
Eastern Geographic Science Center

Secure Web-Site Access with Tickets and
Message-Dependent Digests

U.S. Department of the Interior
U.S. Geological Survey

Techniques and Methods 7–B1

<head>
 <title>EGSC HPCC Applications Section Main Page: Authentication for Application
 Access</title>
 <link rel=”stylesheet” type=”text/css” href=”/css/hpcc01a.css”>
 <script language=”JavaScript”>
 <? include ‘/var/www/html/applications/php/MakeTicket.phpinc’; ?>
 <? include ‘/var/www/html/applications/php/SaveTicket.phpinc’; ?>
 <? include ‘/var/www/html/applications/js/InitLogin.js’ ?>
 </script>
</head>
<body bgcolor=”#f0f0f0”>

<? include ‘/var/www/html/includes/header2c.html’?>

<table width=”840”>
 <tr>
 <td class=”FormalColumnT” colspan=”2” height=”60”><h2>Authentication
 for Application Access</h2></td>
 </tr>
 <tr>
 <td class=”FormalColumnL” width=”200” height=”250”>Use of applications
 on the USGS Eastern Geographic Science Center (EGSC) High-Performance
 Computing Cluster(HPCC) is restricted to authorized users. If you have
 not been provided with login credentials, please
 exit from this page.
 Information about becoming an authorized user is
 available on
 the public area of this Web site.

 <td class=”FormColumn” width=”70%” height=”250”>
 <form name=”form1”
 onsubmit=”SaveAUvalues(this);”
 <center>
 <table>

Chapter 1 of
Book 7, Automated Data Processing and Computations
Section B, Web Applications

Secure Web-Site Access with Tickets and
Message-Dependent Digests

By David I. Donato

Techniques and Methods 7–B1

U.S. Department of the Interior
U.S. Geological Survey

Chapter 1 of
Book 7, Automated Data Processing and Computations
Section B, Web Applications

U.S. Department of the Interior
DIRK KEMPTHORNE, Secretary

U.S. Geological Survey
Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2008

For product and ordering information:
World Wide Web: http://www.usgs.gov/
Telephone: 1–888–ASK–USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources,
natural hazards, and the environment:
World Wide Web: http://www.usgs.gov/
Telephone: 1–888–ASK–USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to
reproduce any copyrighted materials contained within this report.

Suggested citation:
Donato, D.I., 2008, Secure Web-site access with tickets and message-dependent digests: U.S. Geological Survey
Techniques and Methods, book 7, chap. B1, 53 p., available online only at http://pubs.usgs.gov/tm/7b1/.

iii

Contents

Abstract..1
Introduction...1

Caveats..1
Statement of the Problem...1
Constraints on the Solution..2

Constraints Related to Usability...2
Constraints Related to Security..2
Constraints Related to Economy..2

Survey of the Range of Techniques for Secure Web-Site Access...2
Three Types of Access Restriction for Web Sites..2

Restriction by Domain, or IP Address or Subnet...3
Restriction Through User Authentication...3
Restriction Through Encryption..3

State Management and Login Sessions..4
Digests and Tickets...4
Comparison of Access-Restriction and State-Management Techniques...................................5

Comparison of Desirable Security Traits..5
Comparison of Resistance to Attacks...6

MDDT: Secure Web-Site Access with Digests and Single-Use Tickets..8
Client-Server Interactions with this Technique..8
Strengths and Weaknesses of MDDT..10

A Conjecture about Message-Dependent Digests...11
Summary..11
References Cited..12
Glossary..14
Appendix 1.  List of Abbreviations..20
Appendix 2.  Working JavaScript and PHP code...21

PHP pages...22
PHP include files..34
JavaScript include files..46

Figures
1.  Sequence of user, client, and server actions during login with MDDT...9
2.  Sequence of user, client, and server actions during transition from one secured

page to another with MDDT...10

iv

Tables
1.  Comparison of desirable Web-site traits enabled by each of seven techniques for

Web-site restriction..5
2.  Comparison of seven techniques for Web-site restriction with respect to resistance

to various kinds of attacks...7

Secure Web-Site Access with Tickets and Message-
Dependent Digests

By David I. Donato

Abstract
Although there are various methods for restricting access

to documents stored on a World Wide Web (WWW) site1
(a Web site), none of the widely used methods is completely
suitable for restricting access to Web applications hosted on
an otherwise publicly accessible Web site. A new technique,
however, provides a mix of features well suited for restrict-
ing Web-site or Web-application access to authorized users,
including the following: secure user authentication, tamper-
resistant sessions, simple access to user state variables by
server-side applications, and clean session terminations. This
technique, called message-dependent digests with tickets, or
MDDT, maintains secure user sessions by passing single-use
nonces (tickets) and message-dependent digests of user
credentials back and forth between client and server. Appen-
dix 2 provides a working implementation of MDDT with PHP
server-side code and JavaScript client-side code.

Introduction
This publication presents a technique for providing

secure access to selected documents on a World Wide Web site
(a Web site). The technique enables a webmaster to secure
a subset of the digital files on a Web site so these files can be
accessed only by authorized users.

The technique presented here uses message digests that
are message-dependent to enable users to identify (authen-
ticate) themselves to a Web site without passing their user
credentials over the network during the authentication process.
The technique also uses complex character strings called
authentication tickets to create login sessions for authenti-
cated users. Though message digests and ticket-like nonces
have been used previously in other approaches to user authen-
tication and state management for Web applications, the
particular combination of message-dependent message digests
and single-use tickets (nonces) presented here has unique
features that makes it more suitable than earlier approaches for

1Throughout this article the first appearance of each term defined in the
glossary or appendix 1 is identified in boldface.

some applications. For clarity and ease of reference, this publi-
cation refers to this new technique as MDDT (message-depen-
dent digests with tickets). The Appendix provides computer
code for a working implementation of MDDT.

Caveats

MDDT is not suitable for all applications and is presented
without guarantees. Careful webmasters and Web-application
developers may apply MDDT directly or adapt it to their
needs. Like any other security technique related to informa-
tion technology (IT), MDDT should be applied circum-
spectly, in consultation with suitable IT security specialists, as
one of many components of a total IT security solution.

The author is not an expert in information-technology
security. He is an occasional Web-application developer shar-
ing his practical experience from developing this technique
to enable secure, restricted access to a USGS Web site by
non-USGS collaborators. Mounting concerns within the U.S.
Department of the Interior about the security risks associated
with publicly accessible Web sites and the lack of available
infrastructure for extranets (Open Web Application Security
Project, 2002; Venners, 2006) prompted the development of
MDDT. Although the Glossary defines technical terms as they
are used to describe MDDT, it is not a substitute for substan-
tial familiarity with HyperText Transfer Protocol (HTTP)
(Network Working Group, Request for Comments (RFC)
2616, 1999b), with other Internet protocols, and with the
security problems of computer networks and Web sites. The
“References Cited” section of this publication lists selected
authoritative publications that cover the required background
for this publication in the areas of general IT and Web-applica-
tion security (Garfinkel and others, 2003; Pastore and Dulaney,
2004; Skoudis with Liston, 2006; Stein and Stewart, 2002).

Statement of the Problem

MDDT was designed to solve the following problem:
How can access to selected Web applications, files, and forms
hosted on a publicly accessible Web site be conveniently and
economically restricted to a small group of authorized users,
subject to reasonable constraints on cost and ease of use?

2   Secure Web-Site Access with Tickets and Message-Dependent Digests

This problem, which was encountered in the develop-
ment of an extranet-like facility to enable collaborative use
of computer models, is not the same as the problem encoun-
tered by banks and online merchants who need to protect the
contents of their online transactions from disclosure to third
parties. In the problem addressed here, it is only the ability to
run Web applications that must be restricted by limiting access
to operational Web forms; the files exchanged during the
operation of these applications are assumed to be in no need of
protection from disclosure.

Constraints on the Solution

The constraints that were applied in MDDT design in
order to provide acceptable usability, security, and economy
are listed separately below for each of these categories:

Constraints Related to Usability

An authorized user should be able to access informa-•	
tion from essentially any location (including offices,
homes, and hotel rooms) where broadband or dial-up
network access is available.

An authorized user should be able to use any of various •	
browsers running under Windows operating system,2
Linux, UNIX, MacOS, or any other network-capable
operating system.

An authorized user should not have to download or •	
install special software.

An authorized user should not have to enter authenti-•	
cation credentials (such as user name and password)
more than once per session.

There should be no perceptible delays caused by the •	
access-restriction solution.

Constraints Related to Security

The solution should be able to resist determined •	
attacks.3

The solution should not rely solely on the validity of •	 IP
addresses (Network Working Group, RFC 1518, 1993)
or Domain Name System (DNS) aliases (Network
Working Group, RFC 1034, 1987).

2Windows is a registered trademark of Microsoft Corporation in the United
States and other countries.

3What constitutes a determined attack varies from one situation to another.
As applied to the design of MDDT, the practical intent of this constraint is that
the solution should not have any known weaknesses that might be exploited
without at least several hours of effort on the part of an attacker.

The solution should not transmit user credentials over a •	
network in clear text.

A restricted document should not be accessible through •	
Uniform Resource Locator (URL) guessing.

Constraints Related to Economy

Users (clients) who have general Internet access should •	
not have to purchase additional software or hardware
in order to access the restricted resources.

The webmaster or Web-application developer should •	
not have to purchase additional hardware or software
in order to implement the solution.

The solution should not entail any periodic licensing •	
fees.

The solution should be simple enough to be imple-•	
mented for 10 Web pages in under 2 hours.

Survey of the Range of Techniques for
Secure Web-Site Access

To put MDDT into perspective, this section surveys the
kinds4 of techniques available for securing selected files on
publicly accessible Web sites by restricting access (Venners,
2006). This section also discusses the closely related topics
of state management and login sessions. The explanation of
message digests and tickets leads into a comparison of MDDT
capabilities with the capabilities of selected alternative tech-
niques. (The detailed processing steps of MDDT are explained
later in a separate section.) This section provides a basis for
understanding the kinds of applications for which MDDT is
suited and those for which it is not.

Three Types of Access Restriction for Web sites

There are three general methods (Stein and Stewart,
2002) for restricting access to selected files on an otherwise
publicly accessible Web site: (1) by domain, or IP address
or subnet; (2) through user authentication; or (3) through
encryption. These methods may be applied separately or in
combination. Each has strengths and weaknesses that affect its
suitability for any specific application.

4 The author is not aware of the existence of any other techniques equivalent
to MDDT. A search of the World Wide Web for software patents related to
secure Web-site access found two partially relevant patents (Bui and others,
2002; Sasmazel and Schneider, 2000). MDDT does not, however, infringe on
either patent.

Survey of the Range of Techniques for Secure Web-Site Access   3

Restriction by Domain, or IP Address or Subnet
Widely used Web server software, such as Apache and

Microsoft Internet Information Services (IIS), provides
simple ways to restrict access to Web files based on the cli-
ent domain, or the IP address, or the IP subnet. This form of
restriction is suitable when all authorized users have persis-
tent, fixed IP addresses or when authorized users only access
the Web site from client workstations located within a fixed
domain; this form of restriction is not suitable, however,
when IP addresses for authorized users are unpredictable,
such as when users attend conferences, work from hotels, or
use Internet Service Providers (ISPs) that do not provide
users with fixed IP addresses. There is a workaround when
users’ IP addresses are unpredictable or changeable: the user’s
IP address (or DNS domain) can be captured by software,
as the user logs onto the restricted Web application; then it
can be placed in an access control list (ACL) of allowed IP
addresses. This workaround is not, however, directly supported
by widely used Web server software; it requires the develop-
ment of server-side software (scripts or programs) to handle
user logons and to manage the IP addresses in the ACL.

Restriction Through User Authentication
There are two kinds of user authentication directly

supported by some Web servers and some Web browsers:
HTTP Basic Authentication and HTTP Digest Authentica-
tion (Network Working Group, RFC 2617, 1999c). These two
HTTP authentication methods enable restrictions on files at
the same levels of granularity allowed for other Web-server
access restrictions (generally per directory, per Web site, or
per virtual host). These two methods differ in that under
basic authentication, passwords are passed over the network
in clear text, while under digest authentication, only a digest
of the user password is sent over the network (World Wide
Web Consortium, 2001; Apache HTTP Server Project, 2005).
(Please see “Digests and Tickets” below for an explanation of
message digests and their use in user authentication.) Basic
authentication is widely supported by Web servers and Web
browsers; support for digest authentication, however, remains
spotty (Apache Week, 1996; Laurie and Laurie, 1999; Apache
HTTP Server Project, 2006).

Web-application developers can, and sometimes must,
write their own user-authentication routines (IBM, 2006). Cus-
tom authentication code is necessary when user identity has
complex effects within a Web application, such as when users
are allowed to resume interrupted processes or set personal
preferences or save individual documents. Custom code for
user-authentication routines may also be made necessary by
application-specific requirements related to state management.
(Please see “State Management and Login Sessions” below.)

Restriction Through Encryption
Encryption reversibly converts a file into an unreadable

or unusable form through the use of cryptographic ciphers.
If encrypted with suitably secure ciphers, files transferred over
a network are secure from eavesdropping (Barrett and oth-
ers, 2005). Some Web applications apply encryption only to
user credentials in order to protect them from eavesdropping
or interception while in transit, while other Web applications
encrypt all transmissions. When the volume of information
encrypted and transmitted is relatively small, encryption of all
transmissions is feasible; but when large files must be trans-
mitted, encrypting them for transmission and decrypting them
on receipt may be unacceptably time consuming.

There are several established methods for using encryp-
tion to restrict access on the Web. HTTPS (HyperText
Transmission Protocol Secure) is widely used by banks,
online shopping sites, and others to provide end-to-end (client-
to-server) encryption; HTTPS5 transmits files with HTTP over
Secure Sockets Layer (SSL), or Transport Layer Security
(TLS), or OpenSSL (Network Working Group, RFC 2246,
1999a; Network Working Group, RFC 2818, 2000). Alter-
natively, programmers can apply the same kinds of encryp-
tion in custom software by developing code to work with the
OpenSSL library (Viega and others, 2002; PHP Group, 2007).
A less widely used protocol, S-HTTP (Secure HTTP), also
provides end-to-end encryption, though just for particular mes-
sages rather than for all HTTP request-response exchanges
(Network Working Group, RFC 2660, 1999d). The compu-
tational overhead and the setup costs of HTTPS and S-HTTP
can be avoided when only a set of seldom changed files must
be sent over the network but protected from disclosure to
unauthorized persons; in this case, the sensitive files may
be served from a Web site in encrypted form as long as only
authorized users possess the keys needed to decrypt them. Yet
another use of Web-site restriction through encryption requires
that Web sites with sensitive information be placed behind
firewalls and then be made accessible to remote users only
through a Virtual Private Network (VPN) that encrypts all
transmissions from one network (such as a network operated
by a user’s ISP) to the Web site’s firewalled home network. A
widely used encryption protocol for VPNs is IPsec (Network
Working Group, RFC 2401, 1998).

 In addition to its use in protecting information in transit,
encryption is also used to protect stored information. When
authentication data (especially passwords) are stored in
encrypted files, these files must be protected from unauthor-
ized access to prevent attackers6 from running them through

5Under HTTPS (and other client-server protocols involving encryption),
both client and server can achieve reasonable assurance of the identity of the
other party through third-party certificates provided through the Public Key
Infrastructure (PKI) (Network Working Group, RFC 3647, 2003; Viega and
others, Chapter 3, 2003).

6For simplicity, any attempt to interfere with an information-systems
resource, or any attempt at unauthorized access, is referred to as an attack, and
the agent of the attack is called an attacker (Skoudis with Liston, 2006).

4   Secure Web-Site Access with Tickets and Message-Dependent Digests

password-cracking routines. Since some attackers are willing
to run password-cracking software for weeks in order to
decrypt a password file, best security practices require that
passwords be changed frequently under any circumstances,
and immediately following any confirmed or suspected inci-
dent of unauthorized access to a password file (Garfinkel and
others, 2003; Skoudis with Liston, 2006).

State Management and Login Sessions

HyperText Transfer Protocol (HTTP), the set of rules that
governs file transport between Web clients and Web servers,
is a stateless protocol. An HTTP exchange between a client
(a Web browser) and a server generally consists of little more
than a request and a response: first, a file is requested by the
client; then the file or a reply message is sent; and, finally,
both browser and Web server close out the exchange.7 Because
HTTP is stateless, the notion of a user session for a Web site
is not defined at the level of the HTTP transfer protocol. User
sessions (if there are to be any) must be defined by the Web
application.

The concept of the user state or client state is broader
than, and subsumes, the idea of a user login session. State can
be managed without using login sessions, but not the other
way around. A Web application that defines and manages its
own state and the state of each active user does not necessarily
have to use login sessions; an application must, however, cre-
ate and manage state variables in order to make user login ses-
sions possibleand doing so is a form of state management.

There are a number of frameworks available for the
development and operation of Web applications that provide
high-level features to simplify the job of state management for
Web-application developers. Among the most widely used of
these frameworks are Active Server Pages (ASP); ASP.NET;
Java Server Pages (JSP); PHP Hypertext Preprocessor (PHP);
and Z Object Publishing Environment (Zope). The state-man-
agement facilities provided by these frameworks can be used
in conjunction with any of the three types of access restriction
in order to define access sessions; when access is, in particular,
restricted through user authentication, these state-management
facilities can be used to define not just access sessions, but
login sessions as well. Although development frameworks are
beneficial for some applications, for others they are too confin-
ing; in the latter cases, Web-application developers must create
custom techniques for managing state and defining login ses-
sions (as was done in developing MDDT).

7This is a simplification. Web servers often wait several minutes before dis-
mantling the lower-level socket connection for each client because there may
be prompt follow-on requests. Keeping a socket connection alive does not,
however, preserve any information about the client (user state), which could
affect Web-server responses to future HTTP requests from the same client.
These socket-level keepalives are features of low-level network connection
management, not of state management.

Digests and Tickets

A message digest is a compact string or a number repro-
ducibly derived from any ordered collection of bytes, such as
a character string, a digital document, or any other computer
file. It is called a digest8 because it is usually much smaller
than its source. Even when the source collection includes mil-
lions or billions of bytes, a message digest typically consists
of 30 or 40 bytes at most. Ideally, finding the original collec-
tion of bytes from the digest, with both digest and the digest
algorithm known, should be difficult in the extreme, and the
probability that any two messages chosen at random have the
same digest should be small (certainly less than one in a mil-
lion, and preferably far less). Assuming there is no true reverse
algorithm and the forward algorithm is known, the only way
to identify a message from its digest is to repeatedly guess at
the original message and compute a digest for each guess until
a message is found that produces the same digest. (Even then,
because digests do not have to be unique, a message found
through this sort of guesswork might not be the original mes-
sage.) For a message consisting of 20 characters drawn from
the 72 characters made up of the upper- and lower-case letters,
the digits, and 10 special characters, the number of possible
messages is 7220, or more than 1.4 ×1037. At a trillion guesses
per second, it would still take more than 4 × 1017 years to work
through all possibilities; therefore, unless a message is short
and easy to guess, identification of the source message from
a digest created with a well-constructed digest algorithm is
computationally infeasible.

Digest authentication would not be any more secure than
just sending the user name and password over the network in
clear text if the digest were based on user credentials alone,
because in either case, an eavesdropper could capture the
digest (or the credentials) and use it (or the credentials) to
access the restricted application. To make message digests
effective in securing access to a Web site, it is necessary to
add a nonce to the user credentials so that a different digest
will be generated for each login session. The Web application
generates the nonce and provides it to the client, which then
computes a message digest of user credentials concatenated
with the nonce and returns this digest to the Web application
for user authentication. Since the Web application has access
to the same data as the client (including the nonce it just sent
and a collection of all valid user credentials), the application
can generate a matching message digest to verify the identity
of the user. In MDDT, the server generates a new nonce for
every client request; this makes each digest essentially unique
and user login sessions secure. Only a user who knows the
credentials with which a session was initiated and who is in
receipt of the latest nonce can successfully request another
restricted file from the Web server.

8A message digest is sometimes alternatively called a hash. Federal Infor-
mation Processing Standards mandate the use of the SHA-1 or related hash
(digest) algorithms for any Federal application requiring a secure hash (digest)
algorithm (National Institute of Standards and Technology, 2002).

Survey of the Range of Techniques for Secure Web-Site Access   5

A more natural term than nonce is ticket9 (or authentica-
tion ticket) because ticket is a commonly used word that con-
notes something arbitrary, ad hoc, lacking in intrinsic value,
and time-limited. The MDDT nonce is called the “ticket”
throughout the remainder of this publication.

Comparison of Access-Restriction and State-
Management Techniques

A two-way comparison of MDDT with six other tech-
niques for restricting access to Web sites serves both to clarify
the practical strengths and weaknesses of MDDT, and to
establish a basis for choosing among MDDT and its alterna-
tives. The first comparison rates the seven techniques on the
basis of their desirable traits (the security features each tech-
nique provides). The second comparison evaluates the relative
resistance of each of the seven techniques to each of 13 widely
recognized kinds of attacks10 (Open Web Application Security
Project, 2007).

Comparison of Desirable Security Traits
The desirable traits of access-restriction techniques evalu-

ated for comparison are:

9The term ticket is used with similar meaning in the Kerberos network
authentication protocol.

10Cross-site scripting attacks have intentionally not been included in the
list of attacks. Although cross-site scripting attacks are a potentially serious
problem for many Web applications, neither MDDT nor any of the other
techniques compared are susceptible to this type of attack. Unlike denial-of-
service attacks, which are included because they could become a problem
if some of the access-restriction techniques are misused, cross-site scripting
attacks simply will not affect these access-restriction techniques under any
circumstances.

Authentication1.	 − Ability to restrict access to authorized
users only.

Confidentiality2.	 − Ability to prevent access to Web-site
files by unauthorized users.

Integrity3.	 − Ability to assure users that there has been no
tampering with the documents they retrieve from a Web
site.

Nonrepudiation4.	 − Ability to conclusively associate a spe-
cific user with specific Web-site activities and actions.

Session Continuity5.	 − Ability to maintain a user’s context
and application state throughout a login session.

Table 1 summarizes a comparison of the occurrence
of these five desirable traits among seven techniques for
restricted Web-site access. In comparison to the other six
techniques, MDDT stands out as a more complete security
solution than any other technique by itself, although there
are potential combinations of other techniques that would
be equally complete. Because MDDT does not transmit user
credentials over the network and establishes user sessions
that clearly associate individual users with their activities
during tamper-resistant login sessions, it exhibits to a sig-
nificant degree all five desirable traits: authentication, confi-
dentiality, integrity, nonrepudiation,11 and session continuity.
Although HTTPS provides neither user-authentication nor
state-management services at the application level, other
state-management and user-authentication facilities can be
used in conjunction with HTTPS, and when even simple login
procedures are used under HTTPS, the login credentials are

11MDDT’s control is not strong enough to establish nonrepudiation in any
legally enforceable sense. MDDT’s combination of digest authentication
integrated with a session-control mechanism does, however, provide notably
stronger recordation and proof of user actions than the other techniques.

Table 1.  Comparison of desirable Web-site traits enabled by each of seven techniques for Web-site restriction.

[In this table, a plus sign (+) in a cell with a light-green background indicates that the technique identified in the column heading provides a significant measure
of the trait identified by the row label on the left; an em dash (—) indicates that the technique does not provide the trait in significant measure. HTTP Digest
Authentication, for example, does enable restriction of access to authenticated users and, therefore, maintains a significant level of document confidentiality; it
does not, however, significantly ensure document integrity, nonrepudiation of access, nor session continuity. The ratings in this table provide, at best, a rough
overall comparison among techniques]

Trait

Technique used for Web-site security and state management

Message-dependent
digests with tickets

HTTP basic
authentication

HTTP digest
authentication

Restriction by
IP address

IPsec HTTPS
PHP state

management

Authentication + + + — + + —

Confidentiality + + + + + + —

Integrity + — — — + + —

Nonrepudiation + — — — — + —

Session continuity + — — — — — +

6   Secure Web-Site Access with Tickets and Message-Dependent Digests

protected in transit by HTTPS encryption. Therefore, HTTPS12
exhibits all traits, except for session continuity, in the broad
sense that it is compatible with simple implementations of
those features it does not provide directly. IPsec is effective in
securing communications between one network and another,
but it does not otherwise restrict access to any Web site or Web
application by Intranet users; therefore, IPsec exhibits just the
traits of authentication, confidentiality, and integrity related
to Web-site access, but only if all persons with access to the
private network are also authorized users of the restricted Web
site or Web application hosted on this private network. HTTP
Authentication (both Basic and Digest) supports authenticated
access and provides confidentiality, but neither form of HTTP
Authentication creates clear-cut sessions that convincingly
associate a user with Web-site activities. Of the techniques
compared, IP-address restriction provides the weakest limit
on Web-site access, restricting access only to any user of any
computer workstation with an IP address in the allowed range.
Even though PHP state management addresses only the prob-
lem of state management and user sessions, not restriction of
access (Lerdorf and Tatroe, 2002), PHP state management13 is
included in the comparison because of its potential use in com-
posite security solutions as a complement to other techniques.

Some of the techniques (notably HTTPS and IPsec) are
more robust and better tested than MDDT, and are clearly
superior for many applications. The comparison here is only
concerned with the features provided and with the problems
addressed by each technique, not with the stability, resilience,
or extent of testing of the various techniques.

Comparison of Resistance to Attacks
The 13 widely recognized kinds of attacks14 chosen for

comparison are as follows:

Account harvesting1.	 − Gathering user names or pass-
words or both for later break-in attempts.

Credentials guessing2.	 − Repeated, usually automated,
login attempts with guessed user names and passwords.

Data spoofing (tampering)3.	 − Unauthorized modification
of computer files or transmissions.

Denial of service4.	 − Overloading a resource in order to
make it unavailable.

12In general, HTTPS does not work with virtual hosts, so it may not be suit-
able for Web applications that share physical Web-server hosts.

13PHP State Management serves in these comparisons as a representative
of the state-management facilities provided by various Web-development
frameworks.

14The list of 13 kinds of attacks is not an exhaustive list of all possible
attacks against Web sites. The list is intended only to include enough kinds
of attacks to allow effective comparison among the seven Web-site restric-
tion techniques for the practical purpose of selecting specific techniques for
specific applications.

Eavesdropping5.	 − Secretly obtaining information trans-
mitted between two other parties without stopping or
detectably slowing transmission.

Interception6.	 − Secretly obtaining information intended
for another recipient and preventing receipt by the
intended recipient.

IP spoofing7.	 − Making transmissions on the network as
if they came from an IP address other than the true IP
address of the source.

Person-in-the-middle8.	 − Secretly modifying transmis-
sions between two other parties as they take place. (This
attack is also known as man-in-the-middle, or MITM.)

Replay9.	 − Use of captured credentials to obtain access at a
later time.

Session cloning (client-side masquerading)10.	 − Secretly
or deceptively taking over as a session client using inter-
cepted session variables.

Session hijacking (server-side masquerading)11.	 −
Secretly or deceptively redirecting a session client to a
different server.

Social engineering12.	 − Techniques of deception used in
social interactions to obtain information and credentials
for accessing restricted Web sites.

URL guessing13.	 − Using known URLs to guess a URL for
a Web page in order to gain unauthorized access.

Table 2 summarizes the ability of the seven access-restriction
techniques to resist each of 13 kinds of attacks.

IP spoofing can overcome access restrictions based solely
on IP addresses. IP spoofing alone is not, however, effective
against any of the other techniques, although IP spoofing may
be used in conjunction with other attacks to hide the identity
of the attacker.

Although Web-server availability can be compromised
by the overloading of a Web application, it is more usual for
denial-of-service (DoS) attacks to take place below the appli-
cation level. Whether a Web site or application is a potential
target for an application-level DoS attack depends on the
nature of the site or application; therefore, the resistance of the
various Web-site security and state-management techniques to
DoS attacks has not been specifically evaluated. DoS attacks,
however, have been included in the comparison to acknowl-
edge the potential for Web-application-level DoS attacks in the
event that vulnerabilities are discovered in the access-restric-
tion techniques.

Social engineering can be effective against almost any
technique, except for those that are beyond user (or attacker)
control; therefore, six of the seven techniques are not resis-
tant to social engineering, but restriction by IP address does
offer some resistance. Admittedly, IP spoofing, in conjunction

Survey of the Range of Techniques for Secure Web-Site Access   7
Ta

bl
e

2.
 

Co
m

pa
ris

on
 o

f s
ev

en
 te

ch
ni

qu
es

 fo
r W

eb
-s

ite
 re

st
ric

tio
n

w
ith

 re
sp

ec
t t

o
re

si
st

an
ce

 to
 v

ar
io

us
 k

in
ds

 o
f a

tta
ck

s.

[I
n

th
is

 ta
bl

e,
 a

 p
lu

s
si

gn
 (

+
)

in
 a

 c
el

l w
ith

 a
 li

gh
t-

gr
ee

n
ba

ck
gr

ou
nd

 in
di

ca
te

s
th

at
 th

e
te

ch
ni

qu
e

id
en

tif
ie

d
in

 th
e

co
lu

m
n

he
ad

in
g

is
 la

rg
el

y
re

si
st

an
t t

o
th

e
ki

nd
 o

f
at

ta
ck

 id
en

tif
ie

d
by

 th
e

ro
w

 la
be

l o
n

th
e

le
ft

; a
n

em
 d

as
h

(—
)

in
di

ca
te

s
th

at
 th

e
te

ch
ni

qu
e

is
 n

on
re

si
st

an
t o

r
on

ly
 w

ea
kl

y
re

si
st

an
t.

C
el

ls
 a

re
 m

ar
ke

d
N

/A
 (

no
t a

pp
lic

ab
le

)
w

he
n

re
si

st
an

ce
 to

 a
 p

ar
tic

ul
ar

 k
in

d
of

 a
tta

ck
 is

 g
en

er
al

ly
 n

ot
 a

ff
ec

te
d

by
 th

e
te

ch
ni

qu
e

bu
t c

ou
ld

 b
e

af
fe

ct
ed

 if
 th

e
te

ch
ni

qu
e

is
 m

is
ap

pl
ie

d.
 T

he
 r

at
in

gs
 in

 th
is

 ta
bl

e
pr

ov
id

e,
 a

t b
es

t,
a

ro
ug

h
ov

er
al

l c
om

pa
ri

so
n

am
on

g
te

ch
ni

qu
es

]

Ki
nd

 o
f a

tta
ck

Te
ch

ni
qu

e
us

ed
 fo

r W
eb

-s
ite

 s
ec

ur
ity

 a
nd

 s
ta

te
 m

an
ag

em
en

t

M
es

sa
ge

-d
ep

en
de

nt

di
ge

st
s

w
ith

 ti
ck

et
s

H
TT

P
ba

si
c

au
th

en
tic

at
io

n
H

TT
P

di
ge

st

au
th

en
tic

at
io

n
Re

st
ri

ct
io

n
by

 IP

ad
dr

es
s

IP
se

c
H

TT
PS

PH
P

st
at

e
m

an
ag

em
en

t

A
cc

ou
nt

 h
ar

ve
st

in
g

+


+
N

/A


+


C
re

de
nt

ia
ls

 g
ue

ss
in

g
+


+

N
/A






D
at

a
sp

oo
fi

ng
 (

ta
m

pe
ri

ng
)








+



D
en

ia
l o

f
se

rv
ic

e
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A
N

/A

E
av

es
dr

op
pi

ng








+


In
te

rc
ep

tio
n

+






+

+

IP
 s

po
of

in
g

N
/A

N
/A

N
/A


N

/A
N

/A
N

/A

Pe
rs

on
-i

n-
th

e-
m

id
dl

e



+







R
ep

la
y

+


+





+

Se
ss

io
n

cl
on

in
g

(c
lie

nt
-

 s
id

e
m

as
qu

er
ad

in
g)

+
N

/A
+







Se
ss

io
n

hi
ja

ck
in

g
 (

se
rv

er
-s

id
e

 m
as

qu
er

ad
in

g)
+


+







So
ci

al
 e

ng
in

ee
ri

ng





+





U
R

L
 g

ue
ss

in
g

+
+

+







8   Secure Web-Site Access with Tickets and Message-Dependent Digests

with a social-engineering effort to determine valid IP address
ranges, can defeat IP-address restrictions. Because MDDT
makes use of the client IP address to track user login sessions,
IP address restrictions can be easily added to MDDT.

Account harvesting is difficult for attackers when little
or no information about user accounts can be seen either
by eavesdropping on logins with a packet sniffer or by
attempting multiple logins to observe changes in the server
response. For this reason MDDT, HTTP Digest Authentica-
tion, and HTTPS are resistant to account harvesting. Because
intercepted digests are of essentially no use in guessing or
cracking user credentials (user names, passwords, and pass
phrases), and because an attacker must guess all user creden-
tials exactly in order to gain access, MDDT and HTTP Digest
Authentication also provide good protection against creden-
tials guessing. The resistance of HTTPS to credentials guess-
ing is moot because HTTPS does not itself provide applica-
tion-level user-authentication features; resistance to credentials
guessing when HTTPS is in use depends on the resistance of
the associated application-level user-authentication technique.

The best protection against tampering, eavesdropping, or
interception of transmissions is the strong end-to-end encryp-
tion provided by HTTPS. None of the other solutions provides
significant protection against these attacks, except that the
techniques that provide strong session continuity (MDDT
and PHP State Management) do protect against interception
because breaks in sessions are obvious to users and are likely
to trigger investigations.

Six of the seven of the techniques are vulnerable to
person-in-the-middle (PITM) attacks, which are usually car-
ried out by interposing a proxy either on the client’s network
or on the server’s network. Whether on the client side or the
server side, a PITM attack entails redirection of transmissions
to the proxy. HTTP Digest Authentication is resistant to PITM
attacks because neither client browser nor Web server provides
a mechanism for revealing the user credentials used to create
digests. MDDT, despite its use of digests to protect user cre-
dentials, is theoretically vulnerable to PITM attacks because
an attacker could add a client-side script in order to cause user
credentials to be sent in clear text as parameters when the user
clicks on a link.15

Digest authentication and strong state management
protect against replay attacks by generating digests and state
variables that can only be used once, and then only if used
promptly. None of the other techniques resist replay attacks,
though replay is unlikely to be an application-level threat
when the application operates over IPsec or HTTPS. Session

15HTTP digest authentication and MDDT differ in that HTTP digest
authentication stores client-side user credentials in variables located within the
browser process itself, but MDDT stores credentials within browser windows
and client-side documents. Variables within the Web-browser process are gen-
erally not accessible to incoming client-side scripts; however, browser-window
and document variables are accessible. Browser-process variables are much
more secure than window or document variables. Cookies, whether stored on
disk or in memory, are no more secure than window and document variables
because cookies are also accessible to client-side scripts.

cloning and session hijacking are unlikely when digest authen-
tication is in use because an attacker lacks the user credentials
needed to clone a session (masquerade as the client) and
would not be able to determine user credentials by hijacking
a session (masquerading as the server). Other than MDDT
and HTTP Digest Authentication, none of the techniques
protects against session cloning or hijacking. MDDT provides
additional protection against session cloning by tracking user
sessions with the IP address; an attempt to take over an MDDT
session with a new client IP address would immediately be
rejected at the Web server.16

Only the three techniques that specifically provide user
authentication (MDDT and HTTP Basic and Digest Authen-
tication) prevent access to Web pages by URL guessing. With
these techniques, an unauthorized user will be denied access to
a guessed page (but may determine that a page for the guessed
URL does exist).

MDDT: Secure Web-Site Access with
Digests and Single-Use Tickets

MDDT uses a single integrated mechanism to achieve
combined user authentication and login-session continuity.
Working computer code provided in appendix 2 implements
MDDT using JavaScript on the client side and PHP on the
server side, but the underlying technique of MDDT can be
implemented with any of a number of other client-side and
server-side programming languages.

Client-Server Interactions with this Technique

Figure 1 describes the process by which a client logs in to
begin a session. Figure 2 describes the authentication mecha-
nism underlying continuing access to restricted documents and
other information resources during a login session. The actual
code used to generate tickets and digests is the best source for
understanding in detail how digests and tickets are created.
Please keep the following points in mind when reviewing code
and examining figures 1 and 2:

Tickets depend on the current value of the server’s •	
clock; this makes it nearly impossible for an attacker to
guess what ticket the server will generate next.

A new ticket is generated for each Web page requested, •	
making tickets perishable.

Message digests are generated using a procedure (algo-•	
rithm) that modifies its own operation based on the
message to be digested.

16Because MDDT uses client IP addresses for session tracking, multiple
users cannot simultaneously connect to the same MDDT application with
identical IP addresses. This would be a limitation when Network Address
Translation (NAT) or proxy servers are in use because these allow multiple
users to share a single IP address.

MDDT: Secure Web-Site Access with Digests and Single-Use Tickets   9

Figure 1.  Sequence of user, client, and server actions during login with MDDT.

Step 1: Request login page

User clicks on standard hypertext link to
the login page.

HTTP request sent (without
parameters)

Step 3: Submit login request

(a) User enters User Identification and
Passphrase.

(b) User clicks on “Submit” button. (The
target="_blank" attribute of the
login form causes the client browser to
open a new window for the next page
to be sent by the server.)

(c) JavaScript overwrites user credentials
shown on the browser login page.

(d) JavaScript computes a digest from the
user credentials and the ticket.

HTTP request sent (with digest)

Step 5 (Case I): Failed login

(a) User checks credentials or browser
settings.

(b) User clicks on the “Retry” link (or
button).

(c) User refreshes the “Authentication for
Application Access” page.

(d) User continues from Step 3.

 Return to Step 3.

Step 5 (Case II): Successful login

User is logged in and seeing a page which
provides secure links to various applica-
tions.

Note: In Step 4 the script AppAuthenticate.php
does not generate a page directly seen by the
user. When login is successful, AppAuthenticate
must perform both server-side ticket generation
and client-side digest creation when redirecting
to the Applications homepage.

Step 4 (Case II): Process login request
Script: /applications/AppAuthenticate.php

(c) Case II: If a match is found:
i. Store the user credentials in a file

associated with the client IP address.
ii. Make a new ticket and store it in a file

associated with the client IP address.
iii. Create a digest of the new ticket and the

user credentials.
iv. Perform server-side redirection to the

Applications homepage, which repeats steps
ii and iii before sending the page.

HTTP application-homepage
response sent (with

ticket and JavaScript)

Step 2: Create and send login page
Script: /applications/Login.php

(a) Create a ticket and store it in a file
associated with the client IP address.

(b) Prepare the HTML login-form page with the
ticket embedded in a hidden variable

 HTTP login-page response
 sent (with ticket and JavaScript)

Step 4: Process login request
Script: /applications/AppAuthenticate.php

(a) Read saved ticket for client IP address from
file on server.

(b) Loop through file of user credentials
computing digests and comparing to the
digest sent by the client.

(c) Case I: If end-of-file for credentials is
reached with no match, send a login-failure
page to the client.

 HTTP failure-page response sent

(without parameters)

What the User Sees User and Client-Side Actions Server-Side Actions

10   Secure Web-Site Access with Tickets and Message-Dependent Digests

The message-dependent character of the digest algo-•	
rithm, by conjecture, prevents or severely hinders the
development of a computationally tractable reverse
algorithm.

Strengths and Weaknesses of MDDT

MDDT has the following strengths:

The digest algorithm for an implementation can •	
be easily changed through a minor revision of the
software with low risk of introducing bugs into
other parts of the MDDT code.

When high-strength cryptographic digest algo-•	
rithms (such as SHA-1) are not required, the use
of lightweight custom digest algorithms with
MDDT can substantially reduce computational
overhead for MDDT client-server transactions.

The technique can be implemented using any of •	
a number of client-side and server-side program-
ming languages and frameworks.

MDDT can be used as a starting place for other •	
techniques; the MDDT code and technique can
be adapted for other applications.

MDDT allows server-side access to information •	
about users and their login sessions; thus, MDDT
enables server-side software to control access,
processing, and auditing to any desired level of
granularity.

MDDT can be made to work with more browsers •	
and Web servers than HTTP digest authentica-
tion at this time.

MDDT can be combined with encryption (for •	
example, with HTTPS) to prevent eavesdropping.

Figure 2.  Sequence of user, client, and server actions during transition from one secured page to another with MDDT.

Step 1: Request new page

(a) For example, user clicks on ”Link to
Operation 1“ in the menu.

(b) JavaScript computes a digest from the
user credentials and the ticket,
obtaining the user credentials from the
still-open browser window containing
the login page.

HTTP request sent (with digest)

Step 3: Successful movement

In this example, user is now viewing
another secure page containing links,
allowing further movement to other
secure pages.

Step 2: Authenticate and send page
Script:/applications/management/checklist.php

(a) Read stored ticket and user credentials for
this IP address from server files.

(b) Compute a digest and compare it to the
digest sent by the client.

(c) If digests match, make and store a new
ticket and embed it in the page requested

 in a hidden variable.

 HTTP page response
sent (with ticket and JavaScript)

What the User Sees User and Client-Side Actions Server-Side Actions

A Conjecture about Message-Dependent Digests   11

MDDT provides for clean session terminations •	
through logouts.

On balance, MDDT is a relatively lightweight •	
solution that does not place significant computa-
tional burdens on clients or servers and does not
require the services of external trusted servers or
authorities.

MDDT suffers from these weaknesses:

MDDT requires that every restricted Web page •	
include a server-side script that verifies, prior
to page loading, whether a request for the page
comes from an authenticated user. While this is
not a particularly burdensome requirement, it
does add to the effort required to develop Web
pages and it adds to the Web server’s computa-
tional overhead.

Use of the “back,” “forward,” or “refresh” but-•	
tons is discouraged so as to preserve the chain
of authentication as users view access-restricted
Web pages; this restriction is inconvenient not
only for users, but for webmasters who must
apply special HTML code for all links to other
access-restricted pages on their site.

To date, MDDT has not been tested for compat-•	
ibility with any asynchronous JavaScript and
XML (AJAX) page-design techniques.

The original login window must be kept open •	
during an MDDT login session because user
credentials are stored in this window; this
practice (as explained above in “Comparison of
Resistance to Attacks”) entails some risk. This
requirement could be eliminated by modify-
ing MDDT to store user credentials in session
cookies (and optionally to transfer the ticket
from server to client in session cookies); such
a change might improve user convenience but
would not improve security.

As currently implemented, MDDT does not •	
check the age of single-use tickets to insure that
they are nullified if not used within a certain
period of time, such as 15 or 20 minutes. Such a
check can be added easily, and should be.

A Conjecture about Message-
Dependent Digests
A message digest has value in that it represents a message
without revealing information about the message; therefore,
an algorithm for producing message digests should be, as
nearly as possible, irreversiblethere should not be any fast

algorithm for identifying any part of a source message from its
digest. When designing a message-digest algorithm, it would
seem that the desirable trait of irreversibility is more likely to
be achieved when the forward algorithm follows various paths
of execution for different source messages, because then any
algorithm for reversing the computation must test and traverse
multiple reverse execution paths. These observations lead to
the following informal conjecture: Relatively simple message-
digest algorithms can be made irreversible for practical pur-
poses by introducing algorithmic message dependency.

This conjecture is offered here for two purposes: First, to
guide Web-application developers who modify MDDT with
new message-digest functions, and second, to propose this as
a topic for further investigation by cryptographic research-
ers (if there is not already a body of theory in this area). The
truth or falsity of this conjecture is not critical to the utility of
MDDT because the message-digest function used in MDDT
can be replaced without changing overall functioning. Widely
used message-digest algorithms, such as MD5 or SHA-1,17
can be used in MDDT, although possibly at the cost of greater
computational overhead.

Summary
MDDT (message-dependent digests with tickets) is a

technique for restricting access to selected documents on an
otherwise publicly accessible Web server, implemented using
procedural code that runs under freely and widely available
language translators: JavaScript on the client side and PHP
on the server side. MDDT is well suited to Web sites and
Web applications for which it is important to restrict access
to interactive pages and operational forms. Like any other IT
security control, MDDT should be applied or adapted care-
fully in consultation with IT-security specialists. If MDDT is
used in a Federal application requiring high security, then the
message-digest algorithm used must conform to FIPS Publica-
tion 180–2 for the Secure Hash Standard (National Institute of
Standards and Technology, 2002).

For some applications, other solutions may be more
appropriate. In particular, HTTP Digest Authentication
combined with PHP state management is similar to MDDT
in capabilities and simpler to implement (Lerdorf and Tatroe,
2002). MDDT does, however, provide more tamper-resistant
session continuity, superior server-side access to user identity
and state (for fine-grained control of applications), and definite
session logouts.

17MD5 and SHA-1 (Viega and others, 2002) both provide a feature that is
not needed in MDDT; these digest algorithms produce almost no collisions
(instances in which different source messages have the same digest). This
feature is important when assurance of the integrity and authenticity of docu-
ments or digital files is required, but such absolute assurance is unnecessary in
MDDT. If the probability of one collision is on the order of one in a million,
the probability of two or three sequential collisions is the product of the prob-
abilities for each collision; for practical purposes, this is a vanishingly small
probability. Thus, a rare lucky guess by an attacker might yield access to a
single Web page, but almost certainly not to any other pages.

12   Secure Web-Site Access with Tickets and Message-Dependent Digests

References Cited

Apache HTTP Server Project, 2005, Authentication, autho-
rization, and access control (digest caveat): Apache HTTP
Server Project Web site at http://httpd.apache.org/docs/1.3/
howto/auth.html#digestcaveat. (Accessed August 24, 2007.)

Apache HTTP Server Project, 2006, Apache module mod_
auth_digest: Apache HTTP Server Project Web site at
http://httpd.apache.org/docs/2.2/mod/mod_auth_digest.
html. (Accessed August 24, 2007.)

Apache Week, 1996, Using user authentication: Apache Week
Web site at http://www.apacheweek.com/features/userauth/.
(Accessed August 24, 2007.)

Barrett, D.J., Silverman, R.E., and Byrnes, R.G., 2005, SSH:
the Secure Shell (2d ed.): Sebastopol, Calif., O’Reilly &
Associates, Inc., 645 p.

Bui, Sonny, and others, 2002, United States Patent No.
US 6,412,007 B1—Mechanism for authorizing a data
communication session between a client and a server:
Google Patent Search Web site at http://www.google.com/
patents?vid=USPAT6412007. (Accessed June 18, 2008.)

Garfinkel, Simson, Spafford, Gene, and Schwartz, Alan, 2003,
Practical Unix & Internet security (3d ed.): Sebastopol,
Calif., O’Reilly & Associates, Inc., 954 p.

IBM, 2006, Custom single login: IBM Web site at http://
publib.boulder.ibm.com/infocenter/tivihelp/v8r1/
index.jsp?topic=/com.ibm.netcool_portal.doc/po20in/
xF1310744573.html. (Accessed August 24, 2007.)

Laurie, Ben, and Laurie, Peter, 1999, Apache—the definitive
guide (2d ed.): Sebastopol, Calif., O’Reilly & Associates,
Inc., 369 p.

Lerdorf, Rasmus, and Tatroe, Kevin, 2002, Programming PHP:
Sebastopol, Calif., O’Reilly & Associates, Inc., 507 p.

National Institute of Standards and Technology, 2002,
Federal Information Processing Standards Publication
180–2—Secure Hash Standard: National Institute of Stan-
dards and Technology (NIST) Web site at http://csrc.nist.
gov/publications/fips/fips180–2/fips180–2.pdf. (Accessed
June 18, 2008.)

Network Working Group, 1987, RFC 1034 - Domain names—
concepts and facilities: Internet Engineering Task Force
(IETF) Web site at http://www.ietf.org/rfc/rfc1034.txt.
(Accessed September 7, 2007.)

Network Working Group, 1993, RFC 1518 - An architecture
for IP address allocation with CIDR: Internet Engineer-
ing Task Force (IETF) Web site at http://www.ietf.org/rfc/
rfc1518.txt. (Accessed September 7, 2007.)

Network Working Group, 1994, RFC 1738 - Uniform
Resource Locators (URL): Internet Engineering Task Force
(IETF) Web site at http://www.ietf.org/rfc/rfc1738.txt.
(Accessed September 7, 2007.)

Network Working Group, 1998, RFC 2401 - Security archi-
tecture for the Internet Protocol: Internet Engineering Task
Force (IETF) Web site at http://www.ietf.org/rfc/rfc2401.txt.
(Accessed September 7, 2007.)

Network Working Group, 1999a, RFC 2246 - The TLS Pro-
tocol Version 1.0: Internet Engineering Task Force (IETF)
Web site at http://www.ietf.org/rfc/rfc2246.txt. (Accessed
September 7, 2007.)

Network Working Group, 1999b, RFC 2616 - Hypertext
Transfer Protocol–HTTP/1.1: Internet Engineering Task
Force (IETF) Web site at http://www.ietf.org/rfc/rfc2616.txt.
(Accessed September 7, 2007.)

Network Working Group, 1999c, RFC 2617 - HTTP authen-
tication—basic and digest access authentication: Internet
Engineering Task Force (IETF) Web Site at http://www.ietf.
org/rfc/rfc2617.txt. (Accessed September 7, 2007.)

Network Working Group, 1999d, RFC 2660 - The Secure
HyperText Transfer Protocol: Internet Engineering Task
Force (IETF) Web site at http://www.ietf.org/rfc/rfc2660.txt.
(Accessed September 7, 2007.)

Network Working Group, 2000, RFC 2818 - HTTP over TLS:
Internet Engineering Task Force (IETF) Web site at http://
www.ietf.org/rfc/rfc2818.txt. (Accessed September 7, 2007.)

Network Working Group, 2003, RFC 3647 - Internet X.509
Public key infrastructure certificate policy and certifica-
tion practices framework: Internet Engineering Task Force
(IETF) Web site at http://www.ietf.org/rfc/rfc3647.txt.
(Accessed September 7, 2007.)

Network Working Group, 2005, RFC 3986 - Uniform
Resource Identifier (URI)−Generic Syntax: Internet Engi-
neering Task Force (IETF) Web site at http://www.ietf.org/
rfc/rfc3986.txt. (Accessed September 7, 2007.)

Open Web Application Security Project, 2002, A guide to
building secure Web applications: cgisecurity.com Web
site at http://www.cgisecurity.com/owasp/html/. (Accessed
August 24, 2007.)

Open Web Application Security Project, 2007, Top 10 2007:
Open Web Application Security Project (OWASP) Web
site at http://www.owasp.org/index.php/Top_10_2007.
(Accessed September 6, 2007.)

Pastore, Mike, and Dulaney, Emmett, 2004, Security +TM study
guide (2d ed.): Alameda, Calif., SYBEX Inc., 500 p.

http://httpd.apache.org/docs/1.3/howto/auth.html#digestcaveat
http://httpd.apache.org/docs/1.3/howto/auth.html#digestcaveat
http://httpd.apache.org/docs/2.2/mod/mod_auth_digest.html
http://httpd.apache.org/docs/2.2/mod/mod_auth_digest.html
http://www.apacheweek.com/features/userauth
http://www.google.com/patents?vid=USPAT6412007
http://www.google.com/patents?vid=USPAT6412007
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_portal.doc/po20in/xF1310744573.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_portal.doc/po20in/xF1310744573.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_portal.doc/po20in/xF1310744573.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_portal.doc/po20in/xF1310744573.html
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1518.txt
http://www.ietf.org/rfc/rfc1518.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2660.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.cgisecurity.com/owasp/html/
http://www.owasp.org/index.php/Top_10_2007

References Cited   13

PHP Group, 2007, Chapter CXII. OpenSSL functions: PHP
Group Web site at http://www.php.net/manual/en/ref.
openssl.php. (Accessed August 24, 2007.)

Sasmazel, Levent MD, and Schneider, D.H., 2000, United
States Patent No. 6,032,260—Method for issuing a new
authenticated electronic ticket based on an expired authen-
ticated ticket and distributed server architecture for using
same: Google Patent Search Web site at http://www.google.
com/patents?vid=USPAT6032260. (Accessed June 18,
2008.)

Skoudis, Ed, with Liston, Tom, 2006, Counter hack reloaded
(2d ed.): Upper Saddle River, N.J., Prentice Hall, 748 p.

Stein, L.D., and Stewart, J.N., 2002, The World Wide Web
security FAQ: World Wide Web Consortium (W3C) Web
site at http://www.w3.org/Security/Faq/. (Accessed August
24, 2007.)

Venners, Bill, 2006, HTTP authentication woes: Artima
Web site at http://www.artima.com/weblogs/viewpost.
jsp?thread=155252. (Accessed August 24, 2007.)

Viega, John, Messier, Matt, and Chandra, Pravir, 2002, Net-
work security with OpenSSL: Sebastopol, Calif., O’Reilly
& Associates, Inc., 367 p.

World Wide Web Consortium, 2001, HTTP activity state-
ment: World Wide Web Consortium Web site at http://
www.w3.org/Protocols/Activity.html. (Accessed August 24,
2007.)

World Wide Web Consortium, 2008, World Wide Web Con-
sortium (homepage): World Wide Web Consortium Web site
at http://www.w3.org/. (Accessed January 17, 2008.)

http://www.php.net/manual/en/ref.openssl.php
http://www.php.net/manual/en/ref.openssl.php
http://www.google.com/patents?vid=USPAT6032260
http://www.google.com/patents?vid=USPAT6032260
http://www.w3.org/Security/Faq/
http://www.artima.com/weblogs/viewpost.jsp?thread=155252
http://www.artima.com/weblogs/viewpost.jsp?thread=155252
http://www.w3.org/Protocols/Activity.html
http://www.w3.org/Protocols/Activity.html
http://www.w3.org/

14   Secure Web-Site Access with Tickets and Message-Dependent Digests

access control list  A list of identifying
information used by computer software to
control access to an information-system
resource.

account harvesting  An attack consisting in
the gathering of user names, passwords, or
both for later attempts at unauthorized access
to an information-system resource.

AJAX  Asynchronous JavaScript and XML.
AJAX is an approach to the design of respon-
sive, interactive Web pages.

algorithm  A step-by-step procedure for
processing information or carrying out a
computation.

attack  An activity directed towards gain-
ing unauthorized access to data, information,
or an information-system resource for any
purpose (Skoudis with Liston, 2006).

authenticated  In reference to a user, having
been duly identified as an authorized user
(that is, as a person explicitly permitted to use
an application or other information-system
resource).

authentication  The state, process, or capa-
bility of identifying authorized users (per-
sons permitted to use an application or other
information-system resource).

authentication ticket  A complex and arbi-
trary character string or number used to grant
temporary access to an information-system
resource, such as a Web application.

authorized  Having been given permission to
use an information-system resource.

client  The person, machine, or software that
initiates requests for services or information
during client-server interactions.

client-server  A two-way interaction
between information-system resources in
which a client issues requests for informa-
tion and services and accepts responses, and a
server responds to the client requests.

confidentiality  The ability to prevent access
to an information-system resource by unau-
thorized users, or the quality of being pro-
tected from unauthorized disclosure or access.

cracking  Gaining unauthorized access to
information by recovering the original mes-
sage from an encrypted copy; unauthorized
decryption.

credentials guessing  An attack consisting
of repeated, usually automated, login attempts
carried out in order to gain access.

cryptographic cipher  A procedure, algo-
rithm, or process that reversibly converts a
source file or message into an encoded form
that is not directly usable.

data spoofing (tampering)  An attack consist-
ing of unauthorized modification of data,
either while the data are in transit over a
network or residing on a Web server or other
information system.

denial of service  An attack carried out to
make an information-system resource tempo-
rarily or permanently unavailable through a
concerted effort to overload the resource.

domain  A collection of information-system
resources defined by IP address, the Domain
Name System, or Microsoft® Active Direc-
tory®.

Domain Name System  A collection of Inter-
net servers and services that associate and
cross-reference human-readable names with
IP addresses (Network Working Group, RFC
1034, 1987).

eavesdropping  The process or activity of
secretly obtaining information transmitted
over a network between two other parties
without stopping or detectably slowing the
transmission.

encryption  The process or activity of revers-
ibly encoding information into a form that is
not directly usable or understandable.

extranet  A network or network-based
resource available to users on an internal
network (an intranet) and to a limited external
clientele.

hash  The process or result of reproducibly
transforming any ordered collection of bytes
of any length into a fixed-length string or
number (National Institute of Standards and
Technology, 2002). Some hashes are used as
message digests.

Glossary

Glossary   15

HTTPS  HyperText Transfer Protocol Secure
specifies HTTP over Secure Sockets Layer,
TLS, or OpenSSL (Network Working Group,
RFC 2818, 2000).

HyperText Transfer Protocol  A lightweight
protocol for transferring files via the Internet;
the defining protocol for the World Wide Web
(Network Working Group, RFC 2616, 1999b).

include file  A file referenced in another file
with an “include” directive. (The “include”
directive within a primary file references a
secondary include file and directs that the
include file’s contents be retrieved and incor-
porated into the contents of the primary file.)

information technology  Hardware, software,
and methods of processing and communi-
cating information; especially computers,
communications networks, and other digital
electronic devices used for processing infor-
mation.

integrity  The state of being complete and
free from unauthorized modifications.

interception  The process or act of obtaining
information intended for another recipient in
such as way as to prevent its receipt by the
intended recipient.

internet  The global network of networks.

Internet service provider  A firm or other
organization that provides equipment and ser-
vices that enable networks or users to connect
to the Internet.

intranet  An internal or private network that
may or may not be connected to the Internet.

IP address  An address for an hardware net-
work interface as defined by the Internetwork-
ing Protocol (IP) (Network Working Group,
1993, RFC 1518). (Under IPv4, an IP address
consists of four octets of bits, for a total of 32
bits.)

IP spoofing  Communicating on a network
with one or more forged IP addresses.

IPsec  A protocol widely used for creat-
ing Virtual Private Networks by encrypting
communications between a publicly acces-
sible network and a private network (Network
Working Group, RFC 2401, 1998).

login  The act or process by which a user is
identified (authenticated) to an information-
system resource as someone authorized
to access the resource. (Typically, a login
involves an exchange that demonstrates that
the user possesses valid credentials, such as a
user name and password, though the cre-
dentials themselves may not necessarily be
exchanged.)

login session  A finite period of time follow-
ing the completion of a login during which
a user is known to an information-system
resource as an authorized user and allowed to
make use of the resource.

logout  In reference to a Web application, a
process that ends a login session unequivo-
cally by removing or setting server-side state
variables to close the session and by sending
a Web page to the user reporting the session
termination.

man-in-the-middle  person-in-the-middle.

MDDT  The technique for secure (that is,
restricted) Web-site access described in this
publication: message-dependent digests with
tickets.

message-dependent  In reference to a
message digest, created with an algorithm
that prescribes different processing steps,
depending on the content of the message to be
digested. (Alternatively, a message-dependent
digest may be said to be a digest created
by one member of a parametric family of
algorithms, with the elements of the source
message providing the parameters by which
the member algorithm is determined.)

message digest  A compact string or a num-
ber reproducibly derived from any collection
of bytes, such as a character string, a digital
document, or any other computer file. (For
practical purposes, a digest should be, as mea-
sured in bytes of information, much shorter
than the source message. Typically message
digests are no more than 30 or 40 bytes.)

nonrepudiation  In reference to a transaction
or exchange, a quality of verifiability such
that no party to the transaction or exchange
may credibly repudiate or deny occurrence
and details of the transaction or exchange.

16   Secure Web-Site Access with Tickets and Message-Dependent Digests

nonce  An arbitrary, semantically void, and
highly improbable character string, number,
or value generated for a single use (“for the
nonce”).

OpenSSL  “… an open-source library that
implements the SSL and TLS protocols, and
is the most widely deployed, freely available
implementation of these protocols” (Viega
and others, 2002).

packet sniffer  Software or a combination
of software and hardware that eavesdrops on
network transmissions.

person-in-the-middle  An attack (also known
as a man-in-the-middle attack) in which a per-
son secretly monitors and alters transmissions
between two other parties. (The person-in-the-
middle, or PITM, attack typically involves a
proxy that may operate on either the client’s
network or the server’s network.)

proxy  A server, workstation, or other
information-system resource that mediates
client-server transactions. (Some proxies are
authorized and legitimate while others operate
secretly and without authorization by network
administrators.)

public key infrastructure  The collection of
widely available software, procedures, legal
agreements, and certification authorities that
establish trust among those who use public-
key cryptography to secure transactions and
verify digital signatures. The topics of public-
key cryptography and digital signatures are
not discussed in detail in this publication due
to their complexity (Viega and others, 2002;
Network Working Group, RFC 3647, 2003).

replay  An attack in which captured cre-
dentials or session keys are used later to gain
unauthorized access to an information-system
resource.

Secure HyperText Transfer Protocol  A
protocol (S-HTTP) for secure transmission
of messages using HTTP (Network Working
Group, RFC 2660, 1999d).

Secure Sockets Layer  A protocol based on
public-key cryptography for transmission of
encrypted information over the Internet.

server  Hardware or software that responds
to requests for information or services initi-
ated by clients.

session  A finite period of time during
which a user interacts with an information-
system resource.

session cloning (client-side masquerad-
ing)  An attack in which an unauthorized
person obtains session-related variables and
uses them to take over a user session as the
client.

session continuity  The quality of unbroken
access to, and availability of, an information-
system resource during a session.

session cookie  An item of state data stored
by a Web browser on the client workstation
only for the duration of the Web-browser
session. Session cookies are deleted when a
Web-browser window is closed or, at the lat-
est, when the Web browser is shut down.

session hijacking (server-side masquerad-
ing)  An attack in which a client’s interac-
tions with a chosen server are redirected to
another server without the client’s permission
or awareness.

social engineering  The use of deception or
manipulation in social interchanges to obtain
information useful for gaining unauthorized
access to information-system resources.

state  The condition or mode of a transaction
or process.

state management  The processes and
facilities by which an interactive information-
systems resource keeps track of its own state
and that of all of its users.

stateless  In reference to a protocol, having
no history by which a current transaction can
be affected by a prior transaction.

subnet  A portion of the addresses or devices
on a network. (Usually a subnet is defined by
the portion of an address or naming string that
can be modified in order to generate addresses
or names within the subnet.)

ticket  A unique or highly improbable string,
document, number, or value generated for
granting temporary access to an information-
system resource; a kind of nonce.

Glossary   17

Transport Layer Security  The protocol that
is the successor to Secure Sockets Layer (Net-
work Working Group, RFC 2246, 1999a) for
transmission of encrypted information over
the Internet.

Uniform Resource Locator  Loosely, a
Uniform Resource Identifier (URI), that is, a
relatively compact name for a document or
other resource accessible through the Internet
(Network Working Group, RFC 1738, 1994;
Network Working Group, RFC 3986, 2005).

URL guessing  An attack performed by
guessing a URL in order to view a Web docu-
ment or other Internet resource for which the
URL is unpublished or otherwise restricted.

virtual host  A Web site hosted on a server
configured to host multiple sites, each with its
own individual domain name; or a server con-
figured for hosting multiple, independently
named Web sites.

Virtual Private Network  A set of facilities
by which users may securely access a private
network through a public network.

Web  A short name for the World Wide Web.

Web application  A collection of software
for performing interactive processing through
Web forms and Web pages; a computer
application with a Web browser as the user
interface.

Web client  A visitor to a Web site, a user of
a Web application, or the Web browser used
by a Web-site visitor or Web-application user.

Web server  The hardware, software, or
both, that respond(s) to HTTP client requests.

webmaster  An individual or team that oper-
ates a Web site.

Web site  A specific named collection of
documents and forms available for HTTP
access on the Internet or on a private network.

workaround  A response to a problem that
avoids the problem (by working around it)
rather than solving it.

World Wide Web  The total, world-wide
collection of Internet-accessible Web sites
and their collective content (World Wide Web
Consortium, 2008).

World Wide Web site  A Web site. (“Web
site” is the more common usage.)

WWW  The World Wide Web.

Appendixes 1–2

The following appendixes provide (1) a list of abbreviations used throughout the text of this
publication and (2) working JavaScript and PHP code for an implementation of MDDT.

20   Secure Web-Site Access with Tickets and Message-Dependent Digests

Appendix 1.  List of Abbreviations

ACL		 access control list

AJAX		 asynchronous JavaScript and XML

DoS		 denial of service

DNS		 Domain Name System

HTTP		 HyperText Transfer Protocol

HTTPS		 HyperText Transfer Protocol Secure

IP		 Internetworking Protocol

ISP		 Internet service provider

IT		 information technology

MITM		 man-in-the-middle

PHP		 PHP HyperText Preprocessor

PITM		 person-in-the-middle

PKI		 public key infrastructure

RFC		 Request for Comments

S-HTTP		 Secure HyperText Transfer Protocol

SSL		 Secure Sockets Layer

TLS		 Transport Layer Security

URL		 Uniform Resource Locator

VPN		 Virtual Private Network

WWW		 The World Wide Web

Appendix 2   21

Appendix 2.  Working JavaScript and PHP Code

This appendix contains JavaScript and PHP code from a
working implementation of MDDT.1 Although these programs
have been used by the USGS, no warranty, expressed or
implied, is made by the USGS or the United States Govern-
ment as to the accuracy and functioning of these programs
and related program material nor shall the fact of distribution
constitute any such warranty, and no responsibility is assumed
by the USGS in connection therewith. The working code
consists of:

enough PHP pages (four) to illustrate how the PHP and •	
JavaScript include files2 are referenced from login and
application pages,

a list of code excerpts illustrating how to link and pass •	
parameters among application pages,

five PHP include files (code incorporated into PHP •	
pages with the “include” directive), and

two JavaScript include files (code incorporated into the •	
scripts on PHP pages with the “include” directive).

The code files in this Appendix contain several long
URLs or PHP identifiers broken across lines because of the
limited page width. To use these files as working code, these
URLs and identifiers must be rejoined.

PHP Pages

index.php (Login.php)  First page seen during authentication
AppAuthenticate.php  Unseen authentication-check page
AppHome.php  Homepage for successfully authenticated
users
/management/index.php  Sample page for demonstrating
secure links
Code excerpts  Excerpts illustrating various secure link types

In the listings for these PHP pages, the portion of page
code that is specific to MDDT access restriction is in bold-
face blue type for emphasis.

1The MDDT code in this appendix is from the implementation for the
USGS Eastern Geographic Science Center (EGSC) High-Performance Com-
puting Cluster (HPCC) Operational Web Site (http://egscbeowulf.er.usgs.gov/).

2An include file is a file that is incorporated into a referring page or script
during processing. The include file is referenced in the referring (or “calling”)
page or script by an “include” directive.

PHP Include Files

MakeTicket.phpinc  Routine for creating a ticket

SaveTicket.phpinc  Routine for saving the ticket to a file

HiddenForm01.phpinc  Page element for supplying the ticket
in a hidden variable

InitAuth.phpinc  Server-side code for initial authentication

ContAuth.phpinc  Server-side code for continuing use of
restricted pages

JavaScript Include Files

InitLogin.js  Client-side code for initial authentication

ContLogin.js  Client-side code for continuing use of restricted
pages

http://egscbeowulf.er.usgs.gov/

22   Secure Web-Site Access with Tickets and Message-Dependent Digests

PHP Pages

index.php (aka Login.php): First page seen during authentication
<html>
<head>
	 <title>EGSC HPCC Applications Section Main Page: Authentication for Application
	 Access</title>
	 <link rel="stylesheet" type="text/css" href="/css/hpcc01a.css">
	 <script language="JavaScript">
	 <? include '/var/www/html/applications/php/MakeTicket.phpinc'; ?>
	 <? include '/var/www/html/applications/php/SaveTicket.phpinc'; ?>
	 <? include '/var/www/html/applications/js/InitLogin.js' ?>
	 </script>
</head>
<body bgcolor="#f0f0f0">

<? include '/var/www/html/includes/header2c.html'?>

<table width="840">
	 <tr>
		 <td class="FormalColumnT" colspan="2" height="60"><h2>Authentication
		 for Application Access</h2></td>
	 </tr>
	 <tr>
		 <td class="FormalColumnL" width="200" height="250">Use of applications
		 on the USGS Eastern Geographic Science Center (EGSC) High-Performance
		 Computing Cluster(HPCC) is restricted to authorized users. If you have
		 not been provided with login credentials, please
		 exit from this page.
		 Information about becoming an authorized user is
		 available on
		 the public area of this Web site.
		
		 <td class="FormColumn" width="70%" height="250">
		 <form name="form1" action="AppAuthenticate.php" target="_blank"
		 onsubmit="SaveAUvalues(this);">
		 <center>
			 <table>
				 <tr>
	 	 	 	 	 <td class="FormItemDescription">User Identification (UserID):</td>
					 <td><input type="text" name="aus1" maxlength="50"></td>
				 </tr>
				 <tr>
					 <td class="FormItemDescription">Authorization Code:</td>
					 <td><input type="password" name="aus2" maxlength="50"></td>
				 </tr>
			 </table>

<input type="submit" name="aus3" value="Enter Access Information">

		 </center>
		 <input type="hidden" name="hpccTicket" value="<? printf("%s",$Ticket); ?>">
		 </form>

Appendix 2  23

<p>Please Note:
	
		 Logging in automatically opens a new window for your HPCC work.
		 While you use HPCC applications in the new window, this window
		 must remain open displaying the Authorized-Users Login Page. This
		 window must not be used again until after logout, but you may
		 minimize it if you wish.

		 You must refresh this page between logins. With some browsers
		 (including Mozilla Firefox) you must leave the page and return. With other
		 browsers (including Internet Explorer 6.0) it is only necessary to click the
		 "Refresh" button.

		 Please do not use your browser’s "Back", "Forward", or "Refresh"
		 buttons during your HPCC login session.

		 Please do not allow your browser to save ("remember") your login
		 credentials.

		 Please do not attempt to open more than one HPCC login session
		 from the same workstation. Only one login session from a single
		 IP address is allowed at any one time.
	
</p>

		 </td>
	 </tr>
</table>

<? include '/var/www/html/includes/footer2.html' ?>

</body>
</html>

24   Secure Web-Site Access with Tickets and Message-Dependent Digests

AppAuthenticate.php: Unseen authentication-check page

<?
	 // This PHP code tests for valid userid and password and re-directs either
	 // to the authenticated-users homepage or a failure page.
	 // If the user is sent to the AU homepage, a new ticket and digest are
	 // generated so the AU homepage will be able to perform the ticket-based
	 // authentication used by all actual pages in the secure are of the Web site.
	 include '/var/www/html/applications/php/InitAuth.phpinc'; $val = InitAuth();
	 if (substr($val,0,3) == "Bad") {header('Location: http://egscbeowulf.er.usgs.gov/
	 LoginFailed.php'); exit();}
	 include '/var/www/html/applications/php/MakeTicket.phpinc';
	 include '/var/www/html/applications/php/SaveTicket.phpinc';
	 $NewDigest = Digest01a($Ticket, $uid, $pw);
	 $locstring = "Location: http://egscbeowulf.er.usgs.gov/applications/
	 AppHome.php?hpccTicket=";
	 $locstring = $locstring.$NewDigest;
	 header($locstring); exit();
?>

<html>
<head>
	 <title>EGSC HPCC Applications: User-Authentication Processing</title>
	 <link rel="stylesheet" type="text/css" href="/css/hpcc01a.css">
</head>
<body>

<? include '/var/www/html/includes/header2a.html'?>

<table width="800">

	 <tr>
		 <td class="FormalColumn" colspan="2" height="60px"><h2>User
		 Authentication</h2></td>
	 </tr>
	 <tr>
		 <td class="FormalColumn" height="250px">
<p class="FeaturedItem">The HPCC authentication system has malfunctioned.
Please report the contents of this page to the
EGSC HPCC manager.
		 </td>
	 </tr>

</table>

<? include '/var/www/html/includes/footer2.html' ?>

</body>
</html>

Appendix 2   25

AppHome.php: Homepage for successfully authenticated users
<?
	 include '/var/www/html/applications/php/ContAuth.phpinc'; $val = ContAuth();
	 if ($val == "Bad") {header('Location: http://egscbeowulf.er.usgs.gov/
	 AuthenticationFailure.php'); exit();}
	 include '/var/www/html/applications/php/MakeTicket.phpinc';
	 include '/var/www/html/applications/php/SaveTicket.phpinc';
?>
<html>
<head>
	 <title>EGSC HPCC Applications: Homepage</title>
	 <link rel="stylesheet" type="text/css" href="/css/hpcc01a.css">
	 <script language="JavaScript">
	 <? include '/var/www/html/applications/js/ContLogin.js' ?>
	 </script>
</head>
<body>

<? include '/var/www/html/php/SubHeader1.phpinc'; SubHeader1("EGSC HPCC Operations",
"Applications", "SubHeadc"); ?>

<table width="840">

	 <tr>
		 <td class="FormalColumnT" colspan="2" height="60">
		 <h2>EGSC HPCC Applications Homepage</h2>
<p>All applications available on the EGSC HPCC are shown and may be accessed
from this Applications Homepage, though
during this session you may only use the applications for which <?
print($uid); ?> is a valid user identifier.
</p>
		 </td>
	 </tr>
	 <tr>
		 <td class="MenuColumn" width="200" height="250">

		 <h3>Selections<h3>
		 <table valign="center" align="center">

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/compstat/
				 index.php">Computational Statistics
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/geonames/
				 index.php">Geographic Names Rapid Search
				 </td>
			 </tr>

26   Secure Web-Site Access with Tickets and Message-Dependent Digests

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/
				 index.php">HPCC Management and System Administration
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/jpeg2000/
				 index.php">JPEG2000 Encoding
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/weather/
				 index.php">Meteorological Data Selection
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/nmmft/
				 index.php">National Model of Mercury in Fish Tissue
				 (NMMFT) Calibration
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/sleuth/
				 index.php">SLEUTH (Urban Growth) Model
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/utilities/
				 index.php">User Utilities
				 </td>
 			 </tr>
			 </table>

		 </td>
		 <td class="FormalColumnR" width="70%" height="250">
		 <h4>Applications on the EGSC HPCC</h4>

<p>The menu on the left will take you to an application or an application set.
Selecting a menu item <i>does not</i> initiate the application — this just
takes you to the application’s main page from which you may perform the operations
available for that particular application. Each application is responsible for
insuring its own user restrictions. If you have not been authorized to use an
application, selecting it from the menu on the left will send you to an error page.

Appendix 2   27

Please remember not to use the "Back", "Forward", or "Refresh" buttons on your browser
while using applications since using these buttons breaks your user-authentication
chain and returns you to an error page.
</p>

			 <table style="border-color:red; border-width: 4px; border-style:
			 solid; padding: 8px;" >
				 <tr>
					 <td>
					 <h3 class="Red">IMPORTANT NOTICE TO USERS OF THIS SYSTEM</h3>
					 <p class="Notice2">
					 This is a United States Government computer system, maintained by
	 	 	 	 	 the Department of the Interior, to provide official, unclassified
					 U.S. Government information. Use of this system by any user,
					 whether authorized or unauthorized, constitutes consent to
					 monitoring, recording,
					 and disclosure of use by authorized personnel.
					 Users have no reasonable expectation of privacy in the use
					 of this system.

					 Unauthorized use may subject violators to criminal, civil,
					 or disciplinary action.
					 </p>
					 </td>
				 </tr>
			 </table>
		 </td>
		 <td>
		 <? include '/var/www/html/applications/php/HiddenForm01.phpinc' ?>
		 </td>
	 </tr>

</table>

<? include '/var/www/html/applications/php/BottomNavMain1.phpinc'; BottomNavMain1();
?>
<? include '/var/www/html/applications/php/FooterMain1.phpinc'; FooterMain1(); ?>

</body>
</html>

28   Secure Web-Site Access with Tickets and Message-Dependent Digests

/management/index.php: Sample page for demonstrating secure links
<?
	 include '/var/www/html/applications/php/ContAuth.phpinc'; $val = ContAuth();
	 if ($val == "Bad") {header('Location: http://egscbeowulf.er.usgs.gov/
	 AuthenticationFailure.php');}
	 include '/var/www/html/applications/php/MakeTicket.phpinc';
	 include '/var/www/html/applications/php/SaveTicket.phpinc';
	 include '/var/www/html/applications/php/AppAuth.phpinc'; $val =
	 AppAuth("Management");
	 if ($val == "Bad")
		 {
		 $NewDigest = Digest01a($Ticket, $uid, $pw);
		 $locstring = "Location: http://egscbeowulf.er.usgs.gov/applications/
		 AppAuthenticationFailure.php?hpccTicket=";
		 $locstring = $locstring.$NewDigest;
		 header($locstring); exit();
		 }
	 include '/var/www/html/applications/php/TaskProg.phpinc';
	 TaskProg("Management Application Home", “Entered homepage for the EGSC HPCC
	 Management application.");
?>
<html>
<head>
	 <title>EGSC HPCC Applications: EGSC HPCC Management</title>
	 <link rel="stylesheet" type="text/css" href="/css/hpcc01a.css">
	 <script language="JavaScript">
	 <? include '/var/www/html/applications/js/ContLogin.js' ?>
	 </script>
</head>
<body>

<? include '/var/www/html/php/SubHeader1.phpinc'; SubHeader1("EGSC HPCC Operations",
"Applications", "SubHeadc"); ?>
<? include '/var/www/html/applications/php/AppHeader1.phpinc'; AppHeader1("HPCC
Management"); ?>
<? include '/var/www/html/applications/php/TopNavMain1.phpinc'; TopNavMain1("HPCC
Management", "/applications/management/index.php"); ?>

<table width="840">
	 <tr>
		 <td class="FormalColumnT" colspan="2" height="40">
		 <h2>EGSC HPCC Management</h2>
		 </td>
	 </tr>
	 <tr>
		 <td class="MenuColumn" width="200" height="250">

		 <h3>Selections<h3>
			 <table valign="center" align="center">

				 <tr>
					 <td class="MenuItem">
					 <a class="Menu" onclick="LinkOut(this)" href="/applications/
					 management/backups.php">Backups
					 </td>
				 </tr>

Appendix 2   29

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/cleanup.php">Clean Up Backup Files
				 </td>
			 /tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/status.php">Cluster Status
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/annlogcm.php">Enter HPCC Management Notes
				 </td>
			 </tr>
	
			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/annlogcm.php">Log and Manage Change
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/miscoprs.php">Miscellaneous Administrative Operations
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/shutdown.php">Shut Down Work Nodes
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/viewmenu.php">View User and Management Entries
				 </td>
			 </tr>

			 <tr>
				 <td class="MenuItem">
				 <a class="Menu" onclick="LinkOut(this)" href="/applications/
				 management/checklist.php">Weekly Administrative Checklist
				 </td>
			 </tr>

30   Secure Web-Site Access with Tickets and Message-Dependent Digests

			 </table>
		 </td>
		 <td class="FormalColumnR" width="70%" height="250">
		 <h4>Managing the EGSC HPCC</h4>
		 <p>This application set provides a number of operations useful for
		 managing the EGSC HPCC.
		 Some of the facilities of this set will be available to application users
		 through the Utilities application set. This set, however, is for the
		 exclusive use of
		 the EGSC HPCC manager and System Administrator.
		 </p>
		 <? include '/var/www/html/applications/php/HiddenForm01.phpinc' ?>
		 </td>
	 </tr>

</table>

<? include '/var/www/html/applications/php/BottomNavOther1.phpinc';
BottomNavOther1("HPCC Management", "/applications/management"); ?>
<? include '/var/www/html/applications/php/FooterOther1.phpinc'; FooterOther1(); ?>

</body>
</html>

Appendix 2   31

Code excerpts: Excerpts illustrating various secure link types

LinkOutF : Link from a form

<form name="alcmform1" action="annlogcmFP.php" method="post"
onsubmit="LinkOutF(this)">

Type of Entry:

<input type="hidden" name="hpccTicket" value="<? print($Ticket); ?>">
<input type="radio" name="enttype" value="Administrative Note"> Administrative
Note

<input type="radio" name="enttype" value="Change Annotation"> Change
Annotation

<input type="radio" name="enttype" value="Miscellaneous Note" checked> Miscellaneous
Note

<input type="radio" name="enttype" value="Software-Development Note"> Software-
Development Note

Keywords for this Entry:

<input name="keywords" type="text" size="40" maxlength="80" value=" ">

Your Name:

<input name="pc" type="text" size="40" maxlength="80" value=" ">

Your Note:

<textarea name="detailinfo" rows="10" cols="50" wrap="virtual" > </
textarea>

<center><input type="submit" value="Submit Your Note"></center>

</form>

LinkOutP : Link from an anchor and pass a parameter

	 $tv1 = intval((time() - $tmax[3])/86400);
	 print("<tr><td $td1>[3] Review SSH Log</td><td align=\"center\" $td1>$tv1</td>");
	 print("<td $td1>$tdstring[3]</td>");
	 print("<td align=\"center\" $td1><a href=\"checklistFP.php\" onclick=\"LinkOutP(t
his,'&opcode=3')\">
 Perform</td></tr>\n");

LinkOutRefreshP : Let a page that takes parameters refresh itself from a button or
anchor

$Fname=raw_param('fname'); $Fsize=raw_param('fsize');
if ($Fsize > $tarr8[4])
{
 print("<p>Before the file $Fname can be downloaded, it must be copied to a directory
within \n");
 print("the file-system branches directly accessible to the Web server. The file
contains $Fsize
 bytes.\n");
 print("Copying generally requires about a minute per gigabyte. <span
class=\"red\">You must periodically
 \n");
	 print("press the \"/Refresh Status\" button until copying is complete and

32   Secure Web-Site Access with Tickets and Message-Dependent Digests

	 $Fname is ready to be downloaded.</p>\n");
	 print("<center><input type=\"button\" value=\"Refresh Status\"
	 action=\"bkdown.php\"
	 onclick=\"LinkOutRefreshP(0)\"></center>");
}

foreach ($rarray2 as $v1)
{
	 $t4 = number_format($tarr8[4]);
	 print("<tr><td>$tarr8[5] $tarr8[6] $tarr8[7]</td>
	 <td align=\"right\">$t4</td>");
	 /* The following link allows downloading of a gzipped file by right clicking. */
	 print("<td><a onclick=\"LinkOutRefreshP(0)\" type=\"application/x-gzip\"
	 href=\"/applications/management/backups/$Fname\">$tarr8[8]</td></tr>");
}

Appendix 2   33

LinkOutU: Relay a page's incoming parameters to a new page.

<?
	 include '/var/www/html/applications/php/ContAuth.phpinc'; $val = ContAuth();
	 if ($val == "Bad") {header('Location: http://egscbeowulf.er.usgs.gov/
	 AuthenticationFailure.php');}
	 include '/var/www/html/applications/php/MakeTicket.phpinc';
	 include '/var/www/html/applications/php/SaveTicket.phpinc';
	 include '/var/www/html/applications/php/AppAuth.phpinc';
	 $val = AppAuth("Management");
	 if ($val == "Bad")
	 {
	 $NewDigest = Digest01a($Ticket, $uid, $pw);
	 $locstring = "Location: http://egscbeowulf.er.usgs.gov/applications/
	 AppAuthenticationFailure.php?hpccTicket=";
	 $locstring = $locstring.$NewDigest;
	 header($locstring); exit();
	 }
	 $Fname=raw_param('fname'); $Fsize=raw_param('fsize');
	 $fsresult = filesize("/data/www/backups/".$Fname);
	 if (!$fsresult || $fsresult > 2000000000)
	 {
	 exec("/data/www/setuids/root/bsplitter02 $Fname > /dev/null&");
	 }
	 else
	 {
	 exec("cp /data/www/backups/$Fname /var/www/html/applications/management/
	 backups/$Fname>/dev/null&");
	 }
?>
<html>
<head>
	 <title>EGSC HPCC Applications: EGSC HPCC Management - Backup-File Copy</title>
	 <link rel="stylesheet" type="text/css" href="/css/hpcc01a.css">
	 <script language="JavaScript">
	 <? include '/var/www/html/applications/js/ContLogin.js' ?>
	 </script>
</head>
<body onload="LinkOutU('/applications/management/bkdown.php');">
/* The contents of the body of this page won’t ever be seen unless there is an error
in the processing which precedes generation of the page. */
</body>
</html>

34   Secure Web-Site Access with Tickets and Message-Dependent Digests

PHP Include Files

MakeTicket.phpinc : Routine for creating a ticket

<?
/**

	 Function Name:						 MakeTicket
	 File Name:							 MakeTicket.phpinc
	 System:								 EGSC HPCC
	 Date Created:						 Jan. 19, 2005
	 Modification Dates:	 	 	 	 	 N/A

	 Purpose and Use:

	 This function creates a ticket from the date, time, and
	 client’s IP address. A "ticket", as the term is used here,
	 is an ordered set of bytes of finite length. The ticket
	 is intended to be distinctive and difficult to
	 predict. The ticket created by this function will be
	 passed to Web clients to be used in encrypting or
	 creating digests of authentication strings so that
	 each communication between client and server will send
	 essentially unpredictable information even during the
	 same user session. (This inhibits unauthorized access
	 by use of packet sniffing.) The ticket contains only
	 printable characters (guaranteed by the helper
	 function "modify").

	 The function takes a single argument containing
	 the client’s IP address as a string as its single
	 argument.

	 Modification Notes:

***/

function MakeTicket($IPstring)
{
	 $format1 = "l, F d, Y :: h:i:s a";
	 $currenttime = time();
	 $wstr1 = date($format1, $currenttime);
	 srand(time());
	 $shufflestring = "";
	 for ($j=0; $j<50; $j++)
		 {
		 $c1 = chr(rand(33,126));
	 	 $shufflestring = $shufflestring.$c1;
		 }
// $shufflestring = "9#wL;5jJnqzP[c_=/eDVxx793^&/'ZY4*8@]}{?&r!+iM";
	 $IPstring = shuffler($IPstring, $shufflestring);
	 $wstr2 = shuffler($shufflestring, $IPstring);
	 $wstr3 = modify($wstr1, $wstr2);
	 $wstr4 = shuffler($wstr3, $wstr2);
	 return $wstr4;
}

Appendix 2   35

function shuffler($tobeshuffled, $shufflestring)
{
	 $len1 = strlen($tobeshuffled);
	 $index1 = 0;
	 $newstring = $tobeshuffled;

	 for ($i=0; $i<$len1; $i++)
		 {
	 	 $v1 = ord(substr($shufflestring,$index1++,1));
		 $pos = $v1%$len1;
	 	 $temp = $tobeshuffled[$i];
	 	 $c1 = $tobeshuffled[$pos];
		 switch($i)
		 {
			 case 0:
	 	 	 $tobeshuffled = $c1.substr($tobeshuffled, 1);
			 break;
			 case $len1-1:
	 	 	 $tobeshuffled = substr($tobeshuffled, 0, $len-1).$c1;
			 break;
			 default:
	 	 	 $tobeshuffled = substr($tobeshuffled, 0, $i).$c1.substr($tobeshuffled, $i+1);
			 break;
		 }
		 switch($pos)
		 {
			 case 0:
	 	 	 $tobeshuffled = $temp.substr($tobeshuffled, 1);
			 break;
			 case $len-1:
	 	 	 $tobeshuffled = substr($tobeshuffled, 0, $len-1).$temp;
			 break;
			 default:
	 	 	 $tobeshuffled = substr($tobeshuffled, 0, $pos).$temp.substr
	 	 	 ($tobeshuffled, $pos+1);
			 break;
		 }
	 	 	 if ($index1 >= strlen($shufflestring)) $index1 = 0;
		 }
	 return $tobeshuffled;
	 //return $debugstr;
}

function modify($tobemodified, $modstring)
{
	 $len1 = strlen($tobemodified);
	 $index1 = 0;
	 for ($i=0; $i<$len1; $i++)
		 {
	 	 $v1 = ord(substr($tobemodified, $i, 1));
		 $v2 = ord(substr($modstring, $index1++, 1));
		 $v3 = ($v1 + $v2)%127;
			 if ($v3 < 32) {$v3 = $v3 + 33;}
			 if ($v3 == 32){$v3 = $v3 + rand(1,20);}
			 if ($v3 == 34){$v3 = rand(35,126);}

36   Secure Web-Site Access with Tickets and Message-Dependent Digests

			 if ($v3 == 96){$v3 = 126;}
		 $c3 = chr($v3);
	 	 $tobemodified = substr_replace($tobemodified, $c3, $i, 1);
		 if ($index1 >= strlen($modstring)) $index1 = 0;
		 }
	 return $tobemodified;
}
$Ticket = MakeTicket($_SERVER['REMOTE_ADDR']);
?>

Appendix 2   37

SaveTicket.phpinc : Routine for saving the ticket to a file
<?
/***

	 Function:					 SaveTicket
	 File Name:					 SaveTicket.phpinc
	 System:						 EGSC HPCC
	 Author:						 David I. Donato
	 Date:						 January 21, 2005
	 Modification Dates:	 	 	 August 31, 2005
								 September 2, 2005

	 Purpose and Use:

	 This function writes the ticket sent to a client
	 in a file unique to the IP address of the client.
	 The ticket written to the file will be retrieved
	 and used to decode submissions from the client
	 in such a way as to insure that the submissions
	 have come from a client in possession of the
	 ticket. This function is part of the collection
	 of functions used to maintain security and to
	 restrict use of certain pages to authorized users.

	 The function takes the ticket as its single argument.

	 Modifications:

		 August 31, 2005 -- A system() call to 'sync' was
		 reluctantly added because of authentication
		 failures that seem to have no explanation
		 other than the reading of an old ticket
		 rather than the new one, which is waiting to be
		 written to disk. Although the OS should prevent
		 such situations, I hypothesize that it occurs
		 because of Apache’s use of multiple processes
		 for servicing Web requests.

		 September 2, 2005 -- The use of the system call to
		 'sync’ creates a problem: if a page spawns a
	 	 background process which writes to a large file,
		 then no new page can be accessed until the write
		 operation has completed because the new page’s
		 SaveTicket operation will have to wait for 'sync’
		 to complete before returning to the page to let
		 it complete page generation. The system call to
	 	 'sync’ was replaced by an "fflush(fd);" statement.
		 I hope this will resolve this issue.

**/

function SaveTicket($tokstr)
{

	 $IPaddr = $_SERVER['REMOTE_ADDR'];
	 $filename = "/data/www/uauth/specific/CL".$IPaddr.".dat";

38   Secure Web-Site Access with Tickets and Message-Dependent Digests

	 $F01 = fopen($filename, "w");
	 fwrite($F01, $tokstr);
	 fflush($F01);
	 fclose($F01);
	 /*** system("sync"); ***/

}

SaveTicket($Ticket);
?>

Appendix 2   39

HiddenForm01.phpinc: Page element for supplying the ticket in a hidden variable

<?
/***

	 Function:					 Hidden Form # 01
	 File Name:					 HiddenForm01.phpinc
	 System:						 EGSC HPCC
	 Date:						 January 26, 2005
	 Modification Dates:	 	 	 N/A

	 Purpose and Use:

	 This function creates a form containing a single
	 hidden variable to hold the ticket. The form is
	 not visible in the browser window. The function
	 must receive the ticket as its single argument.

	 Modifications:

**/

function HiddenForm01($ticket)
{

	 printf("<form name=\"TicketForm\"><input type=\"hidden\" name=\"hpccTicket\"
	 value=\"");
	 printf("%s", $ticket);
	 printf("\"></form>");
	 return;
}

HiddenForm01($Ticket);
?>

40   Secure Web-Site Access with Tickets and Message-Dependent Digests

InitAuth.phpinc: Server-side code for initial authentication

<?
/***

	 Function:					 InitAuth
	 File Name:					 InitAuth.phpinc
	 System:						 EGSC HPCC
	 Date:						 January 24, 2005
	 Modification Dates:	 	 	 N/A

	 Purpose and Use:

	 This function carries out the initial authentication
	 of a user logging in to this site. This function
	 processes as follows:

		 (1) Reads in the server-side ticket for the client IP
	 	 address from the file;
		 (2) Loops through possible UserID-Password pairs
		 attempting to reproduce the client-side ticket
		 passed to this script;
		 (3) If a match is found, stores the UserID and password
	 	 in a new file identified by the IP address and
	 	 creates a new URL history file for the IP address;
		 4) If a match was found, returns "Good"; otherwise
		 returns "Bad".

	 Modifications:

**/

function InitAuth()
{
// Declare $uid and $pw as global so they can be used in the calling page.
	 global $uid, $pw;

// Get the ticket sent to this IP address.
	 $IPaddr = $_SERVER['REMOTE_ADDR'];
	 $filename = "/data/www/uauth/specific/CL".$IPaddr.".dat";
	 $F01 = fopen($filename, "r");
	 $csticket = fread($F01, 80);
	 fclose($F01);

// Loop through UserID-Password pairs trying to duplicate
// the client-side ticket.
	 $clticket = raw_param('hpccTicket');
	 $filename2 = "/data/www/uauth/general/pwds";
	 $F02 = fopen($filename2, "r");

 $result = "Bad";

	 while (!feof($F02))
		 {
		 $uid = rtrim(fgets($F02, 80), "\n\r");
		 if ($uid == "false" || feof($F02)) break;

Appendix 2   41

		 $pw = rtrim(fgets($F02, 80), "\n\r");
		 $teststring = Digest01a($csticket, $uid, $pw);
		 if ($teststring == $clticket) {$result = "Good"; break;}
		 $uidsave = $uid;
		 }

	 fclose($F02);

// If the login was successful, write the userID and password to
// a file associated with the IP address and create a
// history file for the IP address.
	 if ($result == "Good")
		 {
	 	 $filename3 = "/data/www/uauth/specific/UP".$IPaddr.".dat";
	 	 $F03 = fopen($filename3, "w");
		 fputs($F03, $uid."\n");
		 fputs($F03, $pw."\n");
		 fclose($F03);

	 	 $filename4 = "/data/www/uauth/specific/HS".$IPaddr.".dat";
	 	 $F04 = fopen($filename4, "w");
		 fputs($F04, date("l, F j, Y")." at ".date("h:i:s A (T)")." : Initiated
		 HPCC Logon Session\n");
		 fclose($F04);
		 }

	 return $result."|".$teststring."|".$clticket."|".$uidsave."|".$pw."|".$csticke
t."|".strlen($csticket);
}

function raw_param($name)
{
	 return ini_get('magic_quotes_gpc')
		 ? stripslashes($_GET[$name])
		 : $_GET[$name];
}

function Digest01a($tok, $ud, $pwd)
{
	 $i = ord($ud[3]);
	 $Totaldgn = 473291;
	 $i = $i % 17; if ($i == 0) {$i=7;}

	 for ($j=0; $j<=($i*strlen($tok)); $j++)
	 {
		 $k = $j % strlen($tok);
		 $m = $j % strlen($ud);
		 $n = $k % strlen($pwd);
		 $temp = ord($ud[$m]) * ord($tok[$k]) - ord($pwd[$n]);
		 if ($temp < 0) {$temp = 42;}
		 $Totaldgn += $temp;
	 }
	 return $Totaldgn;
}
InitAuth();
?>

42   Secure Web-Site Access with Tickets and Message-Dependent Digests

ContAuth.phpinc: Server-side code for continuing use of restricted pages

<?
/***

	 Function:				 ContAuth
	 System:					 EGSC HPCC
	 Date:					 January 26, 2005
	 Modification Dates:	 	 May 16, 2005
							 May 31, 2005
							 June 1, 2005
							 June 9, 2005
							 June 29, 2005

	 Purpose and Use:

	 This function carries out continuing authentication
	 for all pages in the secure area of the Web site once
	 the user has logged in. This function processes as
	 follows:

	 (1) Reads in from the CL... file the server-side
		 ticket for the IP address involved;
	 (2) Reads in from the UP... file the userID and
		 password for the IP address involved;
	 (3) Computes the digest of the client-side ticket;
	 (4) Compares its computed digest with the digest
		 received in the 'hpccTicket’ input parameter
		 and sets the result to "Good" if the two
		 digests are equal and "Bad" if they are not.
	 (5) If the comparison result is "Good", then
		 the URL for the current page is added to the
		 history list for this login session and IP
		 address.
	 (6) The result ("Good" or "Bad") is returned.

	 Modifications:

	 May 16, 2005: This function was modified to add
		 URLs to the history list for a login session
		 and IP address. URLs are added in reverse order
		 so that when the history list is used, the
		 most recently visited pages will be at the top
		 of the list.

	 May 31, 2005: The function was modified to log
	 	 all page accesses by a user to a file specific
	 	 to that user. The log file is permanent in the
		 sense that it persists across sessions without
	 	 loss of data, unlike the session-history files
	 	 which are flushed each time a new session begins
		 from a particular IP address (regardless of
		 the HPCC user ID).

Appendix 2   43  

	 June 1, 2005: A "chmod(...)" command was added
	 	 to make the file with the user ID and
		 password readable only by user Apache.

	 June 9, 2005: Two lines were added to check for the
	 	 existence of the ticket file and userid/password
	 	 file for the client IP address, and to return
	 	 the result "Bad" immediately if either file
		 does not exist. This insures that attempted
		 accesses to restricted pages will be redirected
		 to a failure page and will not display
		 potentially compromising information in error
		 messages.

	 June 29, 2005: The "raw_param" function was modified
		 to look for the variable named by the parameter
		 in both the $_GET and $_POST arrays.

**/

function ContAuth()
{
// Make the variables $uid and $pw global so they can be used on
// the calling page.
 global $uid, $pw;

// Pre-set the return value (result) to "Bad" so it does not need to be
// set multiple times.
 $result = "Bad";

// Get the client-side ticket for this IP address.
 $IPaddr = $_SERVER['REMOTE_ADDR'];
 $filename = "/data/www/uauth/specific/CL".$IPaddr.".dat";
 if (!file_exists($filename))
 {header('Location: http://egscbeowulf.er.usgs.gov/AccessFailure.php'); exit();}
 $F01 = fopen($filename, "r");
 $csticket = fread($F01, 80);
 fclose($F01);

// Get the digest which was passed as a parameter.
 $clticket = raw_param('hpccTicket');

// Get the userID and password for this IP address.

 $filename2 = "/data/www/uauth/specific/UP".$IPaddr.".dat";
 if (!file_exists($filename2))
 {header('Location: http://egscbeowulf.er.usgs.gov/AccessFailure.php'); exit();}
 $F02 = fopen($filename2, "r");
 if (!$F02) {return $result;} // Return "Bad" if fopen fails.
 $uid = rtrim(fgets($F02, 80), "\n\r");
 if ($uid == "false" || feof($F02)) return $result;
 $pw = rtrim(fgets($F02, 80), "\n\r");
 if ($pw == "false" || feof($F02)) return $result;
 fclose($F02);
 chmod($filename2, 0600);

44   Secure Web-Site Access with Tickets and Message-Dependent Digests

// Create a version of the $uid with no white space.
 $temparray2 = preg_split('[\s+]',$uid);
 $fuid = "";
 for ($jj=0; $jj<count($temparray2); $jj++) {$fuid.=$temparray2[$jj];}

// Compute the digest and compare it to the one passed as a parameter.
 $teststring = Digest01a($csticket, $uid, $pw);
 if ($teststring == $clticket) {$result = "Good";}

// If the result is "Good" add the URL of the current page to
// the history file for this IP address and session.

if ($result == "Good")
 {
 $filename4 = "/data/www/uauth/specific/HT".$IPaddr.".dat";
 $filename5 = "/data/www/uauth/specific/HS".$IPaddr.".dat";
 $filename6 = "/data/www/uauth/specific/PM".$fuid.".dat";
 $urlstr = " : <a href=\"".$_SERVER['SCRIPT_NAME']."\" onclick=\"LinkOut(this)\"
>".$_SERVER['SCRIPT_NAME']."\n";
 $F04 = fopen($filename4, "w");
 $F06 = fopen($filename6, "a");
 fputs($F04, date("l, F j, Y")." at ".date("h:i:s A (T)").$urlstr);
 fputs($F06, date("l, F j, Y")." at ".date("h:i:s A (T)").$_SERVER['SCRIPT_
NAME']." :: ".$_SERVER['QUERY_STRING']."\n");
 $F05 = fopen($filename5, "r");
 while (!feof($F05))
 {
 $tstr = fgets($F05, 400);
 if (strlen($tstr)>5) {fputs($F04, $tstr);}
 }
 fclose($F05);
 fclose($F04);
 fclose($F06);
 copy ($filename4, $filename5);
 }

// End and return.
 return $result;
}

function raw_param($name)
{
 $value1 = $_GET[$name];
 $value2 = $_POST[$name];
 $value = $value1;
// $F200 = fopen("/data/www/uauth/general/debug", "a");
// fputs($F200,$value1." -- ".$value2."\n");
 if (strlen($value2) > strlen($value1)) $value = $value2;
// fputs($F200, "Value = ".$value."\n");
// fclose($F200);

 return ini_get('magic_quotes_gpc')
 ? stripslashes($value)
 : $value;
}

Appendix 2   45

function Digest01a($tok, $ud, $pwd)
{
 $i = ord($ud[3]);
 $Totaldgn = 473291;

 $i = $i % 17; if ($i == 0) {$i=7;}

 for ($j=0; $j<=($i*strlen($tok)); $j++)
 {
 $k = $j % strlen($tok);
 $m = $j % strlen($ud);
 $n = $k % strlen($pwd);
 $temp = ord($ud[$m]) * ord($tok[$k]) - ord($pwd[$n]);
 if ($temp < 0) {$temp = 42;}
 $Totaldgn += $temp;
 }

 return $Totaldgn;
}
?>

46   Secure Web-Site Access with Tickets and Message-Dependent Digests

JavaScript Include Files

InitLogin.js: Client-side code for initial authentication

/***

 Function Set: Initial Secure-Access Login
 File Name: InitLogin.js
 System: EGSC HPCC
 Date: January 26, 2005
 Modification Dates: June 2, 2005

 Purpose and use:

 This is a set of two JavaScript functions used for logging
 into the EGSC HPCC for secure access to applications.

 The function "SaveAUvalues(thisform)" copies the values
 sent by the server (hpccTicket.value) and entered at the
 keyboard by the user (aus1.value, the user ID; and
 aus2.value, the pass phrase) so they will be available
 for later access; then it overwrites the user ID and
 pass phrase on the screen so neither will be visible
 or reusable following login.

 The function Digest01a(ticket, uid, pwd) is the JavaScript
 version of the digest function also used on the server
 side for securing communications. The use of digests
 allows authentication without either user ID or pass
 phrase being sent over the network in any direct form,
 plaint text or encrypted.

 Modifications:

 June 2, 2005: This function set was reformatted
 without substantive changes to either of the functions.

**/

var UIDsave="";
var PWDsave="";
var TKNsave="";

function SaveAUvalues(thisform)
{
 TKNsave=thisform.hpccTicket.value;
 UIDsave=thisform.aus1.value;
 PWDsave=thisform.aus2.value;
 thisform.aus1.value="*********";
 thisform.aus2.value="*********";
 var TokDigestNumber = Digest01a(TKNsave, UIDsave, PWDsave);
 thisform.hpccTicket.value = TokDigestNumber.toString(10);
 return;
}

function Digest01a(ticket, uid, pwd)

Appendix 2   47

{
 var i = uid.charCodeAt(3);
 var j, k, m, n, temp;
 var Totaldgn = 473291;

 i = i % 17; if (i == 0) {i=7;}

 for (j=0; j<=(i*ticket.length); j++)
 {
 k = j % ticket.length;
 m = j % uid.length;
 n = k % pwd.length;
 temp = uid.charCodeAt(m) * ticket.charCodeAt(k) - pwd.charCodeAt(n);
 if (temp < 0) {temp = 42;}
 Totaldgn += temp;
 }

 return Totaldgn;
}

48   Secure Web-Site Access with Tickets and Message-Dependent Digests

ContLogin.js: Client-side code for continuing use of restricted pages

/***

 Function Set: Continuing Secure Access
 File Name: ContLogin.js
 System: EGSC HPCC
 Date: January 26, 2005
 Modification Dates: Various
 June 2, 2005
 June 29, 2005
 August 28, 2005
 August 29, 2005

 Purpose and use:

 This is a collection of JavaScript functions used for continuing
 secure access to application pages on the EGSC HPCC following
 initial login to the EGSC HPCC.

 There are four sections in this JavaScript function set:

 (1) The Digest Function;
 (2) Functions for linking out from anchors;
 (3) Functions for linking out from other than anchors; and
 (4) Utility functions.

 These client-side functions must be used in conjunction with
 a set of server-side functions.

 Modifications:

 June 2, 2005: The function set was reformatted and rearranged
 without substantive changes to the functions themselves.

 June 29, 2005: A function was added for linking out from
 a form.

 August 28, 2005: A new global variable ("document.linkoutOKchk")
 and a new function ("OutLinkOKChk()") were added so that
 whenever a page is unloaded it will be possible to check
 whether one of the link functions contained in this
 code set was used. If one of these link functions was
 not used, then presumably the user inadvertently used the
 brower "back", "forward", or "refresh" buttons. To avoid
 having the authentication chain broken by these mistakes,
 the new variable and function allow the user to be alerted
 and sent back to the Applications Homepage if "back" was
 used. The button is not effective for the "refresh" button
 and the "forward" button won’t be usable since the "back"
 button is not in use. The names of the first two linkout
 functions were changed from LinkOut() and LinkOut(,) to
 LinkOut1() and LinkOut2(,) respectively. Unlike C#, different
 parameter signatures in JavaScript do not lead to different
 functions; therefore, a distinction was needed.

Appendix 2   49

 August 29, 2005: Having found that the change made yesterday
 works for the "back" button but not for the "refresh"
 button, I modified the text of the alert box asserted when
 the user clicks on a browser navigation button to provide
 a more accurate notice of what to expect.

**/

/*******************
 Global variable used to prevent inadvertent out-linking
 with the "back", "forward", or "refresh" browser buttons.
*******************/

 document.linkoutOKchk = "NotOK";
 window.onunload = OutLinkOKChk;

/***
 SECTION (1) : The Digest Function
**/

function Digest01a(ticket, uid, pwd)
{
 var i = uid.charCodeAt(3);
 var j, k, m, n, temp;
 var Totaldgn = 473291;

 i = i % 17; if (i == 0) {i=7;}

 for (j=0; j<=(i*ticket.length); j++)
 {
 k = j % ticket.length;
 m = j % uid.length;
 n = k % pwd.length;
 temp = uid.charCodeAt(m) * ticket.charCodeAt(k) - pwd.charCodeAt(n);
 if (temp < 0) {temp = 42;}
 Totaldgn += temp;
 }

 return Totaldgn;
}

/***
 SECTION (2) : Functions for linking out from anchors
**/

/*** Use this with 'onclick=' to link to a new page from an anchor
 when no parameters other than "hpccTicket" need to be passed. ***/
function LinkOut1(thisanchor)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = thisanchor.getAttribute("href");

50   Secure Web-Site Access with Tickets and Message-Dependent Digests

 var fullURL = urlstr + "?hpccTicket=" + TokDigestString;
 thisanchor.href = fullURL;
 document.linkoutOKchk="OK";
 return;
}

/*** Use this with 'onclick=' to link to a page from an anchor after
 a delay as specified by the argument "waitseconds"
 when no parameters other than "hpccTicket" need to be passed.
 Typically the delay is used when a server-side process should
 be given a few seconds before the new page is generated and sent. ***/
function LinkOut2(thisanchor,waitseconds)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = thisanchor.getAttribute("href");
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString;
 setTimeout('DummyFunc()',waitseconds*1000);
 thisanchor.href = fullURL;
 document.linkoutOKchk="OK";
 return;
}

/*** Use this with 'onclick=' to link and pass parameters to a new page
 from an anchor. ***/
function LinkOutP(thisanchor,AdditionalParameters)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = thisanchor.getAttribute("href");
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString;
 if (AdditionalParameters.length >1) {fullURL = fullURL + AdditionalParameters;}
 thisanchor.href = fullURL;
 document.linkoutOKchk="OK";
 return;
}

/***
 SECTION (3) : Functions for linking out from other than an anchor.
 (These functions typically are referenced by
 "onclick" in buttons or "onload" in the <body>
 tag.)
**/

/*** Use this with 'onclick=' to refresh a page (link a page back to itself)
 from a button following a delay of the number of seconds specified
 by the argument "waitseconds". This function can be used (cautiously) in the

Appendix 2   51

 <body> tag to cause a page to refresh itself periodically. ***/
function LinkOutRefresh(waitseconds)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = location.pathname;
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString;
 setTimeout('DummyFunc()',waitseconds*1000);
 self.location = fullURL;
 document.linkoutOKchk="OK";
 return;
}

/*** Use this with 'onclick=' to refresh a page (link a page back to itself) when the
 page has been called with parameters. This function is used from a button.
 It waits the number of seconds specified by the argument "waitseconds".
 This function can be used (cautiously) in the <body> tag to cause a page
 to refresh itself periodically. This function should not be used in a page
 that performs some initial process that should be performed only once. ***/
function LinkOutRefreshP(waitseconds)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = location.pathname;
 var addpmt = location.search.substr(location.search.indexOf("&"));
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString + addpmt;
 setTimeout('DummyFunc()',waitseconds*1000);
 self.location = fullURL;
 document.linkoutOKchk="OK";
 return;
}

/*** Use this function from a button (or other event trigger) to link and pass
 the current page’s parameters to a new page specified by the argument
 "nurlstr" (new URL string). ***/
function LinkOutU(nurlstr)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = nurlstr;
 var addpmt = location.search.substr(location.search.indexOf("&"));
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString + addpmt
 self.location = fullURL;
 document.linkoutOKchk="OK";
 return;

52   Secure Web-Site Access with Tickets and Message-Dependent Digests

}

/*** Use this with 'onclick=' to link to a new page from a form. ***/
function LinkOutF(thisform)
{
 uid = opener.UIDsave;
 pwd = opener.PWDsave;
 tok = thisform.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 thisform.hpccTicket.value = TokDigestString;
 document.linkoutOKchk="OK";
 return;
}

/***
 SECTION (4) : Utility functions
**/

/*** The HWinClose() function closes a browser window on the server side. ***/
function HWinClose()
{
 document.linkoutOKchk="OK";
 self.close();
}

/*** This function performs a client-side redirection to the "Logout" script
 which performs various housekeeping tasks on the server side when an
 EGSC HPCC user logs out of a secure application-usage session. ***/
function HWinJump()
{
 document.linkoutOKchk="OK";
 self.location = "http://egscbeowulf.er.usgs.gov/applications/Logout.php";
}

/*** This function is used with "setTimeout()" to provide a null operation
 so other functions may sleep without side effects. ***/
function DummyFunc()
{
 var dummyvar1 = 0;
}

Appendix 2   53

/*** This function is an event handler for the Window (Page) "onunload"
 event. It prevents outlinking with the browser "back" button; it
 is not effective with the "refresh" buttons. Since "back" is
 not used, the use of the "forward" button is not an issue. ***/
function OutLinkOKChk()
{
 if (document.linkoutOKchk != "OK")
 {
 uid = parent.UIDsave;
 pwd = parent.PWDsave;
 tok = document.TicketForm.hpccTicket.value;
 var TokDigestNumber = Digest01a(tok, uid, pwd);
 var TokDigestString = TokDigestNumber.toString(10);
 var urlstr = "/applications/AppHome.php";
 var fullURL = urlstr + "?hpccTicket=" + TokDigestString;
 var alertString = "Please remember NOT to use the browser navigation buttons
while logged in for secure access.\n\n";
 alertString = alertString + "If you just used your browser’s \"back\" button
you will be returned to the Application\n";
 alertString = alertString + "Homepage. If you used the \"refresh\" button you
will be sent to an error page and you\n";
 alertString = alertString + "will have to log back in to resume your work.
(Sorry about that.)";
 alert(alertString);
 self.location=fullURL;
 return;
 }
 else
 {
 return;
 }
}

Donato—
Secure W

eb-Site A
ccess w

ith Tickets and M
essage-D

ependent D
igests—

Techniques and M
ethods 7–B1

	Glossary
	Appendix 1. List of Abbreviations
	Appendix 2. Working JavaScript and PHP Code
	PHP Pages
	PHP Include Files
	JavaScript Include Files

