each Hypemode containing 8 processors. The 

SPP-1000 supported 128 processors, but with the SPP-1600, the stated maximum system 

size was reduced to 64 processors. 

(2) At the OS level, Hypemodes are configured into Subcomplexes, with a Subcomplex 

containing at least one processor from each of the Hypemodes that make up the 

Subcomplex. 

(3) Each Hypemode has its own pool of memory (normally either 1 or 2 GB of memory). 

(4) Peripherals are directly connected to a Hypemode. Processors on other Hypemodes have 

degraded access to nonlocal peripherals. This makes it desirable to give each Subcomplex 

its own local scratch partition. 

(5) At boot time, the memory on the system is configured for three distinct classes of usage. 

This process makes the memory system noticeably less efficient in its use of resources than 
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that of more traditional designs such as the SGI Power Challenge. The three usage classes 

are: 

l Hypernode local memory (possibly shared among multiple Subcomplexes). This memory 

can only be accessed by processors on the same Hypemode. Access to this memory is 

much faster than to global memory, but it is of limited value to shared memory jobs 

running across Hypemodes. 

l A portion of the local memory from each Hypemode that makes up a Subcomplex may 

be used to create global memory for that Subcomplex. Global memory is cache coherent, 

but, in general, it is noticeably slower to access. There is also a significant limit on the 

size of global memory, so that, in general, there will be less than 2 GB of global memory 

for a single Subcomplex. 

l A portion of the local memory from each Hypemode could also be used to make up what 

Convex refers to as the CTI cache. This is a Hypemode level (as opposed to the more 

commonly used processor level) DRAM (as opposed to SRAM) cache. It is used to 

accommodate the larger latencies associated with accessing global memory. 

Unfortunately, given certain design constraints, the larger the size of the CTI cache, the 

smaller the maximum size of global memory (even if there is local memory to spare). 

(6) The large off-chip data cache uses a cache line size of 32 bytes, which is significantly shorter 

than that used by SGI (512 bytes with 128 byte sectors for the R8000 and 128 bytes for the 

R4400 and RlOOOO processors). 

(7) The TLB on the Hewlett-Packard (HP) processors is smaller than that used on the R8000 

processor. Additionally, the Convex Exemplar uses a smaller page size (4 KB vs. 16 KB). 

The net result is that while the R8000 TLB is large enough to map 4 MB of memory with 

room to spare, the HP TLBs can only map a little under 0.5 MB of memory. When dealing 

5 



with large data sets, this makes it more likely that the processors on the Convex Exemplar 

will thrash their TLBs. 

4. Performance Issues 
. 

There are three main aspects to reviewing the performance of any code on the Convex Exemplar: 

(1) Single-processor performance. This includes such topics as: 

l The theoretical peak performance of a single processor. 

l What percentage of peak performance one gets when using a single processor with local 

memory on a dedicated Hypernode and why. 

l What percentage of peak performance one is likely to see when using the Convex 

Exemplar as a throughput-oriented machine running principally serial jobs. 

(2) Parallel-processor performance using a single Hypemode. This is primarily interested in 

issues such as the supported programming paradigms and the level of scalability that they 

can deliver. It will, however, also cover issues relating to the limitations of using a single 

Hypemode. 

(3) Parallel-processor performance using processors on multiple Hypernodes. In other words, 

How well does Convex’s concept of how to build an SMP compare to those used by SGI in 

building the Power Challenge? 

The next three sections will, in turn, consider each of these areas. 
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4.1 Se&d Perfonnamce. It was expected that, since both the Convex Exemplar and the SGI 

Power Challenge are based on RISC microprocessors using large caches as part of a memory 

hierarchy, it should be possible to produce a single code that exhibits a high level of performance 

on both machines. However, it was also assumed that there might be some lcey differences between 

the machines that would have to be taken into account, The key differences and how they were 
1 

addressed were: 

. 
(1) The Convex Exemplar uses a smaller cache than does the SGI Power Challenge. The 

original port to the Power Challenge would have shown poor performance for sufficiently 

large problem sizes had our Power Challenges had enough memory in them. With the 

smaller cache size on the Convex Exemplar, this point was reached much sooner. The 

solution to this problem was to block code in a wider range of subroutines. Unfortunately9 

not all subroutines were easy to block in two directions. In the one case, where the 

subroutine could only be bloclced into strips rather than squares, it was necessary to 

parameterize the strip width based on the cache size. Presently, the cache size is a hard- 

coded parameter (see Figures l-4 for details). 

(2) There are fine differences in the cache structure between the two machines (e.g., cache line 

size). These differences tend to make the effective cost of a cache miss to be larger on the 

Convex Exemplar (substantially larger when using global memory). As a result, it became 

more important to reduce the number of cache misses to the largest extent possible. In some 

cases this meant removing optimizations that added cache misses, while only producing a 

marginal speedup on the Power Challenge. It was felt that, with the trend toward increasing 

processor speeds, this would be a clear win on the next generation of machines from all 

vendors. Even so, it should be noted that, when running this code, the Convex Exemplar 

spends more time on cache misses than does the Power Challenge. 
. 

(3) Different machines have different TIB sizes. Additionally, many architectures use two or 

more levels of cache. In an attempt to support the widest range of processor designs as 

possible, the decision was made to use multiple levels of blocking wherever possible (e.g., in 
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Loop 1 PROBLEM: Regardless of whether one uses C or Fortran 77, 
one of the two loops will have a high cache miss rate. 

POSSIBLE SOLUTION: Perform matrix transposes. 

OBJECTION: Matrix transposes add a lot of overhead while 
doing no useful work. In some cases, they will actually 
be slower than doing nothing at all. 

Loop 2 
PREFERRED SOLUTION: See Figure 2. 

Figure 1. The Simple Approach to Processing a Plane of Data Using Two Loops That Sweep Through the Plane in Orthogonal 
Directions. 

. 



. , 

Common Outer Loop 

Loop 1 

Row 2 
. 
. 
. 

Row N 

Loop 2 

ASSUMPTIONS: 
(1) There are multiple planes of data being processed by 

each loop. 

(2) There was an outer loop for each loop that was not 

shown in Figure 2 that steps through the planes of 
data. 

(3) The outer loops for Loop 1 and Loop 2 could be 
combined into a common outer loop. 

(4) A plane of data fits in cache. 

OBJECTION: 
The fourth assumption can fail badly for large problem 
sizes or small caches. 

PREFERRED SOLUTIONS: 
See Figures 3 and 4. 

Figure 2. Using a Common Outer Loop When Processing a Plan of Data Using Two Loops That Sweep Through the Plane 
in Orthogonal Directions. 



Common Outer Loop 

Loop By Block Number 

Loop 1 

Current Block 

I 
. . 

Loop 2 

I Current Block 

ASSUMPTIONS: 

Blocked Access of a Plane of Data 

. . . 

. 

. 
. 

OBJECTIONS: 

(1) It is possible to block in both (1) Assumption 1 may be wrong. 

directions. (2) Assumption 2 may be suboptimal. 

(2) It is practical to use block sizes that PREFERRED SOLUTIONS: 

are small enough to fit in the outer- (1) See Figure 4. 

most level of cache. (2) See Figure 5. 

Figure 3. Using Blocking to Improve Performance When Processing a Plane of Data Using Two Loops That Sweep Through 
the Plane in Orthogonal Directions. 

. 



.  L 

Common Outer Loop 

l * 

Blocked Access of a Plane of Data 

Loop By Block Number 
--m---m------  

l 

; Loop 1 
I 
I Current Block 
I 

I 

I 

I 

I 

I 
I 

I 

I 

I 

I 
I 

cd 
CL I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 
I 

; REQUIREMENTS: 

. . . 

: Loop2 
I 
I Current Block 
I 
I 

I 
I 
I 

I 

I 
I 

I 

I 

I 

I 

. . . 

I 
I 

The block width takes into account the number of rows in a 
I 
I plane, the amount of memory needed per grid point, and the 
I 
I size of the cache. 
: OBJECTIONS: 
I 
I Generally less efficient than the fully blocked solution in 

1 
I 

-m-m--------- Figure 3. 
Figure 4. An Alternative Approach to Using Blocking to Improve Performance When Processing a Plane of Data Using Two 

Loops That Sweep Through the Plane in Orthogonal Directions. 



matrix transpose routines). This allows one to use a relatively small-block size for the 

innermost level of blocking, while still supporting larger block sizes for those machines that 

can take advantage of them. However, this created another problem. Small block sizes can 

imply a high level of loop overhead, and extra care had to be taken to minimize this effect 

(see Figure 5 for details), 

(4) The HP-PA 7100 and 7200 processors used by Convex rely upon a multiply-add instruction 

for their peak level of performance, The MIPS R8000 processor used by SGI also relies 

upon such an instruction” However, there were significant differences in how these two 

instructions worked. As such, the instruction on the HP processor favored vector-type code, 

although such code is a poor match for architectures using cache. On the other hand, the 

instruction used on the MIPS R8000-favored code that was well tuned for RISC processors 

and cache in general. As a result, the SGI compilers had no problems making good use of 

their multiply-add instruction, while the Convex and HP compilers were rarely able to make 

efficient use of their instruction (in fact, for most subroutines, the best performance was 

achieved by telling the compiler not to use that instruction). Apparently, this was a 

sufficiently common problem that the newer HP-PA 8000 processors have a second 

multiply-add instruction that is very similar to that found in the MIPS R8000. Only for one 

subroutine (BTRI) was it possible to make good use of the multiply-add instruction 

supported by the HP microprocessors, and only then by using the KP compiler rather than 

the Convex compiler. 

(5) Even though the BTRI subroutine exhibits a vanishingly small cache miss rate on both 

machines, it is still the single most expensive subroutine on both machines. As such, it is 

important to have the most efficient implementation of this routine as possible. In this vein, 

an exquisitely tuned implementation was produced for the Power Challenge that bares a 

striking resemblance to assembly code, while maintaining the portability of Fortran. It 

turned out that a number of assumptions were made in producing this routine that were not 

optimal for the Convex Exemplar, as well as some of the other machines we were looking 

at. Therefore, the decision was made to produce a new version of this routine that would 
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Outer Loop By Outer Block Number Blocked Access of a Plane of Data 

Middle Loop(s) By Middle Block Number(s) 

Inner Loop By Inner Block Number 

Current Block 

. . . 

USE: LIMITATIONS: 

When done well, multiple levels of 
blocking can produce highly 

efficient code that works well with a 
wide range of cache and TLB sizes 
and designs. 

It can be very difficult to use this technique 

with any but the most simple loops. In F3D, 
its use has been primarily restricted to 
matrix transpose operations. 

Figure 5. An Example of Multiple Levels of Blocking. 



have a smaller foot print in cache (in terms of the size of the scratch arrays) and require 

fewer scratch variables be locked into registers for optimal levels of performance. The net 

result is a version of the subroutine that significantly outperforms the earlier version of the 

code on the Convex Exemplar, runs almost as fast on the R8000 Power Challenge, runs 

faster on RlOOOO-based machines from SGI, and is more compatible with the use of larger 

numbers of processors on the Convex Exemplar and the SGI Origin 2000. 

While there were clearly architectural features that made the performance of this code when 

using one processor on a Convex Exemplar to be slightly lower than desired, the level of 

performance was more than high enough to justify continuing on to the next stage in this effort. The 

main disappointment at this stage was that no way could be found to run jobs with an address space 

in excess of 2 GB. This prevented us from running jobs with more than about 3 million grid points. 

Even when we parallelized the code across multiple Hypemodes, this problem was never solved, 

and, in fact, it became worse due to the more restrictive limits on the amount of global memory a 

system could have. 

4.2 Parallel Performance Using a Single Hypernode. The parallelization effort within a 

single Hypemode went quite smoothly. It was quite simple to translate the SGI-compiler directives 

into Convex-compiler directives. Additionally, both sets of compiler directives can coexist in the 

same code, which greatly simplifies the job of maintenance. The main issues that arose at this point 

were: 

(1) Hypemodes only have eight processors. Given the lower peak speed of the processors on 

the Convex Exemplar (relative to the SGI Power Challenge), and the somewhat lower 

percentage of peak that this program achieves on the Convex Exemplar, being limited to a 

maximum of eight processors was frequently undesirable. 

. 

(2) There were a number of issues that developed with some of the optimization features of the 

Convex Fortran compiler being buggy. Since the Convex compiler considers parallelization 

to be an optimization level, it was not possible to simply back down to a lower level of 



I - 

optimization. Instead, it was necessary to identify which optimizations were buggy and then 

use suboptions to disable those features In contrast, the SGI approach, which considers 

parallelization and optimization to be separate features, made it much easier to deal with 

compiler limitations. 

(3) It was found to be less convenient to control a number of important system parameters 

(e.gag maximum stack size) on the Convex Exemplar than on other commonly used 

machines. 

(4) When running on a dedicated Subcomplex, it was found that one could obtain a modest 

improvement in performance by having the processors spin forever when sitting at spin 

Ilocks. However, if the Subcomplex were shared with other users, this could result in a 

serious drop in performance if the Subcomplex became even slightly overloaded (i.e., more 

than eight processes running on a single Hypemode). Similar issues exist on the SGY Power 

Challenge, but the unusual architecture of the Convex Exemplar seemed to substantially 

increase the frequency with which overloading occurred. 

In summary, the effort to use multiple processors on a single Hypernode was quite successful. 

However, the limited performance that one saw when using a single Hypernode gave a strong 

impetus to the desire to parallelize across Hypernodes. 

4.3 Parallel Performance Using Multiple Hypernodes. The parallelization effort when using 

multiple Hypemodes was a more complicated undertaking. Four issues had to be addressed: 

(1) How should one go about using multiple Hypemodes? 

(2) Once one has decided how to use multiple Hypemodes, one has to actually make the 

approach work. At times the documentation was not always clear on this point, resulting in 

a number of false starts. 
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(3) 1s there any tuning that can/should be done at the system level that can improve 

performance? 

(4) Finally, are there any additional types of tuning that are unique to this environment? 

These issues will now be considered in greater detail: 

(I) There are three main ways in which a program can be parallelized across multiple 

Hypernodes: 

l Parallelize the program using message passing code, and only message passing code. This 

method might, in fact, have produced better results than the method that was selected (at 

least for programs that lend themselves to message passing). However, it would have 

meant producing a very different version of the code, and that violated the intent of this 

exercise. 

l Parallelize the program entirely using compiler directives. This was an obvious 

continuation of the work that was already under way. Additionally, since the Convex 

Exemplar had been selected based on its support for the shared memory programming 

paradigm, this appeared to be a fair test of the machine. 

l There are those who advocate using multiple levels of parallelism within a single program. 

If this approach had been selected, then one would probably use compiIer directives within 

the individual Hypemodes, with message passing code between Hypemodes. This method 

was rejected for two main reasons. It seemed to violate the intent of the exercise, and it 

represented a major commitment of resources. 

(2) Having decided to treat the Convex Exemplar as if it was a traditional shared memory 

architecture (e.g.9 uniform memory access), it was necessary to figure out how to do this. 

By using the system-level command MPA, one can cause the threads to be spread over as 
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many processors in a single Subcomplex as one desires. However, this does not mean that 

the memory is also spread over the Subcomplexes. By default, all of the memory is local 

to the IIypernodes, and this will cause the program to bomb. One can use MPA. to make 

some or all of the memory global, but this raises questions such as: 

e Which arrays should be global? 

@ How does one differentiate between the different arrays? 

4 Is there enough global memory in the system? 

In general, one can make thread local data structures reside in Hypernode local memory for 

performance reasons and place all of the remaining data structures in global memory. This 

can be easily implemented using MPA. Additional tests were run placing certain arrays in 

local memory (this usually worked best for relatively invariant data, in which case, the entire 

array was replicated on each Hypemode), While this did have a measurable impact on 

performance, in general, the impact was too small to justify the effort, or the waste of 

memory. 

A major problem was that even though the system being used had four Hypernodes with a 

total of 8 GB of memory, system limitations prevent one from configuring the system with 

more than 2 GB of global memory (the actual limit is somewhat less than that and is 

dependent on a number of factors that are beyond the scope of this report). However, this 

made it difficult to run some jobs that could easily be run when using either a single 

Hypernode on the Convex Exemplar or on the SGI Power Challenge. In some cases, it was 

possible to shoehorn a job in by placing certain arrays in local memory, but this was clearly 

an undesirable kludge. 

(3) A major problem with placing so many arrays in global memory is that the average memory 

latency for accessing global memory is significantly larger than it is for accessing local 



memory. In an attempt to minimize this effect, the Convex Exemplar is equipped with the 

ability to use a portion of each HypeArnode’s memory as an extremely large cache. This is 

the CT1 cache that was mentioned earlier, and it can be 64, 128, 256, or 512 MB per 

Hypernode in size. With help from Sally Parker and Sharon Shaw, the effect of using CTI 

caches with 64, 128, and 256 MB of memory was measured (the effort to use 512 MB of 

memory ran into problems and was abandoned). For this program, the 256-MB size 

produced the best results, allowing the program to run about 22% faster. 

(4) As previously mentioned, one can attempt to maximize the number of arrays that are kept 

in local memory, Unfortunately, this will frequently mean duplicating entire arrays on all 

of the Hypemodes, and that can tie up a lot of memory. Even worse, the process of 

initializing those arrays will substantially increase the startup time. This is partly due to 

significant contention that this can create in the memory system. Additionally, there is the 

problem that if the Subcomplex has N Hypemodes in it, the amount of work being 

performed at startup is now N times greater. In some cases, tradeoffs were made between 

computation and memory accesses. Given the increased cost of the memory accesses, it 

became clear that in most cases it was better to do the computation. It also was clear that 

as processors became faster, this would be the correct optimization on an ever increasing 

number of systems. Similarly, this analysis indicated that efforts should be made to 

minimize the number of cache misses associated with writing to arrays residing in global 

memory (e.g., minimize the use of matrix transpose operations in favor of other methods that 

can minimize the number of cache and TLB misses). 

Considering the rather sizable performance hit one takes by using global memory, an interesting 

question is, Why was the CT1 cache not more effective at reducing the penalty for using global 

memory? A related question is, Why were the other efforts to minimize/eliminate these penalties 

not more successful? There are several answers to these questions: 

(1) Access patterns can change from one loop to the next (e.g., one loop may be parallelized in 

the J direction, while the next one might be parallelized in the K direction). While it is 
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sometimes possible to minimize this effect, it cannot be eliminated. There are two 

consequences to this effect: 

e Data from relatively invariant arrays might be stored in the CTI cache of more than one 

Hypemode. This wastes a valuable resource, 

e Cache misses associated with writes are always more expensive than cache misses 

associated with reads. Since certain arrays are updated by almost every loop in the 

program, one can expect to have an unavoidably large number of write misses associated 

with those arrays. In some cache cases, this effect can be so large as to call into question 

the benefit of the CTH. Unfortunately, in general, there is no practical manner in which 

these arrays can be stored in local memory, 

(2) Attempts to minimize the number of accesses to global memory have costs associated with 

them. This may be the cost of doing additional calculations. 0r this may be the cost of 

copying the data to local memory in all of the Hypernodes. Regardless of the nature of the 

costs, what is important is that one is not replacing a cost X with a cost 0. Rather, one is 

replacing a cost X with a cost Y, where U is less than X. 

(3) Manually copying arrays to local memory in each Hypernode has a limited amount of 

scalability associated with it (one will get at best a parallel speedup of M, where in this case 

M is the smallest number of processors being used by this job in any of the Hypernodes). 

This makes this process inherently expensive, but it is of some value for arrays that are 

PargePy invariant. However, for arrays that change every time step, using this approach. 

becomes unacceptably expensive. 

(4) Some of the techniques used to reduce the number of matrix transpose operations also had 

the effect of creating loops where all of the processors would be walking through a set of 

pages in memory at the same time and in the same order. This created additional contention 



in the memory system, which limited the potential for parallel speedup in those loops. 

Overall, this optimization was still a win, but once again it was not a zero cost win. 

From this analysis, one can see that system designs that use very large DRAM caches (either in 

the form of a CTI cache or COMA) are likely to exhibit significant performance problems that 

cannot be entirely eliminated. 

There are several commonly used metrics that one could use as a measure of how successful this 

project has been. While it is generally not practical to apply every possible metric to a project, the 

following discussion should give a fair assessment of lhis project. 

One major aspect of this project was to gauge how successful Convex was in extending the 

shared memory programming paradigm. In this respect, it is less important as to whether or not 

Convex was successful than it is to have confidence in the conclusions. As this report indicates, it 

was assumed that some additional modifications and tuning would be required. As Figures 6 and 

7 indicate, the efforts involving local memory were relatively successful. Therefore, it is safe to 

assume that most of the limitations in performance have to do with how Convex extended the shared 

memory paradigm and were not a failure on our part to effectively tune the code for their machine. 

Additionally, as Figure 8 indicates, the efforts to tune the code for parallelization across Hypemodes 

(e.g., replicating certain arrays in the local memory on each Hypemode) clearly demonstrated the 

performance problems associated with the use of global memory. Unfortunately, it also 

demonstrated that shared memory solutions to the problem were of limited value and were generally 

not acceptable for use on a production code in a production environment. 

From this, it can be concluded that Convex’s extension to the shared memory paradigm was not 

very successful. Does this mean that the Exemplar is a bad machine? Not necessarily. It might be 

a good choice for message passing code. It might also be a reasonable choice for a throughput- 
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oriented environment where jobs would not be parallelized across Hypemodes. It just means that 

Convex failed to meet one of their more important design goals. This is important since there are 

other choices that one can make for throughput and message passing environments that might not 

require the same design tradeoffs that Convex made in designing this system. 

Another key point was establishing that it was possible to write well-tuned code that would be 

portably efficient across shared memory environments from multiple vendors. So long as one only 

looks at the results for local memory in Figures 6 and 7, it would appear as though this goal was 

achieved. That it was far less successful when it came to runs involving global memory should be 

considered to be a limitation of the hardware, rather than a flaw in the basic concept. 

This research was conducted as part of a CPISSI project. As such, one goal should certainly be 

to deliver efficient usable software. Therefore, a key question (after determining that the answers 

were correct-one of many services that Karen Heavey supplied as part of this project) is how well 

did the software perform relative to our expectations ? Before one can answer that question, one 

needs to determine what those expectations were. Many people have argued that loop-level 

parallelism will not produce speedups in excess of a factor of 4-16 (depending on who one talks to 

and which system they are talking about). In some cases, this conclusion is based on some 

supposedly fundamental limitation of using loop-level parallelism. In other cases, this conclusion 

was based on the limitations of using a bus-based design (a major reason why Convex went with a 

more scalable design). Therefore, it would have been nice to see better than a factor of 4-16 speedup 

when using this code on multiple processors. 

Another metric is to look at how well the code performed on the Exemplar vs. various bus-based 

systems from SGI. In theory, there are two reasons why the Exemplar should have outperformed the 

SGI boxes. First, with a theoretical peak speed for 30 processors of 7.2 GFLOPS, the machine was 

12-200% faster than the SGI systems it is being compared to. Secondly, its performance is not hurt 

by the negative impact of using a bus-based design. 
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One final metric in this area is how does the performance of the code on the SGI and Convex 

machines stack up against the performance of the vector code running on one processor of a C90. 

Obviously, if the code does not run at least as fast on the new machines as on the C90, the value of 

this effort will be in doubt, Ideally, the new machines should either outperform the C90 run and/or 

be significantly more cost effective to use. For this part of the metric, we assume an allocated cost 

of about $2 million for one processor of the C90. For the SGI systems, we assume that each of the 

three systems we looked at could be had for under $1 million (the exact amount is, of course, 

configuration dependent). For the Convex Exemplar, the allocated cost for a single Hypernode is 

again assumed to be under $1 million, while a four Hypemode system would cost between 

$1 million and $2 million.* 

If one looks at Figures 6 and 7 and Table I9 several things become clear: 

(1) All1 of the platforms (including considering a single Hypemode of a Convex Exemplar using 

local memory to be a platform) were able to equal or exceed the performance of a single 

processor of a C90. In all cases, this was achieved both in terms of performance and the 

price-performance ratio that can be equally important in a throughput-oriented production 

environment (a common use of Cray vector computers). 

(2) The Convex Exemplar was in no way the fastest of the platforms. In fact, it was only 

slightly faster than the SGH Challenge, which it should have comfortably beaten by a factor 

of two. 

(3) All three of the SGI systems do show some performance degradation that is in large part due 

to the limited bus and memory bandwidth of these systems. However, this effect was found 

* SGI and Convex supplied the cost data for their systems, while the allocated cost for one processor of a C90 is based 
on data found on the National Aeronautics and Space Administration (NASA) Ames web server. 
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Table 1. Performance Results 

Note: Speedups relative to a single processor were computed based on single-processor runs using local memory. 
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to be manageable and in no way represents an impenetrable wall that makes it impossible 

to make effective use of more than a handful of processors. 

(4) Similarly, at this point, there seems to be no inherent limits to the use of loop-level 

parallelism with up to 36 processors, and possibly more. The biggest single limit at this 

point is the requirement/desirability of working in an efficient shared memory environment, 

and that current designs do not support unhmited numbers of processors. It is likely that this 

limit is to some extent inherent with this class of machines, although the Convex Exemplar 

is clear evidence that the vendors are attempting to extend the range of supported system 

sizes, 

In order to better judge how well the code is performing on each of the machines, one needs to 

have a very good idea as to how well the code would perform on an ideal machine with a simi%ar 

configuration. While different groups may approach this problem in different ways, the approach 

that was used in this case was based on the following assumptions and principles: 

(1) The version of F3D that has been used on Cray vector platforms at NASA Ames and the 

U.S. Army Research Laboratory (ARL) for many years is acceptably efficient on those 

platforms (Sahu and Steger 1990; Sahu 1990). 

(2) The actual performance of a code on other platforms is highly dependent on a number of 

factors” One of the more important factors is how well the tuning of the code has been 

optimized for the platform being used. While in theory this tuning can be performed either 

manually or by a compiler, it is our belief that a combination of those techniques will 

produce the best results. Therefore, this model will assume that the code has been 

aggressively tuned by hand and compiled with a state-of-the-art optimizing compiler (with 

an appropriate selection of optimization options turned on). 

(3) When considering the serial performance of the code, it is difficult to predict how well the 

code should perform on any given machine. However, since the vendors frequently market 
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their systems on the basis of peak performance, this report will assume that the predicted 

serial performance will be proportional to the peak speed of the processors. Furthermore, 

the measured speed of the vector optimized code on a Cray C90 will be used as the basis for 

predicting the speed of the code on other machines. This does not mean that this 

relationship will always hold. For most machines, there are well-known classes of codes 

that perform poorly on a given machine. Sometimes, this has to do with memory access 

patterns, while in other cases, it may be an indication that the code is not vectorizable 

(Kaufmann and Smarr 1993). Even so, given the marketing policies of most major computer 

companies, this seems like a reasonable place to start. The following are two final notes as 

to how this will be done: 

0 There can be significant variations in startup and termination costs from one system to the 

next. Additionally, in general, the sections of code responsible for these costs either 

cannot be parallelized or show limited speedup when they are parallelized (e.g., due to 

interaction with the OS and/or I/O devices). If one were to obtain fully converged 

solutions involving runs lasting for over 1,000 time steps, these costs might not be very 

important. However, it is impractical to perform such measurements for all of the runs 

that are required when carrying out this type of study. Instead, shorter runs were used with 

the run times adjusted in an effort to remove the startup and termination costs. 

e When comparing the performance of a code running on multiple machines, the actual 

number of operations performed per second is of secondary importance. What is really 

important is how long does the run take to complete. Since this project made every effort 

not to change either the algorithm or its behavior, the run time should be proportional to 

the time required to perform a single time step (after making the adjustments mentioned 

in the previous paragraph). Therefore, all measurements of speed will be made in time 

steps per hour, One key advantage to this strategy is that different architectures may 

benefit from different optimization strategies. Furthermore, since it is reasonable to 

assume that these strategies will result in different numbers of operations being performed 

28 



(sometimes by more than a factor of two)s this policy will allow us to concentrate on the 

only performance metric that is important to the user: 

Time to completion. 

(4) When considering parallel performance, one might hope for linear speedup, but there are 

three main problems with this hope: 

l For fixed-sized problems, one may run out of available parallelism. If this happens, then 

the best one can hope for is linear speedup up until that point, with no additional speedup 

past that point. 

0 Even when one does not run out of available parallelism, there are a number of reasons 

why, for fixed-sized problems, one is unlikely to see linear speedup for very large numbers 

of processors (e.g.? Amdahl’s law, communication and synchronization costs) (Ahnasi and 

Cottheb 1994). 

l Linear speedup simply predicts that the relationship between speed and the number of 

processors used is of the formr 

Speed = A + B * N, 

where A and B are constants and N is the number of processors being used. Frequently, A is 

assumed to zero, although when fitting a curve to actual data, this need not be the case. The real 

problem arises when one rewrites this equation as: 

Speed = A + C * D * N, 
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where B = C * D and C is the speed of the code when. using a single processor. In this case, if .A is 

nonzero, D will not equal 1.0. This implies that even though the speedup is linear, doubling the 

number of processors need not double the speed of the system. 

Similarly, if A = 0.0 and D = 1.0, but C is a smalI fraction of the percentage of peak performance 

for a single processor, one may see linear speedup and still fail to meet the overall performance goals 

of the project. 

(5) A common solution to the issues in paragraph 4 on the previous page is to talk about 

something called scaled speedup (Gustafson 1988). The main problem with scaled speedup 

is that it assumes that the available parallelism is proportional to the problem size. While 

for many of the algorithms commonly used on large parallel computers, this assumption is 

correct, for many classes of algorithms, this assumption is dead wrong. Unfortunately, for 

this code, the available parallelism is roughly proportional to the cube root of the problem 

size. This means that in order to use 64 processors, the problem size would need to be 

262,144 times the size of the problem that one would normally solve using just one 

processor. Clearly, under these conditions, scaled speedup is not a useful metric. 

(6) At this point, it will be assumed that the correct scaling function is a stairstep, with the exact 

shape of the curve depending on the grid dimensions (see Table 2 for an example of how this 

curve naturally arises when using loop-level parallelism), For sufficiently large problem 

sizes (or small numbers of processors), this curve will closely approximate linear speedup 

(and with the assumptions for serial performance, this is a meaningful result). It will also 

be assumed that secondary effects such as Amdahl’s law and communication and 

synchronization costs can be ignored, since most shared memory systems have only a few 

processors. Hardware effects such as limited memory bandwidth will also be ignored, since 

the extent to which measurements deviate from the predicted levels of performance will be 

a good metric of how well the system is living up to expectations. 
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Number of Processors 

1 
2 

Maximum Units of Parallelism 
Assigned to a Single Processor 

15 
8 

Predicted Speedup 

1 .ooo 
1.875 

4 4 3,750 
5-7 3 5.000 

8-14 2 7.500 

Figures 9- 12 show the predicted and measured results for a variety of SGI and Convex systems. 

If one looks at the results for the SGI Challenge system, one will see excellent agreement between 

the measured and predicted levels of performance. This is strong evidence that the methodology 

used has merit. If one considers the SGI Power Challenge and SC1 RlOK Power Challenge, one 

does see some deviations from the predicted performance when using larger numbers of processors. 

Overall, however, the agreement between predicted performance and measured performance is still 

pretty good. The same can also be said about the Convex Exemplar when using up to eight 

processors with local memory on a single Hypernode, However, results when using more than eight 

processors on a Convex Exemplar are very disappointing. 

At the present time, several additional efforts relating to this code are underway. Some of these 

are: 

(1) Marek Behr, Ph.D., of the U.S. Army High Performance Computing and Research Center 

(AHPCRC) has been porting the same code to the Cray T3D and other traditional distributed 

memory RISC-based MIMD MPPs. The author has been collaborating with him to share 

some of his serial optimizations with this effort. 
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(2) James Collins, Ph.D., ARL, is currently adding several additional modules to this code, 

including an implementation of the CHIMERA code, 

(3) James Collins, and Jubaraj Sahu, Ph.D., ARL, and others are beginning .work on a formal 

plan to revalidate the tuned code. 

(4) The author has begun initial investigations to identify and, if necessary, correct any problems 

that might occur when the problem is scaled to even larger sizes. Unfortunately, most of the 

currently delivered systems either lack sufficient memory and/or sufficient address space to 

handle problems that are significantly larger than those used in this study. 

(5) Some of the routines currently in the F3D code were neither optimized (other than to the 

extent necessary to maintain their validity) nor parallelized. While many of these routines 

are so fast that there was no need to tune them, a significant percentage of the untuned 

routines are computationally intensive, but were not used in processing the benchmark case. 

Eventually, it would be desirable if some effort was made to either improve the speed of 

these routines or to delete them from the standard distribution, 

% Conclusions 

It is now clear that some-probably many, but possibly not all--computationally intensive codes 

can be tuned so that a meaningful range of problem sizes can be run with an acceptable level of 

performance on the current generation of RISC-based shared memory SMPs. Having said that, it 

is also clear that transitioning code to these machines will be far from the plug-and-play process 

many potential users are hoping for. When performing this work, it is highly desirable to have the 

same code work on more than one vendor’s product line. This effort shows that, in general, it is 

possible to achieve such a goal. However, it has also shown that since the design of some machines 

is better than the design of other machines, the results will not, in general, be uniformly good. This 

is not a new conclusion, nor is it unique to shared memory platforms running programs parallelized 
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using loop-level parallelism. However, given the limited number of vendors currently making these 

systems for the high performance computer market, this conclusion is more important than migRt 

otherwise be the case. 
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Abbreviations 

AHPCRC 

CHSSI 
DOD 
HP 
MSRC 
NASA 
Nwsc 
SGI 
SLAD 

U.S. Army High Performance Computing and Research Center 
U.S. Army Research Laboratory 
Common High Performance Computing Software Support Initiative 
Department of Defense 
Hewlett-Packard 
Major Shared Resource Center 
National Aeronautics and Space Administration 
Naval Warfare System Center 
Silicon Graphics Inc. 
Survivability/Lethality Analysis Directorate 

41 



. 

hTENTIONALLY LEFT BLANK. 

42 



Glossary 

Cache 

CFD 
CHIMERA 
CHSSI 
COMA 
CPU 
DRAM 
Fortran 
GFLOPS 
I/O 
MFLOPS 

MPA 
MPP 
OS 
RISC 
SMIP 
SILOI 
thrashing a TLB 

TLB 

a high-speed memory used to temporarily store data that has recently been 
accessed, or is likely to be accessed in the near future 

computational fluid dynamics 
a method for handling overlapping zones 
Common High Performance Computing Software Support Initiative 
cache only memory architecture 
central processing unit 
dynamic random access memory 
the most commonly used scientific programming language 
giga floating-point operation per second 
input/output 
mega floating-point operation per second 
multiple i.nstructionlmultiple data 
a system utility on convex systems 
massively parallel processor 
operating system 
reduced instruction set computer 
symmetric multiprocessor 
static random access memory 
to have a high rate of TLB misses, which in the limit can approach (or even 
in some rare instances exceed) one miss per memory access 

translation lookaside buffer 
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