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ABSTRACT 

Very little use is made of multiple processors available on current supercomputers (com-
puters with a theoretical peak performance capability equal to 100 MFLOPS or more) in 
computational aerodynamics to significantly improve turnaround time. The productivity of 
a computer user is directly related to this turnaround time. In a timesharing environment, 
the improvement in this speed is achieved when multiple processors are used efficiently to 
execute an algorithm. We apply the concept of multiple instructions and multiple data 
(MIMD) through multitasking via a strategy which requires relatively minor modifications 
to an existing code for a single processor. Essentially, this approach maps the available 
memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing single 
processor code is mapped without the need for developing a new algorithm. The proce-
dure for building a code utilizing this approach is automated with the Unix stream editor. 
As a demonstration of this approach, a Multiple Processor Multiple Grid (MPM(-,') code is 
developed. It is capable of using nine processors, and can be easily extended to a larger 
number of processors. This code solves the three-dimensional, Reynolds averaged, thin-layer 
and slender-layer Navier-Stokes equations with an implicit, approximately factored and di-
agonalized method. The solver is applied to a generic oblique-wing aircraft problem on a 
four processor Cray-2 computer, using one process for data management and non-parallel 
computations and three processes for pseudo-time advance on three different grid systems. 
These grid systems are overlapped. A tricuhic interpolation scheme is developed to increase 
the accuracy of the grid coupling. For the oblique-wing aircraft problem, a speedup of two 
in elapsed (turnaround) time is observed in a saturated timesharing environment. 

INTRODUCTION 

Current supercomputer architectures employ a few high-performance processors to pro-
vide a significant increase in speed (defined as throughput) over the speed of single-processor 
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supercomputers of the past. With massively parallel supercomputer architectures, the speed 
of supercomputers may be increased by at most two orders of magnitude. Specifically, a 
factor of 100 from  highly parallel computer architecture can be expected. This limitation 
is explained by Amdahl's law', which imposes a stiff penalty for time last few percent of non-
parallelizable code in an otherwise parallelizable program. (Note that Buzbee and Sharp' 
have credited Ware' for this model.) This model fails to account for additional instructions 
required when multiprocessing an otherwise single processor group of instructions. Taking 
into account this increase in instructions for multiprocessing, the Buzbee and Sharp model 
suggests that the maximum speedup is less than the number of processors, even if the com-
putation under consideration can be completely put into a parallel form. In the future, 
supercomputers with between 16 and 64 processors are likely to be available. Yet there 
has been very little use made of multiple processors available on current supercomputers 
in computational aerodynamics to significantly enhance the productivity of the user. The 
objective of the presented research is to map an existing algorithm onto a multiprocessor 
supercomputer to demonstrate the advantages of using multiple processors. 

The motivation of this research is as follows. In computational aerodynamics, the need 
to study flow fields around more realistic and complex three dimensional geometries has led 
to a few promising computational techniques, all of which make a substantial demand on 
supercomputing resources, namely cpu time and memory. The computing power required 
is roughly proportional to the number of grid points (or finite volumes or finite elements) 
into which the complete flow field is discretized. In a timesharing environment, jobs will be 
resident for long times, as measured by the wall clock. Total wall-clock (elapsed) time is 
proportional to the total number of grid points; this time can be substantially reduced by 
using a number of processors simultaneously. 

We will now offer some perspective on various techniques which have been used to par-
allelize computer codes. First, applications on computers other than supercomputers are 
considered, and then those on supercomputers are discussed. 

Liewer et al. 4 have implemented a plasma particle-in-cell simulation code code on a Hyper-
cube 64 processor machine by using each processor to calculate, for a single particle, the 
updated particle positions, velocities, and particle contributions to charge and current den-
sity. Comparisons with Cray X-MP/48 single processor times for the most computation 
intensive section of the code indicate a speedup in the elapsed time by a factor of two. Much 
effort is also being applied at this time to parallelize flow solving methods onto massively 
parallel architectures, such as the Connection Machine. Lin' has implemented a particle-
in-cell simulation of wave particle interactions using the massively parallel processor (MPP) 
which consists of 16,384 processors. Tuccillo 6 has used the Connection Machine (CM-2) 
for numerical weather prediction. Jespersen and Levit 7 have used the Connection Machine 
for a two-dimensional finite-difference algorithm solving the thin-layer Navier-Stokes equa-
tions. On such computers, however, uniquely system-specific instructions and algorithms 
are required to achieve speeds comparable to that possible when multiple processors of su-
percomputers are utilized. Creating these codes thus requires a considerable investment 
in programming time. Codes typically implemented on vector supercomputers need to be 
programmatically redesigned.
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On supercomputers such as the Cray Y-MP and the Cray-2, multitasking, microtask-
ing, and autotasking are available. Multitasking is a mechanism for multiprocessing at a 
subroutine level. The implementation from Fortran is via such calls as TSKSTART and 
TSR WAIT. With these calls, parallel execution of Fortran subroutines may be initiated and 
synchronized. This implementation of multiprocessing is well suited for MIMD architectures. 
Microtasking is a mechanism for for multiprocessing of DO loops. It parallelizes the execution of 
DO loops most typically immediately outside the innermost vectorizing loops. It is invoked 
with compile directives such as DO GLOBAL in the Fortran source. The precompiler "pre-
mult" will then add appropriate parallelizing system calls to the Fortran source. Autotasking 
is essentially microtasking that is automatically performed by the Cray dependency analyzer 
FPP. It is activated by a compile switch and is thus the simplest multiprocessing option to 
use. Autotasking is well suited for SIMD- appropriatealgorithms (single instruction, multiple 
data). 

Smith and Miller' have calculated galactic collisions by multitasking the motion of four 
groups of stars (each group of which is arranged in 256 blocks, with each block containing 
1024 stars) onto four Cray-2 processors. The motion of stars in time is influenced by a 
potential field, which must be updated between timesteps based on the latest position of 
particles. Taylor and Bauschlicher9 ' 10 have inultitasked the work required for generation 
of full configuration interaction wave functions in computational chemistry problems by 
subdividing over inner products large matrix multiplies onto four Cray-2 processors. Andrich 
et a! have multitasked a general circulation model of the ocean by applying vertical and 
horizontal operators by "slab" (plane) on separate processors of a Cray-2. Chevrin 12 has 
simultaneously multitasked and microtasked the NCAR Community Climate Model on a 
Cray X-MP/48 and has achieved speedups (decrease of elapsed time) of up to 3.7. In this 
case, vertical slabs within the model constituted independent computational elements and 
were multitasked at the subroutine level onto separate processors. It seems there are no 
archived publications using multiprocessing for computational aerodynamics. 

There are two approaches to speedup on supercomputers: global (coarse-grain) par-
allelization and local (medium and fine-grain) parallelization. The latter is the approach 
taken in the references just cited. In the present work, we have achieved a speedup using 
a global coarse-grain implementation and making use of the available MIMD architectures, 
with basically standard algorithms. The reason for not using inicrotasking and autotasking 
is explained below. 

Microtasking and autotasking are not efficient for any but the most ideal algorithms on 
the Cray Y-MP and Cray-2 architectures, because the synchronization between processes 
under microtasking results in the loss of "synchronization wait" time. For real world algo-
rithms, this results in additional cpu time consumed. This cpu penalty is highly system-load 
dependent and seems to be proportional to this load. Microtasked processes waiting and idle 
at a synchronization point continue to accumulate user cpu time. 

The productivity of the user depends not only on the efficiency of the code he or she 
develops but also on the efficiency of the computer resources he or she is going to use. The 
concept of M1MD through multiprocessing allows efficient use of these resources. This is 
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explained as follows. First, consider a worst case. If a single process job accesses all of the 
available central memory, all processors except one will be idle since there is no memory 
available for jobs queued for the other processors. This causes considerable inefficiency in 
system resources and in throughput. A possible solution is to let a user request in/p of the 
total memory resources, where m is the number of processors requested by the user and p 
is the total number of processors available. Second, multiprocessing allows completion of 
jobs sooner, freeing the system for use by other users and providing a considerable benefit 
in terms of enhanced productivity to the user community at large. Third, the shortening of 
residence time for a job reduces vulnerability to system crashes. 

In the following sections, the multitasking implementation is first discussed, and a gen-
eral outline of the method is given. A simple example of multitasking is then provided to 
give some basis for the subsequent detailed look at the multitasking implementation in the 
M PMC code. A discussion is included of some relevant memory management coding de-
tails. The Unix stream editor, which is used to automate code editing tasks, is then briefly 
discussed. Next follows a description of the governing equations, followed by a development 
of the tricubic interpolation scheme used for grid coupling, and discussions of numerical 
experiments.

MULTITASKING APPROACH 

Multitasking on a supercomputer with multiple processors requires that a computational 
task be subdivided into independent tasks, which are then run concurrently. This technique 
results in a decrease in wall clock time for tasks so subdivided, but obviously not in a decrease 
in the total number of floating point operations required. Nevertheless, the gain in terms of 
productivity will still be considerable for the user. 

There are many possible strategies for multitasking fluid flow solvers, but here we will 
describe only the MPMG solver implementation, and the requirements that led to its par-
ticular multitasking strategy. This strategy is different from the strategies discussed in the 
Introduction. Although the multitasking approach is discussed below in the context of the 
Cray-2 computer, it is applicable in principle to other such supercomputers. 

The Cray-2 permits multitasking via two different software mechanisms. Since the Cray-
2 operating system, Unicos, is a Unix implementation, processes may be multitasked out of 
the C programming language, using the system calls "fork", "exec", "wait", etc. These 
multitasking mechanisms, however, are relatively low level and lack time required spectrum 
of capabilities such as simple mechanisms for synchronization of tasks. The Cray-2-Unicos-
Fortran implementation, on the other hand, provides a Multitasking Library, callable from 
Fortran, which offers a wide spectrum of multitasking capabilities. It guarantees that, when 
available, separate processors will run separate tasks (processes). One still competes with 
other users for processors, but tasks will benefit from true concurrency. Therefore, multi-
processing is done via the Fortran multitasking library calls. 

Various requirements for MPMC dictate aspects of time design of this code. The MPMG 
code must be able to access very large amounts of the Cray-2 memory. As work space of 
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approximately 38 words per grid node is required, and since this code may be used for up to 
9 grid systems, with an average of, possibly, one-third-million nodes each, it should be able 
to successfully request 125 million words of memory, or half of the entire Cray-2 memory. 
Therefore, a consistent and reliable mechanism for memory allocation is to force the loader 
to give the main program all of the work space memory and then to allocate subsets of this 
memory to the separate multitasked solvers. 

Flexibility in memory allocation mechanisms and the ability to develop data types which 
would mimic and map to such Fortran memory types as COMMON blocks or subroutine pa-
rameter lists, made the use of the C programming language attractive for the main driver. 
Data types (structures) in C also are well suited to parallel programming techniques, as will 
be demonstrated. Additionally, C has the ability to call functions (or Fortran subroutines) 
by their addresses. This makes it possible to invoke the routines being multitasked by cy-
cling through an array of function addresses. The advantage to such an approach is that 
multitasked subroutines are invoked by grid number, i.e., indicially. Such an approach is not 
possible in Fortran. 

The decision to multitask the solver at the grid level (one flow solver copy for each grid), 
rather than within the grid level (finer grain level) is influenced by several factors. First, the 
choice of multitasking the solver at the grid level seemed a "natural" organizational level. 
Data and work spaces related to a given grid could easily be kept distinct from those of other 
grids. Second, multiple embedded grid schemes ordinarily advance a single independent time 
step on each constituent grid, and then update all dependencies between grids (coupling the 
grids explicitly, by interpolation). Third, the purpose of parallel processing is to speed up 
the execution of individual programs. The same program with different inputs and different 
grids can be run on a number of processes equal to the number of grids plus one. Fourth, 
multitasking should be transparent to the user so that any modifications to the physics 
and to the numerics can be easily made. This at once makes multitasking at the grid level 
simpler. However, when grid sizes differ in the number of nodes, multitasking results in the 
completion of a time step on a smaller grid before that of the larger. The advantage gained 
by multitasking is thus correspondingly diminished. 

On the Cray-2, binding of C and Fortran object codes is simple and robust: the codes 
are simply individually compiled and then linked together. The first cardinal rule that must 
be observed when passing data between C and Fortran routines is that the C argument list 
contain only pointers (addresses) to the respective Fortran variables. This is normally true 
when the data being passed is in an array, in which case, placing the C array name in the 
argument list suffices to make the array's address visible to the called Fortran routine. .(This 
is standard in Fortran-to-Fortran calls.) When a scalar variable is being passed from C to 
Fortran, a pointer variable containing the address of the scalar must be placed in the C 
argument list (called by address). On the Fortran side, the actual scalar variable is placed 
in the parameter list and subsequently receives the scalar value at its address. 

The second cardinal rule which must be observed when binding C and Fortran codes 
on the Cray-2 is that all names of Fortran subroutines called from C and all names of C 
functions called from Fortran must be capitalized, since the Cray-2 Fortran compiler only 
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really recognizes capital letters in symbol names. 

MULTIPROCESSING MULTIPLE GRID CODE 

The code is divided into three main computational units. The first is a C main driver, the 
second is the multitaskable Fortran solvers, one for each grid, and the third is a small group 
of Fortran utility routines (Fig. 1). The Fortran utility routines include the interpolation 
and update procedures, some memory allocation procedures, the interpolation file read-in 
routine, etc. 

The C main is preceded by a section of data structure declarations. These roughly fall 
into two types: those that map to Fortran COMMON blocks, and those that map to Fortran 
subroutine argument lists. In the main program, data initialization is followed by the ac-
tual time step loop, including grid interpolation and dependency update procedures, and 
the multitasking of the flow solvers for a time step. Following the time step loop is the 
termination sequence, including output of the restart file and user requested flow data. 

The multitaskable flow solvers are each a collection of Fortran routines based on the 
core flow solver. When multitasking an existing Fortran code, there are two possible choices: 
either a single copy of the code can be multitasked in times, or in unique copies of the code 
can be produced and individually multitasked. Both of these choices have advantages and 
disadvantages, and these will be compared. The authors chose the latter method, which is 
made simpler, in part, by using the Unix stream editor to produce 'in unique flow solver 
copies.

MULTITASKING BASICS AND A SIMPLE EXAMPLE 

The Cray-2 multitasking library is exceptionally easy to use, especially when called 
entirely from Fortran routines. The basic principles for utilizing this library are explained 
with an example. Appendix A is a small sample code "MHEAT" which solves the steady 
state 2-D heat equation by successive-over-relaxation on a grid of 100 by 200. This grid is 
partitioned into two grids of 100 by 100 each. The outer boundary is set to 200 degrees, 
the interior to 0 degrees at the outset. The intermediate boundary separating the right and 
left domains starts at 0 degrees. The routine "SEIDEL" is multitasked, one copy for time 
left domain, and one for the right. Given the latest boundary conditions for these domains, 
the parallel execution of the two copies of SEIDEL solves both domains simultaneously for 
a steady state solution (that is, until the iteration-to-iteration change drops below 0.0001 
degrees) and then return to the main program. The centerline boundary between the two 
domains is then updated by averaging temperatures immediately on its left and right. This 
process is repeated and eventually, the entire domain converges to 200 degrees. 

Note first the integer arrays PROC 1 and PROC2. These are required by the system multi-
tasking routines and are used by them to identify the individual processes. The initialization 
of their first element is a necessary formality as is the external declaration of the routine 
SEIDEL. Next, note the call to the multitasking library routine TSKTUNE. This indicates to 
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Fig. 1 Multiprocessing multiple grids.



the system that the maximum number of CPU's on which tasks may simultaneously com-
pute is 4. In general, this is the natural choice for the four processor Cray-2. Finally, the 
routine SEIDEL is mnultitasked twice with the library calls to TSKSTART, which contains the 
task identifier, and time name of the routine being multitasked, followed by its arguments. 
The multitasking invocations are followed by two calls to TSKWAIT, which synchronizes the 
completion of the tasks, that is, guarantees that no further processing will occur until both 
tasks have completed. 

The work space for the grid is the single dimensional array A(20000) in the main program. 
The starting element for the left domain A(i) and the starting element for the right domain 
A(9901) are passed down to the two tasks, whereupon the work space is redimensioned to 
be a two-dimensional array of appropriate size (e.g., idimn x jdim/2). This permits each task 
to have a unique portion of work space, and thus there is no chance that values in the grid 
space will be overwritten inadvertently. Scalars and dimensioned arrays that are local to 
the multitasked routine are unique; there is no risk of their being overwritten. There are, 
however, no common blocks in the multitasked routine. The multitasking library does not 
provide a mechanism by which common data in multitasked routines is unique: scalars and 
arrays in commons are available to all copies of the routine which are executing. A declared 
data type TASK COMMON is available in the multitasking library. This COMMON is protected 
so that only one copy of a routine can access it at a time. But upon completion of work by 
that routine, another niultitasked copy may now access the very same memory, thus possibly 
overwriting values. 

MPMG MULTITASKING AND MEMORY ACCESS MECHANISMS 

In order to overcome common block memory access uniqueness problems which occur when 
multitasking a subroutine containing common blocks, a technique different from the above 
(single copy of routine multitasked) was used in the MPMG code. As previously indicated, 
the base flow solver was replicated to form a unique copy for each grid. Subroutine names 
had to be made unique, of course, and common block names were also made unique within 
a given copy of the solver. These modifications were performed by the Unix "sed" stream 
editor script that builds the separate copies of the code. For example, 

COMMON/BASE/A,B,C 

becomes

COMMON/BASE1/A ,B ,C 

everywhere in solver no. 1 and 

COMMON/BASE2/A ,B , C 

for solver no. 2, and so on. The variables A,B,C, etc. are now unique to the individual copy 
of the numbered routine- common block combination in which they appear. 

At the initialization of the MPMG program, all common blocks are made available to 
the C main code. This is done by calling a special set of Fortran utility routines FXTERN1, 
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FXTERN2, etc., one for each flow solver copy. In each of these were the (uniquely named) 
common blocks appropriate for the solver. (See Appendix B, for a sample.) The address 
of the start of each common block is then passed back to the C main code by calling the 
C function CXTERN. CXTERN places these addresses in the equivalent (indicially referenced 
by mesh number) pointer-to-structure element. (See Appendix C.) This has the effect of 
placing a "template", which is the structure, over (time memory starting at time address of 
the first variable in) each common block. The Fortran common blocks are now available to 
the C main via the arrays of pointers-to-structures. 

As previously indicated, large amounts of Cray-2 memory are requested for flow solver 
work spaces. This memory is used for storing the grids, the flow data, intermediate calcu-
lations, etc. During the initialization process, the C main program calls a Fortran utility 
routine named FALLOC (Appendix D). As in the above mechanisms, FALLOC itself calls a 
C function CMNADDRS, and passes ALLMEM, which is the address of the block of memory re-
quested in the common block WORKMEM. In CMNADDRS, the address of this (generally very 
large) block of memory is passed to a globally declared pointer-to-float, thus making the 
memory available to the C main. Subsequently, memory is allocated to work spaces by a 
simple C utility function (Appendix E), which sets the work space pointers to appropriate 
addresses within this contiguous memory block. 

A convenient method for passing down to Fortran routines argument lists containing the 
addresses of the work spaces for a given grid is to build arrays of structures whose fields are 
pointers. For example, given 

SUBROUTINE GRID (JMAX,KMAX,LMAX,X,Y,Z) 

DIMENSION X(JMAX,KMAX,LMAX), 

&	 Y(JMAX,KMAX,LMAX), 

&	 Z(JMAX,KMAX,LMAX) 

RETURN 

END 

then an appropriate array of structures for mapping to this parameter list would be 

struct s_grid 

{ 
mt *p_jmax; 
mt *picmax; 
mt *p_lmax; 
float *p_x; 
float *py; 
float *p_z; 

}	 sgrid [NUMBER _OF_GRIDS]; 

There is one such structure for each grid. The pointers in this structure may be initialized 
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-	 - 

following the memory allocation procedure. This is done by the routine init_structs: 

void init_structs (mesh-number) 
mt mesh-number; 

{ 
s_grid [meshnumber] .pjmax = p_jmax[meshiiumber]; 
sgrid[mesh.iiuxnber] .piunax = p.itmax[meshnumber]; 
s_grid [mesh_number) . pdmax = p_lmax[mesh_nuinber); 
sgrid [mesh_number] .px = p.x[meshnumber]; 
sgrid [mesh_number] .py = py[mesh_number); 
sgrid [mesh_number] .pz = pz[mesh_number]; 

} 

Thereafter, Fortran subroutines may be called from C in a very compact fashion. Referring 
to the above Fortran subroutine GRID, the C statement 

GRID (s_grid[mesh_number]); 

has the effect of placing all fields contained in the "mesh-number" element of the structure 
s_grid onto the subroutine argument call list, and since these individual fields are really 
addresses, the called Fortran subroutine receives only the appropriate addresses, as required. 

Lastly, it is important to ensure Fortran functions may be called by address from C. If 
the C array grid[NUMBER_OF_GRIDS] is of type array of pointers-to-functions returning void, 
and if its individual elements have been loaded with the addresses of the Fortran subroutines 
GRID1, GRID2, and so on, then the statement 

for (meshnuxnber=O; 
mesh_number<NUMBEROFGRIDS; 
mesh_number++) 

(*grid[mesh_number])(s -grid [mesh_ntunber]); 

will invoke these routines successively, passing to them the addresses for appropriate pa-
ranieters which are being kept in the structure s_grid. Note that loading the addresses of 
Fortran subroutines into a pointer-to-function can be accomplished by first declaring the 
Fortran subroutines to be of type void, as follows: 

void GRID1 0; 
void GRID2 0; 

The pointer-to-function returning void is declared by 

void (*grid[NUMBER_OF-GRIDS])(); 

Finally, these pointers are given the Fortran subroutine addresses with 
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grid[O] = GRID1; 
grid[l] = GRID2; 

Multitasking these routines from C, followed by task completion synchronization, is now 
simple:

forall.jnesh TSKSTART (proc[mesh.ituxnber], 
grid[meshnumber] 
sgrid [mesh-number]); 

for-all-mesh TSKWAIT (proc[mesh]); 

where, for convenience, for -all-mesh has been previously defined by: 

#define for-all-mesh \ 
for (mesh..numberO; \ 

mesh -number <NUMBEfLOFGRIDS; \ 
meshnuniber++). 

AUTOMATING LARGE SCALE EDITING WITH SED 

The MPMC code building process merits some attention. Changes to the code required 
by the number of grids, the grid dimensions, etc., and also algorithmic changes to the flow 
solver core are not actually made to the base code, but rather, to a Unix shell script and 
Unix "sed" stream editor 13 script. This makes version control and testing of algorithmic 
changes and enhancements easier to monitor. Modifications, which may be quite global in 
nature, can he enabled or disabled simply by enabling or disabling portions of the controlling 
sed script. 

The Unix stream editor sed is a very convenient tool for automating the MPMC4 text 
manipulating needs. Sed takes advantage of the "regular expression" capabilities of Unix. 
These versatile wild cards are without equal for generalizing text editing commands. Sed 
also accepts string variables passed into it, which may then be incorporated into the target 
text produced. Sed's ability to memorize portions of a line of text which match specified 
patterns or patterns specified with regular expressions makes it tremendously powerful. 

Sed is employed to automate the task of producing unique copies of the base flow solver. 
Sed also makes all algorithmic changes to the flow solver, for example, those required by 
the interpolation mechanisms, and those necessary to account for differing grid sizes, etc. 
Thus, it is really never necessary to change the base flow solver, but instead, changes are 
incorporated into the sed script and the Unix shell script that drives sed. 

GOVERNING EQUATIONS 

The governing equations are the thin-layer approximation to the Navier-Stokes equations, 
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which are expressed as

	

O + 5E +	 +	 = ReO 
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When appropriate these thin-layer equations are replaced by the slender-layer Navier-Stokes 
equations, in which viscous terms are retained in two directions. 

NUMERICAL PROCEDURE 

The numerical procedure is discussed in two parts, the first of which outlines the im-
plicit procedure used to solve the governing equations, and the second of which explains the 
methodology for coupling the solutions on the various grid systems. The former is outlined 
briefly, as the procedure is relatively well known. The latter is discussed in detail, as the 
procedure for applying tricubic interpolation to overset curvilinear grid schemes is new. 

Implicit Scheme 

The governing equations are solved with an implicit approximately factored scheme14, 
following linearization in time. This scheme is modified to include nonlinear artificial dissi-
pation terms suggested by Jameson et al.' 5 and to accommodate a hole recognition mech-
anism required for overlapping grid systems. This mechanisimi is implemented with ib for 
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"iblanking." 16 Consequently, the numerical scheme is the following for the thin-layer equa-
tions:

T(I + i1i6A + ibVEj) 

N,(I + j b h&1 A;; + ibV71k) 

N,,(I + ibh6(A 1 + ibVCl 

—ibhRe6JA)T1Q 

= i&h(6EE' + 6, 1 P + 6" - Re16') 

+ib (V J + Vk + )Qn 

The nonlinear artificial dissipation operator, V, is 

= V(o+ 1J'1 +	
- (4) 

where A and V are forward and backward difference operators, respectively, 0j are scaling 
coefficients obtained from the spectral radii of the flux Jacobians, and €j are the second 
and fourth order dissipation coefficients. The A's are the eigenvalue matrices of the flux 
Jacobians, the T's are the eigenvector matrices, and N = T 1 T,7 . The 6's are the spatial 
difference operators applied to the eigenvalue matrices, h is the timestep, and J,'s are the 
Jacobians of the coordinate transformation. The above equation describes the complete 
differencing scheme at an interior point of the grids. Boundary points, in the far field and at 
solid walls, and at interior hole boundaries require special care to insure that fourth order 
operators in the above expression are converted automatically to one sided or second order 
differences. These strategies are automated by time use of the iblank switch b at each node 
to signal whether to solve for the dependent variables at that node. Note that when two 
grids overlap, the presence of a solid body associated with one of the grids creates a hole in 
the interior of the other grid. 

Tricubic Patch Interpolation Scheme 

Linear interpolation mechanisms have been successful and easy to use for coupling the 
solutions on different grid systems. Their chief advantages are that they require a small 
number of data points (hi-linear requires data at the four corners of a two-dimensional cell, 
and trihinear requires data at the 8 corners of a three-dimensional cell), thus making their 
formulation relatively simple, and they have the interesting (and in some cases desirable) 
property that the value of a function at a linearly-interpolated point can never exceed the 
value at any surrounding corner point. This is, essentially, a monotonicity condition, and is a 
safe choice in the presence of shocks. The chief disadvantage of linear interpolation schemes 
is that they are only first-order accurate, and thus are a poor choice of interpolant when 
describing smooth but nonlinear functions. Cubic interpolation, by contrast, preserves the 
curvature present in the interpolated functions and is thus more accurate. 

The problem of interpolation may be stated as follows: Given a function (typically flow 
data) defined in some domain at the nodes of a curvilinear coordinate system, find the func-
tion value at a given arbitrary point or set of points in this domain. Interpolation may be 
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performed in the physical domain in which the function values are at non-equispaceci (x, y, z) 

locations of a curvilinear coordinate system. However, interpolation in this domain is ineffi-
cient in terms of storage and computational effort compared with that in the computational 
domain (, i, ). In this domain the function values are known at the equispaced knots of 
a rectilinear grid, which allows a simplification in the interpolation procedure. All that is 

necessary is to transforimi the given (x, y, z) set of points to their (, i, () equivalents. 

The procedure used to find the (, i, ) interpolation point is as follows: a multivariate 
Newton-R.aphson iterative procedure is used to invert the given (x, y, z) position to the 

corresponding (, ij, ) position. This also requires an interpolation procedure to obtain the 
initial guess and subsequent improved guesses. 

Interpolants in curvilinear coordinate systems 

First, the cell containing the point to interpolate is found via a search algorithm. Then 
for convenience the cell is translated so that one corner is located at the origin of (, 71 , ) 

space. That is, calling the point we seek to interpolate (x*,y*,z*), will be an 

element of the unit cube in (e,i,) space. 

Next, the following iterative procedure is used. Since (x,y,z) is available at all 
node points in computational space, form the three position function interpolants 

X 

Y	 Y(,ij,) 

z 

Then, invert this set of equations at the given ( x * ,y * ,z*) for the respective	 using
multivariate (three-dimensional) Newton-Raphson iteration. Starting with an initial guess 

(c'  7l
0
 ,' 1' 

solve the above system for 	 *) using the iteration 

(X, 1', Z)1 
-1	 AXn 

(9(x,
1 

I Ly 
a(e, mi,c) IAZn 

xs1	

[ x(,ij7,cY y*J - Z* 

AY 
11+1 

n+1 

with AXn 

AY 
11 

AZn 

which will be used to produce

n+1

:=	 + A77 n+1 
(71 
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Assuming a 1-1 mapping, the inverse of the Jacobian exists 16,17 and so it is possible to solve 
for the	 vector. In general (assuming a "close enough" initial guess) the iteration 
will converge quadratically 18 ' 19 to the desired	 i.e., we will have	 such

that _g(s,7/*,$) 

ys = 

Note that the assumption of a 1-1 mapping is violated in practice typically at topological 
singularities (such as polar axes of ellipsoidal grids) of the coordinate transformation. At 
such points, the Jacobian will be (theoretically) zero, but more likely (computationally) 
extremely small, if the Jacobian is not identically zero, it will frequently still be possible 
to continue the iteration to a successful conclusion. More information may be determined 
by finding the singular value decomposition (SVD: J = UDV t where D = diag(A, 0,...0) = 

diag(\ i , .. ' k, 0,..., 0), ., being the singular values of J, k = rank'(J)) of the Jacobian matrix. 
Singular values of zero will reveal, in a stable manner, the rank of the Jacobian matrix20. 
These may indicate that in at least one of the coordinate directions , 71, or , a change in 
coordinate does not produce any change in x, y, or z. This will be true, for example, if 
the current position is on a singular line. The SVD may be then followed by singular value 
damping or singular value truncation 21 , followed by construction of the "pseudo-inverse" 
(J+ VA-'U'). The effect of small or zero singular values is to make the iteration unstable 
since it is the reciprocals of these singular values that are used in the formation of the pseudo-
inverse. Singular value damping or truncation methods serve to stabilize the iteration by 
limiting the effect of these small or zero singular values. We will show later how the elements 
of the required Jacobian matrix may be obtained. 

The Tricubic Interpolation 

In the above procedure for finding the position of a given (x,y,z) point, no 
mention was made of which particular interpolation method will be used. Any interpolation 
mechanism could he inserted. We have in fact started with trilinear interpolation coeffi-
cients (the	 offsets) and have used theni as the initial guess for a Newton-Raphson 
iteration using tricubic interpolation for the base interpolants. 

The four coefficients of a one-dimensional cubic polynomial may be uniquely specified 
given two adjacent function values and the two derivatives of the function at those points. 
These two derivatives are themselves calculated fromii discrete data by central differences, 
and thus four function values are required. In three dimensions, 43 function values are 
required to produce a combination of 64 values of the function, its first derivatives, second, 
and third mixed partial derivatives. These in turn are placed in a 4 x 4 x 4 tensor which is 
then multiplied by the three respective cubic blending polynomials, one each for x, y, and 
z. These cubic blending polynomials are themselves functions of the tricubic interpolation 
coefficients, that is, the offsets. A locally defined cubic polynomial interpolant 
approximation to the discrete function is thus produced. Note that this interpolant is C' 
continuous across adjacent cells.
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For each cell in 3-D containing an interpolation point, sixty-four function values will be 
required. That is, if the bottom, left-hand, forward corner of the cell in question has index 

( 1 ) J) k), then values at all points {i-1,i,i+1,i+2}x{j-1,j,j+1,j+2}x {k-1, k, k+1, k+21 
are used. These are differenced as needed: first partials at each corner of the interpolation 
cell (24), second mixed partials at each corner (24), and third mixed partials at each corner 
(8). These 56 partial derivatives, along with the 8 corner function values are placed into a 
4 x 4 x 4 tensor B according to the arrangement of Stanton et a122: 

go ' 0,0) f(0,1,0) f,,(0,0,0) f,1(0,1,0) 

B - 1 -
f(1, 0,0) f(1, 1,0) f, 1 (1, 0,0) f17 (11 1,0) 

f(0, 0,0) f4 (0, 1,0) .f4,,i(0, 0,0) f ,,,(0, 1,0) 

ft (0, 0,0) f4 (1,1,0) ft,,i(1, 0,0) f , ,,(1, 1,0) 

f(0, 0, 1)	 f(0, 1, 1)	 f,,(0, 0, 1) f, 7 (0, 1, 1) 

B2- 2-
f(1,0,1)	 f(i,1,1)	 f7 (1,0,1) f,1 (1, 1, 1) 

f(0,0,1)	 ft(01 11 1)	 ft,(0,0, i ) f(0,1,1) 

f4 ( 1 1 0 1 1 )	 ft(1, 1 1 1)	 011) f ,17 ( 1 1 1 1 1) 

f(0,0,0)	 f(0,1,0)	 f,1,(0,0,0) f,,,<(0,1,0) 

B3-
fd 1 , 0 , 0 )	 fdl,1,0)	 f(1,0,0) f,(1,110) 

f(0, 0,0) &((0 1 1 1 0 ) f,1,( ( 0 1 0,0) 1,0) 

ft(i, 0,0)	 1,0) ft,,7,(1 1 0,0) &'7 ' ( ( 11 1,0) 

f( (0, 0, 1)	 f( ( 0, 1, 1)	 f'7,((01011) f,7, <(0, 1, 1) 

B4 --
 f(1 1 0 1 1)	 f(11111)	 f(11011) f(1,1,1) 

f(0, 0,1) ft,(0, 1,1)	 0,1)	 11 1) 

f(1, 0,1) ft,(1, 1,1) f,c(1 1 0,1) ft,17,(11 1,1) 

where f is the function being interpolated, evaluated at the indicated corner of time unit 

cube.

The cubic blending polynomials are given by 

ai() - 24 - 32 + 1 

cm 2() = -2 + 32 

a3() =3-2e2+e 

The function f interpolant can now be given by 

I ' M 'n 

We may now see that the partial derivatives of the curvilinear coordinate system position 
functions X, Y, and Z, which are required in the Jacobian matrix for the Newton-Raphson 
iteration, may be easily formed. First, analytically differentiate the expression immediately 
above with respect to , i, and C, and then evaluate the resulting partials for the position 
functions X, Y, and Z at the current (, i7, () estimate within the Newton-Itaphson process. 
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That is, the partial derivatives of the position function interpolants are interrogated at the 
current (, ij,() Newton-R.aphson estimate. 

Note that interpolation of discontinuities requires the use of trilinear rather than tricubic 
interpolation to insure monotonic behavior of the interpolated values. 

NUMERICAL EXPERIMENTS 

The Reynolds averaged, Navier-Stokes equations with the Baldwin-Lomax turbulence 
model are solved to determine flows past a generic oblique-wing aircraft (Fig. 2). Two atid 
three overlapping grid systems are used, respectively, for a wing-fuselage combination and 
a wing-pedestal-fuselage combination. The flow is at a Mach number of 1.4, a Reynolds 
number of 4,000,000, and an angle of attack of 14 0 . The wing is positioned as follows: sweep 
angle = 65°; bank angle = 50 , with the leading tip banked down; pitched down by 7.80; 
wing pivot point is at 39.0% of the iiiid-chord; the wing attachment point is at 60.0% of the 
length of the fuselage from the nose. The solutions are communicated from one grid system 
to the neighboring one by interpolation. The tricubic interpolation scheme is applied for 
two overlapping grids; and the trilinear interpolation scheme is used for three grids. The 
wing and the fuselage flowfields are computed using the thin-layer approximation; and the 
pedestal flowfield is computed using the slender-layer approximation. 

The complexity of computations and flow fields is indicated by presenting sample results 
(Figs. 3-6). The effect of trilinear and tricubic interpolations on convergence to a steady 
state is discussed, and a comparison of the accuracy of the two methods demonstrates that 
the latter is more accurate. Timing results for the MPMG code are then presented to 
demonstrate the speedup achieved in the elapsed (wall-clock) time by multiprocessing. 

Tricubic Patch Application 

Figures 3 and 4, respectively, show the overlapping wing and fuselage grid systems and 
surface flow patterns. Solutions are obtained at each time step separately on these grid 
systems, and are communicated between them by by the tricubic interpolation scheme. The 
smoothness in the solution across the boundary of one grid system into another is higher 
for the tricubic interpolation than for the trilinear. This smoothness affects the convergence 
to steady state. With the trilinear scheme, the residues of the discrete governing equations 
cannot be reduced beyond about four orders of magnitude, but with the tricubic scheme, 
these residues are reduced more than six orders of magnitude. In these experiments all other 
parameters were kept the same. 

The L 1 , L 2 , and L norms of error and relative error for a known nonlinear function are 
less for the tricubic than for the trilinear interpolation. Numerous tests were devised to test 
and compare the accuracy of the tricubic and trilinear interpolation schemes. All of these 
tests resulted in the same conclusion. We describe here a test which is particularly revealing. 
First, a solution was obtained for the fuselage grid (95 x 83 x 50) alone using the MPMC 
code. The resulting gradients were strong at the nose and tail of the fuselage. At each point 
in the grid, the solution was interpolated from alternate surrounding points. Both trilinear 
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and tricubic interpolation were used in this manner and the results compared to the original 
solution at this point. (Note that the values used in this test are Q variables, not scaled by 
transformation Jacobian.) Virtually every measure of error is smaller for the tricubic scheme 
than for the trilinear scheme (Appendix C). This is, of course, no surprise. In general, the 
error is reduced by between one third and one half. The errors showed no particular corre-
lation with position in the grid. The tricubic interpolation, therefore, can he advantageous 
for complex computational aerodynamics problems requiring multiple grids. The obvious 
disadvantage of using tricubic interpolation is that it requires roughly eight times more coin-
putational effort than the trilinear interpolation. Multiprocessing the interpolations between 
different grid systems would reduce the elapsed time for such computations. 

MPMG Application 

The MPMG code is applied to solve flow past the generic oblique-wing aircraft. The 
flow conditions are those considered above. Three overlapping grid systems are used, one 
for each of the following parts of. the aircraft: wing (389,500 grid-points), fuselage (229,190 
grid-points), and pedestal, the wing support between the wing and the fuselage (223,860 
grid-points). The governing equations are solved concurrently on these separate grids by 
multitasking as three concurrent processes. The results are then updated on the overlapping 
grid regions by interpolation in the fourth process. Some details of the grid systems are 
shown in Fig. 5. A sample of the result is presented in Fig. 6 showing particle traces around 
the pedestal. 

The averaged cpu seconds per minute from numerous MPMC runs of a three-grid prob-
lem, both in single-process mode (no multitasking) and multi-process mode (the mnultitask-
able portion of time computation proceeding as three parallel processes), are presented in 
Table 1. The average effective speedup is 2.1. This factor is consistent with total elapsed 
time trials made for this case. When considering these results, it is important to remember 
that the three-processor values include some time spent executing in a serial only imiode on a 
single processor. Appendix F gives timings of each of these runs. Variations in timing values 
are due to variations in machine load conditions. The timing information is presented in the 
form of cpu seconds consumed per wall-clock (elapsed) minute. 

Processes CPU seconds/minute 

1 
3

34 
71

Table 1. Increase in cpu with multiprocessing 

Under the following conditions, the number of cpu seconds per minute which a job will 
obtain while multitasking is roughly equal to the number of processes requested times the 
number of seconds per minute which a single process job will get. First, the machine is 
saturated, that is, time number of processes exceeds the number of processors. This implies 
that there is no idle compute time. Second, all experiments performed, regardless of the 
number of processes, are run at time same priority. Third, the total number of all user jobs 

21 



I-

1

tr 

1.. 

cr 

V I-

....... ......

\'. 

IL

I 1IJilj 

• II	
'P1

i !I It! 111ijjI11ff 
sss

i j Ll II 
•J!T1I lilt II 

1 1li lIfl 

I	 II 

1	
ri 

1tk ifl	
j Ui 'H 

II ,	 p 
Lfl !I 

4 IL 
H

pi:t 

II	 ;	 ii jiI 

tIIIr!'IIIH 
1IJiIij

22 



f 

:r/1k

-. 

iri' LI*1 RA
ON

ca 
4) 

Q) 
fri, 
ci) 

a) 

0 

ci 

ca 
Q) 
C.) 
Cd 

4) 

Q) 
r-i 
C.) 

4.) 

Cd 

ho 

a) 

MI



is considerably larger than the number of processes on which the flow code is multitasked. 

In order to estimate the fraction of the flow solver code which was multitaskable, the 
above averaged timing results were applied in the following manner. The code is divided into 
two portions. On the first portion, computation proceeds serially, that is, in one process only. 
Oii the second portion, computation proceeds in parallel, in this case, in three concurrent 
processes. It is the extent of this section which is to be determined. 

Consider a simple example in which 75% of the code is parallelizable onto three processes. 
For this job, the 25% nonparallelizable portion will complete in 25% of the total elapsed time 
required for the entire job to run as a single process. The parallelizable 75%, run on three 
processes, will complete three time more rapidly than it would have if run as a single process. 
Therefore, the total parallelizable version will complete in 50% (that is, 25% plus one third 
of 75%) of the elapsed time required for the non p aralleliz able version. This is Amdahl's law. 

In the present case, we know the elapsed times for the single processor and three processor 
flow code computations (subject to some statistical uncertainty), and from these we seek 
the fraction of the code which is serially executed only (the fraction which is effectively 
niultitasked will then be 1 minus the serial fraction) This is the inverse of Amdahl's law: 

- mm' - 1 
(in - 1) 

Here f is the fraction of the code that cannot he multitasked, in is the number of concurrent 
processes in the multitasked part, and r is the ratio of the multitasked to nomimultitasked 
elapsed times. 

This formula assumes that the in multitaskable processes all perform the same amount 
of work and thus, when started simultaneously, will all finish at the same time. This is not 
necessarily the case for the MPMG code, and, in fact, is not true for the test cases described 
in this report, where the amount of work in the inultitaskable processes is proportional to 
the different grid sizes, i.e., the number of points in each grid. To find the fraction of code 
which is executed serially only, we therefore use the following modified formula: 

f3 

=

E Si 

where r is, as above, the ratio of iiiultit,asked to serial-only elapsed times, and the s i 's are 
the sizes or relative sizes of the multitaskable pieces of work, with the rn.th being the largest. 
Therefore, based on the measured elapsed times (Table 1) and setting s i equal to the various 
grid sizes, we conclude that about 3.1% of the total computation was executed in serial mode 
only. We have used here for the ratio r of mnultitasked to nonmultitasked elapsed times the 
ratio of the values given in Table 1 for cpu seconds per minute of elapsed time, which is 
1/2.1 = 0.48. Note that the overhead for niultitasking in the MPMG code was found to be 
negligible.
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One can estimate the decrease in multitasking efficiency due to the differences in grid 
sizes. By using Amdahl's law with the assumption that f = 3.1% we find that the resultant 
ideal ratio of nitiltitasked to serial elapsed times will be about 0.35, rather than the value of 
0.48 achieved with the differing mesh sizes. 

Multitasking at the relatively coarse grain level in the MPMO code was found to be quite 
efficient on the Cray-2 computer, in that the overhead incurred by the multitasking library 
was very small. By contrast, the autotasking facility (automatic Cray niicrotasking library 
invocation) provided on the Cray-2 and Cray Y-MP computers is relatively inefficient, based 
on the first author's experiments with autotasking 3-D Navier-Stokes, implicit flow solvers. 
Those experiments showed that, though elapsed time was decreased, a penalty in total cpu 
time consumed of up to forty percent was incurred. This penalty varies depending on system 
load, job priority, and other factors and is caused by details in the autotasking/niicrotasking 
library implementation.

CONCLUDING REMARKS 

1) Although multiprocessing is essential for significantly improving the productivity 
of computational aerodynamicists, it is hardly ever used in computational aerodynamics. 

2) Judicious use of multiprocessing allows efficient use of computer-system resources. 
3) An approach is presented and demonstrated that multitasks existing supercoin-

puter Fortran programs with relative ease using "C" for the main program. 
4) A significant improvement iii turnaround time is demonstrated and the theoretical 

basis for it is explained. 
5) Efficient use of future multiheaded supercomputers will typically require multi-

processing flow solvers. 
6) Tricubic interpolations can reduce error in grid coupling mechanisms compared to 

trihinear interpolations.
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APPENDIX A

MULTITASKING IN THE ABSENCE OF COMMON BLOCKS 

C
PROGRAM MHEAT 

C
EXTERNAL SEIDEL 
INTEGER PROC1(2), PROC2(2) 
DIMENSION A(20000) 

CALL TSKTUNE (6HMAXCPU,4) 

PROC1(1) = 2 
PROC2(1) = 2 
IDIM = 100 
JDIM = 200 

CALL INITIA (A,IDIM,JDIM) 

ITCNT = 0 
ALOWDT = .0001 
DUMYLG = 100000. 

IL2R = 0 

IR2L = 1 
1000 CONTINUE 

CALL TSKSTART (PROd ,SEIDEL, IDIM,JDIM/2,ACHNG1,ALOWDT, 

&	 ITS1,IR2L,A(1)) 
CALL TSKSTART (PROC2 ,SEIDEL,IDIM,JDIM/2+1 ,ACHNG2,ALOWDT, 

&	 ITS2,IL2R,A(9901)) 
CALL TSKWAIT (PROC2) 
CALL TSKWAIT (PROC1) 
CALL AVCNTR (IDIM,A(9801)) 
CALL SEIDEL (IDIM,JDIM/2,ACHNG1,DUMYLG,IDUM,IR2L,A(1)) 
CALL SEIDEL (IDIM,JDIM/2+1,ACHNG2,DUNYLG,IDUN,IL2R,A(9901)) 

AMOST = AMAX1(ACHNG1,ACHNG2) 
ITCNT = ITCNT + 1 
WRITE(*,9000) ITCNT,ITS1,ACHNG1,ITS2,ACHNG2 

9000 FORMAT(1X,I5,2(5X,15,2X,E13.7)) 
IF (AMOST .GT. ALOWDT) GO TO 1000 
CALL OUTPRN (A,IDIM,JDIM) 

END 
C	 = = = = == = = = = = = == = = = 

SUBROUTINE SEIDEL (IDIM,JDIM,TCHANG ,ALOWDT, ITS ,IDIREC,T) 

C	 = = = = == == = == = == == = 
DIMENSION T(IDIM,JDIM) 

DATA OMEGA / 1.93 / 

IF (IDIREC .EQ. 0) THEN
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JSTART = 2 
JEND = JDIM-1 
JINC =1 

ELSE 
JSTART = JDIM-1 

JEND =2 
JINC	 =-1 

ENDIF 
' 'ITS =O 

1000 CONTINUE 
TCHANG = -1E40 
DO 100 J=JSTART,JEND,JINC 
DO 100 I=2,IDIM-1 

TPREV = T(I,J) 
T(I,J) = (T(I-1,J) + T(I+1,J) + T(I,J-1) + T(I,J+1))/4. 
T(I,J) = TPREV + OMEGA*(T(I,J) - TPREV) 

TDIFF = ABS(TPREV-T(I,J)) 

IF (TDIFF .GT. TCHANG) THEN 
TCHANG = TDIFF 

ICHNG = I 
JCHNG=J 

TMPCHG = T(I,J) 
END IF 

100	 CONTINUE 
ITS = ITS + I 

IF (TCHANG .GT. ALOWDT) GO TO 1000 
RETURN 

END 
C

	

	 = == = == === === == == = 
SUBROUTINE AVCNTR (IDIM,T) 

C	 = == = == == === = = = = = = 
DIMENSION T(IDIM,3) 

DO 100 I=2,IDIM-1 
T(I,2) = (T(I,1)+T(I,3))/2. 

100 CONTINUE 
RETURN 

END 

C	 = == = == == = == = == == = 
SUBROUTINE INITIA (T,IDIM,JDIM) 

C	 = == = == == = = = = == == = 
DIMENSION T(IDIM,JDIM) 

DO 50 J=2,JDIM-1 

DO 50 I=2,IDIM-1
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T(I,J) = 0. 
50 CONTINUE 

DO 100 I=1,IDIM 

T(I,1)	 = 200. 

T(I,JDIM) = 200. 

100 CONTINUE 
DO 200 J=2,JDIM-1 

T(1,J)	 = 200. 

T(IDIM,J) = 200. 

200 CONTINUE 
RETURN 

END 

C	 = == = = = = = = == = == == = 
SUBROUTINE OUTPRN (A,IDIM,JDIM) 

C	 = == = == == = == = == == = 
DIMENSION A(IDIM,JDIM) 

DO 100 1=1,100 
WRITE(*,*) I,A(I,50),A(I,100),A(I,150) 

100 CONTINUE 

RETURN 

END

APPENDIX B 

MAKING FORTRAN COMMON BLOCK ADDRESSES AVAILABLE
TO MAIN C PROGRAM 

C
SUBROUTINE FXTERN1 

C
COMMON'/COMBLKl/ A ,B , C 
COMMON/COMBLK2/ X(1000),Y(1000) ,z(i000) 

COMMON/COMBLK3/ M(20) ,Q,R,S 

MESHNUN = 1 
CALL CXTERN (MESHNUN,A,X,M) 

RETURN 

END

APPENDIX C

OBTAINING ADDRESSES OF FORTRAN COMMON BLOCKS IN C 

struct s_comblkl
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1* global declarations */ 
{ 
float a; 
float b; 
float c; 

struct scomblkl *ps..comblkl [NUMBER .0F.GRIDS]; 

/* Pointer to common combiki */ 
/* NUMBER -OF-GRIDS defined as 

1* total number of grids */ 

struct s_comblk2 

{ 
float x[10001; 

float y[1000]; 
float z[1000]; 

struct s_comblk2 *ps_comblk2[NUMBER_OF_GRIDS]; 

struct s_comblk3 

{ 
mt m[20]; 
float q; 
float r; 
float s; 

};

struct s..comb1k3 *ps_comblk3 [NUMBER _OF_GRIDS]; 

void CXTERN (mesh-number 
plocal_combiki 
,plocal_comblk2 
,p1ocal -comb 1k3) 

•	 /* Note: mesh-number is pointer to mt */ 
1* since it is passed from Fortran routine */ 
/* and therefore must be an address; */ 
1* same for all these pointers */ 

mt *meshnumber; 
jut *plocal_comblkl; 
mt *plocal_comblk2; 
mt *plo cal -comb lk3; 

{
extern struct s_comblkl	 *ps_comblklfl; 

extern struct s_comblk2	 *ps_comblk2[]; 
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extern struct s_comblk3	 *ps_comblk3[]; 

/* typecast and assign address to */ 

/* approp pointers to structures */ 
/* These pointers to structures are */ 

/* global and thus available to main */ 
ps_comblkl[*mesh.number] = (struct s_comblkl *) plocal..comblkl; 

ps_cOmblk2[*meshiiumber] = (struct s_comblk2 *) plocal_comblk2; 
ps_comblk3[*meshiiuinber] = (struct scomblk3 *) plocaLcomblk3; 

}

APPENDIX D 

MAKING ADDRESS OF BULK COMPUTATIONAL WORK SPACE 
AVAILABLE TO C MAIN PROGRAM 

C
SUBROUTINE FALLOC 

C 
C Before compilation, totalmem must be replaced with the 

C	 following number: 37*(total num of nodes from all grids) 

C	 + 3*(sum of all. jdimc + sum of all kdimc). 

C	 A slightly excessive overestimate would be 

C	 38*(total num of nodes from all grids) 

C ALLMEM(38), which appears here is replaced by 

C	 ALLMEM(38*(+il*jl*kl+i2*j2*k2+...)), 

C	 the substitution being made by sed script falloc.sed. 

C CNNADDRSS, i.e., common address 
C In this example, the grid sizes are: 92*82*50, 65*82*43, 35*164*39 

COMMON /WORKMEN/ ALLMEN(38*(95*82*50+65*82*43+35*164*39)) 

CALL CMNADDRS (ALLMEM) 

RETURN 
END

APPENDIX E

WORK SPACE MEMORY ALLOCATOR 

mt	 *pmaxj [NUMBER_OF_GRIDS] 
/* global declarations */ 

*p..maxk [MUMBEROFGRIDS] 
*pmaxl [NUMBER-OF-GRIDS] 

float *px [NUMBER-OF-GRIDS] 
*p_y [NUMBER _OFGRIDS]
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*pz [NUMBER_OFGRIDSI 

void	 givmem (mesh iiumber,j max, kmax,lmax) 
mt mesh-number 

,jmax 
kmax 
,lmax; 

{
mt maxdim = jmax * kmax * lmax; 

p..inaxj[mesh.number] = (mt *) word_alloc (	 1	 ); 
p...maxk[mesh.number] = (mt *) wordalloc (	 1	 ); 
p.inaxl[mesh.number] = (mt *) word...alloc (A	 ); 
p_x[meshnuxnberi = (float *) word_alloc (maxdim); 
py(meshnumber] = (float *) wordalloc (xnaxdim); 

p_z[mesh_number] = (float *) word_alloc (maxdim);

} 

float *wordallbc (numwords) 
1* memory given to solver arrays *1 

mt numwords; 

{
extern float *p_allmem; 
static mt	 n_already_given = 0; 

mt	 i; 
i = nalreadygiven; 
n_alreadygiven += nwnwords; 

return (pallmem + 

II
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APPENDIX F

CPU TIMING TRIALS 

Cpu Seconds per Minute 

1 Processor 3 Processors 

29 57 
33 66 
32 65 
33 58 
32 64 
30 62 
32 56 
33 52 
33 46 
36 50 
33 52 
34 51 
34 56 
34 65 
35 55 
35 65 
35 64 
36 65 
34 74 
35 71 
34 63 
40 115 
32 125 
31 113 
35 108 
31 76 
37 79 
34 77 
38 73 
40 77 

80 
72 
79 
79 
77
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APPENDIX G

A COMPARISON OF INTERPOLATION ERRORS 

RMS errors: 
cub: 8.557E-3, 6.395E-3, 4.539E-3, 5.482E-3, 2.109E-2 
un: 1.400E-2, 9.904E-3, 9.054E-3, 1.139E-2, 3.468E-2 

average abs(error): 
cub: 3.520E-3, 2.503E-3, 2.118E-3, 2.485E-3, 9.077E-3 
un: 6.936E-3, 4.894E-3, 4.883E-3, 5.817E-3, 1.752E-2 

stand dev abs(error): 
cub: 7.800E-3, 5.884E-3, 4.014E-3, 4.887E-3, 1.904E-2 
hit: 1.216E-2, 8.611E-3, 7.625E-3, 9.793E-3, 2.993E-2 

L-1 norm of errors: 
cub: 57.617, 40.975, 34.670, 40.675, 148.556 
un: 113.520, 80.105, 79.911, 95.195, 286.834 

L-2 noun of errors: 
cub: 1.094, 0.818, 0.580, 0.701, 2.698 
un: 1.791, 1.267 1 1.158, 1.457, 4.437 

L-inf norm of errors 
cub: 6.781E-2, 0.104, 3.921E-2, 5.700E-2, 0.173 
un: 1.00 OE-1, 0.113, 6.256E-2, 1.062E-1, 0.261 

L-1 norm of relative errors: 
cub: 54.767, 49.739, 6879.075, 832.340, 53.174 
un: 114.164, 124.852, 10341.191 7 1540.516, 108.532 

L-2 norm of relative errors: 
cub: 0.969, 2.777, 545.013, 149.249, 0.933 
liii: 1.782, 11.316, 853.034, 217.192, 1.787 

L-inf norm of relative errors: 
cub: 7.652E-2, 1.252 7 230.220 1 105.581, 6.915E-2 
un: 9.610E-2, 6.741, 342.255, 100.158, 0.126 

average abs(relative errors): 
cub: 3.346E-3, 3.039E-3, 0.420, 5.086E-2, 3.249E-3 
un: 6.976E-3, 7.629E-3, 0.631, 9.413E-2, 6.631E-3 

stand dcv abs(relative errors): 
cub: 6.802E-3, 2.149E-2, 4.239, 1.165, 6.533E-3 
un: 1.206E-2, 8.813E-2, 6.638, 1.695, 1.230E-2 
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