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1. Introduction 

The U.S. Army Research Laboratory (ARL) has been developing chirped-FM laser detection and 
ranging (LADAR) systems for applications such as reconnaissance, terrain mapping, force protection, 
facial recognition, robotic navigation, and weapons fuzing. Signal processing of a chirped-FM 
LADAR system is simplified if the photodetector in the receiver is used as an optoelectronic mixer 
(OEM) [Ruff, et al. 2000]. A symmetric I-V characteristic photodetector can be used as an OEM. This 
allows the OEM to be driven directly with the local oscillator (LO) signal, without a direct current 
(DC) bias. Sensitivity to background light is reduced, as the response from background light averages 
to zero. An additional 3 dB signal processing gain is also obtained. The OEM output is the low 
frequency difference signal—several orders of magnitude lower than the LO signal. Therefore, the gain 
of the transimpedance amplifier (TZA) following the photodetector can be increased, improving 
LADAR range. The metal-semiconductor-metal (MSM) Schottky detector is such a symmetric device. 
ARL has previously demonstrated chirped FM LADAR systems with gallium arsenide (GaAs) and 
indium gallium arsenide (InGaAs) MSM OEMs for operation at the 800 nm [Ruff, et al. 2000, Shen et 
al. 2002] and 1550 nm [Shen, et al. 2003, Shen et al. 2004] wavelengths. 

A symmetric photodetector with gain would improve overall system performance, while preserving the 
advantages offered by MSM OEM devices. An OEM with gain would allow the gain of the following 
transimpedance amplifier to be reduced, increasing the TZA frequency bandwidth and improving 
overall system performance. Such a device can be based on the heterojunction phototransistor (HPT) 
or the modulated barrier diode (MBD), also known as a Camel diode. 

The basic HPT is a two terminal device, with the emitter made of a semiconductor that has a wider 
bandgap than the base and collector regions. A number of modifications to the basic HPT structure 
have been investigated to improve performance. A base bias can be provided, either optically or by an 
electrical contact [Chandrasekhar, et al. 1991]. The base composition can be graded to establish an 
electric field, which enhances electron transport [Capasso, et al. 1983, Thuret, et al. 1999]. 
Improvements in material growth, device design, and fabrication techniques have increased the 
maximum bandwidth of HPTs to the tens of GHz range [Choi, et al. 2005, Polleux, et al. 2004]. HPT 
responsivity typically increases with increasing optical power. This has been attributed to 
recombination at the base-emitter heterojunction. It is desirable to have gain independent from the 
optical power, or have larger gain at lower optical power levels. One approach to improve the gain 
dependence on optical power is to adjust the doping profile of the emitter and base layers of indium 
phosphide (InP) emitter/InGaAs base HPTs [Lue, et al. 1991]. By reducing the emitter doping in a thin 
layer at the emitter-base junction, the quantum well trapping of the electrons at this interface was 
reduced. The recombination currents were thus reduced, and the ideality factor of the transistor 
improved, leading to a flattening of the gain versus incident power characteristics. HPTs have been 
demonstrated for optoelectronic mixing applications, where the LO signal was provided electrically 
[Choi, et al. 2005, Liu, et al. 1997] or optically [Van de Casteele, et al., 1996]. 
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The MBD, also known as the Camel diode, is a non-Schottky majority carrier diode in which the 
carrier transport is controlled by a potential barrier in the bulk of the semiconductor. The application of 
MBDs as photodetectors was first demonstrated by A.Y. Cho and co-workers [Chen, et al. 1981, Chen 
1981]. The gain of the MBD is due to the hole trapping at the heterostructure interface. As holes 
accumulate in this quantum well, the barrier height will be lowered, resulting in an increased electron 
current, thus providing gain. As a majority carrier device, the MBD has fast intrinsic response [Chen, 
et al. 1981, Bethea, et al. 1982]. In contrast with the HPT, the MBD device has higher responsivity at 
lower optical power levels. The MBD has been used in a front-end photoreceiver, integrated with an 
FET [Li and Bhattacharya, 1989], and a monolithically integrated phototransceiver, in which it was 
integrated with an LED [Qasaimeh, et al. 2000]. In the first case, the MBD and FET shared a common 
structure, and the circuit used the MBD’s gain and response speed. In the second case, the MBD’s 
increasing gain with lower optical power was used to improve optical transceiver performance. 

A symmetric gain OEM (SG-OEM) is being investigated in this work, for chirped-AM LADAR 
applications. The device is based on a symmetric heterostructure, as shown in figure 1. The targeted 
operating wavelength is 1.55 µm. The emitter/collector is In0.52Al0.48As, and the base is In0.53Ga0.47As, 
both of which are lattice matched to the InP substrate. Through proper design, particularly of the 
In0.52Al0.48As E/C layers, the device can have larger gain at lower optical power levels.  Initial 
simulation studies at ARL used the one-dimensional SimWindows program. Two- and three-
dimensional device simulations, using the Synopsis TCAD Sentaurus suite, are being carried out at the 
University of Maine to design OEM with suitable optical gain and frequency bandwidth. Two 
symmetric gain OEM heterostructures were grown at ARL using molecular beam epitaxy. Sample 1 
has a base width of 800 nm and sample 2’s width is 300 nm. Both samples nominally have the same 
base doping of 2.5x1016 cm–3. Prototype devices were fabricated at the University of Maine, in 
collaboration with ARL. Device diameters range from 18 µm to 30 µm.  

 

N-InAlAs emitter/ collector

p-InGaAs base

N-InAlAs emitter/ collector

InP

n+-InGaAs contact layer

SI InP substrate

n+-InGaAs contact layer

 

Figure 1. Schematic structure of basic symmetric  
gain optoelectronic mixer. 
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2. Simulation Study and Device Design 

The initial one-dimensional device simulation study was done using the program SimWindows 
(copyright: David W. Winston). Both symmetric HPTs and symmetric MBDs were investigated as 
candidates for the OEM. The effects of the layer thicknesses and doping densities were investigated for 
the two types of devices, including positional variation of the doping densities. The optimum for both 
types of devices converged to similar structures. The symmetric HPT based structure was chosen for 
the symmetric gain OEM.  

Two parameters need to be balanced in designing the SG-OEM. First, the responsivity needs to be 
highly symmetric, with as large a value as possible to make the device a practical alternative to the 
existing MSM-OEMs.  Second, the device should turn on at low voltages to avoid large power 
dissipation. These two requirements place contradictory constraints on the device design, resulting in a 
trade off between gain and turn-on voltage, and need to be optimized for specific applications. 

The SG-OEM can be designed with a very symmetric responsivity, and the “turn on” voltage can be 
reduced to below 0.1 V, significantly reducing the voltage swing range for the device. The symmetric 
OEM behaves similarly to a MBD, in that the gain increases with decreasing optical power. This 
behavior is shown in figure 2, which presents the simulated DC responsivity curves of a sample device 
for incident optical powers ranging from 1 µW/cm2 to 1 mW/cm2. The device has a base thickness of 
0.2 µm and doping of 1017 cm–3, while the InAlAs layer doping is 4x1016 cm–3. 

 

 

Figure 2. DC responsivity of a sample OEM device, simulated  
with SimWindows. 
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Figure 3 presents the calculated mixing efficiency of this device as a function of the LO voltage for the 
same optical power levels as figure 2. The device would reach theoretical equivalence to the present 
InGaAs MSMs at LO voltage levels of 11–12 dBm. An order of magnitude improvement would be 
achieved for 15–16 dBm (1.6–2 V peak), and two orders of magnitude improvement would be 
obtained at LO voltage levels of 23–25 dBm (4.5–5.6 V peak). 

 

 

Figure 3. Predicted mixing responsivity vs. LO voltage for  
the device of figure 2. 

Two structures were selected for growth following the initial one-dimensional simulation study. The 
layer structures of the two samples, referred to as Sample 1 and Sample 2 here on, are shown in figure 
4. Detailed two-dimensional simulations were carried out to evaluate candidate device designs. 
Simulated I-V curves are presented later for the device design summarized in table 1. 

 

300nm InAlAs buffer
InP substrate

(S-doped, conductive)
Sample 2

300nm InAlAs buffer
InP substrate

(Fe-doped, semi-insulating)
Sample 1

800nm p-InGaAs 2.5e16

390nm n-InAlAs 1e16

50nm n-InGaAs 1e19

50nm n-InAlAs 1e19

10nm n-InAlAs 5e18

10nm n-InAlAs 5e18

390nm n-InAlAs 1e16
50nm n-InAlAs 1e19

300nm n-InGaAs 1e19

300nm p-InGaAs 2.5e16

500nm n-InAlAs 4e16

50nm n-InAlAs 4e16
100nm n-InAlAs 5e17-1e18

300nm n-InAlAs 5e17-1e18

 

Figure  4. Vertical structure of the two samples selected for  
material growth and device fabrication. 
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Table 1. Simulated device parameters. 

 Size [µm] 
Inner mesa  
Outer mesa (bottom contact)  
Top contact width  
Top contact metal width  
Bottom contact width 2 
Bottom contact metal width 4 
Bond pads 80 x 80 

 

Two-dimensional simulations of the devices were carried out using the Synopsys TCAD Sentaurus 
software suite. The Sentaurus Structure editor was used to construct the two-dimensional device, and 
the simulations were performed using Sentaurus Device.  

Figure 5 shows the simulated current density profile in a two-dimensional cross section of a device on 
Sample 1. The insulation layers and metal stack are not shown for clarity.  The active area diameter is 
16 µm, and the top contact diameter is 12 µm. The bottom contact is 2 µm wide.  

 

 

Figure 5. Current density distribution in a device with the  
Sample 1 layer structure.  

Figures 6 and 7 compare the forward and reverse bias currents for devices on Sample 1 and 2, with the 
dimensions listed in table 1. There is a slight asymmetry in the I-V curves due to the asymmetry of the 
two structures, more pronounced in Sample 2.  
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Figure 6. Simulated I-V characteristics of an SG-OEM device  
on sample 1, using TCAD-Sentaurus. 

 

 

Figure 7. Simulated I-V characteristics of an SG-OEM  
device on sample 2, using TCAD-Sentaurus. 

 
It should be noted that the two-dimensional simulations predict slightly different I-V characteristics for 
the devices in comparison with the original one-dimensional simulations. This is due to the series 
contact resistance between the bottom contact and the active region of the device. Figure 8 compares 
the results of a two-dimensional simulation (“actual device”) with the one-dimensional simulation 
(“ideal device”). The results indicate the actual device will have a lower current. 
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Figure 8. Comparison of I-V characteristics for an ‘ideal’ 1D  
SG-OEM device and an ‘actual’ 2D device showing  
the effect of the bottom contact placements on SG-OEM  
device performance 

3. Material Growth and Device Fabrication 

Mask design was done using Tanner L-Edit Pro 11. The die area is 1mm x 1mm. Each die has 32 
devices of six basic designs, including square and circular devices. There are two types of circular 
devices, with ring contacts for top illumination and with circular contacts for bottom illumination 
through the substrate. The active area ranges from 18 µm to 30 µm for the circular devices, and from 
10 µm to 16 µm for the square devices. Figure 9 shows a sample fabricated device, with a ring contact 
for top illumination. 

 

Figure 9. Top-view photograph of a prototype symmetric  
gain optoelectronic mixer. 
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The two samples were grown at ARL using molecular beam epitaxy. The two mesa etches (top contact 
and device isolation) were done with an RIE-ICP etcher, using a chlorine/borontri-chloride (Cl2/BCl3) 
gas mixture. A 190 nm silicon nitride (Si3N4) anti-reflection coating was deposited for the top-
illumination devices. This layer also served as an insulation layer for the bond pads. An ohmic contact 
metallization scheme of 50Å nickel (Ni) / 400Å germanium (Ge) / 1500Å gold (Au) was used. 

4. Experimental Results 

Current-voltage curves for two devices on sample 2 with r = 9 µm are shown in figure 10. ‘Dark’ 
refers to the dark current of the devices, while ‘light’ refers to the microscope light on the probe station 
being turned on during measurement. The voltage was applied to the top contact, and the bottom 
contact was grounded. There is a slight asymmetry in the I-V curves, due to the asymmetry in the 
structure of Sample 2 (figure 4). 

 

 

Figure 10. I-V curves for top- (red) and back-side (blue) illumination  
devices with r = 9 µm. 

Full characterization of the prototype devices is in progress at the time of the print. The full 
characterization will include DC responsivity, frequency response (AC responsivity), and mixing 
efficiency (mixing responsivity). 
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5. Conclusions 

Symmetric gain optoelectronic mixers are promising for chirped-FM LADAR developed at ARL. 
Signal processing of a chirped-FM LADAR system is simplified if the photodetector in the receiver is 
used as an OEM. Adding gain to the OEM allows a reduction of the following transimpedance 
amplifier’s gain, increasing bandwidth, and improving the system’s noise performance. These 
symmetric gain OEM devices can lead to miniaturized LADAR-on-chip system. Such a system will 
have many military and civilian applications, such as range finding, terrain mapping, reconnaissance, 
and face recognition. 
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