
NASA Technical Memorandum 102806 	
fqfr

Multiprocessing on
Supercomputers for
Computational Aerodynamics
Maurice Yarrow and Unmeel B. Mehta

(NASA-TM-102806) MULTIPROCESSING ON
SUPERCOMPUTERS FOR COMPUTATIONAL
AERODYNAMICS (NASA) 38 p	 CSCL 014

N90-23366

Unci as
G3/02 0286261

May 1990	

ORIGINAL CONTAINS

COLOR

NASA
National Aeronautics and
Space Administration

NASA Technical Memorandum 102806

Multiprocessing on
Supercomputers for
Computational Aerodynamics
Maurice Yarrow, Sterling Federal Systems, Inc., Palo Alto, California
Unmeel B. Mehta, Ames Research Center, Moffett Field, California

ORIGINAL CONTAINS
COLOR L11-111STP.ATI0NS

May 1990

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

MULTIPROCESSING ON SUPERCOMPUTERS
FOR

COMPUTATIONAL AERODYNAMICS

Maurice Yarrow
Sterling Federal Systems, Inc., Sterling Software

and
Unmeel B. Mehta

NASA Ames Research Center

ABSTRACT

Very little use is made of multiple processors available on current supercomputers (com-
puters with a theoretical peak performance capability equal to 100 MFLOPS or more) in
computational aerodynamics to significantly improve turnaround time. The productivity of
a computer user is directly related to this turnaround time. In a timesharing environment,
the improvement in this speed is achieved when multiple processors are used efficiently to
execute an algorithm. We apply the concept of multiple instructions and multiple data
(MIMD) through multitasking via a strategy which requires relatively minor modifications
to an existing code for a single processor. Essentially, this approach maps the available
memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing single
processor code is mapped without the need for developing a new algorithm. The proce-
dure for building a code utilizing this approach is automated with the Unix stream editor.
As a demonstration of this approach, a Multiple Processor Multiple Grid (MPM(-,') code is
developed. It is capable of using nine processors, and can be easily extended to a larger
number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer
and slender-layer Navier-Stokes equations with an implicit, approximately factored and di-
agonalized method. The solver is applied to a generic oblique-wing aircraft problem on a
four processor Cray-2 computer, using one process for data management and non-parallel
computations and three processes for pseudo-time advance on three different grid systems.
These grid systems are overlapped. A tricuhic interpolation scheme is developed to increase
the accuracy of the grid coupling. For the oblique-wing aircraft problem, a speedup of two
in elapsed (turnaround) time is observed in a saturated timesharing environment.

INTRODUCTION

Current supercomputer architectures employ a few high-performance processors to pro-
vide a significant increase in speed (defined as throughput) over the speed of single-processor

1

supercomputers of the past. With massively parallel supercomputer architectures, the speed
of supercomputers may be increased by at most two orders of magnitude. Specifically, a
factor of 100 from highly parallel computer architecture can be expected. This limitation
is explained by Amdahl's law', which imposes a stiff penalty for time last few percent of non-
parallelizable code in an otherwise parallelizable program. (Note that Buzbee and Sharp'
have credited Ware' for this model.) This model fails to account for additional instructions
required when multiprocessing an otherwise single processor group of instructions. Taking
into account this increase in instructions for multiprocessing, the Buzbee and Sharp model
suggests that the maximum speedup is less than the number of processors, even if the com-
putation under consideration can be completely put into a parallel form. In the future,
supercomputers with between 16 and 64 processors are likely to be available. Yet there
has been very little use made of multiple processors available on current supercomputers
in computational aerodynamics to significantly enhance the productivity of the user. The
objective of the presented research is to map an existing algorithm onto a multiprocessor
supercomputer to demonstrate the advantages of using multiple processors.

The motivation of this research is as follows. In computational aerodynamics, the need
to study flow fields around more realistic and complex three dimensional geometries has led
to a few promising computational techniques, all of which make a substantial demand on
supercomputing resources, namely cpu time and memory. The computing power required
is roughly proportional to the number of grid points (or finite volumes or finite elements)
into which the complete flow field is discretized. In a timesharing environment, jobs will be
resident for long times, as measured by the wall clock. Total wall-clock (elapsed) time is
proportional to the total number of grid points; this time can be substantially reduced by
using a number of processors simultaneously.

We will now offer some perspective on various techniques which have been used to par-
allelize computer codes. First, applications on computers other than supercomputers are
considered, and then those on supercomputers are discussed.

Liewer et al. 4 have implemented a plasma particle-in-cell simulation code code on a Hyper-
cube 64 processor machine by using each processor to calculate, for a single particle, the
updated particle positions, velocities, and particle contributions to charge and current den-
sity. Comparisons with Cray X-MP/48 single processor times for the most computation
intensive section of the code indicate a speedup in the elapsed time by a factor of two. Much
effort is also being applied at this time to parallelize flow solving methods onto massively
parallel architectures, such as the Connection Machine. Lin' has implemented a particle-
in-cell simulation of wave particle interactions using the massively parallel processor (MPP)
which consists of 16,384 processors. Tuccillo 6 has used the Connection Machine (CM-2)
for numerical weather prediction. Jespersen and Levit 7 have used the Connection Machine
for a two-dimensional finite-difference algorithm solving the thin-layer Navier-Stokes equa-
tions. On such computers, however, uniquely system-specific instructions and algorithms
are required to achieve speeds comparable to that possible when multiple processors of su-
percomputers are utilized. Creating these codes thus requires a considerable investment
in programming time. Codes typically implemented on vector supercomputers need to be
programmatically redesigned.

2

On supercomputers such as the Cray Y-MP and the Cray-2, multitasking, microtask-
ing, and autotasking are available. Multitasking is a mechanism for multiprocessing at a
subroutine level. The implementation from Fortran is via such calls as TSKSTART and
TSR WAIT. With these calls, parallel execution of Fortran subroutines may be initiated and
synchronized. This implementation of multiprocessing is well suited for MIMD architectures.
Microtasking is a mechanism for for multiprocessing of DO loops. It parallelizes the execution of
DO loops most typically immediately outside the innermost vectorizing loops. It is invoked
with compile directives such as DO GLOBAL in the Fortran source. The precompiler "pre-
mult" will then add appropriate parallelizing system calls to the Fortran source. Autotasking
is essentially microtasking that is automatically performed by the Cray dependency analyzer
FPP. It is activated by a compile switch and is thus the simplest multiprocessing option to
use. Autotasking is well suited for SIMD- appropriatealgorithms (single instruction, multiple
data).

Smith and Miller' have calculated galactic collisions by multitasking the motion of four
groups of stars (each group of which is arranged in 256 blocks, with each block containing
1024 stars) onto four Cray-2 processors. The motion of stars in time is influenced by a
potential field, which must be updated between timesteps based on the latest position of
particles. Taylor and Bauschlicher9 ' 10 have inultitasked the work required for generation
of full configuration interaction wave functions in computational chemistry problems by
subdividing over inner products large matrix multiplies onto four Cray-2 processors. Andrich
et a! have multitasked a general circulation model of the ocean by applying vertical and
horizontal operators by "slab" (plane) on separate processors of a Cray-2. Chevrin 12 has
simultaneously multitasked and microtasked the NCAR Community Climate Model on a
Cray X-MP/48 and has achieved speedups (decrease of elapsed time) of up to 3.7. In this
case, vertical slabs within the model constituted independent computational elements and
were multitasked at the subroutine level onto separate processors. It seems there are no
archived publications using multiprocessing for computational aerodynamics.

There are two approaches to speedup on supercomputers: global (coarse-grain) par-
allelization and local (medium and fine-grain) parallelization. The latter is the approach
taken in the references just cited. In the present work, we have achieved a speedup using
a global coarse-grain implementation and making use of the available MIMD architectures,
with basically standard algorithms. The reason for not using inicrotasking and autotasking
is explained below.

Microtasking and autotasking are not efficient for any but the most ideal algorithms on
the Cray Y-MP and Cray-2 architectures, because the synchronization between processes
under microtasking results in the loss of "synchronization wait" time. For real world algo-
rithms, this results in additional cpu time consumed. This cpu penalty is highly system-load
dependent and seems to be proportional to this load. Microtasked processes waiting and idle
at a synchronization point continue to accumulate user cpu time.

The productivity of the user depends not only on the efficiency of the code he or she
develops but also on the efficiency of the computer resources he or she is going to use. The
concept of M1MD through multiprocessing allows efficient use of these resources. This is

3

explained as follows. First, consider a worst case. If a single process job accesses all of the
available central memory, all processors except one will be idle since there is no memory
available for jobs queued for the other processors. This causes considerable inefficiency in
system resources and in throughput. A possible solution is to let a user request in/p of the
total memory resources, where m is the number of processors requested by the user and p
is the total number of processors available. Second, multiprocessing allows completion of
jobs sooner, freeing the system for use by other users and providing a considerable benefit
in terms of enhanced productivity to the user community at large. Third, the shortening of
residence time for a job reduces vulnerability to system crashes.

In the following sections, the multitasking implementation is first discussed, and a gen-
eral outline of the method is given. A simple example of multitasking is then provided to
give some basis for the subsequent detailed look at the multitasking implementation in the
M PMC code. A discussion is included of some relevant memory management coding de-
tails. The Unix stream editor, which is used to automate code editing tasks, is then briefly
discussed. Next follows a description of the governing equations, followed by a development
of the tricubic interpolation scheme used for grid coupling, and discussions of numerical
experiments.

MULTITASKING APPROACH

Multitasking on a supercomputer with multiple processors requires that a computational
task be subdivided into independent tasks, which are then run concurrently. This technique
results in a decrease in wall clock time for tasks so subdivided, but obviously not in a decrease
in the total number of floating point operations required. Nevertheless, the gain in terms of
productivity will still be considerable for the user.

There are many possible strategies for multitasking fluid flow solvers, but here we will
describe only the MPMG solver implementation, and the requirements that led to its par-
ticular multitasking strategy. This strategy is different from the strategies discussed in the
Introduction. Although the multitasking approach is discussed below in the context of the
Cray-2 computer, it is applicable in principle to other such supercomputers.

The Cray-2 permits multitasking via two different software mechanisms. Since the Cray-
2 operating system, Unicos, is a Unix implementation, processes may be multitasked out of
the C programming language, using the system calls "fork", "exec", "wait", etc. These
multitasking mechanisms, however, are relatively low level and lack time required spectrum
of capabilities such as simple mechanisms for synchronization of tasks. The Cray-2-Unicos-
Fortran implementation, on the other hand, provides a Multitasking Library, callable from
Fortran, which offers a wide spectrum of multitasking capabilities. It guarantees that, when
available, separate processors will run separate tasks (processes). One still competes with
other users for processors, but tasks will benefit from true concurrency. Therefore, multi-
processing is done via the Fortran multitasking library calls.

Various requirements for MPMC dictate aspects of time design of this code. The MPMG
code must be able to access very large amounts of the Cray-2 memory. As work space of

4

approximately 38 words per grid node is required, and since this code may be used for up to
9 grid systems, with an average of, possibly, one-third-million nodes each, it should be able
to successfully request 125 million words of memory, or half of the entire Cray-2 memory.
Therefore, a consistent and reliable mechanism for memory allocation is to force the loader
to give the main program all of the work space memory and then to allocate subsets of this
memory to the separate multitasked solvers.

Flexibility in memory allocation mechanisms and the ability to develop data types which
would mimic and map to such Fortran memory types as COMMON blocks or subroutine pa-
rameter lists, made the use of the C programming language attractive for the main driver.
Data types (structures) in C also are well suited to parallel programming techniques, as will
be demonstrated. Additionally, C has the ability to call functions (or Fortran subroutines)
by their addresses. This makes it possible to invoke the routines being multitasked by cy-
cling through an array of function addresses. The advantage to such an approach is that
multitasked subroutines are invoked by grid number, i.e., indicially. Such an approach is not
possible in Fortran.

The decision to multitask the solver at the grid level (one flow solver copy for each grid),
rather than within the grid level (finer grain level) is influenced by several factors. First, the
choice of multitasking the solver at the grid level seemed a "natural" organizational level.
Data and work spaces related to a given grid could easily be kept distinct from those of other
grids. Second, multiple embedded grid schemes ordinarily advance a single independent time
step on each constituent grid, and then update all dependencies between grids (coupling the
grids explicitly, by interpolation). Third, the purpose of parallel processing is to speed up
the execution of individual programs. The same program with different inputs and different
grids can be run on a number of processes equal to the number of grids plus one. Fourth,
multitasking should be transparent to the user so that any modifications to the physics
and to the numerics can be easily made. This at once makes multitasking at the grid level
simpler. However, when grid sizes differ in the number of nodes, multitasking results in the
completion of a time step on a smaller grid before that of the larger. The advantage gained
by multitasking is thus correspondingly diminished.

On the Cray-2, binding of C and Fortran object codes is simple and robust: the codes
are simply individually compiled and then linked together. The first cardinal rule that must
be observed when passing data between C and Fortran routines is that the C argument list
contain only pointers (addresses) to the respective Fortran variables. This is normally true
when the data being passed is in an array, in which case, placing the C array name in the
argument list suffices to make the array's address visible to the called Fortran routine. .(This
is standard in Fortran-to-Fortran calls.) When a scalar variable is being passed from C to
Fortran, a pointer variable containing the address of the scalar must be placed in the C
argument list (called by address). On the Fortran side, the actual scalar variable is placed
in the parameter list and subsequently receives the scalar value at its address.

The second cardinal rule which must be observed when binding C and Fortran codes
on the Cray-2 is that all names of Fortran subroutines called from C and all names of C
functions called from Fortran must be capitalized, since the Cray-2 Fortran compiler only

5

really recognizes capital letters in symbol names.

MULTIPROCESSING MULTIPLE GRID CODE

The code is divided into three main computational units. The first is a C main driver, the
second is the multitaskable Fortran solvers, one for each grid, and the third is a small group
of Fortran utility routines (Fig. 1). The Fortran utility routines include the interpolation
and update procedures, some memory allocation procedures, the interpolation file read-in
routine, etc.

The C main is preceded by a section of data structure declarations. These roughly fall
into two types: those that map to Fortran COMMON blocks, and those that map to Fortran
subroutine argument lists. In the main program, data initialization is followed by the ac-
tual time step loop, including grid interpolation and dependency update procedures, and
the multitasking of the flow solvers for a time step. Following the time step loop is the
termination sequence, including output of the restart file and user requested flow data.

The multitaskable flow solvers are each a collection of Fortran routines based on the
core flow solver. When multitasking an existing Fortran code, there are two possible choices:
either a single copy of the code can be multitasked in times, or in unique copies of the code
can be produced and individually multitasked. Both of these choices have advantages and
disadvantages, and these will be compared. The authors chose the latter method, which is
made simpler, in part, by using the Unix stream editor to produce 'in unique flow solver
copies.

MULTITASKING BASICS AND A SIMPLE EXAMPLE

The Cray-2 multitasking library is exceptionally easy to use, especially when called
entirely from Fortran routines. The basic principles for utilizing this library are explained
with an example. Appendix A is a small sample code "MHEAT" which solves the steady
state 2-D heat equation by successive-over-relaxation on a grid of 100 by 200. This grid is
partitioned into two grids of 100 by 100 each. The outer boundary is set to 200 degrees,
the interior to 0 degrees at the outset. The intermediate boundary separating the right and
left domains starts at 0 degrees. The routine "SEIDEL" is multitasked, one copy for time
left domain, and one for the right. Given the latest boundary conditions for these domains,
the parallel execution of the two copies of SEIDEL solves both domains simultaneously for
a steady state solution (that is, until the iteration-to-iteration change drops below 0.0001
degrees) and then return to the main program. The centerline boundary between the two
domains is then updated by averaging temperatures immediately on its left and right. This
process is repeated and eventually, the entire domain converges to 200 degrees.

Note first the integer arrays PROC 1 and PROC2. These are required by the system multi-
tasking routines and are used by them to identify the individual processes. The initialization
of their first element is a necessary formality as is the external declaration of the routine
SEIDEL. Next, note the call to the multitasking library routine TSKTUNE. This indicates to

6

GRID AND FLOW DATA
AT ADDRESS 1

GRID AND FLOW DATA
AT ADDRESS 2

MPMG FUNCTIONAL STRUCTURE

THE "PARENr PROCESS
"C MAIN PROGRAM

MULTITASK CALLS, SENDING
DATA ADDRESS POINTERS

GRID 	 0R102
DATA ADDRESS I DATA ADDRESS

rI1UTIES
FORTRAN
EMPOLAT1ON
3RID COUPLL40
IBROW1NES

TASK

"CHILD"
MULT1717ASKED

PROCESS 2
FORTRAN SOLVER 2

Fig. 1 Multiprocessing multiple grids.

the system that the maximum number of CPU's on which tasks may simultaneously com-
pute is 4. In general, this is the natural choice for the four processor Cray-2. Finally, the
routine SEIDEL is mnultitasked twice with the library calls to TSKSTART, which contains the
task identifier, and time name of the routine being multitasked, followed by its arguments.
The multitasking invocations are followed by two calls to TSKWAIT, which synchronizes the
completion of the tasks, that is, guarantees that no further processing will occur until both
tasks have completed.

The work space for the grid is the single dimensional array A(20000) in the main program.
The starting element for the left domain A(i) and the starting element for the right domain
A(9901) are passed down to the two tasks, whereupon the work space is redimensioned to
be a two-dimensional array of appropriate size (e.g., idimn x jdim/2). This permits each task
to have a unique portion of work space, and thus there is no chance that values in the grid
space will be overwritten inadvertently. Scalars and dimensioned arrays that are local to
the multitasked routine are unique; there is no risk of their being overwritten. There are,
however, no common blocks in the multitasked routine. The multitasking library does not
provide a mechanism by which common data in multitasked routines is unique: scalars and
arrays in commons are available to all copies of the routine which are executing. A declared
data type TASK COMMON is available in the multitasking library. This COMMON is protected
so that only one copy of a routine can access it at a time. But upon completion of work by
that routine, another niultitasked copy may now access the very same memory, thus possibly
overwriting values.

MPMG MULTITASKING AND MEMORY ACCESS MECHANISMS

In order to overcome common block memory access uniqueness problems which occur when
multitasking a subroutine containing common blocks, a technique different from the above
(single copy of routine multitasked) was used in the MPMG code. As previously indicated,
the base flow solver was replicated to form a unique copy for each grid. Subroutine names
had to be made unique, of course, and common block names were also made unique within
a given copy of the solver. These modifications were performed by the Unix "sed" stream
editor script that builds the separate copies of the code. For example,

COMMON/BASE/A,B,C

becomes

COMMON/BASE1/A ,B ,C

everywhere in solver no. 1 and

COMMON/BASE2/A ,B , C

for solver no. 2, and so on. The variables A,B,C, etc. are now unique to the individual copy
of the numbered routine- common block combination in which they appear.

At the initialization of the MPMG program, all common blocks are made available to
the C main code. This is done by calling a special set of Fortran utility routines FXTERN1,

8

FXTERN2, etc., one for each flow solver copy. In each of these were the (uniquely named)
common blocks appropriate for the solver. (See Appendix B, for a sample.) The address
of the start of each common block is then passed back to the C main code by calling the
C function CXTERN. CXTERN places these addresses in the equivalent (indicially referenced
by mesh number) pointer-to-structure element. (See Appendix C.) This has the effect of
placing a "template", which is the structure, over (time memory starting at time address of
the first variable in) each common block. The Fortran common blocks are now available to
the C main via the arrays of pointers-to-structures.

As previously indicated, large amounts of Cray-2 memory are requested for flow solver
work spaces. This memory is used for storing the grids, the flow data, intermediate calcu-
lations, etc. During the initialization process, the C main program calls a Fortran utility
routine named FALLOC (Appendix D). As in the above mechanisms, FALLOC itself calls a
C function CMNADDRS, and passes ALLMEM, which is the address of the block of memory re-
quested in the common block WORKMEM. In CMNADDRS, the address of this (generally very
large) block of memory is passed to a globally declared pointer-to-float, thus making the
memory available to the C main. Subsequently, memory is allocated to work spaces by a
simple C utility function (Appendix E), which sets the work space pointers to appropriate
addresses within this contiguous memory block.

A convenient method for passing down to Fortran routines argument lists containing the
addresses of the work spaces for a given grid is to build arrays of structures whose fields are
pointers. For example, given

SUBROUTINE GRID (JMAX,KMAX,LMAX,X,Y,Z)

DIMENSION X(JMAX,KMAX,LMAX),

&	 Y(JMAX,KMAX,LMAX),

&	 Z(JMAX,KMAX,LMAX)

RETURN

END

then an appropriate array of structures for mapping to this parameter list would be

struct s_grid

{
mt *p_jmax;
mt *picmax;
mt *p_lmax;
float *p_x;
float *py;
float *p_z;

}	 sgrid [NUMBER _OF_GRIDS];

There is one such structure for each grid. The pointers in this structure may be initialized

9

-	 -

following the memory allocation procedure. This is done by the routine init_structs:

void init_structs (mesh-number)
mt mesh-number;

{
s_grid [meshnumber] .pjmax = p_jmax[meshiiumber];
sgrid[mesh.iiuxnber] .piunax = p.itmax[meshnumber];
s_grid [mesh_number) . pdmax = p_lmax[mesh_nuinber);
sgrid [mesh_number] .px = p.x[meshnumber];
sgrid [mesh_number] .py = py[mesh_number);
sgrid [mesh_number] .pz = pz[mesh_number];

}

Thereafter, Fortran subroutines may be called from C in a very compact fashion. Referring
to the above Fortran subroutine GRID, the C statement

GRID (s_grid[mesh_number]);

has the effect of placing all fields contained in the "mesh-number" element of the structure
s_grid onto the subroutine argument call list, and since these individual fields are really
addresses, the called Fortran subroutine receives only the appropriate addresses, as required.

Lastly, it is important to ensure Fortran functions may be called by address from C. If
the C array grid[NUMBER_OF_GRIDS] is of type array of pointers-to-functions returning void,
and if its individual elements have been loaded with the addresses of the Fortran subroutines
GRID1, GRID2, and so on, then the statement

for (meshnuxnber=O;
mesh_number<NUMBEROFGRIDS;
mesh_number++)

(*grid[mesh_number])(s -grid [mesh_ntunber]);

will invoke these routines successively, passing to them the addresses for appropriate pa-
ranieters which are being kept in the structure s_grid. Note that loading the addresses of
Fortran subroutines into a pointer-to-function can be accomplished by first declaring the
Fortran subroutines to be of type void, as follows:

void GRID1 0;
void GRID2 0;

The pointer-to-function returning void is declared by

void (*grid[NUMBER_OF-GRIDS])();

Finally, these pointers are given the Fortran subroutine addresses with

10

grid[O] = GRID1;
grid[l] = GRID2;

Multitasking these routines from C, followed by task completion synchronization, is now
simple:

forall.jnesh TSKSTART (proc[mesh.ituxnber],
grid[meshnumber]
sgrid [mesh-number]);

for-all-mesh TSKWAIT (proc[mesh]);

where, for convenience, for -all-mesh has been previously defined by:

#define for-all-mesh \
for (mesh..numberO; \

mesh -number <NUMBEfLOFGRIDS; \
meshnuniber++).

AUTOMATING LARGE SCALE EDITING WITH SED

The MPMC code building process merits some attention. Changes to the code required
by the number of grids, the grid dimensions, etc., and also algorithmic changes to the flow
solver core are not actually made to the base code, but rather, to a Unix shell script and
Unix "sed" stream editor 13 script. This makes version control and testing of algorithmic
changes and enhancements easier to monitor. Modifications, which may be quite global in
nature, can he enabled or disabled simply by enabling or disabling portions of the controlling
sed script.

The Unix stream editor sed is a very convenient tool for automating the MPMC4 text
manipulating needs. Sed takes advantage of the "regular expression" capabilities of Unix.
These versatile wild cards are without equal for generalizing text editing commands. Sed
also accepts string variables passed into it, which may then be incorporated into the target
text produced. Sed's ability to memorize portions of a line of text which match specified
patterns or patterns specified with regular expressions makes it tremendously powerful.

Sed is employed to automate the task of producing unique copies of the base flow solver.
Sed also makes all algorithmic changes to the flow solver, for example, those required by
the interpolation mechanisms, and those necessary to account for differing grid sizes, etc.
Thus, it is really never necessary to change the base flow solver, but instead, changes are
incorporated into the sed script and the Unix shell script that drives sed.

GOVERNING EQUATIONS

The governing equations are the thin-layer approximation to the Navier-Stokes equations,

11

which are expressed as

	

O + 5E +	 +	 = ReO

where
P	 PU

pu	 puff + p
pv ,	 E=J	 pvU+p
fiW

e	 (e+p)U—tp

PV	 pW

	

puV + 77.,P 	 puW + Cp
F=J' pvV + 11yP , G=J	 pvW + p

	

pwV + p	 pwW + (zP
(e+p)V—?/tp	 (e+p)W—(tp

0

ItefffltC + (I'eff/3)P(a,

Pef j qv + (/Lff/3)(,,

S = J	 1Lff ow(+ (fLeff/3)0(z

1[0.5ILeff (u2 + v 2 + w2)

+kPry - 1)(a2)(]

+(ite1j /3)(Cxu + (,v + w) x

with

(+C+)
= (u + CyVc +

Itef I =	 /1'lam + stttur

When appropriate these thin-layer equations are replaced by the slender-layer Navier-Stokes
equations, in which viscous terms are retained in two directions.

NUMERICAL PROCEDURE

The numerical procedure is discussed in two parts, the first of which outlines the im-
plicit procedure used to solve the governing equations, and the second of which explains the
methodology for coupling the solutions on the various grid systems. The former is outlined
briefly, as the procedure is relatively well known. The latter is discussed in detail, as the
procedure for applying tricubic interpolation to overset curvilinear grid schemes is new.

Implicit Scheme

The governing equations are solved with an implicit approximately factored scheme14,
following linearization in time. This scheme is modified to include nonlinear artificial dissi-
pation terms suggested by Jameson et al.' 5 and to accommodate a hole recognition mech-
anism required for overlapping grid systems. This mechanisimi is implemented with ib for

12

"iblanking." 16 Consequently, the numerical scheme is the following for the thin-layer equa-
tions:

T(I + i1i6A + ibVEj)

N,(I + j b h&1 A;; + ibV71k)

N,,(I + ibh6(A 1 + ibVCl

—ibhRe6JA)T1Q

= i&h(6EE' + 6, 1 P + 6" - Re16')

+ib (V J + Vk +)Qn

The nonlinear artificial dissipation operator, V, is

= V(o+ 1J'1 +	
- (4)

where A and V are forward and backward difference operators, respectively, 0j are scaling
coefficients obtained from the spectral radii of the flux Jacobians, and €j are the second
and fourth order dissipation coefficients. The A's are the eigenvalue matrices of the flux
Jacobians, the T's are the eigenvector matrices, and N = T 1 T,7 . The 6's are the spatial
difference operators applied to the eigenvalue matrices, h is the timestep, and J,'s are the
Jacobians of the coordinate transformation. The above equation describes the complete
differencing scheme at an interior point of the grids. Boundary points, in the far field and at
solid walls, and at interior hole boundaries require special care to insure that fourth order
operators in the above expression are converted automatically to one sided or second order
differences. These strategies are automated by time use of the iblank switch b at each node
to signal whether to solve for the dependent variables at that node. Note that when two
grids overlap, the presence of a solid body associated with one of the grids creates a hole in
the interior of the other grid.

Tricubic Patch Interpolation Scheme

Linear interpolation mechanisms have been successful and easy to use for coupling the
solutions on different grid systems. Their chief advantages are that they require a small
number of data points (hi-linear requires data at the four corners of a two-dimensional cell,
and trihinear requires data at the 8 corners of a three-dimensional cell), thus making their
formulation relatively simple, and they have the interesting (and in some cases desirable)
property that the value of a function at a linearly-interpolated point can never exceed the
value at any surrounding corner point. This is, essentially, a monotonicity condition, and is a
safe choice in the presence of shocks. The chief disadvantage of linear interpolation schemes
is that they are only first-order accurate, and thus are a poor choice of interpolant when
describing smooth but nonlinear functions. Cubic interpolation, by contrast, preserves the
curvature present in the interpolated functions and is thus more accurate.

The problem of interpolation may be stated as follows: Given a function (typically flow
data) defined in some domain at the nodes of a curvilinear coordinate system, find the func-
tion value at a given arbitrary point or set of points in this domain. Interpolation may be

13

performed in the physical domain in which the function values are at non-equispaceci (x, y, z)

locations of a curvilinear coordinate system. However, interpolation in this domain is ineffi-
cient in terms of storage and computational effort compared with that in the computational
domain (, i,). In this domain the function values are known at the equispaced knots of
a rectilinear grid, which allows a simplification in the interpolation procedure. All that is

necessary is to transforimi the given (x, y, z) set of points to their (, i, () equivalents.

The procedure used to find the (, i,) interpolation point is as follows: a multivariate
Newton-R.aphson iterative procedure is used to invert the given (x, y, z) position to the

corresponding (, ij,) position. This also requires an interpolation procedure to obtain the
initial guess and subsequent improved guesses.

Interpolants in curvilinear coordinate systems

First, the cell containing the point to interpolate is found via a search algorithm. Then
for convenience the cell is translated so that one corner is located at the origin of (, 71 ,)

space. That is, calling the point we seek to interpolate (x*,y*,z*), will be an

element of the unit cube in (e,i,) space.

Next, the following iterative procedure is used. Since (x,y,z) is available at all
node points in computational space, form the three position function interpolants

X

Y	 Y(,ij,)

z

Then, invert this set of equations at the given (x * ,y * ,z*) for the respective	 using
multivariate (three-dimensional) Newton-Raphson iteration. Starting with an initial guess

(c' 7l
0
 ,' 1'

solve the above system for 	 *) using the iteration

(X, 1', Z)1
-1	 AXn

(9(x,
1

I Ly
a(e, mi,c) IAZn

xs1	

[x(,ij7,cY y*J - Z*

AY
11+1

n+1

with AXn

AY
11

AZn

which will be used to produce

n+1

:=	 + A77 n+1
(71

14

Assuming a 1-1 mapping, the inverse of the Jacobian exists 16,17 and so it is possible to solve
for the	 vector. In general (assuming a "close enough" initial guess) the iteration
will converge quadratically 18 ' 19 to the desired	 i.e., we will have	 such

that _g(s,7/*,$)

ys =

Note that the assumption of a 1-1 mapping is violated in practice typically at topological
singularities (such as polar axes of ellipsoidal grids) of the coordinate transformation. At
such points, the Jacobian will be (theoretically) zero, but more likely (computationally)
extremely small, if the Jacobian is not identically zero, it will frequently still be possible
to continue the iteration to a successful conclusion. More information may be determined
by finding the singular value decomposition (SVD: J = UDV t where D = diag(A, 0,...0) =

diag(\ i , .. ' k, 0,..., 0), ., being the singular values of J, k = rank'(J)) of the Jacobian matrix.
Singular values of zero will reveal, in a stable manner, the rank of the Jacobian matrix20.
These may indicate that in at least one of the coordinate directions , 71, or , a change in
coordinate does not produce any change in x, y, or z. This will be true, for example, if
the current position is on a singular line. The SVD may be then followed by singular value
damping or singular value truncation 21 , followed by construction of the "pseudo-inverse"
(J+ VA-'U'). The effect of small or zero singular values is to make the iteration unstable
since it is the reciprocals of these singular values that are used in the formation of the pseudo-
inverse. Singular value damping or truncation methods serve to stabilize the iteration by
limiting the effect of these small or zero singular values. We will show later how the elements
of the required Jacobian matrix may be obtained.

The Tricubic Interpolation

In the above procedure for finding the position of a given (x,y,z) point, no
mention was made of which particular interpolation method will be used. Any interpolation
mechanism could he inserted. We have in fact started with trilinear interpolation coeffi-
cients (the	 offsets) and have used theni as the initial guess for a Newton-Raphson
iteration using tricubic interpolation for the base interpolants.

The four coefficients of a one-dimensional cubic polynomial may be uniquely specified
given two adjacent function values and the two derivatives of the function at those points.
These two derivatives are themselves calculated fromii discrete data by central differences,
and thus four function values are required. In three dimensions, 43 function values are
required to produce a combination of 64 values of the function, its first derivatives, second,
and third mixed partial derivatives. These in turn are placed in a 4 x 4 x 4 tensor which is
then multiplied by the three respective cubic blending polynomials, one each for x, y, and
z. These cubic blending polynomials are themselves functions of the tricubic interpolation
coefficients, that is, the offsets. A locally defined cubic polynomial interpolant
approximation to the discrete function is thus produced. Note that this interpolant is C'
continuous across adjacent cells.

15

For each cell in 3-D containing an interpolation point, sixty-four function values will be
required. That is, if the bottom, left-hand, forward corner of the cell in question has index

(1) J) k), then values at all points {i-1,i,i+1,i+2}x{j-1,j,j+1,j+2}x {k-1, k, k+1, k+21
are used. These are differenced as needed: first partials at each corner of the interpolation
cell (24), second mixed partials at each corner (24), and third mixed partials at each corner
(8). These 56 partial derivatives, along with the 8 corner function values are placed into a
4 x 4 x 4 tensor B according to the arrangement of Stanton et a122:

go ' 0,0) f(0,1,0) f,,(0,0,0) f,1(0,1,0)

B - 1 -
f(1, 0,0) f(1, 1,0) f, 1 (1, 0,0) f17 (11 1,0)

f(0, 0,0) f4 (0, 1,0) .f4,,i(0, 0,0) f ,,,(0, 1,0)

ft (0, 0,0) f4 (1,1,0) ft,,i(1, 0,0) f , ,,(1, 1,0)

f(0, 0, 1)	 f(0, 1, 1)	 f,,(0, 0, 1) f, 7 (0, 1, 1)

B2- 2-
f(1,0,1)	 f(i,1,1)	 f7 (1,0,1) f,1 (1, 1, 1)

f(0,0,1)	 ft(01 11 1)	 ft,(0,0, i) f(0,1,1)

f4 (1 1 0 1 1)	 ft(1, 1 1 1)	 011) f ,17 (1 1 1 1 1)

f(0,0,0)	 f(0,1,0)	 f,1,(0,0,0) f,,,<(0,1,0)

B3-
fd 1 , 0 , 0)	 fdl,1,0)	 f(1,0,0) f,(1,110)

f(0, 0,0) &((0 1 1 1 0) f,1,((0 1 0,0) 1,0)

ft(i, 0,0)	 1,0) ft,,7,(1 1 0,0) &'7 ' ((11 1,0)

f((0, 0, 1)	 f((0, 1, 1)	 f'7,((01011) f,7, <(0, 1, 1)

B4 --
 f(1 1 0 1 1)	 f(11111)	 f(11011) f(1,1,1)

f(0, 0,1) ft,(0, 1,1)	 0,1)	 11 1)

f(1, 0,1) ft,(1, 1,1) f,c(1 1 0,1) ft,17,(11 1,1)

where f is the function being interpolated, evaluated at the indicated corner of time unit

cube.

The cubic blending polynomials are given by

ai() - 24 - 32 + 1

cm 2() = -2 + 32

a3() =3-2e2+e

The function f interpolant can now be given by

I ' M 'n

We may now see that the partial derivatives of the curvilinear coordinate system position
functions X, Y, and Z, which are required in the Jacobian matrix for the Newton-Raphson
iteration, may be easily formed. First, analytically differentiate the expression immediately
above with respect to , i, and C, and then evaluate the resulting partials for the position
functions X, Y, and Z at the current (, i7, () estimate within the Newton-Itaphson process.

16

That is, the partial derivatives of the position function interpolants are interrogated at the
current (, ij,() Newton-R.aphson estimate.

Note that interpolation of discontinuities requires the use of trilinear rather than tricubic
interpolation to insure monotonic behavior of the interpolated values.

NUMERICAL EXPERIMENTS

The Reynolds averaged, Navier-Stokes equations with the Baldwin-Lomax turbulence
model are solved to determine flows past a generic oblique-wing aircraft (Fig. 2). Two atid
three overlapping grid systems are used, respectively, for a wing-fuselage combination and
a wing-pedestal-fuselage combination. The flow is at a Mach number of 1.4, a Reynolds
number of 4,000,000, and an angle of attack of 14 0 . The wing is positioned as follows: sweep
angle = 65°; bank angle = 50 , with the leading tip banked down; pitched down by 7.80;
wing pivot point is at 39.0% of the iiiid-chord; the wing attachment point is at 60.0% of the
length of the fuselage from the nose. The solutions are communicated from one grid system
to the neighboring one by interpolation. The tricubic interpolation scheme is applied for
two overlapping grids; and the trilinear interpolation scheme is used for three grids. The
wing and the fuselage flowfields are computed using the thin-layer approximation; and the
pedestal flowfield is computed using the slender-layer approximation.

The complexity of computations and flow fields is indicated by presenting sample results
(Figs. 3-6). The effect of trilinear and tricubic interpolations on convergence to a steady
state is discussed, and a comparison of the accuracy of the two methods demonstrates that
the latter is more accurate. Timing results for the MPMG code are then presented to
demonstrate the speedup achieved in the elapsed (wall-clock) time by multiprocessing.

Tricubic Patch Application

Figures 3 and 4, respectively, show the overlapping wing and fuselage grid systems and
surface flow patterns. Solutions are obtained at each time step separately on these grid
systems, and are communicated between them by by the tricubic interpolation scheme. The
smoothness in the solution across the boundary of one grid system into another is higher
for the tricubic interpolation than for the trilinear. This smoothness affects the convergence
to steady state. With the trilinear scheme, the residues of the discrete governing equations
cannot be reduced beyond about four orders of magnitude, but with the tricubic scheme,
these residues are reduced more than six orders of magnitude. In these experiments all other
parameters were kept the same.

The L 1 , L 2 , and L norms of error and relative error for a known nonlinear function are
less for the tricubic than for the trilinear interpolation. Numerous tests were devised to test
and compare the accuracy of the tricubic and trilinear interpolation schemes. All of these
tests resulted in the same conclusion. We describe here a test which is particularly revealing.
First, a solution was obtained for the fuselage grid (95 x 83 x 50) alone using the MPMC
code. The resulting gradients were strong at the nose and tail of the fuselage. At each point
in the grid, the solution was interpolated from alternate surrounding points. Both trilinear

17

V

V

0
V

V

C...
0

0

V I-

IM

Iv • 14

V

I o 0? • —

Io —
I i
I iE
V
I FA

II..
IbO

Ic

bo
•
•

1%•

A bO

,,e we

L

,, 44s	 FII
	

14

I v

I	 0)

19

V I-

V
U

I.'

C,)

V

20

and tricubic interpolation were used in this manner and the results compared to the original
solution at this point. (Note that the values used in this test are Q variables, not scaled by
transformation Jacobian.) Virtually every measure of error is smaller for the tricubic scheme
than for the trilinear scheme (Appendix C). This is, of course, no surprise. In general, the
error is reduced by between one third and one half. The errors showed no particular corre-
lation with position in the grid. The tricubic interpolation, therefore, can he advantageous
for complex computational aerodynamics problems requiring multiple grids. The obvious
disadvantage of using tricubic interpolation is that it requires roughly eight times more coin-
putational effort than the trilinear interpolation. Multiprocessing the interpolations between
different grid systems would reduce the elapsed time for such computations.

MPMG Application

The MPMG code is applied to solve flow past the generic oblique-wing aircraft. The
flow conditions are those considered above. Three overlapping grid systems are used, one
for each of the following parts of. the aircraft: wing (389,500 grid-points), fuselage (229,190
grid-points), and pedestal, the wing support between the wing and the fuselage (223,860
grid-points). The governing equations are solved concurrently on these separate grids by
multitasking as three concurrent processes. The results are then updated on the overlapping
grid regions by interpolation in the fourth process. Some details of the grid systems are
shown in Fig. 5. A sample of the result is presented in Fig. 6 showing particle traces around
the pedestal.

The averaged cpu seconds per minute from numerous MPMC runs of a three-grid prob-
lem, both in single-process mode (no multitasking) and multi-process mode (the mnultitask-
able portion of time computation proceeding as three parallel processes), are presented in
Table 1. The average effective speedup is 2.1. This factor is consistent with total elapsed
time trials made for this case. When considering these results, it is important to remember
that the three-processor values include some time spent executing in a serial only imiode on a
single processor. Appendix F gives timings of each of these runs. Variations in timing values
are due to variations in machine load conditions. The timing information is presented in the
form of cpu seconds consumed per wall-clock (elapsed) minute.

Processes CPU seconds/minute

1
3

34
71

Table 1. Increase in cpu with multiprocessing

Under the following conditions, the number of cpu seconds per minute which a job will
obtain while multitasking is roughly equal to the number of processes requested times the
number of seconds per minute which a single process job will get. First, the machine is
saturated, that is, time number of processes exceeds the number of processors. This implies
that there is no idle compute time. Second, all experiments performed, regardless of the
number of processes, are run at time same priority. Third, the total number of all user jobs

21

I-

1

tr

1..

cr

V I-

.......

\'.

IL

I 1IJilj

• II	
'P1

i !I It! 111ijjI11ff
sss

i j Ll II
•J!T1I lilt II

1 1li lIfl

I	 II

1	
ri

1tk ifl	
j Ui 'H

II ,	 p
Lfl !I

4 IL
H

pi:t

II	 ;	 ii jiI

tIIIr!'IIIH
1IJiIij

22

f

:r/1k

-.

iri' LI*1 RA
ON

ca
4)

Q)
fri,
ci)

a)

0

ci

ca
Q)
C.)
Cd

4)

Q)
r-i
C.)

4.)

Cd

ho

a)

MI

is considerably larger than the number of processes on which the flow code is multitasked.

In order to estimate the fraction of the flow solver code which was multitaskable, the
above averaged timing results were applied in the following manner. The code is divided into
two portions. On the first portion, computation proceeds serially, that is, in one process only.
Oii the second portion, computation proceeds in parallel, in this case, in three concurrent
processes. It is the extent of this section which is to be determined.

Consider a simple example in which 75% of the code is parallelizable onto three processes.
For this job, the 25% nonparallelizable portion will complete in 25% of the total elapsed time
required for the entire job to run as a single process. The parallelizable 75%, run on three
processes, will complete three time more rapidly than it would have if run as a single process.
Therefore, the total parallelizable version will complete in 50% (that is, 25% plus one third
of 75%) of the elapsed time required for the non p aralleliz able version. This is Amdahl's law.

In the present case, we know the elapsed times for the single processor and three processor
flow code computations (subject to some statistical uncertainty), and from these we seek
the fraction of the code which is serially executed only (the fraction which is effectively
niultitasked will then be 1 minus the serial fraction) This is the inverse of Amdahl's law:

- mm' - 1
(in - 1)

Here f is the fraction of the code that cannot he multitasked, in is the number of concurrent
processes in the multitasked part, and r is the ratio of the multitasked to nomimultitasked
elapsed times.

This formula assumes that the in multitaskable processes all perform the same amount
of work and thus, when started simultaneously, will all finish at the same time. This is not
necessarily the case for the MPMG code, and, in fact, is not true for the test cases described
in this report, where the amount of work in the inultitaskable processes is proportional to
the different grid sizes, i.e., the number of points in each grid. To find the fraction of code
which is executed serially only, we therefore use the following modified formula:

f3

=

E Si

where r is, as above, the ratio of iiiultit,asked to serial-only elapsed times, and the s i 's are
the sizes or relative sizes of the multitaskable pieces of work, with the rn.th being the largest.
Therefore, based on the measured elapsed times (Table 1) and setting s i equal to the various
grid sizes, we conclude that about 3.1% of the total computation was executed in serial mode
only. We have used here for the ratio r of mnultitasked to nonmultitasked elapsed times the
ratio of the values given in Table 1 for cpu seconds per minute of elapsed time, which is
1/2.1 = 0.48. Note that the overhead for niultitasking in the MPMG code was found to be
negligible.

24

One can estimate the decrease in multitasking efficiency due to the differences in grid
sizes. By using Amdahl's law with the assumption that f = 3.1% we find that the resultant
ideal ratio of nitiltitasked to serial elapsed times will be about 0.35, rather than the value of
0.48 achieved with the differing mesh sizes.

Multitasking at the relatively coarse grain level in the MPMO code was found to be quite
efficient on the Cray-2 computer, in that the overhead incurred by the multitasking library
was very small. By contrast, the autotasking facility (automatic Cray niicrotasking library
invocation) provided on the Cray-2 and Cray Y-MP computers is relatively inefficient, based
on the first author's experiments with autotasking 3-D Navier-Stokes, implicit flow solvers.
Those experiments showed that, though elapsed time was decreased, a penalty in total cpu
time consumed of up to forty percent was incurred. This penalty varies depending on system
load, job priority, and other factors and is caused by details in the autotasking/niicrotasking
library implementation.

CONCLUDING REMARKS

1) Although multiprocessing is essential for significantly improving the productivity
of computational aerodynamicists, it is hardly ever used in computational aerodynamics.

2) Judicious use of multiprocessing allows efficient use of computer-system resources.
3) An approach is presented and demonstrated that multitasks existing supercoin-

puter Fortran programs with relative ease using "C" for the main program.
4) A significant improvement iii turnaround time is demonstrated and the theoretical

basis for it is explained.
5) Efficient use of future multiheaded supercomputers will typically require multi-

processing flow solvers.
6) Tricubic interpolations can reduce error in grid coupling mechanisms compared to

trihinear interpolations.

25

- -	
U U

APPENDIX A

MULTITASKING IN THE ABSENCE OF COMMON BLOCKS

C
PROGRAM MHEAT

C
EXTERNAL SEIDEL
INTEGER PROC1(2), PROC2(2)
DIMENSION A(20000)

CALL TSKTUNE (6HMAXCPU,4)

PROC1(1) = 2
PROC2(1) = 2
IDIM = 100
JDIM = 200

CALL INITIA (A,IDIM,JDIM)

ITCNT = 0
ALOWDT = .0001
DUMYLG = 100000.

IL2R = 0

IR2L = 1
1000 CONTINUE

CALL TSKSTART (PROd ,SEIDEL, IDIM,JDIM/2,ACHNG1,ALOWDT,

&	 ITS1,IR2L,A(1))
CALL TSKSTART (PROC2 ,SEIDEL,IDIM,JDIM/2+1 ,ACHNG2,ALOWDT,

&	 ITS2,IL2R,A(9901))
CALL TSKWAIT (PROC2)
CALL TSKWAIT (PROC1)
CALL AVCNTR (IDIM,A(9801))
CALL SEIDEL (IDIM,JDIM/2,ACHNG1,DUMYLG,IDUM,IR2L,A(1))
CALL SEIDEL (IDIM,JDIM/2+1,ACHNG2,DUNYLG,IDUN,IL2R,A(9901))

AMOST = AMAX1(ACHNG1,ACHNG2)
ITCNT = ITCNT + 1
WRITE(*,9000) ITCNT,ITS1,ACHNG1,ITS2,ACHNG2

9000 FORMAT(1X,I5,2(5X,15,2X,E13.7))
IF (AMOST .GT. ALOWDT) GO TO 1000
CALL OUTPRN (A,IDIM,JDIM)

END
C	 = = = = == = = = = = = == = = =

SUBROUTINE SEIDEL (IDIM,JDIM,TCHANG ,ALOWDT, ITS ,IDIREC,T)

C	 = = = = == == = == = == == =
DIMENSION T(IDIM,JDIM)

DATA OMEGA / 1.93 /

IF (IDIREC .EQ. 0) THEN

26

JSTART = 2
JEND = JDIM-1
JINC =1

ELSE
JSTART = JDIM-1

JEND =2
JINC	 =-1

ENDIF
' 'ITS =O

1000 CONTINUE
TCHANG = -1E40
DO 100 J=JSTART,JEND,JINC
DO 100 I=2,IDIM-1

TPREV = T(I,J)
T(I,J) = (T(I-1,J) + T(I+1,J) + T(I,J-1) + T(I,J+1))/4.
T(I,J) = TPREV + OMEGA*(T(I,J) - TPREV)

TDIFF = ABS(TPREV-T(I,J))

IF (TDIFF .GT. TCHANG) THEN
TCHANG = TDIFF

ICHNG = I
JCHNG=J

TMPCHG = T(I,J)
END IF

100	 CONTINUE
ITS = ITS + I

IF (TCHANG .GT. ALOWDT) GO TO 1000
RETURN

END
C

	

	 = == = == === === == == =
SUBROUTINE AVCNTR (IDIM,T)

C	 = == = == == === = = = = = =
DIMENSION T(IDIM,3)

DO 100 I=2,IDIM-1
T(I,2) = (T(I,1)+T(I,3))/2.

100 CONTINUE
RETURN

END

C	 = == = == == = == = == == =
SUBROUTINE INITIA (T,IDIM,JDIM)

C	 = == = == == = = = = == == =
DIMENSION T(IDIM,JDIM)

DO 50 J=2,JDIM-1

DO 50 I=2,IDIM-1

27

T(I,J) = 0.
50 CONTINUE

DO 100 I=1,IDIM

T(I,1)	 = 200.

T(I,JDIM) = 200.

100 CONTINUE
DO 200 J=2,JDIM-1

T(1,J)	 = 200.

T(IDIM,J) = 200.

200 CONTINUE
RETURN

END

C	 = == = = = = = = == = == == =
SUBROUTINE OUTPRN (A,IDIM,JDIM)

C	 = == = == == = == = == == =
DIMENSION A(IDIM,JDIM)

DO 100 1=1,100
WRITE(*,*) I,A(I,50),A(I,100),A(I,150)

100 CONTINUE

RETURN

END

APPENDIX B

MAKING FORTRAN COMMON BLOCK ADDRESSES AVAILABLE
TO MAIN C PROGRAM

C
SUBROUTINE FXTERN1

C
COMMON'/COMBLKl/ A ,B , C
COMMON/COMBLK2/ X(1000),Y(1000) ,z(i000)

COMMON/COMBLK3/ M(20) ,Q,R,S

MESHNUN = 1
CALL CXTERN (MESHNUN,A,X,M)

RETURN

END

APPENDIX C

OBTAINING ADDRESSES OF FORTRAN COMMON BLOCKS IN C

struct s_comblkl

28

1* global declarations */
{
float a;
float b;
float c;

struct scomblkl *ps..comblkl [NUMBER .0F.GRIDS];

/* Pointer to common combiki */
/* NUMBER -OF-GRIDS defined as

1* total number of grids */

struct s_comblk2

{
float x[10001;

float y[1000];
float z[1000];

struct s_comblk2 *ps_comblk2[NUMBER_OF_GRIDS];

struct s_comblk3

{
mt m[20];
float q;
float r;
float s;

};

struct s..comb1k3 *ps_comblk3 [NUMBER _OF_GRIDS];

void CXTERN (mesh-number
plocal_combiki
,plocal_comblk2
,p1ocal -comb 1k3)

•	 /* Note: mesh-number is pointer to mt */
1* since it is passed from Fortran routine */
/* and therefore must be an address; */
1* same for all these pointers */

mt *meshnumber;
jut *plocal_comblkl;
mt *plocal_comblk2;
mt *plo cal -comb lk3;

{
extern struct s_comblkl	 *ps_comblklfl;

extern struct s_comblk2	 *ps_comblk2[];

29

extern struct s_comblk3	 *ps_comblk3[];

/* typecast and assign address to */

/* approp pointers to structures */
/* These pointers to structures are */

/* global and thus available to main */
ps_comblkl[*mesh.number] = (struct s_comblkl *) plocal..comblkl;

ps_cOmblk2[*meshiiumber] = (struct s_comblk2 *) plocal_comblk2;
ps_comblk3[*meshiiuinber] = (struct scomblk3 *) plocaLcomblk3;

}

APPENDIX D

MAKING ADDRESS OF BULK COMPUTATIONAL WORK SPACE
AVAILABLE TO C MAIN PROGRAM

C
SUBROUTINE FALLOC

C
C Before compilation, totalmem must be replaced with the

C	 following number: 37*(total num of nodes from all grids)

C	 + 3*(sum of all. jdimc + sum of all kdimc).

C	 A slightly excessive overestimate would be

C	 38*(total num of nodes from all grids)

C ALLMEM(38), which appears here is replaced by

C	 ALLMEM(38*(+il*jl*kl+i2*j2*k2+...)),

C	 the substitution being made by sed script falloc.sed.

C CNNADDRSS, i.e., common address
C In this example, the grid sizes are: 92*82*50, 65*82*43, 35*164*39

COMMON /WORKMEN/ ALLMEN(38*(95*82*50+65*82*43+35*164*39))

CALL CMNADDRS (ALLMEM)

RETURN
END

APPENDIX E

WORK SPACE MEMORY ALLOCATOR

mt	 *pmaxj [NUMBER_OF_GRIDS]
/* global declarations */

*p..maxk [MUMBEROFGRIDS]
*pmaxl [NUMBER-OF-GRIDS]

float *px [NUMBER-OF-GRIDS]
*p_y [NUMBER _OFGRIDS]

30

*pz [NUMBER_OFGRIDSI

void	 givmem (mesh iiumber,j max, kmax,lmax)
mt mesh-number

,jmax
kmax
,lmax;

{
mt maxdim = jmax * kmax * lmax;

p..inaxj[mesh.number] = (mt *) word_alloc (1);
p...maxk[mesh.number] = (mt *) wordalloc (1);
p.inaxl[mesh.number] = (mt *) word...alloc (A);
p_x[meshnuxnberi = (float *) word_alloc (maxdim);
py(meshnumber] = (float *) wordalloc (xnaxdim);

p_z[mesh_number] = (float *) word_alloc (maxdim);

}

float *wordallbc (numwords)
1* memory given to solver arrays *1

mt numwords;

{
extern float *p_allmem;
static mt	 n_already_given = 0;

mt	 i;
i = nalreadygiven;
n_alreadygiven += nwnwords;

return (pallmem +

II

31

APPENDIX F

CPU TIMING TRIALS

Cpu Seconds per Minute

1 Processor 3 Processors

29 57
33 66
32 65
33 58
32 64
30 62
32 56
33 52
33 46
36 50
33 52
34 51
34 56
34 65
35 55
35 65
35 64
36 65
34 74
35 71
34 63
40 115
32 125
31 113
35 108
31 76
37 79
34 77
38 73
40 77

80
72
79
79
77

32

APPENDIX G

A COMPARISON OF INTERPOLATION ERRORS

RMS errors:
cub: 8.557E-3, 6.395E-3, 4.539E-3, 5.482E-3, 2.109E-2
un: 1.400E-2, 9.904E-3, 9.054E-3, 1.139E-2, 3.468E-2

average abs(error):
cub: 3.520E-3, 2.503E-3, 2.118E-3, 2.485E-3, 9.077E-3
un: 6.936E-3, 4.894E-3, 4.883E-3, 5.817E-3, 1.752E-2

stand dev abs(error):
cub: 7.800E-3, 5.884E-3, 4.014E-3, 4.887E-3, 1.904E-2
hit: 1.216E-2, 8.611E-3, 7.625E-3, 9.793E-3, 2.993E-2

L-1 norm of errors:
cub: 57.617, 40.975, 34.670, 40.675, 148.556
un: 113.520, 80.105, 79.911, 95.195, 286.834

L-2 noun of errors:
cub: 1.094, 0.818, 0.580, 0.701, 2.698
un: 1.791, 1.267 1 1.158, 1.457, 4.437

L-inf norm of errors
cub: 6.781E-2, 0.104, 3.921E-2, 5.700E-2, 0.173
un: 1.00 OE-1, 0.113, 6.256E-2, 1.062E-1, 0.261

L-1 norm of relative errors:
cub: 54.767, 49.739, 6879.075, 832.340, 53.174
un: 114.164, 124.852, 10341.191 7 1540.516, 108.532

L-2 norm of relative errors:
cub: 0.969, 2.777, 545.013, 149.249, 0.933
liii: 1.782, 11.316, 853.034, 217.192, 1.787

L-inf norm of relative errors:
cub: 7.652E-2, 1.252 7 230.220 1 105.581, 6.915E-2
un: 9.610E-2, 6.741, 342.255, 100.158, 0.126

average abs(relative errors):
cub: 3.346E-3, 3.039E-3, 0.420, 5.086E-2, 3.249E-3
un: 6.976E-3, 7.629E-3, 0.631, 9.413E-2, 6.631E-3

stand dcv abs(relative errors):
cub: 6.802E-3, 2.149E-2, 4.239, 1.165, 6.533E-3
un: 1.206E-2, 8.813E-2, 6.638, 1.695, 1.230E-2

33

REFERENCES

1 Cray-2 Multitasking Programmer's Manual, Cray Research, Inc., No. SM-2026, March,
1986, pp. 2-14.

2 Buzbee, B. L., and Sharp, D. H., "Perspectives on Supercomputing," Science, Vol.

227, 1985, pp. 591-597.

Ware, W.: "The Ultimate Computer," IEEE Spectrum, Mar. 1972, pp. 84-91.

Liewer, P. C., Ziiiiniernian, B. A., Decyk, V. K., and Dawson, J. M., "Application of
Hypercuhe computers to Plasma Particle-in-cell Simulation Codes," Proceedings of Fourth
Int'l Conf. on Supercomputing, Vol. 11, 1989.

Lin, C. S., "Particle-in-cell Siniulations of Wave Particle Interactions using the Mas-
sively Parallel Processor," Proceedings of Fourth Int'l Coiif. on Supercomputing, Vol. II,
1989.

6 Tuccillo, J. J., "Numerical Weather Prediction on the Connection Machine," Proceed-
ings of Fourth Int'l Conf. on Supercomputing, Vol. II, 1989.

Jespersen, D. C., and Levit, C., "A Computational Fluid Dynamics Algorithm oil a
Massively Parallel Computer," AIAA 9th Computational Fluid Dynamics Conference, June,
1989, Buffalo, N.Y.

8 Smith, B. F. and Miller, R. M., "A Computational Approach to Galaxy Formation and
Evolution, Proceedings of Second Int'l Conf. on Supercomputing, Vol. 11, 1987.

Taylor, P. R., and Bauschlicher, Jr., C. W., "Computational Chemistry on the Cray-2,"
Proceedings of Second Int'l Conf. on Supercomputing, Vol. II, 1987.

10 Taylor, P. R., and Bauschlicher, Jr., C. W., "Strategies for obtaining the maximum
performance from current supercomputers," Theoretica Chimica Acta, 1987, Vol. 71, pp.
105-115.

Andrich, P., Delecluse, P., Levy, C., and Madec, B., "A Multitasked General Circula-
tion Model of the Ocean," Proc. of Fourth Int'l Symp. on Science and Engineering on Cray
Supercomputers, Minneapolis, Minn., Oct., 1988.

12 Chevrin, R. M., Do Global, "A Climate Modeling Imperative as Well as a Microtasking
Directive," Proc. of Fourth Int'l Symnp. on Science and Engineering on Cray . Supercomputers,

Minneapolis, Minn., Oct., 1988.

13 Unix Programmers Manual, Vol. 2, Bell Labs, 1979.

14 Pulliam, T. II., and Steger, J. L., "Implicit Finite-Difference Simulations of Three-
Dimensional Compressible Flow," AIAA Journal, Vol 18, No. 2, Feb, 1980, p. 159.

Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solutions of the Euler Equa-

34

tions by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes," AIAA 14th
Fluid and Plasma Dynamics Conference, AIAA Paper 81-1259, Palo Alto, Ca., 1981.

16 Benek, J.A., Steger, J.L., Dougherty, F.C., and Buiming, P.O., Chimera: "A Grid-
Embedding Technique," AEDC Report TR-85-64, Arnold Eng. Dev. Ctr., Tenn., Apr.,
1986.

17 Sokolnikoff, I.S., Advanced Calculus, Chap. XII, McGraw-Hill, 1939.

18 Carnahan, B., Luther, ll.A., Wilkes, J.O., Applied Numerical Met/i., J. Wiley, Inc.,

1969.

19 Young, D.M., Gregory, R.T., A Survey of Numerical Mathematics, Addison-Wesley,

1972.

20 Buning, P.C., PLOT31) computer program, CELL3 Routine, NASA Ames Rsrch Ctr.

21 Marquardt, D.W., "Generalized Inverses, Ridge Regression, Biased Linear Estimation,
and Nonlinear Estimation," Technometrics, Vol. 12, pp. 591-612, 1970.

22 Stanton, E.L., Cram, L.M., Neu, T.F., "A Parametric Cubic Modelling System For
General Solids of Composite Material," mt. J. Nuiii. Meth. in Emig., Vol. 11, pp. 653-670.

35

NASA	 Report Documentation Page
Spic. ASa

1. Report No. 2. Government Accession No. 3. Recipients Catalog No.

NASA TM-102806

4. Title and Subtitle 5. Report Date

Multiprocessing on Supercomputers for Computational May 1990

Aerodynamics 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Maurice Yarrow (Sterling Federal Systems, Inc., Palo Alto, CA) A90121

and Unmeel B. Mehta 10 Work Unit No

505-60
9. Performing Organization Name and Address

11. Contract or Grant No.
Ames Research Center
Moffett Field, CA 94035-1000

13. Typo of Report and Period Covered

Technical Memorandum 12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546-0001

15. Supplementary Notes
This Technical Memorandum is a revised version of AIAA Paper 90-0337 presented at the 28th Aero-
space Sciences Meeting, Reno, Nevada, January 8-11, 1990.
Point of Contact: Unmeel B. Mehta, Ames Research Center, MS 202A-1

Moffett Field, CA 94035-1000 (415) 604-5548 or FTS 464-5548

16. Abstract
Very little use is made of multiple processors available on current supercomputers (computers with a theoretical

peak performance capability equal to 100 MFLOPs or more) in computational aerodynamics to significantly
improve turnaround time. The productivity of a computer user is directly related to this turnaround time. In a time-
sharing environment, the improvement in this speed is achieved when multiple processors are used efficiently to
execute\an algorithm. We apply the concept of multiple instructions and multiple data (MIMD) through multi-
tasking via a strategy which requires relatively minor modifications to an existing code for a single processor. Essen-
tially, this approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface.
The existing single processor code is mapped without the need for developing a new algorithm. The procedure for
building a code utilizing this approach is automated with the Unix stream editor. As a demonstration of this
approach, a Multiple Processor Multiple Grid (MPMG) code is developed. It is capable of using nine processors,
and can be easily extended to a larger number of processors. This code solves the three-dimensional, Reynolds
averaged, thin-layer and slender-layerNavier-Stokes equations with an implicit, approximately factored and diago-
nalized method. The solver is applied to a generic oblique-wing aircraft problem on a four processor Cray-2 com-
puter. A tricubic interpolation scheme is developed to increase the accuracy of coupling of overlapped grids. For
the oblique-wing aircraft problem, a speedup of two in elapsed (turnaround) time is observed in a saturated time-
sharing environment.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Computational aerodynamics, Supercomputers Unclassified-Unlimited
Multiprocessing, Computational fluid dynamics
Multitasking, Tricubic interpolation Subject Category —02

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 36 A03

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39

