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1. Introduction 

In previous work (Powell et al., 1993; Powell and Zielinski, 1995, 1997, 1999, 2001, 2003, 
2004), we have developed a number of two-dimensional (2-D) models for solving coupled 
Maxwell and energy transport equations in two dimensions.  The models have been used to 
investigate current and heat transport in the rail and armature of both solid- and plasma-armature 
railguns.  All of these calculations have been based upon the assumption that the rail height h is 
very large when compared to the rail separation w (see figure 1).  The models are known to 
predict values of the in-bore fields and armature acceleration that are too large when compared to 
realistic experimental values for finite-rail-height launchers.  Some methods for scaling the 
results to make them more realistic have also been studied (Powell and Zielinski 1995, 1997, 
2004). 
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Figure 1.  X-Y cross section of rails. 

When the rail height is infinitely large, there exists only one component of the magnetic 
induction (along the direction of the rail height) and two components of the electric field and 
current density (along directions normal to the rail height).  In this report, we consider the 
“alternate” 2-D model in which the current is conducted only in one direction, while the 
magnetic induction has two components.  The model should provide us with a methodology for 
considering a number of different problems that were not possible with our previous model.  
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Such problems include, for example, electromagnetic (EM) field transport in finite-height rails at 
distances far removed from the armature.  At these distances, we expect that current is conducted 
only along the direction of the rail, but that the magnetic induction field will “wrap around” the 
rail.  Consequently, there will exist only one component of the current density (along the rail 
direction) but two components of the magnetic induction (along directions normal to the rail 
direction).  We should also point out that we have recently extended a similar model in 
cylindrical coordinates that was used to investigate the disruption of shaped charge jets by 
axially directed currents.  That model has now been used to study current diffusion in some fairly 
complicated cylindrical geometric configurations in another report (Powell, 2008). 

In our previous work, we solved Maxwell’s equations directly for the EM fields, but in this 
report we employ the formalism of the vector and scalar potentials.  This approach is used 
because there is a single component of the vector potential from which the EM fields follow 
easily.  The calculations can therefore be significantly simplified; the two approaches yield 
similar results. 

Very complex models and computer codes for doing similar types of calculations have been 
developed in the past by others.  The most noteworthy example for application to railguns is 
perhaps the simulation code EMAP3D (Electromechanical Analysis Program in Three 
Dimensions) (Hsieh, 1995).  That code, which is three dimensional, has the capability of 
undertaking the sorts of problems of interest to us.  Our intent, however, is to develop a simpler 
model with which we can undertake elementary calculations and that can be extended to more 
complicated studies in the future.  Two-dimensional models that are similar to the one developed 
here include models by Kerrisk (1982), who investigated current diffusion in the rails of a 
railgun, and by Freeman (1988), who studied the launch of projectiles with a reconnection gun. 

The primary purpose of the report is to develop the model and to provide the methodology 
necessary for undertaking future calculations.  One simple example, however, is calculated.  The 
example is concerned with the diffusion of current and the resulting ohmic heating of two long 
parallel rails that carry current only along the direction of the rails.  This problem has potential 
importance for investigating rail erosion and assessing effects that might contribute to transition.  
We also undertake a calculation of the inductance per unit length  of the pair of rails. L′

The organization of the report is as follows.  In section 2, we derive the general governing 
equations in three dimensions and then obtain the limiting results for a 2-D, Cartesian model.  
Some of this analysis was contained in our previous report (Powell, 2008), but it is also included 
here for completeness.  In section 3, we undertake the current diffusion calculation just 
described.  Finally, section 4 contains a summary and indicates possible future directions for this 
research.   
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2. Model and Formalism 

We consider one or more electrical conductors contained within some domain D.  The 
conductors carry current, which may be specified a priori or may need to be calculated.  The 
conductors may be either in a solid or liquid state, and they may be moving with a velocity .v


  

We do neglect internal motion, however, so that the conductors move as perfectly rigid bodies.  
Our intent is to determine the EM fields throughout the domain as well as the temperature of the 
conductors as a function of both space and time. 

2.1 Vector Potential Formulation in Three Dimensions  

We begin with Maxwell’s equations and Ohm’s law in three dimensions.  Let ,E


B


, v , and 


J


 

be the electric field intensity, the magnetic induction field, the velocity of the conductor, and the 
current density, respectively.  Let μ and σ  be the permeability and electrical conductivity, 
respectively.  Then we have  

 ,
t

B
E

∂
∂−=×∇



 (1) 

 ,)/( JB


=×∇ μ  (2) 

 ),( BvEJ


×+= σ  (3) 

and  

 .0=•∇ B


 (4) 

These equations are written in the low-frequency approximation, which applies whenever the 
velocity v is small when compared to the light speed c0, and all relevant time scales in the 

problem are long when compared to .  Both conditions are easily met in the electrical 

conduction problems that we consider.  It is also assumed that the relationship between the 
magnetic field intensity

12
0 )( −cμσ

H


, which strictly should appear in equation 2, and the magnetic 

induction B


 is given by ,/ μBH


=  where μ is assumed to be constant within the material. 

We now define the vector potential A


 by the relation 

 AB


×∇= . (5) 

With this definition, it is apparent that equation 4 is satisfied automatically, since the divergence 
of the curl of any vector is always zero.  Substitution of equation 5 into equation 1 then provides
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 .0=







∂
∂+×∇

t

A
E




 (6) 

This equation has the solution  

 ,φ−∇=
∂
∂+

t

A
E




 (7) 

where φ∇  is an arbitrary function that constitutes the scalar potential contribution to the electric 

field.   

We finally observe that specification of the curl of A


 as given in equation 5 does not specify the 
vector uniquely.  A unique specification can be obtained, however, if we also indicate the 
divergence of the vector.  A convenient choice (there are others), which is known as the 
Coulomb gauge, is  

 .0=•∇ A


 (8) 

If we assume this condition, substitute equations 3, 5, and 7 into equation 2, and expand, we 
obtain   

 ,)()/1(
1 2 φσσμ
μ

σ ∇−×∇×+×∇×∇−∇=
∂
∂

AvAA
t

A 


 (9) 

where by definition .ˆˆˆ 2222 kAjAiAA zyx ∇+∇+∇=∇


  Equation 9, solved with appropriate 

boundary conditions and a specification of φ∇ , permits determination of  A


.  Substitution of 

that result in equations 7, 5, and 3 then produces the remaining variables ,E


 ,B


 and   It 

should also be pointed out that equation 8 holds not only in the conductors but in the surrounding 
vacuum as well, provided we take 

.J


.0=σ  

2.2 Governing Equations for 2-D Rectangular Coordinates 

For the 2-D case with rectangular coordinates, we assume that all variables depend only on x and 
y and not on the coordinate z.  Furthermore, for the specific case under study here, we assume 

that zaAA ˆ=


,  ,ˆ zaEE =


 and .ˆ zaJJ =


  It is evident, then, from equation 5 that v and


B


may have 

components in both the x and y directions.  If we furthermore note that equation 8 has only a z 

component, we must have that .0=
∂
∂=

∂
∂

yx

φφ
  Consequently, the only nonzero component of φ∇  

can be represented as  where  is a position-independent function.  If we now expand 

equation 9 completely, we find for the 2-D equation governing the evolution of 

),(0 tE 0E

A


 the result 

 







∂
∂

∂
∂+

∂
∂

∂
∂−








∂
∂+

∂
∂=








+

∂
∂+

∂
∂+

∂
∂

y

A

yx

A

xy

A
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A
E
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A
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A
u
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A μμ
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22

2

2

2

0

11
. (10) 
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In this equation, u and w represent the x and y components of the velocity, respectively.  Once 
equation 10 has been solved for the vector potential A, we can determine the magnetic induction 
and current density from equations 5, 3, and 7.  For the 2-D case, we have 

 ,
y

A
Bx ∂

∂=  (11) 

 ,
x

A
By ∂

∂−=  (12) 

and 

 







∂
∂+

∂
∂++

∂
∂−=

y

A
w

x

A
uE

t

A
J 0σ . (13) 

In general, the electrical conductivity σ depends sensitively on the temperature of the conductors.  
Consequently, it is necessary to solve an energy transport equation within the conducting regions 
in order to determine the temperature as a function of space and time.  We account for ohmic 
heating and ordinary heat conduction, and we allow for melting but no other phase change.  Let 
e, C, ρ, and κ be the specific internal energy, the specific heat capacity, the density, and the 
thermal conductivity, respectively.  Let Tm be the melting temperature, and let Hf  be the latent 
heat of fusion.  We then assume that the time evolvement of the energy is given by 

 ./2
2

2

2

2

σκκκκρρρ J
y

T

yx

T

xy

T

x

T

y

e
w

x

e
u

t

e +
∂
∂

∂
∂+

∂
∂

∂
∂+

∂
∂+

∂
∂=

∂
∂+

∂
∂+

∂
∂

 (14) 

The first four terms on the right-hand side account for heat conduction, whereas the last term 
accounts for ohmic heating. 

The relationship between e and T must be determined by an equation of state, and we use the 
simple representation  

  (15) ).()(
0

mf

T

TTHTdTCe −Θ+′′= 

In this equation, Θ is the Heaviside function, which is equal to zero when T is less than Tm and is 
equal to unity otherwise.  The equation clearly predicts that melting occurs at a well-defined 
temperature Tm.  Since the energy depends on ohmic heating and the electrical conductivity 
depends on temperature, there is an obvious coupling between equations 10 and 14. 
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2.3 Boundary Conditions  

Boundary conditions that must be applied at the outer edges of the domain Dare determined by 
physical considerations for each problem considered.  There are, however, additional boundary 
conditions that must hold at the interface between the conductors and the vacuum.  For the vector 
potential A, these conditions can be obtained by integrating equations 2 and 4 across such an 
interface of thickness δ and then taking the limit as .0→δ  Let  be the unit normal to the 
interface.  Then, if we assume that there are no surface currents, the integrations yield 

n̂

 0}{ˆ =• Bn


 (16) 

and  

 ,0}/{ˆ =× μBn


 (17) 

where the braces are used (in this section only) to denote the change in the quantity in question 
as the interface is crossed.  Thus, in accordance with standard results, we have that the normal 
component of B


 and the tangential component of H


 are continuous at the boundary.  In terms 

of the vector potential A, equation 16 implies that A is continuous at the boundary, whereas 
equation 17 implies that  

 .0
11 =





∂
∂



+





∂
∂





y

A
n

x

A
n yx μμ

 (18) 

Thus if μ is discontinuous at the boundary, so too is the normal derivative of A. 

Since heat conduction is accounted for, there must also be boundary conditions on the 
temperature at the conductor surfaces.  The appropriate condition can also be obtained by 
integrating equation 14 across the boundary.  We obtain 

 .0}{ =∇• Tn κ
 (19) 

Therefore, since κ is zero in the vacuum, equation 19 produces the usual result that the normal 
derivative of T must vanish at a conductor-vacuum interface. 

2.4 Generalized Coordinates 

As in previous work, we often find it convenient to transform the governing equations to a set of 
generalized coordinates.  The purpose of this transformation is to map a complicated physical 
space into a much simpler computational space in which the calculations are performed.  The 
computational space is chosen to be rectangular.  This procedure makes it possible to consider 
irregularly shaped boundaries, for example, in a rather straightforward manner.  Once the 
computation has been completed, the results are then “transformed back” to the physical space 
for presentation.  
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We now outline the general procedure for performing the transformation.  Greater detail can be 
found in our previous work (Powell and Zielinski, 1997) or in various textbooks (Anderson et al., 
1984; Hoffmann, 1989).  We denote the physical coordinates by (x,y,t) and the computational 
coordinates by (ξ,η,τ), and we write quite generally 

 

.

),,(

),,(

t

tyx

tyx

=
=
=

τ
ηη
ξξ

 

(20)

 

The partial derivatives that appear in equations 10 and 14 must be expressed in terms of the 
computational coordinates, and the appropriate relations can be obtained from the chain rule.  
We have for any function F 

 

 

(21) .

2

2
22

22

τ

ξηηηξξηξ

ξηηηξξηξ

ηξ

ηξ

ηξηξηξ

ηξηξηξ

ηξ
ηξ

FF

FFFFFF

FFFFFF

FFF

FFF

t

yyyyyyyyyy

xxxxxxxxxx

yyy

xxx

=

++++=

++++=

+=
+=

We have used here (this section only) subscripts that are coordinates to denote partial derivatives 
with respect to those coordinates.  Consequently,   and so forth. ,/ 22 xxx ∂∂= ηη ,/ 22 ξξξ ∂∂= FF

We now substitute from equation 21 into equations 10 and 14 to produce in terms of the 
computational variables 
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As is generally the case in these types of transformations, the transformed equations are much 
more complicated than the original ones.   

Our earlier work (Powell and Zielinski, 1997, 2001) contained both complicated and simple 
transformations as indicated in equation 20 in order to achieve some desired mapping.  For the 
problem to be considered here, only the trivial transformation 

 
x

y

=
=

η
ξ

 
(24)

 

is required.  Consequently, we do not discuss the details of more complicated transformations 
and refer the reader to the references cited previously. 

2.5 Numerical Procedure  

We employ a numerical procedure similar to that which we have used in previous work.  In 
particular, a rectangular computational grid with variable grid spacing in both directions is 
constructed.  The spacing of grid points is chosen so that when the mapping to the physical space 
is effected, the grid will be small in regions for which we expect a strong spatial variation and 
larger in regions where we expect a more gradual variation.  The derivatives in equations 22 and 
23 are then represented by standard finite differences, and the equations, which may be 
nonlinear, are solved by a modified Newton-Raphson method (Ames, 1977). 

3. Calculations 

We now employ the previous model and formalism to undertake one reasonably simple 
calculation.  The calculation is concerned with electrical conduction in a segment of the rails of a 
railgun.  The segment is assumed to be sufficiently far behind the projectile that the current I is 
conducted only in the z direction.  If we view a cross section in the x-y plane, the configuration 
appears as shown in figure 1.  The rail on the left conducts current in the positive z direction, 
while the rail on the right provides the return current path.  The rails have height h, separation w, 
and thickness s, given by 34, 44, and 19.2 mm, respectively.  It is evident from the figure that 
there is symmetry about , as well as about the vertical centerline indicated.  Consequently, 

we need only consider one quadrant of the configuration shown and choose, for convenience, the 
upper left-hand quadrant. 

0=y

Shown in figure 2 are the grid and domain D for the calculation.  The grid  shown is the grid in 
the physical space, but it is equivalent to the computational grid because of the transformation 
indicated in equation 24.  The origin of the x axis was chosen to lie at the left-hand side of the 
domain.  Also shown in the figure are the boundary conditions that are assumed to hold on the 
edges of the domain.  The top and left-hand sides are assumed to be sufficiently far from the rails 
that we can assume that  From symmetry considerations, we also have  along the 
right-hand side (the centerline in figure 1) and  along  

.0=A 0=A
0/ =∂∂ yA .0=y
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Figure 2. Domain and grid employed in the calculation.
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Figure 2.  Domain and grid employed in the calculation. 

For simplicity, we had intended to impose a constant total current of I0 for all calculations.  
However, in order to avoid discontinuities in either the current or its derivatives, we assumed a 
variation of the form 

 )  (25) /tanh( 00 ttII =

and chose t0 be small when compared to the total calculation time.  The asymptotic value of this 
functional form is I0, and  is greater than 0.95 when  0/ II .2/ 0 =tt

It is then necessary to determine the relationship between the total current I and the parameter E0 
that appears in equation 10.  The most straightforward way is to integrate equation 13 over the 
cross-sectional area of the rail and equate the result to the total current I.  A somewhat simpler 
expression can be obtained, however, if we note from equation 10 that the current density J can 
also be written as 

 9



 ,
1

AJ ∇•∇−=
μ

 (26) 

where we have assumed that the permeability is constant in the conductors.  If we now exploit 
the divergence theorem to evaluate the required integral, we have 

 ,2/Idl
n

A μ−=
∂
∂
  (27) 

where denotes the normal derivative of A at the boundary, and where the integral is to be 
evaluated over the boundaries of the rail cross section.  The procedure is standard and has been 
discussed, for example, by Hoffmann (1989).  The factor of 2 appears on the right-hand side 
because only the top half of the rail is included in the domain.  By using the divergence theorem, 
we have converted a 2-D integral to a series of three one-dimensional integrals.  Simpson’s rule 
is used to perform the integrations. 

nA ∂∂ /

The constraint imposed by equation 27 should be sufficient to determine E0.  It has proved, 
however, to be enormously difficult to implement this relationship in our computer code and to 
obtain accurate, stable values for E0.  Ultimately, we have resorted to the time-consuming 
procedure of assuming a value for E0 at some particular time step, obtaining convergence of 
equations 10 and 14, and then calculating a value for the total current, denoted by Ic.  We then 
changed E0 and recomputed.  This process allowed us to find the acceptable value of E0—i.e., 
the one that produc cI —by the procedure of bracketing and bisection (Press et al., 1986
Even then, however, we sometimes found small oscillations in E

e ).  d I =
0 as a function of time.  When 

these small oscillations occurred, we fit E0 to a curve, typically represented by a three-parameter 
exponential of the form  

 , (28) ctbeaE −+=0

where a, b, and c are constants, and recomputed.  Usually, we could then obtain reasonable 
agreement between the computed and imposed current.  This laborious procedure is not entirely 
satisfactory, but we have been unable thus far to produce something more suitable.  The 
difficulty of obtaining E0 for situations in which a total current is to be specified has been 
experienced and discussed by others (Freeman, 1988).  

We have performed calculations for a number of different values of I0 as well as for a number of 
different conditions.  We discuss only one, however.  For this particular calculation we chose 

 kA, μs, and assumed that the imposed current was represented by equation 25.  

The temperature-dependent thermophysical properties for the copper rails, shown in table 1, 
were employed.  The permeability μ was assumed to be constant and equal to its free-space value 
μ

5000 =I 1000 =t

0 everywhere. 
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We followed the previously discussed procedure to determine the value of E0 by fitting the 
numerical results to an exponential.  Approximate values of the constants were given by:  
a = –16.3 V/m, b = –2.14×103 V/m, and c = 1.34 × 104 s-1. 

Table 1.  Properties for copper employed in calculations 
(SI units are used unless otherwise noted). 

Property Value 

C 360.0 + 0.1T 

κ 412.0 – 0.07887T 

ρ 8900.0 

σ-1 (μΩ-cm) –0.542 + 0.00781T 

 

The calculation was then repeated with this value of E0 and produced the results for the 
computed current Ic shown in figure 3; the actual current I, given by equation 25, is also shown 
for comparison.  The agreement is reasonable. 

 

t (ms)

0 1 2 3 4 5

C
u

rr
en

t 
(k

A
)

0

100

200

300

400

500

600

I
IC

 

Figure 3.  Actual and calculated current as a function of time.
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The first results we show are the vector potential contours at the termination of the calculation at 
5 ms.  These contours are shown for the domain D in figure 4; they can be sequentially reflected 

about the lines indicated to produce somewhat obvious results in all four quadrants.  It is possible 

to prove (Powell, 2007) that the vector B


is tangent to lines of constant A.  Thus the arrows in the 
figure indicate the direction of the magnetic induction at the points indicated.  The magnitude of 
By varies inversely with the separation of the contour lines in the x direction, whereas the 
magnitude of Bx varies inversely with the separation in the y direction.  Consequently, the B field 
“wraps around” the rails, but it is larger within the bore than it is outside.  This effect is a 
consequence of finite rail height and was not seen in our previous models for which the rail 
height was infinite.  It is also of some interest to compare the maximum value of By in the bore 
with the value obtained for an infinite rail height model.  The maximum value of By occurs at  
y = 0 and at the inner surface of the rail ( cm); its value there is about 8.2 T.  For the 
infinite rail height case, B

22≈x
y is constant in the bore and its value is given by ,jBy μ= where j 

represents the current per unit rail height.  For MA/m, we find 19 T for the infinite 

rail height case.  There is, therefore, a difference of about a factor of 2 for the two cases.  

15≈j ≈yB
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Figure 4.  Vector potential contours at 5 ms. 

We next show results for the temperature and current density within the rail at several times 
during the calculation.  The current density is shown in figure 5.  As expected, current begins to 
flow just inside the boundaries of the conductor where the gradients in the magnetic induction 
are largest.  The magnitude is particularly high near the corners where both  and yBx ∂∂ /
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xBy ∂∂ / are large initially.  On average, the magnitude is also higher on the right-hand side of the 
rail than it is on the left-hand side.  This difference results because of the proximity of the return 
current rail on the right.  As time progresses, the current diffuses inward from the sides and from 
the top of the rail.  At late times, the current becomes fairly uniform within the rail as diffusion 
nears completion.  The magnitude of the current density at these late times is near 80 kA/cm2, 
i.e., the total current divided by the cross-sectional area of the rail.  An approximate time for 
diffusion to occur can be obtained from the standard skin-depth formula, .  If 
we assume that δ

2/1
0 ))/(( μσπδ t=

0 = 1 cm, i.e., the half-thickness of the rail, and take σ-1 to be its room-
temperature value of about 1.8 μΩ-cm, we obtain a time of about 2 ms.  That result seems 
consistent with results in figure 5.  
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Figure 5.  Current density contours at different times. 
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The isotherms, shown in figure 6, look somewhat similar to the current density contours.  As the 
current diffuses inward, the rails are heated ohmically, but temperature increases lag the increase 
in current density.  Furthermore, the temperature at any given point appears to rise monotonically 
with time.  This behavior indicates that ohmic heating is much more significant than thermal 
conduction, an effect that is small both because of the relatively short time scale and the small 
temperature gradients.  It is perhaps surprising that the temperature rise at the surface of the rails 
(only a few tens of degrees) is so small.  Our previous calculations with the infinite rail height 
models have indicated substantially higher temperatures in the rails.  The difference here can be 
attributed to two factors.  First, the current per unit rail height in this case is smaller than in most 
of our previous work, and the initial temperature rise at the rail surface varies roughly as j2.  
Second, some significant rail heating occurs because of the velocity skin effect during the time 
that the trailing edge of the armature is near a given point on the rail surface.  That effect is 
accounted for in our previous calculations but not in this one.  
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Figure 6.  Temperature contours at different times. 

We have finally undertaken an approximate calculation of the inductance gradient  for this 
geometry at several times.  This quantity can be represented as (Knoepfel, 1970)  

L′
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,),(
4 2

2
dxdyyxB

i
L =′

μ
 

(29)
 

where the integral is to be extended over the entire domain D.  Values for  at various times 
(times correspond to those in figures 3 and 4) are shown in table 2.  As might be expected,  
increases as the current diffuses inward from the sides of the rail.  Kerrisk (1981) has presented 
formulas for  in the high-frequency limit or, equivalently, at very early times when the current 
is still confined to the rail surfaces.  For the present configuration, Kerrisk’s formulas predict 

= 0.56 μH/m.  Similarly, Grover (1946) has obtained formulas that apply for late-time, steady-
state conditions when the current is uniform throughout the rail cross section.  His results predict 

= 0.67 μH/m.  Results in table 2 lie between these two extreme values, as should be expected.  
We should point out that we did not obtain results that approached Kerrisk’s value at very early 
times.  We believe, however, that this discrepancy arises from inadequate resolution of the 
current density near the corners when the current is largely confined to that location.  Indeed, if 
we decreased the grid spacing in these regions, more satisfactory results were obtained.  This 
problem will be addressed in more detail in subsequent work. 

L′
L′

L′

L′

L′

Table 2.  Inductance per unit length 
at various times. 

t(μs) L′ (μH/m) 
200 0.591 
500 0.598 

1000 0.615 
1500 0.627 
5000 0.650 

 

4. Summary and Future Work 

We have extended a previously developed 2-D model to account for the situation in which there 
are two components of the magnetic induction and one component of the current density.  The 
basic formalism was established, and the model was used to undertake one simple calculation.  
The calculation is concerned with the diffusion of current into a pair of infinitely long parallel 
rails.  The configuration approximates diffusion in the rails of a railgun at distances sufficiently 
far behind the armature.  

In future efforts, this model could be used, for example, to investigate the launch or deceleration 
of metallic plates by EM fields or rail erosion in railguns.  For the latter problem, it will likely be 
necessary to include the trailing edge of the armature and to account in some approximate way 
for localized heating caused by the velocity skin effect.  Such a calculation will extend the model 
beyond its rigorous range of applicability, but it may offer some insight into how erosion occurs. 
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