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Abstract

The fracture behavior of a composite cylinder subjected to a moving pressure has been
investigated. The resonance of stress waves can result in very high amplitude of strains in the
cylinder at the instant and location of pressure front passage when the velocity of the moving
pressure approaches a critical velocity. The stress wave with high magnitude, while short in
duration, might not cause structural failure immediately; however, it could accelerates the
propagation in the cylinder with initial imperfection and shorten fatigue life of the cylinders. The
fracture mechanism induced by dynamic amplification effects is especially critical for composite-
overwrapped cylinders because of the multimaterial and anisotropic construction, thermal
degradation in material properties, and a design goal that is inherent in lightweight gun barrel
applications.
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1. Introduction

Traditionally, the fatigue cycles  of a steel gun tube are calculated based on the frequency of firing

with an assumption of a static loading condition. For a lightweight composite gun barrel, fatigue and

fracture due to dynamic response of structures has to be considered from design points of view.

Cyclic stress and strain generated by the dynamic loads within a firing  cycle might significantly

accelerate the rate of propagation of an existing crack in the structure. The fracture mechanism

under a transient loading condition could be quite different from that produced by relatively static

loading. From a material point of view, fracture toughness and strength could change due to loading

rates. A reinforced polymer composite might become more brittle if it is loaded at higher strain rate.

The fracture toughness and strength measured in static loading conditions might not be suitable for

a transient case. In this paper, stress waves due to a dynamic response in a composite-wrapped steel

liner are modeled and used to study fracture behavior of gun barrels. A strain-energy integration

approach, originally suggested by Rice [l] as J-integral, is then proposed to evaluate crack

propagationat the interface of the composite and liner. This paper alsodiscusses how the energy

integration can be used to predict the crack propagation in gun barrels from an implementation point

of view.

Very high amplitude and frequency strains, commonly referred to as dynamic strain

amplification, develop in a cylinder at the passage of the moving pressure front. The phenomenon

is caused by the resonance of flexural  waves when the moving pressure approaches a critical

propagation velocity of the flexural  waves in the cylinder. The resonance response of a cylinder,

subjected to moving pressure loads, has been investigated by Taylor [2], Jones and Bhuta [3], Tang

[4], and Reismann [SJ. More recently, Sin&ins  [6] investigated the response of flexural  waves in

constant cross-sectional tubes, and Hopkins [7] used the ftite element method to study the dynamic

strain response of a tube with various cross sections. Recently, Tzeng and Hopkins [8] extended the

research on the dynamic strain effect to cylinders made of fiber-reinforced composite-overwrapped

materials with a metal liner. The results are very applicable to lightweight composite cylinders used

for gun tubes and high-pressure piping systems.
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The dynamic strain effect is especially critical for composite-over-wrapped cylinders that are

designed to achieve enhanced performance with relatively light weight. From a design point of view,

the weight savings generally decreases the rigidity and inertia of the tubes under dynamic loads.

These effects are especially critical for thin-walled cylinders, since local shell bending is caused by

the pressure discontinuity as the pressure front travels down the tube. The deformation, due to shell

bending, can develop high axial and transverse shear stresses. The transverse shear stress magnitude

is critical, since the shear strength of composites is generally much lower than the shear strength of

metals. The dynamic analysis is especially critical from the design point of view, since the stress and

strain levels can be two to three times higher under dynamic conditions than those attained under

static loading conditions. Accordingly, the response at the interface between the composite overwrap

and steel liner becomes very important. The shear properties and tensile peel strength at this

interface are low, in general, due to relatively poor adhesion between different materials, which

might result in an initial debonding. The dynamic cyclic strains from oscillation may cause crack

propagation of the composite materials and eventually lead to fracture of the overwrapped cylinder.

2. Ahdysis
.

In this section, the dynamic response and fracture of a composite-overwrapped cylinder subjected

to a moving pressure are investigated by using both analytical and numerical methods. As a first

approximation, Love’s thin-shell theory is used to derive a closed-form expression for the critical

velocity. The critical velocity at which resonance occurs is greatly influenced by tube geometry and

material properties. The finite element solution is obtained using a version of the DYNAZD  [9]

hydrocode, which has been modified to allow accurate modeling of the moving- pressure front. This

approach allows modeling of both the moving-pressure front and the composite cylinder geometry

with initial cracks in sufficient detail to simulate the actual loading conditions. Finally, an

integration of strain energy density along a specific path within a cylinder is presented and used as

an indication for crack propagation.

.
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2.1 Fracture and Energy Density Integration. Consider a crack at the interface of the
I

composite overwrap  and steel liner as shown in Figure 1. The strain fields near the crack tip are

difficult to determine, especially in this bimaterial system with anisotropy of composite laminates.

With the assumption that the crack at the interface is axisymmetric, analysis can be done by a

two-dimensional model both for the far-field analysis and the crack tip. Rice [l] proposed the

J-integral method, which bypasses the complexity of solving a boundary value problem. An integral

surrounding the crack tip with a path of I’ can be defined as

J = ody- T’ axzds) + j+;;)dV,

where o is the strain energy density and can be defined as

Cd = U(E) = E oijdeij.
s (2)
0

(1)

T is the traction vector along the path, u represents the displacement vectors, ds is an element of arc

length along I?, and V is volume.

Kinetic energy associated with the internal movement of material is neglected at the moment;

.

however, the effects are shown in equation (1) by Atluri [lo]  and Doyle and Fanis  [ 111. As pointed

out by Rice [ 11, the J-integral is equivalent to strain energy release rate at the crack for an elastic case

that results in the following expression:

l .

J = -dV
aa = G = Gl + G, + G,, (3)



lntetfacial crack

Pressure front

Figure 1. An Integration Around a Crack at the Interface of Composite and Metal Liner.

where V represents the potential energy of an elastic body, a is a crack length in the body, and G is

the total strain energy release rate resulting from three fracture modes. Accordingly, the strain

energy release rate is related to stress intensity as follows:

G= ‘-‘*
E

(4)



where K,, K,, and K, are stress intensity factors associated to different modes, and the analysis is

assumed to be a plane strain case.

The integration of strain energy can be carried out with an implementation of a finite element

technique. A composite-overwrapped cylinder with an initial crack at the composite/liner interface

can be modeled in detail. Stress and strain fields in the region surrounding the crack can be obtained

through a transient analysis. Strain energy density and its integration are then calculated element by

element through a specific path. The results will then be ready for comparison with empirical data

and serve as a useful design and fabrication parameter.

2.2 Dynamic Response of Cylinders. The critical velocity of a flexural  wave in a cylindrical

tube can be obtained from Love’s thin-shell theory. The closed-form solution is valuable in

illustrating and understanding the important parameters that determine the dynamic response of the

cylinder. The results can also be compared with the critical velocity values obtained using finite

element techniques. The finite element values will approach the exact solution as the mesh._
discretization increases. Consider a thin, orthotropic cylinder of radius’R subjected to a transient

axisymmetric radial load (e.g., a moving internal pressure, P). Figure 2 shows the geometry,

coordinate system, and pressure loading condition being considered. The governing equation for this

model with a moving internal pressure front, expressed as Heaviside step function, can be shown to

be given by

a2w + Dm- ?? +
12 (1 - VexVxe>

at2 ' ax4 h2R2
D,W = P(l - H(x - Vt)),

where W is the radical displacement dependent upon time, t, and axial position coordinate, x; m is

the mass, which is equal to ph; p is the density of shell material, h is the thickness of the shell; P is

the internal pressure; and V is the pressure front velocity, which is assumed constant. The shell-

bending stiffness in the axial and circumferential directions is in equations (6) and (7), respectively.



Deformed

Pressure 4

Local Bending . .
._

R : Radius of cylindrical shell

W: Radial displacement

U : Axial displacement

r, 6 x : Cylindrical coordinates

Figure 2. Deformation and Coordinates Definition of Cylindrical Shell Subjected to a Moving
Pressure.

D, =
Exh3

12(1 - v13,v,e)  ’

.

(6)

and

D, =
Eeh3

12(1 - vcPxe)  ’
(7)
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where E, and E, are the effective (smeared) elastic moduli, and v,, and v,, are the effective Poisson’s

ratios of the composite material in the axial and circumferential directions, respectively. For a

composite tube with cross-ply laminate construction, the shell-bending stiffness is different in the

axial and circumferential directions and is determined by the axial-to-hoop layer ratio. The loading

function, P (1 -H(x-VJ)  in equation (5), represents the internal pressure front traveling in the axial

direction with constant velocity V. H(x-Vt) is the Heaviside step function. Accordingly,

P(l - H(x- Vt)) =O-whenx>Vt

=PwhenxsVt. ‘(8)

The critical velocity for an orthotropic cylindrical shell, derived from the characteristic function

obtained from equation (5) is given by

(9)

Equation (9) clearly shows that the critical velocity of an orthotropic cylinder subjected to a

moving-pressure front is a function of the tube’s geometry, density, Poisson’s ratios, and elastic

moduli. The critical velocity increases when either of the elastic moduli increases, as well as when

the shell thickness-to-radius ratio increases. From a design point of view, a tube constructed with

high stiffness and lightweight materials is preferred for dynamic loading conditions. However,

equation (9) indicates that a larger wall thickness is required, in general, for the tube geometry when

a high-velocity pressure front is present, if the rest of the parameters are kept for the same. However,

it also shows that both axial and hoop moduli (i.e., E, and E,) have influence on the critical velocity.

Accordingly, the design optimization can be achieved by varying the laminate architecture of

composite cylinders.

7



For an isotropic region, equations (5x9) can be greatly reduced and simplified since the material

properties are the same in hoop and axial directions (i.e., D, = D,, Es = E X, and v,, = v,,).

Accordingly, the critical velocity can be expressed as

2.3 Finite Element Modeling. The closed-form solution described in section 2.1 can be applied

accurately to a cylindrical shell under the assumption of infinite length. For a finite  length cylinder

with varying cross-sectional area along its length and multimaterial construction, the fmite element

method allows for a more expedient and straightforward procedure for determining the critical

velocity. A hydrodynamic finite  element code, DYIWUD,  was modified to simulate the moving-

pressure boundary condition. As shown in Figure 1, a slideline that allows a dummy material block

to move freely along the axial direction of the cylinder is included in the fmite element model of the

cylinder. The instantaneous location of the pressure front is then easily determined by tracking the

location of the rear face of the dummy material block. To accurately capture the oscillatory dynamic

response of the tube, the computation is carried out with a very small time interval (~10~~  s). This

time interval also allows the pressure to slowly ramp to a maximum value as element surfaces are

uncovered by the moving block. This means that artificial numerical stress oscillations, due to the

sudden application of the pressure boundary condition on an element face, are minimized so that

these numerical oscillations do not adversely affect the solution. While for the cases examined in

this study the velocity was held constant, the methodology can also be used to simulate the effect of

an accelerating pressure front, if desired.

Since the composite tube has a laminated construction, ideally, a ply-by-ply model will yield the

best result and accuracy. However, this would dictate the use of many thousands of elements in the

a finite element model. This level of detail, coupled with the very short time step interval required

for a dynamic analysis, would lead to an unreasonably long computational time. Also, an additional

potential side effect of taking many millions of time steps would be to potentially induce numerical

8



instabilities due to round-off errors. Avoiding these constraints thus limits the size (e.g., number of

elements) of the finite element model that can be analyzed within a reasonable computational time.

In composite analysis, it is standard practice to use smeared properties for the composite laminate.

These properties, which are representative of the unique lay-up construction of the tube, were

calculated using a model developed by Alexander and Tzeng [ 121. The smeared property approach

allows a single finite element to contain several layers. Accordingly, the size of the finite element

model can be greatly reduced.

3. Results

The cylinder used in this analysis is 100 in long with a constant wall thickness. The steel liner

and composite overwrap  are 0.075 in and 0.125 in thick, respectively. The smeared properties for

a composite tube composed of 25% axial (x-direction) and 75% hoop (Cl-direction) plies are shown

in Figure 3. The properties are calculated based on the use of an IM7 graphite/855 l-7 epoxy

composite. -The unit ply properties are also given in Figure 3. The cylinder is equally divided into

400 elements along the axial direction and 10 elements through the wall thickness. There are four

elements representing the steel liner and six elements representing the composite overwrap. In all,

the model contains 4,000 elements. The cylinder is subjected to a moving internal pressure of

6,000 psi.

.

_.

,’ 3.1 Velocity Effects of Moving Pressure. Two pressure front velocities, a subcritical velocity

of 2,500 ft/s  (case 1) and a supercritical velocity of 3,500 ft/s  (case 2), are performed to demonstrate

the dynamic effects. The total time for the pressure front to traverse down the tube was about 3.33

and 2.43 ms for cases 1 and 2, respectively. The time increment used in the analysis was on the

order of 1 p; therefore, approximately 3,500-4,000 time steps were used per analysis. The ftite

element models, including the composite cylinder and the dummy material block, are shown in

Figure 4 at a time instant when the block was traveling 20 in from the initial position. The block is

then given an initial velocity, which is held constant throughout the analysis. Finally, because an

axisymmetric model was employed, only one-half of the cylinder is shown.

9



E11= 25.0E+06

E22 = 1.2 E+06

E33 = 1.2 E+06

Y12 = 0.33

Y13 = 0.33

75%Hoop

Er = 1.298E+06

Ex = 7.214E+06

Ee = 19.10E+06

Yer = 0.3825

'vex = 0.0556

G12 = 7.OE+05

G13 = 7.OE+05

G23 = 5.3E+05

'v23 = 0.31

Grx=4.095E+05

Ger = 4.610E+05

Gex = 7.000E+05

Yxr = 0.338

Figure 3. Smeared Properties of the Composite Tube.
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TIME= 5.3994E-04
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20.006
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c

Dummy projectile

t t

-2O.Wli

Composite ovenwap cylinder

/

.-

I , I

I I

10.ooo 4o.ow

Rgure 4. Finite Element Model of the Composite-Ovexwrapped Cylinder With the Dummy
Projectile at Time = 5.3994 E-4 s.

A fringe plot of the radial displacement in the neighborhood of the projectile with velocity of

3,500 ft/s at this specific instant is shown in Figure 5. The fringe pattern clearly shows the stress

oscillation, due to induced-bending boundary layer stresses in the wall of the cylinder as it is

subjected to a moving-pressure front. There are no strain and stress waves occurring at a low

velocity. The maximum displacement is located very close to the pressure front where pressure

discontinuity is located. The displacement then decreases with increasing axial distance from the

location of the pressure front discontinuity. The deformation is transient and cyclic with time and

position.

11



Cylinder -modified v = 3500 ftkec
TIME = 9.8992E-04 FRINGES OF RADIAL DISPLACEMENT

42.000

38.000

36.000

‘_

.

MINVAL  = -3.98E-04
MAXVAL = 1.28E-02
FRINGE LEVELS

m A = 9.21 E-04

I-JI3 =  2.24E-03

C = 3.56E-03

1-lD  = 4.88E-03
~~~E  = 6_2OE_03

F = 7.52E-03

I-G  =  8.83E-93

H = l.O2E-02

II  =  1.15E-02

._

I I I I t, I

.

0.000 3.000 6.000

Figure 5. Radial Displacement in the Vicinity of the Projectile Passage at Time =
5.3994 E-4 s.

The way of presenting the data described previously can clearly illustrate the spatial variation of

the displacement and, consequently, strain and stress fields. This view corresponds to what

observers traveling with the pressure front see as they pass through the cylinder. An alternate view

is to pick a fixed location on the tube and observe the change in displacement as the pressure front

approaches this position and then passes it (using a time history plot for a given location). This

corresponds to what is measured with strain gauges or accelerometers attached to the tube. The

radial locations at which various displacement and stress components are examined in this paper are

shown in Figure 6. These radial locations represent positions at which these displacement and stress

12



Max. axial stress
in composite

Max. hoop stress
in composite

Max. shear stress

----a-------.

. . . . .._. .i....  ..,.  . . . . . ,....... ,.,. ..,..... . ,.,, .,.\ ,...~~~~~~~~~~~~~~~~~::j:::j:.:i::.:.:.:::  . . . . . . . . . . . . . >:.:.:.:.:  ._, . , : . ,,. .,.
.‘. ;+@posite_. ‘.’ ” ‘, 1: ,: ‘.‘,.I  ‘,’‘. ‘. ‘. ‘: .‘;’,.,. . : .; ./‘, .‘( ., ‘.’

Max. axial and hoop
stress in liner

.
._

Figure 6. Locations of the Maximum Stress Components.

.

components attain their greatest values as discussed in detail next. Since the tube is subjected to an

internal pressure, the maximum hoop stress occurs at the inner surface of the liner. As the pressure

front passes a given axial location, a local axisymmetric bending occurs in the tube wall. The

. .

maximum axial stress will thus occur at the innermost surface of the liner and the outermost surface

of the composite. The maximum shear stress associated with the bending is located at the neutral

cross section. Accordingly, the critical value of the shear stress in the transverse direction of

. composite laminate occurs near the interface of the liner and the composite overwrap. Figures 7-10

plot the various displacement and stress component vs. time at these locations for the cylinder.
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Figure 9. Axial Stress in the Outermost Region of the Composite Overwrap.
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Figure 10. Interlaminate Shear Stress in the Innermost Region of the Composite Overwrap.



The radial displacement at the innermost region of the composite in Figure 7 shows a dramatic

difference in the magnitude of peak displacements, as well as in temporal behavior of the oscillations

as the projectile velocity changes, case 1 vs. case 2. Before the arrival of the pressure front, the

cylinder at these observed locations is basically undeformed. The small oscillations that occur just

before projectile arrival are real and represent stress oscillations, due to the moving-pressure front.

Similar behavior is predicted by thin-wall shell theory. It is seen that at the instant the pressure front

passes, the radial displacement undergoes a rapid increase. However, for sufficiently low velocities,

similar to case 1, the displacement and stresses are still close to what would be predicted based upon

Lame’s equation for a static internal pressure loading. This is not the case, though, for velocities

near or above the critical velocity shown in Figure 7, case 2. A very large radial displacement occurs

for this case where the pressure front velocity is 3,500 ft/s.  In fact, this velocity exceeds the critical

velocity of the composite-overwrapped cylinder. The peak magnitude of the radial displacement is

seen to be about 1.5 times the peak magnitude of the radial displacement of case 1, where the

velocity is only 2,500 ft/s. As the projectile moves farther away from the axial location, the radial

displacement approaches the same magnitude (-7.5 x 10e3  in), as would be predicted by a static.- ._
analysis of a pressurized tube. This is shown to be true for both case 1 and case 2. It is very

important to realize that because the velocity for case 2 is above the critical velocity, the peak radial

displacement value is actually less than the peak value that would be obtained if the pressure front

had accelerated from 2,500 fVs to 3,500 ft/s, since, in this scenario, the pressure front would have

passed through the critical velocity at some axial location. This would have resulted in a resonant

condition at that location, and the peak radial displacement would have been at least twice the

Lame’s prediction. In fact, theoretically, for linear elastic behavior, the response would have been

infinite. This means that the material response would have been limited only by the internal

damping of the material coupled with its behavior after yield.

Figure 8 shows the smeared hoop stress induced at the innermost region of the composite. The

composite overwrap is constructed with 75% hoop and 25% axial plies, and the smeared hoop stress

is, in some sense, the average value for a small representative volume of the laminate at this location.

A simple rule-of-mixtures calculation indicated that the peak unsmeared fiber stress in the hoop

direction is about 76 ksi for the low-velocity case and 186 ksi for the high-velocity case. The effect
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of resonance, due to a fast moving-pressure front, is, again, clearly indicated. Figure 9 shows the

smeared axial stress at the outermost radius of the composite overwrap. The computed fiber stress

is approximately 47 ksi and 220 ksi for the low- and high-velocity cases, respectively; again, this is

based on a simple rule-of-mixtures approach. Figure 10 shows the shear stress (tJ at the innermost

radius of the composite overwrap, which is near the neutral axis of the combined steel/composite

tube. The shear stress is in the transverse direction of the laminate. The stress levels are 3.7 ksi and

16.5 ksi for the low- and high-velocity cases, respectively. Considering manufacturing factors and

the low adhesion strength at the steel/composite interface, the 16.5-ksi  shear stress indicates a low

margin-of-safety factor.

3.2 Cylinders With an Initial Crack. An initial delamination at the interface of the composite

overwrap  and steel liner is modeled by adding a slideline into the ftite  element model developed

previously. It is also assumed that there is no friction at the sliding interface. Due to singularity, the

stress and strain fields are not accurate in the very near region of the crack tip. Nonetheless, the far-

field stress and strain are reasonably accurate and can be used to calculate strain energy density

surrounding the crack. Accordingly, a superfine finite element mesh is not necessary if the dynamic

response can be fully modeled.

Figure 11 illustrates the fmite element model near the crack tip and the path of integration. The

path is chosen to be along the coordinate axes to reduce computational efforts. It is also traction-

free along the path, which furthermore reduces the complexity of the calculation. The integration

can be performed element by element along the path. The strain energy density is calculated at the

center of each element and assumed to be uniform in each element. As the density of finite  element

model increase, the integration will approach an exact solution.

The integration of strain energy density is conservative or path-independent. Theoretically, if

there is no crack existing, the integration along any closed loop will be equal to zero. This can be

verified numerically by integrating strain energy density along a closed loop, using the results from

the previous finite  element analysis. For a case with cracks, the stress and strain fields surrounding

the crack are no longer the same as those calculated from a model without cracks. Accordingly, the
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Figure 11. Cylinder With an Initial Crack and an Integration Path.

integration of strain energy density with path will yield to the energy release rate of the specific

crack. Furthermore, the integrated energy release rate is determined by the size of crack if the

velocity of the pressure front and internal pressure are kept to be a constant.

An analysis was performed for a model with a crack size of 0.75 in along the interface of

composite and liner, which is large enough to cause failure of the cylinder by a rapid crack

propagation. The internal pressure is about 6,000 psi, and the velocity of pressure front is 3,500 IVs.

Figures 12-15 and Figures 16-19 illustrate strain and stress components, respectively, in a steel,’

element near the crack. Both the stress and strain distributions are quite different from those

calculated from a model without cracks due to a stress concentration near the crack.

Equation (1) indicates that integration of strain energy along a cross-loop path around a crack

yields the strain energy release rate. A detail of a finite element model near the crack area is shown

in Figure 20. A crack or delamination is modeled by placing a sliding interface between elements

484 and 232 1. The integration path is shown as the dash linewidth-a counterclockwise loop around

the crack. The stress and strain components of each element are then integrated along the path. A

.
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l.lOOE.02

l.OOOEO2

S.WOE-03

aowE-

?.owE-o3

amE.

awSEo3

a
~.OWE-OS

$ ;GxWE43

kg
8 2SOOE-03

P
l.SWE.03

O.WOE+OO

-1.OOOE-03

-3.OWE-03
I

acmz-04
;

l.zwM3 1.8WE43 24wE.m

YIMUM = 4.3wsE-02
MAXIMUM  I 0.1112E41

ELEMENT  494

Figure 13. Hoop Strain in the Steel Liner Near the Crack.
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Figure 14. Axial Strain in the Steel Liner Near the Crack.

1.200E03  _
\ I

l.OOOE-03

6.006E-04

6.000E-w

-2S6OE-04

l .OOOEa

-6.OOOE-04

1
O.MOE+W 6.000&04 1.200563 1.6OOEQJ 2

MINIMUM = .0.6606E-O3
MAXIMUM = 0.1342E-02

lWE

ELEHEHT 4 6 4

.

Figure 15. Shear Strain in the Steel Liner Near the Crack.
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Figure 16. Radial Stress in the Steel Liner Near-the Crack.
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Figure 17. Hoop Stress in the Steel Liner Near the Crack.

23



B.OOOE+M
I I

7.0OOE+04  i I I

6.000&64

3.OOOE+O4

2 2.0OQEt64

&
5
-I l.O06E+64
a

9

0.OOOE*00

-1.000E44

-2oooE+o4

O.MOE+OO 6.0&E-64 1.303E.03 1.6OOE-63 24AOE.03

MINIMUM = -O.Z671E+65
MAXIMUM / 0.6022E+O6

ELEMENT  464

Figure 18. Axial Stress in the Steel Liier Near the Crack.
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Figure 19. Shear Stress in the Steel Liner Near the Crack.
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F’igure  20. FEM Model and Integration Loop Near the Crack.

combined energy release rate of mode I and II can be calculated fkom strain energy resulting from

radial, axial, and through thickness shear components as

G = GI + Gn = 0.01 k&in.

The elastic modulus of the epoxy intetiace  is about 500 ksi; accordingly, we can get the

cotibined  toughness from equation (4) as follows:
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K = /m = 5.0 ksi-in1’2. (11)

The mode III toughness is not included, since there is no contribution of inplane shear

components. It is noted that the computed combined stress intensity, K, is much larger than the

fracture toughness measured under a static condition. The K,, is about 1.2 k&in”, and K, is about

1.5 ksi-in’” for toughened epoxy. The dynamic fracture toughness will be lower as loading rate

increases. Currently, experiments are being conducted to measure dynamic toughness for selected

materials. The proposed method does need to be verified with sufficient data in order to be

implemented in this specific application.

4. Conclusions

The dynamic analysis of a composite-overwrapped tube illustrates that high-magnitude strains

and stresses develop in the cylinder at the pressure front that traverses along the length of the

cylinder. The high magnitudes are caused by a resonance condition of the flexural wave propagation

with the moving-pressure front velocity. This dynamic strain effect can potentially cause damage

and lead to a shortened life cycle of components. The fracture propagation associated with the stress

waves is particularly critical for the lightweight composite-overwrapped cylinders because of the low

shear and tensile strength at the interface of multimaterial construction and thermal degradation and

loading rate dependence in polymer metrix composite material properties. The dynamic analysis is

important in highlighting the potential shortcomings of traditional static analyses commonly used

in gun tube and piping system design, especially with the goal of achieving a lightweight design.

In order to develop a safe, optimum design, this dynamic amplification effect and fracture

mechanism must be included in design processes.
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