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SUMMARY

A finite-element Galerkin formulation has been developed to study attenua-
tion of transverse magnetic (TM) waves propagating in two-dimensional S-curved
ducts with absorbing walls. 1In the frequency range where the duct diameter
and electromagnetic wave length are nearly equal, the effect of duct length,
curvature (duct offset), and absorber wall thickness was examined. For a given
offset in the curved duct, the length of the S-duct was found to significantly
affect both the absorptive and reflective characteristics of the duct. For a
straight and a curved duct with perfect electric conductor terminations, power
attenuation contours were examined to determine electromagnetic wall proper-
ties associated with maximum input signal absorption. Offset of the S-duct
was found to significantly affect the value of the wall permittivity associated
with the optimal attenuation of the incident electromagnetic wave.

INTRODUCTION

Electromagnetic propagation in curved ducts (wave guides) plays an impor-
tant role in many practical physical systems. In microwave power generation
systems, for example (Kennedy, 1985, pp. 315-317), bends or corners are
required to alter the direction of the wave. Since curves or corners repre-
sent discontinuities, reflection from bends can be significant. Recent work
(Burkholder, 1987 and Chou, 1987) has been concerned with the absorption of
electromagnetic waves in curved ducts.

In the present paper, a finite-element Galerkin formulation has been
developed to study wave propagation in curved S-shaped ducts with absorbing
walls. Figure 1 illustrates the various processes of reflection and absorp-
tion which can occur when electromagnetic energy flows into a curved duct.
This paper will focus on the interaction of a propagating duct mode traveling
down the uniform entrance duct with the curved walls as shown in figure 1. The
reflection and transmission at the entrance and exit of the curved duct are
determined by coupling the finite-element solutions in the curved duct to the
eigenfunctions of the infinite, uniform, perfectly conducting entrance and
exit ducts. This permits a multimodal representation accounting for
reflection and mode conversion by the nonuniform curved section.

In a number of parametric studies, the effect of duct length, curvature
(duct offset), and wall thickness are examined. In addition, for a PEC (per-
fect electrically conducting) termination, a computational search is used to
determine the wall properties which lead to a local maximum attenuation of the
incident electromagnetic wave for both a straight and curved S-duct.



NOMENCLATURE
A property term, equation (20)
B property term, equation (21)

mode amplitude of positive going entrance waves, equation (8)
An mode amplitude of reflected negative going entrance wave, equation (8)

mode amplitude of positive going exit waves, equation (11)

b' characteristic duct height

ba dimensionless entrance height b;/b'

by dimensionless exit height bé/b

Co speed of light in vacuum

f dimensionless frequency, equation (7)

Hy x component of magnetic intensity, H;/Hé

Ho normalizing magnitude of magnetic intensity

Hy finite-element approximation to Hy
h| ‘/-l
k wave number

kzn  axial modal wave number, equations (9) and (10)

L dimensionless length, L'/b,
m mode number, equation (13)
Nm number of modes in expansion, equation (13)

Po power of positive going entrance wave

Px power in axial direction
T dimensionless thickness of absorber wall
t dimensionless time, Co t'

ba



]
dimensional transverse distance, x'/by

1
dimensionless transverse distance, y'/by

dimensionless axial distance, z'/by
total complex permittivity, equation (4)

permittivity
dielectric constant in entrance duct, e3/¢g
permittivity in vacuum

complex dielectric constant, e'/eq
imaginary part of dielectric constant
real part of dielectric constant

total imaginary part of permittivity, equation (4)
intrinsic impedance

wavelength

total permeability, equation (5)
permeability

permeability in vacuum

relative permeability, p /po
imaginary part of relative permeability

real part of relative permeability

o'ba
dimensionless conductance, ——
¢ %o
w'b!
. R a
dimensionless angular velocity, ——
o
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w' angular velocity

Subscripts
a entrance region
b exit region

Superscripts
: dimensional quantity

~ approximate quantity

GEOMETRIC MODEL

In the finite-element modeling, an S-shaped profile has been chosen to
approximate the two-dimensional cross-sectional profile that might be found in
a typical bend, as shown in figure 2. The S-shaped profile can be prescribed
by a simple third-degree polynomial of the form

s as®) -2 @]

where the dimensionless duct coordinates are defined as

y=L z2-% 1-% (2)
ba ba a
and b; is the height of the straight duct leading into the curved duct and

h is the offset height of the duct. The S-curve defined by equation (1) has
zero slope at 2z/L of 0 and 1; providing a smooth transition from a straight
entrance to the curved test section. In the foregoing equations, the prime, ',
is used to denote a dimensional quantity and the unprimed symbols define a
dimensionless quantity. This convention will be used throughout this report.
These and all other symbols used in the report are defined in the nomenclature.

GOVERNING EQUATION

For time harmonic (etdwt) variations in the electromagnetic field, the
governing differential equations are the standard Maxwell's equations which
can be combined to form a single variable property wave equation for the trans-
verse magnetic wave propagation (Silvester, 1983, pg. 48, eq. 4.07). For
a two-dimensional duct, the scalar form of the wave equation can be written as
(Baumeister, 1988, eq. 13)



5 (18Hx> 8 (18Hx) ¢ wuH = 0 (3)
8y \eby §Z \eéz

where the total permittivity including conduction (Cheng, pg. 300 or Harring-
ton, pp. 24 and 25, eq. (1-74) and (1-76)) and the total permeability (Harring-
ton, pg. 25, eq. (1-77)) are defined as

I

R X .1
€ =€, - h| (er + )= e. - 1 &7 (4)

R .
Bo= ke - JH. (5)

o by (6)

and the dimensionless frequency f is defined as

flbl bl
fo—2a_3 g 7
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Because of computer storage limitations, the present finite element formulation
will be restricted to structures where the duct height is the same order of
magnitude as the wavelength.

UNIFORM DUCT ANALYTICAL SOLUTIONS

The analytical solutions of equation (3) for wave propagation in the uni-
form perfectly conducting duct having an anechoic entrance and exit will be
employed to give the proper termination boundary condition for the finite-
element region. The analytical solution of equation (3) for TM waves travel-
ing between perfectly conducting parallel plates is given as (Cheng, 1983,
pg. 458):

N . N .
m -jk, .z m +jk, 2
_ + (n - Dwy zn - (n -1) wy zn
HXa = z : Ancos ( ba )e + z An cos( ba e (8)
n=1 n=1

s +
For the et+Jwt time dependence used here, the A, represents a wave

propagating in the positive z direction while A, term represents a wave
moving in the negative z direction



The axial wave number kzn 1in equation (8) is

2
(n - D (n = N (3
zn a ' ( bak ) ( bak ) < !

2
. (n - D (n - D a0
zn _Jk ( bak ) - ( bak ) >

A similar solution exists at the exit, except only positive going waves

are considered
N
m .
_ + (n - Dwyl=-jk, z an
Hyp = :E: B cos (}———qﬂ;——l)e zn
n=1\

BOUNDARY CONDITIONS

x
]

k

A variety of boundary conditions will be used in the finite-element solu-
tion of equation (3) for the model problems which are displayed in schematic
form in figures 3 and 4. Each of the required conditions will now be briefly
discussed.

Input Conditions

+

The analysis assumes a given number Ny of propagating A, modes
(eq. 8). These modes effectively set the level of the magnetic field in the
finite element region and can be viewed as the equivalent Dirichlet boundary
condition required for the elliptic boundary value problem as defined by
equation (3).

The modal expression represented by equation (8) has been truncated to a
total of Ny modes of the infinite number possible. Thus, a total of Ny

unknown modal amplitudes Aj, A2 ,. . . Ayp have been introduced. Ny
constraint equations will be required to determine each of these unknown

reflection coefficients. The equations used to determine these coefficients
will now be introduced.

Continuity at Inlet and Exit

The tangential component of an H field is continuous across an
interface between two physical real media which are not perfect conductors
(Kraichman, 1970, eq. (1.61)). Thus, the boundary condition becomes

~

HXa = HX (z=0;,0>y<« ba) a2



where Hyz 1is the modal representation of the magnetic field in the
analytical inlet region given by equation (8) and ﬁx represents the

finite-element numerical solution to be discussed in detail in a following
section of this report.

At the inlet to the curved section, shown in figures 3 or 4, the Hyy in
the analytical region given by equation (8) must match the magnetic field
defined by the finite-element nodal points along the boundary interface. Many
possible mode matching schemes can be employed for this boundary condition,
such as point collocation, least squares, or weighted residuals. A weighted
residual approach was used herein with the weighting function equal to the
eigenfunctions for the uniform infinitely long duct with perfectly conducting
walls;

b
a
J [Hxa ) - H(y)]cos (—‘mg—‘)"l)dy -0 at z =0 (13)
a
0
(Np equations, m =1, 2, 3,. . . Ny

Equation (13) represents Ny separate equations; one for each coefficient
defined in equation (8). The symbol m has been introduced as a dummy varia-
ble to make it distinct from the multiple n mode numbers that make up the
Hya analytical function. A similar situation exits at the exit.

In addition to the tangential component of the magnetic field, the tangen-
tial component of the electric field must also be continuous across the inter-
face (Cheng, 1983, eq. (7-52(a))). Using Maxwell's equations to express the
tangential electric field in terms of the magnetic field (Jordan, 1968,
eq. (7-4)) yields

o

Hx _ 8Hxa (14>

]
b4 €y 8§z

™ f
o

Perfectly Conducting Wall Conditions

At a perfectly conducting wall surrounding the duct or at the exit plane
in figure 4, the tangential component of the electric field vector is zero
(Cheng, 1983, eq. (7-52(a)) or Kraichman, 1970, eq. (1.69)). Again, using Max-
well's equations to relate the electric field to the magnetic field (Jordan,
1968, eq. (7-4)), the component of the gradient of the magnetic filed normal
to a perfectly conducting wall becomes

VH;- n=0 (15)



FINITE ELEMENT THEORY

The finite element weak formulation of the wave equation (3) is now
generated by using the weighted residual approach with the Galerkin approxima-
tion. The continuous domain D 1is first divided into a number of discrete
triangular areas as shown in figure 5. The finite element aspects of convert-
ing equation (3) and the boundary conditions into an appropriate set of global
difference equations can be found in text books (Burnett, 1987, pp. 561-564)
and for conciseness will not be presented herein. An exact adaption of this
standard finite element theory to the duct propagation problem can be found in
an earlier work (Baumeister, 1988).

RESULTS AND COMPARISONS

A number of example calculations are now presented to illustrate the use
of the code as applied to curved ducts with absorbing walls. First, typical
duct geometries and element arrangements used in the numerical examples are
discussed. Next, the effect of offset and duct length on the transmitted and
reflected energy are examined for a fixed wall absorption layer. Then, the
effect of absorber thickness is considered. Finally, for a PEC exit termina-
tion, the power attenuation contours for a curved and straight duct which
maximize input signal absorption are examined.

Duct Geometry

The grid generation package generates the geometries shown in figure 6,
where a typical straight duct and curved duct with maximum offset (h = 1) are
shown. The absorber has been placed above and below the duct. All the duct
geometries are of this form but with different lengths, offsets and absorber
thickness. The linear triangular finite element grid associated with this
geometry is shown in figure 7.

Example 1: Transmitted Power

The effect of duct curvature and length on transmitted power in an infi-
nite duct are examined in figure 8 for various values of duct offset. The geo-
metrical configuration is shown by the inserted sketch in figure 8. In this
case, the entrance and exit ducts stretch from minus infinity to plus infinity
which signifies the absence of reflected energy at the numerical terminations.
The wall properties were taken to be ey = 1.00-2.83) and wuy = 4. These
properties are associated with nearly maximum absorption of a plane TM wave in
a straight duct at the frequency of unity. For a fixed length of duct, as
seen in figures 8(a), (b), and (c), an increase in the duct offset parameter
h increases the attenuation of the transmitted electromagnetic power (Poynt-
ing vector, cross product of the electric and magnetic fields times duct area,
Baumeister 1988 pg. 23 or Cheng 1983, pg. 330) at the exit of the curved lined
portion. This effect is most pronounced for the smaller duct lengths as shown
in figures 8(a) and (b). The magnetic intensity fields inside the duct are
illustrated in figure 9 for the duct with 0.75 length. As seen in figure 9(a)
the magnetic intensity beams directly through the duct with grazing contact
along the absorbing wall till it reaches the exit with very little



attenuation. In contrast, in figure 9(e) the magnetic field comes in nearly
normal contact with the wall and quickly dies out. Returning to figure 8(a),
note that the dimensionless power drops below the input value of 1 for large
values of the offset parameter h. This signifies increased reflection of the
curved portion of the duct. This reflection will now be examined.

Example 2: Reflected Power

The effect of duct curvature and length on the reflected power from the
curved portion of a semi-infinite duct are now examined in figure 10 for vari-
ous values of duct offset. Again, the geometrical configuration is shown by
the inserted sketch in figure 10. To highlight the reflected energy in example
in figure 10, the termination at the exit is a PEC (perfect electric conduc-
tor) plate which reflects all the energy which reaches the exit back
towards the infinitely long entrance duct.

For a fixed duct length, as seen in figure 10, increasing the liner offset
h generally decreases the reflection coefficient. However, for ducts with
lengths of 0.75 and 1.0, an optimum is reached. In these cases, the disconti-
nuity of the curvature appears to reflect significant energy back down the duct
before it can be absorbed. Figure 11 shows the magnetic fields inside with the
Tength of 0.75. For the straight duct the interaction of the field is clearly
seen in figure 11(¢a). In contrast, the field in the duct with large offset
(h = 1) are comparable to those in figure 9(e), because the level has been
severely reduced by absorption into the duct walls.

Example 3: Absorber Thickness

In this section the effect of absorber thickness is briefly examined.
The configuration considered is again shown by the sketch in the upper portion
of figure 12. In this case the duct length and offset will be held fixed at
unity and the wall absorber thickness will be varied. As seen in figure 12
for thickness of 0.1 or greater, the power variation along the axial length of
the duct remains unchanged. However, for thickness of 0.05 and 0.01 signifi-
cant decreases in the power absorbed are seen.

Example 4: Axial Discretization in Wall Absorber

In performing finite element solutions, the number of axial nodal points
should be held to a minimum to reduce computer storage as well as solution
time. This is especially true in the next example where determining the wall
properties associated with optimum signal absorption requires hundreds of sepa-
rate calculations starting with large values of wall permittivity and
permeability.

For linear elements, roughly twelve grid points per wavelength are
required to accurately resolve the complex electromagnetic field and the trans-
mitted or reflected electromagnetic power. The wave length for plane wave
propagation in lossy material will now be determined from a solution of the
wave equation. For plane waves propagating in a homogeneous lossy material,
equation (3) reduces to



sH
8 (ggi) ¢ wleph = 0 (16)

The solution of which can be written as

- -az -jBz
HX = HO e e an
where
1/2
s [ Vi . g BJ (18
2
1/2
5. [ 2, 8, B] (9
2
IR R I
A = ETH, + E M. (20)
R R I1
B=eTpr—erpr (21)

and the wavelength can be expressed in terms of the propagation phase constant
B as follows:
2w
A= A (22)
The number of grid points I in the axial direction to accurately resolve
the electromagnetic field is

1-12L_6BL (23)
A T

For the special case where the duct Tength is just equal to the axial wave-
length of the electromagnetic wave, twelve nodal points are required in the
axial direction. If the duct length is twice the wavelength then 24 nodes
would be required. Thus the number of nodes is just 12 times the duct length
to wavelength ratio.

For large values of the permittivity and permeability associated with
wall absorbers, the phase constant B increases according to equation (19)
which leads to smaller values of the wavelength according to equation (22) and
a considerably larger number of axial nodes according to equation (23). How-
ever, a plane wave incident obliquely at an interface with a denser medium
will be bent toward the normal (Cheng, 1983, pg. 353, eq. 8-124(c)) making the
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energy transfer in the wall absorber normal to the direction of the energy
transfer in the duct itself and thereby partially reducing the axial energy
transfer in the wall absorber. Since the axial attenuation in the duct wall
will be much larger than in the air duct, consideration is now given to basing
the axial grid spacing on the wavelength of the air duct rather than the wall
absorber wave length. In this case the axial grid point spacing would be

I=1258—-12Lf Ceq. 198 = w¥eru® = w = 20f) (24)
air r

If such an approximation is valid, larger savings in computer storage are
possible.

The validity of equation (24) in predicting energy attenuations and mag-
netic fields is now examined for two extremes of wall properties. First the
moderate value Tisted in figure 13(a) and the much larger value listed in
figure 13(b). As seen in the upper portion of figure 13(a), axial spacing
based on the wall properties using equation (23) results in a much denser grid
than the lower figure based on the wavelength in air using equation (24). For
the large wall property value, the grid density is even greater as seen in the
upper portion of figure 13(b). For the duct configuration shown in the upper
portion of figure 14, exact calculations for duct attenuation displayed
in figure 14 indicate that the axial spacing based on air properties, equation
(24) gives nearly the same results as the axial spacing based on the wall mate-
rial, equation (23). 1In addition, the contour plots of the magnetic field
shown in figure 15(a) and (b) show that the magnetic field in the duct is for
all practical purposes identical when either equation (23) or (24) is employed
to set the axial grid point density. Therefore, in the next optimization
example, equation (24) will be used to set the axial grid spacing.

Finally, the sensitivity to the number of transverse nodes in the wall
absorber is determined in figure 16. As seen in figure 16 at least 5 nodes
are required to accurately estimate the attenuation in a 0.1 thick absorber
coating with the same range of property variations previously considered.

Example 5: Attenuation Contours

Optimizing the wall absorber for maximum attenuation as well as minimiz-
ing duct reflection can be an important part of the design of an electromag-
netic duct suppressor. In duct acoustics, for example, the maximum possible
attenuation occurs at the so-called optimum impedance. For a particular acous-
tic mode (analogous to an electromagnetic mode) or more generally for modes
with common cut-off ratios, the optimum impedance can be determined analyti-
cally from semi-infinite duct theory using a single soft-wall mode (Rice,
1979). Generally, the optimum impedance for a finite length liner will be
lower than the single mode liner due to generation of higher order modes at
the leading edge of the finite length liner (Unruh, 1976 and Baumeister, 1984).

Since electromagnetic propagation and attenuation is analogous to acous- |
tic propagation, an electromagnetic wall impedance should exist which can be I
expected to maximize absorption by the duct wall absorbers. However, in the

present computer code, the wall properties are specified rather than wall
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impedance. Consequently, the local attenuation optimum will be determined for
specific values of wall properties rather than the more general global optimum
analogous to Rice, 1979.

Consider a plane wave propagating down a duct and incident upon the
curved section with a PEC exit plane, as shown in the schematic of figure 17.
The object of the present example is to estimate the wall properties which
will minimize the reflected signal transmitted back down the duct or
conversely to maximize the energy absorbed by the wall absorber. Starting
with a single plane wave traveling down the duct and initially assuming a wall
permeability of 4.1 in the curved absorber section of the duct, the reflected
energy was determined throughout the permittivity plane shown in figure 17.
With increments of 0.5 taken in the real and imaginary parts of the permittiv-
ity, 400 separate calculations were performed at the equally spaced nodes.
From these calculations, the attenuation contour plots were established using
inear interpolation between the calculated points.

The local optimum wall value of the permittivity is seen in figure 17 to
occur at a total permittivity of 5.0 - j 5.0. The coordinates of figure 17(a)
are the real positive values of both CE and e% defined in equation (4).

In this case, the optimum wall permittivity associated with maximum signal
absorption is represented by the peak contours enclosed in the smallest circle
of figure 17¢a). For this first iteration, the intrinsic (or characteristic)
impedance of the material squared is 0.41 + j 0.41 as shown in the upper

portion of figure 17(a).

The maximum attenuation of the incoming wave is 23.903 dB associated with
the local optimum point as displayed in figure 17(a) where the attenuation in
dB is expressed in terms of the transmitted power Py (Baumeister, 1986,
eq. 88) as

p
4B = 10 loglo[ﬁl} (25)
Q

The maximum and minimum attenuation in absolute values of dB are listed in fig-
ure 17(a) as well as each figure which follows. The dB contours have been nor-
malized in figure 17 as well as the following figures by the simple

equation:

L T (26)
contour |d8 |dB

| dB

maxI - min|

The second step in the iteration process to determine the optimum wall

properties is to hold the permittivity fixed and vary the permeability. 1In
this case, the optimum wall value of the permeability is seen in figure 17(b)
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to occur at a total permeability of 6.0 - j 8.5. For this second iteration,
the intrinsic impedance squared has shifted to 1.45 j 0.25 and the maximum
attenuation has increased to 28.73 dB.

The third and final iteration is shown in figure 17(c) in which the opti-
mum value of wall permeability was held fixed at the value of 6.0 - j 8.5
determined during the second iteration. In the third iteration, the optimum
properties remained fixed at the values determined during the second iteration
indicating a local convergence over the range considered. Figure 17(c) dif-
fers from figure 17(a) in that attenuation can now occur for zero values of
the complex permittivity since the permeability is now a complex quantity
which can contribute to the attenuation of the incoming wave.

For the same geometry as considered in figure 17, the sensitivity of the
initial starting point on the electromagnetic reflective energy contours is
examined in figure 18. 1In this case the initially fixed value of permeability
is 2.0 rather that 4.1 as used in figure 17¢a). A comparison of figure 17(a)
to figure 18(a) indicates that the first estimate for the optimum has been
shifted to the right in figure 18(a). The optimum in the second iteration
falls slightly off the range of parameters considered. However, the maximum
attenuation of 27.945 at a permeability of 10 - j 10 and permittivity of 9 - j
5.5 is nearly equal to the optimum attenuation of 28.73 dB displayed in
figure 17(c). Apparently, the optimum contours have slowly varying slopes.
However, in both cases considered, the intrinsic impedance of the medium are
nearly equal. Consequently, it may be inferred that any combination of mate-
rial properties with a similar intrinsic impedance should yield similar values
of attenuation.

Figure 19(a) and (b) displays similar results for the straight duct of
the same length as considered in figure 17. In this case the local optimum
attenuation has a maximum value of 22.113 dB which is approximately 6 dB lower
than the curved duct considered in figures 17 and 18. More significantly, the
optimum intrinsic impedance has shifted to a new value of 0.1 + j 0.7. :
Clearly, the curvature of the duct will play a significant role in determining
the wall materials to obtain the maximum attenuation.

CONCLUDING REMARKS

A finite-element Galerkin formulation was developed to study transverse
magnetic (TM) wave propagation in two dimensional curved S-shaped ducts with
absorbing walls. The derivation from Maxwell's equations assumed that the
material properties could vary with position resulting in a nonhomogeneous var-
iable property two-dimensional wave equation. This eliminated the necessity
of finding the boundary conditions between the air duct and the absorbing
walls. The reflection and transmission at the entrance and exit of the curved
duct are determined exactly by coupling the finite-element solutions in the
curved duct to the eigen-functions of an infinite, uniform, perfectly
conducting duct.

Example solutions illustrated the relationship of absorption on the
length, thickness and offset of curved duct absorbing walis. Also, attenuation
contour plots were presented for PEC ended curved ducts. Local optimum wall

13



values of permittivity and permeability as well as the intrinsic impedance
associated with the optimum were found to be significantly different for
straight and curved ducts with PEC exits.
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10.0-10.0j.

- DISCRETIZATION OF AIR FILLED WAVE GUIDE WITH

ABSORBERS MOUNTED ALONG BOTH UPPER AND LOWER WALLS.

(B) LARGE CASE €

FIGURE 13.
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TION AS A FUNCTION OF VERTICAL NODES IN ABSORBER FOR
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