
*U.S.NRC
United States Nuclear Regulatory Commission

Protecting People and the Environment

NUREG/CR-7006
ORNL/TM-2009/20

Review Guidelines for
Field-Programmable
Gate Arrays in Nuclear
Power Plant Safety Systems

Office of Nuclear Regulatory Research



AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC's Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee' and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.

1. The Superintendent of Documents
U.S. Government Printing Office
Mail Stop SSOP
Washington, DC 20402-0001
Internet: bookstore.gpo.gov
Telephone: 202-512-1800
Fax: 202-512-2250

2. The National Technical Information Service
Springfield, VA 22161-0002
www.ntis.gov
1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free,, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer

Reproduction and Distribution
Services Section
U.S. Nuclear Regulatory Commission

Washington, DC 20555-0001
E-mail: DISTRIBUTION@nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC's Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequentlybe removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at-

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or,: if they are American
National Standards, from-

American National Standards Institute
11 West 4 2nd Street
New York, NY 10036-8002
www.ansi.org

Legally binding regulatory requirements are stated only
in laws; NRC regulations; licenses, including technical
specifications; or orders, not in NUREG-series
publications. The views expressed in contractor-
prepared publications in this series are not necessarily
those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the staff
(NUREG-XXXX) or agency contractors
(NUREG/CR-XXXX), (2) proceedings of conferences
(NUREG/CP-XXXX), (3) reports resulting from
international agreements (NUREG/IA-XXXX),
(4) brochures (NUREG/BR-XXXX), and
(5) compilations of legal decisions and orders of the
Commission and Atomic and Safety Licensing Boards
and of Directors' decisions under Section 2.206 of
NRC's regulations (NUREG-0750).

212-642-4900

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
Neither the. U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.



*U.S.NRC
United States Nuclear Regulatory Commission

Protecting People and the Environment

NUREG/CR-7006
ORNLITM-2009/20

Review Guidelines for
Field-Programmable
Gate Arrays in Nuclear
Power Plant Safety Systems

Manuscript Completed: October 2009
Date Published: February 2010

Prepared by
M. Bobrekl, D. Bouldin2 , D.E. Holcomb', S.M. Killoughl
S.F. Smith1 , C. Ward1 , and R.T. Wood1

1Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831-6010

2University of Tennessee
419 Ferris Hall, 1508 Middle Drive
Knoxville, TN 37996-5483

M.E. Waterman, NRC Project Manager

NRC Job Code N6351

Office of Nuclear Regulatory Research





ABSTRACT

This report is a compilation of safe field-programmable gate array (FPGA) design practices that can
be used by NRC staff as guidance for reviewing FPGA-based safety systems in nuclear power plants. It
can also serve as a basis for development of specific activities that will support the licensing process such
as FPGA-specific review procedures and acceptance criteria. The report follows on the investigation of
existing regulatory documents and standards related to design and review of safety-related FPGA
systems. Since the existing regulatory documents are not specific about FPGA design practices, this
report also serves as the complement to the standards that cover general issues related to digital and
software safety systems in nuclear power plants.

FPGA design practices are classified into three major groups-FPGA hardware design practices,
FPGA design entry methods, and FPGA design methodologies. Within these major groups, design
practices are further classified according to four top-level attributes-reliability, robustness, traceability,
and maintainability according to the framework used in NUREG/CR-6463.

The report focuses on listing and describing FPGA design practices that are potentially unsafe as
well as on suggesting which ones are acceptable for safety-critical designs. Additionally, the report
outlines a design life cycle that could be used by. the designers and the reviewers for FPGA-based safety
systems.

iii





FOREWORD

Although field programmable gate arrays (FPGAs) (and complex programmable logic devices
(CPLDs)) have not been used extensively in safety-related nuclear applications to date, it is highly likely
that this technology will be used in safety systems submitted for NRC review in the foreseeable future.

A common misunderstanding about FPGAs (and CPLDs) is that these devices are less complex than
microprocessor-based systems and therefore are inherently safer than microprocessor-based safety
systems. FPGA devices are fundamentally complex software designs implemented by hardware
engineers. As more functions are moved onto single integrated circuit (IC) chips, greater attention should
be given to the system development process. Experience has shown that FPGA disciplined design
methodologies have not progressed at the same rate as the capability to add functionality to FPGAs,
implying that project managers may not fully appreciate the risk to safety. There also could be a
perception that the process is improved by using automated design tools. In fact, there may be an over-
reliance on these design tools, as indicated by several projects in which problems were linked to improper
use of the tools or unintended loss of redundancy arising from the tools optimizing the intended design
into unintended functionality.

From a safety perspective, it is difficult to assess the correctness of FPGA devices without extensive
documentation, tools, and review procedures. Therefore, several aspects of these technologies should be
addressed during safety reviews. First, NRC reviewers should review vendor information about FPGA
design processes, including software design tools and development methodologies (similar to that used
for current software reviews). Second, NRC reviewers should consider specific device design information
(over and above the system-level documentation) for the system under review, such as requirements and
design specifications, data sheets, user manuals, programmer manuals, and so forth. Third, NRC
reviewers should review device failure mode information, including mitigating fault tolerant designs (e.g.,
triple modular redundancy and concurrent cell error detection) and workaround design changes resulting
from faults found too late in the design process to correct without extensive cost (a potential issue with
third-party FPGA devices). Fourth, to ensure consistent reviews of FPGA safety systems, the NRC should
acquire tools and review procedures (as well as corresponding training) to support staff evaluations of
safety functions implemented in FPGAs.

. The primary objective of the research described in this report was to develop comprehensive
guidance the NRC staff could use to confirm that FPGA-based safety systems are in conformance with
NRC regulations, including Title 10 of the Code of Federal Regulations, Part 50 (1OCFR50), Appendix A,
General Design Criteria for Nuclear Power Plants, Criterion 21, Protection system reliability and
testability. Criterion 21 states, "The protection system shall be designed for high functional reliability and
inservice testability commensurate with the safety functions to be performed. Redundancy and
independence designed into the protection system shall be sufficient to assure that (1) no single failure
results in loss of the protection function and (2) removal from service of any component or channel does
not result in loss of the required minimum redundancy unless .the acceptable reliability of operation of the
protection system can be otherwise demonstrated. .. ." The use of unsafe design practices could decrease
the reliability of a safety system. Consequently, unsafe design practices should be identified during the
development of the system by the vendor or licensee, and verified to be not in the system by the NRC
reviewer during the licensing process.

Because the regulatory Offices are ultimately responsible for revising their standard review plans and
interim staff guidance documents, the research is described in a NUREG-series report suitable for
translating into regulatory guides and standard review plans. This report emphasizes the importance of a
proactive approach to safety assessments of FPGA-based safety systems. The results of this work also
could be used to develop NRC policy and regulations regarding acceptable FPGA design and application
practices and procedures.

v





CONTENTS

Page
A B STRA CT ................................................................................................................................................ iii

FO REW O RD ................................................................................................................................................ v
LIST O F FIG U RE S ...................................................................................................................................... ix

LIST O F TA BLES ....................................................................................................................................... ix

A CRON Y M S ............................................................................................................................................... xi

1. IN TRODU CTION ................................................................................................................................... 1
1. 1 Background ................................................................................................................................... 1
1.2 D ocum ent O rganization ........................................................................................................ 1

2. FPGA HA RD W A RE D ESIGN PRA CTICES ................................................................................... 3
2.1 Reliability ...................................................................................................................................... 3

2.1.1 Board-Level D esign A ttributes ................................................................................... 3
2.1.2 FPG A Internal Logic D esign A ttributes ...................................................................... 6

2.2 Robustness .................................................................................................................................... 9
2.3 Traceability ............................................................................................................................... 10
2.4 M aintainability ............................................................................................................................ 11

3. FPGA D ESIGN EN TRY M ETH O D S ............................................................................................ 13
3.1 Reliability .................................................................................................................................... 13
3.2 Robustness .................................................................................................................................. 35
3.3 Traceability ................................................................................................................................. 36
3.4 M aintainability ............................................................................................................................ 41

4. FPGA DESIGN M ETH O D O LO G IES ............................................................................................ 45
4.1 Design for Safety ........................................................................................................................ 45
4.2 FPGA Selection ........................................................................................................................... 45
4.3 Design Tool Selection ................................................................................................................. 46
4.4 Design Flow ................................................................................................................................ 46

4.4.1 Design Requirem ents .............................................................................................. 46
4.4.2 A rchitectural D esign ................................................................................................ 46
4.4.3 D etailed D esign ....................................................................................................... 48
4.4.4 Design Review ............................................................................................................... 48
4.4.5 Behavioral D escription ............................................................................................ 48
4.4.6 Behavioral Sim ulation .............................................................................................. 49
4.4.7 Logic Synthesis .............................................................................................................. 49
4.4.8 Logic-Level Sim ulation ............................................................................. ............... 50
4.4.9 Physical Im plem entation .......................................................................................... 50
4.4.10 Post-Layout Simulation ........................................... 50
4.4.11 Prototype ........................................................................................................................ 50
4.4.12 FPGA V erification ................................................................................................... 51
4.4.13 H ardw are Im plem entation ....................................................................................... 51
4.4.14 Functional H ardw are V erification ............................................................................ 51

5. CON CLU SION S .................................................................................................................................. 53
APPENDIX A: SURVEY OF FIELD PROGRAMMABLE GATE ARRAY DESIGN GUIDES

AND EXPERIENCE RELEVANT TO NUCLEAR POWER PLANT APPLICATION ........ A-1
APPENDIX B: RESULTS OF SEARCH FOR TECHNICAL STANDARDS RELATED TO FPGA

D ESIGN .............................................................................................................................................. B-1

vii





Figure

1
2
3
4(a)
4(b)
5
6
A-1

LIST OF FIGURES

Page

M etastability occurs at QA and causes error at QB .............................................................. 6
Reset synchronizing circuit 1 .......................................................................................... 7
Reset synchronizing circuit 2 ........................................................................................... 7
Three different tim e constraints ...................................................................................... 8
Single tim e constraint .................................................................................................... 8
FPGA design flow ......................................................................................................... 47
Testing procedure for each design step ........................................................................ 51
Docum ents required throughout the software life cycle ................................................. A-9

LIST OF TABLES

Tabl

1

e Page

Recovery tim e for XC2VP4 .......... ......... . ... .... ..... .. ......... . ... . ....... 6

ix





ACRONYMS

ASIC application-specific integrated circuit
BIST built-in self-test
BRAM block random access memory
CPLD complex programmable logic device
DCM digital clock manager
EDA Electronic Design Automation
EDAC error detection and correction
EDIF Electronic Design Interchange Format
ESA European Space Agency
ESD electrostatic discharge
ESF engineering safety feature
FIFO first-in-first-out
FMEA failure mode effects analysis
FPGA field-programmable gate array
FTA fault tree analysis
HDL hardware description language
I&C instrumentation and controls
IC integrated circuits
I/O input/output
IP intellectual property
IV&V independent verification and validation
JTAG joint test action group
LUT lookup table
mil-spec military specifications
MSB most significant bit
MTBMO mean time between metastability occurrences
NASA National Aeronautics and Space Administration
NRC Nuclear Regulatory Commission
ORNL Oak Ridge National Laboratory
PC personal computer
PCB printed circuit board
PGA pin grid array
PLD programmable logic device
PLL phase locked loop
PROM programmable read-only memory
rad-hard radiation hardening
RAM random access memory
ROM read-only memory
RTL register transfer level
QA quality assurance
QFP quad flat pack
SEE single-event effect
SEU single-event upset
SRAM static random access memory
TDDB time-dependent dielectric breakdown
TID total ionizing dose
TMR triple-modular redundancy
UVA University of Virginia

xi



VHDL very high speed integrated circuits HDL
V&V verification and validation

xii



1. INTRODUCTION

Oak Ridge National Laboratory (ORNL) has been engaged by the U.S. Nuclear Regulatory
Commission (NRC) Office of Nuclear Regulatory Research to develop the technical basis for assessing
field-programmable gate array (FPGA) technology in safety-related systems within nuclear power plants.
In particular, ORNL has investigated programmable digital logic technology and implementation
practices to support development of review guidance. In the first part of this study, ORNL surveyed
information on the use of FPGA technology for high-assurance applications. A finding of these surveys,
along with a summary of particularly relevant programmable logic device standards, is given in
Appendix A of this document. In the second part of the study, ORNL developed FPGA review guidance
as a set of suitable design practices for safety-critical systems. Additionally, a FPGA-specific design life
cycle is outlined including specific design steps and the corresponding verification steps. The term FPGA
in this document refers to complex programmable logic devices (CPLDs) as well. When there is a safety-
related issue specific only to CPLDs, then the term CPLD is specifically used.

Information for this report was obtained through publicly available sources such as published papers
and presentations. No proprietary information is represented.

1.1 Background

Existing regulatory documents for instrumentation and control systems in nuclear power plants are
tailored for pre-FPGA technology including analog circuitry, discrete digital electronics, and
microcontrollers. Additionally, a number of existing regulatory documents address safety issues related to
software applications running on standard platforms such as personal computers (PCs) or embedded
hardware platforms. Given the FPGA's dual nature as being both hardware and software, and its inherent
complexity, there is a need for a FPGA-specific regulatory document that would address issues such as
system safety assessment, design life cycle, verification and validation (V&V), configuration
management, documentation requirements, etc. Many of the existing documents such as DO-254,
IEEE 1012, IEEE 603, IEEE 7-4.3.2, and IEC 61508 address these issues in more general terms and, as
such, may be used for the review of FPGA-based systems. However, FPGA-specific areas that are not
sufficiently addressed in any of the existing documents should be addressed in a separate FPGA review
guidance document. Some of these areas include FPGA hardware design practices, FPGA design entry
methods, and FPGA design tools.

The main issue in achieving sufficiently comprehensive guidance arises from the need to tailor the
design life cycle and V&V process to account for the specific characteristics of FPGAs. Even a relatively
simple FPGA design in most cases prohibits 100% testing during code simulation and hardware
verification. Therefore, FPGA-based safety systems need to be treated as complex systems as defined in
DO-254, Section 1.6, and a suitable design cycle including the V&V process is needed for FPGA-based
safety-related designs. The V&V process may also include design tool verification, such as that
established in IEEE 7-4.3.2. Also, comprehensive guidance should include specific FPGA design
practices that will lead to readable, traceable, and verifiable designs. Some of these practices should
include using combinatorial design only, partitioning the design to verifiable pieces, redundancy, error
reporting, etc.

1.2 Document Organization

The review guidance document contains acceptable design practices and V&V procedures that will
improve the safety of FPGA designs. These practices are divided into three chapters: (1) FPGA Hardware
Design Practices, (2) FPGA Design Entry Methods, and (3) FPGA Design Methodologies. This document

I



adopted the framework of NUREG/CR-6463 where the acceptable practices are organized in a three-level
hierarchy. Only the top-level attributes are exactly the same as those in NUREG/CR-6463, while the
lower-level attributes are specific to FPGA design practices. The four top-level attributes used throughout
this document are reliability, robustness, traceability, and maintainability.

In Chapter2, the FPGA hardware design practices are divided into two groups: the board-level design
practices and FPGA internal logic design practices. The board-level design practices deal with issues
related to FPGA placement on the printed circuit board (PCB) and issues related to FPGA interfaces to
other circuitry residing on the same board. The internal logic design practices include general digital
design safe practices as well as FPGA-specific design practices.

The Chapter 3 covers safety design issues related to design entry methods based on VHDL and
Verilog, the most commonly used Hardware Description Languages (HDLs). The safe coding practices
are listed as base-level attributes grouped into the four top-level attributes. The base-level attributes are
accompanied by examples in both HDLs to show preferable coding practices that should produce
reviewable, traceable, and verifiable codes. Some of the base-level attributes indicate potentially unsafe
coding practices and suggest appropriate coding examples. The others present a preferred way to code
common digital blocks such as state machines, encoders, decoders, shift registers, counters, read only
memories, random access memories, and FIFO memories to help the safety evaluation review.

In Chapter 4, a FPGA-specific design life cycle is described, and an appropriate design flow through
the life cycle is established. In most cases, FPGA designs are complex to the level that makes the 100%
testability too costly and time consuming. The proposed design life cycle including the V&V process
should be used as a substitute for 100% testability. Also in Chapter 4, the design life cycle includes a
number of sequential design steps accompanied with their corresponding V&V steps. Every step is
described in detail and necessary output documentation is specified.

Appendix A summarizes the survey of FPGA design guides and experience relevant to nuclear
power plant applications.

2



2. FPGA HARDWARE DESIGNPRACTICES

This chapter discusses the safety-critical issues related to the hardware of FPGA design safety-
related systems. It includes both the board-level design issues and the FPGA internal logic design issues.
This chapter is organized into four sections, each addressing one of the top-level attributes.

2.1 Reliability

FPGA hardware design reliability is the ability of a system or component to perform its required
safety and non-safety functions under stated conditions for a specified period of time. The base-level
attributes for reliability are divided into two groups-board-level design attributes and FPGA internal
logic design attributes.

2.1.1 Board-Level Design Attributes

The following base-level attributes facilitates the board-level reliability of FPGA designs:
" FPGA Power-Up
* FPGA Configuration Time
* Input/Output Standards
" Power Pin Decoupling
• Simultaneous Switching Outputs
" Output Slew Rate
* Output Current Drive
* Unused I/O Pins
* External Reset
* Ground and Power Planes
* Power Dissipation/Consumption
* Clock Traces
" FPGA Programming Pins
* Printed-Circuit-Board Layer Stacking

FPGA Power-Up

Most FPGAs use multiple power supplies, at least one for the FPGA core and one for the
input/output (1/0) buffers. In addition, some FPGAs use separate reference voltage supplies for
differential 1/0 buffers. Proper power sequencing is required in some of FPGAs to avoid an unpredictable
behavior of the input and output buffers during power-up and power-down. Additionally, most FPGAs
have power ramp-up timing requirements which set the upper and the lower limit of the power ramp time.

An additional issue is the startup current which in some cases can exceed the operational current.
Care should be taken to implement voltage regulators that can support excess currents during the power-
up.

FPGA Configuration Time

After power-up, reconfigurable FPGAs are configured from an internal or an external memory which
can take up to several hundreds of microseconds depending on the FPGA size and the configuration
clock. Care should be taken to prevent transient behavior of the external circuitry driven by the FPGA

3



during the configuration time. Appropriate measures include keeping the interfacing circuitry disabled
during the configuration time or pulling up or down the critical inputs of the interfacing circuitry.

Input/Output Standards

FPGA outputs and inputs can be configured for different input/output (1/0) standards. It is essential
that these standards are compatible with the 1/0 requirements of the external circuitry connected to the
FPGA.

Power Pin Decoupling

Due to a simultaneous switching of a large number of gates in an FPGA, the supply current has a
shape of periodic spikes which can cause spike-like voltage bounces at the ground pins. To reduce the
ground bounce and the digital noise, every power pin should be decoupled using decoupling capacitors.
Some of the FPGAs have their decoupling capacitors built in.

Simultaneous Switching Outputs

FPGA outputs that transition at the same time should be distributed across the FPGA output pins so
that the simultaneous switching output requirement satisfies the FPGA technical specifications.

Output Slew Rate

To reduce the digital noise due to the output switching, the slew rate of the FPGA output pins should
be set to the minimum value defined in the FPGA technical specifications. The use of high-slew-rate
outputs should be limited to the case where the fast output switching is essential for proper FPGA
interfacing.

Output Current Drive

Most of the FPGAs have a selectable current drive at the output pins. To reduce the digital noise due
to the output switching, the current drive of the FPGA output pins should be set to the minimum value
unless a higher current drive is needed for proper FPGA interfacing.

Unused I/O Pins
To reduce the power dissipation, the unused 1/0 pins should be properly programmed or tied to the

ground or the power, depending on the particular FPGA 1/0 specifications. All unused differential I/Os
should be configured as single-ended to save the power used by the differential 1/0 bias circuitry.

External Reset

If an external reset signal is provided to an FPGA, it should be bounce-free and have a sufficiently
fast transition between the logic levels. Since different FPGAs may require different rise times at their
inputs; the use of a dedicated reset integrated circuit (IC) is suggested.

4



Ground and Power Planes

The analog and the digital parts of the design residing on the same board should be physically
separated to reduce injection of the digital noise into the analog signals. Also, separate power supplies and
separate ground and power planes should be used. The analog and the digital ground planes should be
connected in a single point to reduce the current loops in the planes.

Power Dissipation/Consumption

The timing behavior of the FPGA is guaranteed by the design tools only for a given junction
temperature range. The power dissipation of the FPGA should be estimated and later measured to see if
additional cooling is needed to keep the junction temperature within the required range.

Clock Traces

Long signal lines, if not properly terminated, can cause reflections and crosstalk. This is especially
important for the clock and other high-speed lines that should be terminated at the source and/or the end
of the line using serial and/or parallel termination networks.

FPGA Programming Pins

FPGA programming pins, such as joint test action group (JTAG) pins, may be subject to noise if not
pulled up or down by resistors. This noise can either alter or erase the configuration memory. Also,
FPGAs with external configuration memory require specific rules for the layout of the connections
between the external configuration memory and the FPGA programming pins. To prevent accidental or
malicious reconfiguration of CPLDs or external configuration programmable read-only memories
(PROMs), the configuration memory should be write-protected by using write security bits. Malicious
reconfigurations should be prevented by design and/or by administrative controls. For example, the FPGA
design can include error detection circuitry or built-in self test (BIST) to constantly monitor the health of
the FPGA system. Making JTAG connector physically accessible only to the trusted personnel may be
one of the administrative measures.

Printed-Circuit-Board Layer Stacking

To ensure a high integrity of the FPGA board design, the stacking of the board layers is critical.
Preferred layout-stacking alternates the signal layers and the power/ground layers. Below are shown two
examples of a preferred 8-layer PCB stacking.

---- Signal ----.--- Signal/Power ----
---Ground ...........- Ground --------
---- Signal ----.--- Signal/Power ----
---- Power ...........- Ground --------
---Ground ............- Power --------
---- Signal ----.--- Signal/Power ----
---Ground ............- Power --------
---- Signal ----.--- Signal/Power ----

5



2.1.2 FPGA Internal Logic Design Attributes

This section discusses the following base attributes that facilitate the predictability of the FPGA
internal logic design:
" Asynchronous Design
" Metastability
* Internal FPGA Reset
* Phase Locked Loop Locking Time
" Timing Constraints
" State Machines
* Multiple Clock Domains
* Latches
" High Fan-out Lines

Asynchronous Design

The FPGA design should be synchronous as much as possible. Asynchronous designs are prone to
glitches, bus skews, and other timing issues. Furthermore, the FPGA design tools do not generally support
asynchronous timing constraint and analysis. If asynchronous designs are used for 100% testability or any
other reason, appropriate measures need to be taken to make sure that the output glitches and the bus
skews are not affecting safe operation of the FPGA design. These measures may include use of registered
I/Os or analog filtering of the FPGA outputs.

Metastability

Metastability can occur when an asynchronous input gets clocked within the FPGA, and it is
expressed as an undetermined state at the output of a flip-flop (Figure 1). The undetermined state resolves
itself after the recovery time, which is on the order of several ns to several tens of ns for most of FPGAs.
Table 1 shows the recovery times and their corresponding mean times between metastability occurrences
(MTBMO) for XC2VP4 FPGA from Xilinx. For example, metastability with a recovery time of Ins
occurs on average every microsecond while the metastability with a 3 ns recovery time is extremely rare.
The FPGA designer should consider the recovery time when determining the maximum clock speed of
the design.

CLK >CLK Q .. F IN...J.

Qc- F

Figure 1. Metastability occurs at QA and causes error at QB.

Table 1. Recovery time for XC2VP4

Recovery time I ins 1.8 ns 2.1 ns 2.4 ns 2.7 ns
MTBMO I us 1 day 1 year 1,000 years 1,000,000 years

6



Internal FPGA Reset

Usually, all flip-flops in FPGAs are cleared after the power-up unless specified differently by the
designer, in which case a dedicated synchronous/asynchronous reset network controlled by the reset logic
inside the FPGA is used. Care should be taken to ensure synchronous reset of all flip-flops across the
FPGA. This is especially critical when an asynchronous reset signal is used to clear counters or state
machines that need to run synchronously. Figures 2 and 3 show two different methods for synchronizing
an asynchronous reset line to ensure reset of all flip-flops within the same clock period. The approach in
Figure 3 assumes that the clock period is greater than the resolution time for the flip-flops as well as
skews on the reset network are less than half of the clock period. Both of these requirements are easily
satisfied in modem FPGAs, since most FPGAs have dedicated low-skew lines for the reset signal and use
low-resolution time flip-flops.

C C

R R

USER LOGIC

I- - --..... .

RESET LOGIC
I -------------

Figure 2. Reset synchronizing circuit 1.

r ----------------------------

CLK >C

I~I

RESET CIRCUIT
- - - - - -- - - - - - - - - - - - - - - -

DO Q

C
R

USER LOGIC
- - - - - - - - - - - -

Figure 3. Reset synchronizing circuit 2.

Phase Locked Loop Locking Time

The Phase Locked Loops (PLL) inside FPGAs may be used to generate synchronous clocks or to
fine-control signal delays. They require an additional time to lock after the FPGA power-up. The user
logic should monitor the PLL lock signal, which indicates when the signals coming from the PLL are
valid.

Timing Constraints

Most of FPGA design tools base their timing constraints and analysis on synchronous design. The
timing constrains include the period, the pad-to-clock delay, the clock-to-pad delay, the skew, and the
from-to delay.

7



Appropriate timing constrains are critical in high-speed and safety-related FPGA designs. Due to
different FPGA architectures and design tools, it is important to standardize and simplify the way the
timing constraints are assigned and verified. As Figure 4(a) shows, one should specify three different
timing parameters to ensure proper FPGA performance at the required clock speed (Ti, Tp, and Tout). By
using registered /O buffers, one can reduce the number of timing constraints to one as shown in Figure
4(b).

Another critical timing issue is the maximum delay and/or maximum skew on high-fan signals such
as RESET and EN. Designers should ensure that the maximum delay on these lines is less than the clock
period to ensure the resetting and/or enabling of all flip-flops in the design occur within the same clock
period.

Figure 4(a). Three different time constraints.

Figure 4(b). Single time constraint.

State Machines

Behavior of a state machine should be defined not only for the used states but also for the unused
states. Most synthesis tools will ignore unused states and synthesize a state machine that can become
stuck in an undefined state after entering it unexpectedly. A similar situation occurs if a state in the state
machine is not defined for all possible combinations of its inputs. Therefore, all states and state transitions
in a state machine should be explicitly defined.

Multiple Clock Domains

When designing the interface between clock islands that use different synchronous or asynchronous
clocks, one should use double registers for edge-sensitive transfers to mitigate the occurrence of
metastability.

Latches

Even though latches use fewer gates than conventional flip-flops, special care should be taken when
the use of latches is necessary as the noise occurring at the latch inputs may propagate to the latch
outputs. Use of flip-flops eliminates this problem.

8



High Fan-Out Lines

FPGAs have dedicated high-speed routing lines for clocks and other high fan-out signals such as
RESET or EN. However, it is the designer's responsibility to properly assign these lines using the FPGA
design tools. Also, the designer should impose necessary timing constraints with enough margin to ensure
proper functioning of the FPGA in extreme environmental conditions.

2.2 Robustness

Robustness refers to the capability of an FPGA-based safety system to operate in an acceptable
manner under abnormal conditions or events over the entire lifetime of the system. The following are the
base-level attributes relevant to robustness of the hardware design of FPGA-based safety-critical systems:
" Timing Performance
* Single-Event Upsets (SEU)
" Configuration Data Retention
" Program/Erase Cycles
" Lead-Based Soldering

Timing Performance

Appropriate timing constraints with sufficient margin should be set by the designer during the
synthesis and/or place and route process to ensure correct functioning of the time-critical paths of the
FPGA design. The timing reports should be checked after the implementation of the design to ensure the
constraints are satisfied and that there is enough margin in the timing performance.

Single Event Upsets

Single-event upsets (SEU) can affect both the FPGA logic as well as the FPGA configuration
memory. Even in a radiologically benign environment, cosmic rays and alpha particles from the FPGA
packaging material can produce enough charge inside an FPGA to change a state in one or more flip-flops
or memory cells. Occurrence of SEUs over the entire lifetime of the FPGA system could be significant
enough to require protective measures during the design as well as use of the system. These measures can
be-divided into two groups-the measures to mitigate SEUs in the user logic and the measures to mitigate
SEUs in the configuration memory. The following are the possible measures to mitigate SEUs in the user
logic:
" Redundancy in the design to ensure detection and/or correction of a SEU
" Error detection and correction (EDAC) for setpoints and memory data
* Error detection and/or correction in state machines and control logic
* Using SEU-immune or SEU-tolerant FPGAs
" Periodic resetting of the FPGA logic
" Watchdog timers

Measures to protect the FPGA configuration from an SEU are as follows:
" Using one-time programmable FPGAs
* Selecting the flash-based over the static random access memory (SRAM)-based reconfigurable

FPGAs
* Run-time checking of the configuration memory
* Scheduled and error-initiated reloading of the FPGA configuration memory.

9



Configuration Data Retention

Configuration data retention for CPLDs, flash-based FPGAs, and programming devices used to
configure SRAM-based FPGAs can be from less than 10 years to more than 20 years. During the
operation period of an FPGA system, the programming data should be stored on a separate high-reliability
memory media and then periodically used to refresh the configuration memory in the FPGAs/CPLDs. For
one-time programmable FPGAs the concern is the self healing of the configured interconnects. The data
sheets and reliability reports for one-time programmable FPGAs needs to be checked to determine the life
time of the programmed interconnects.

Program/Erase Cycles

The program/erase cycles for the configuration memories are limited, ranging from several
thousands to several tens of thousands. A log file regarding the number of program/erase cycles should be
established to ensure there are enough program/erase cycles remaining in the FPGA throughout the entire
life-cycle of the system.

Lead-Based Soldering

Growth of tin whiskers over time is especially critical for FPGAs due to the high pin count and the
small pitch of the Pin Grid Array (PGA) and Quad Flat Pack (QFP) packages. Avoiding the use of lead-
free tin parts and PCBs is an administrative control measure to eliminate failures due to whisker growth.
Design techniques that include error detection and built-in self test can be an alternative solution.

2.3 Traceability

Traceability refers to attributes of a safety-critical FPGA design that support V&V of the design
throughout the development design life cycle as well as the safety evaluation review during the licensing
process. The traceability attributes cover issues such as use of predefined vendor- or tool-specific macros,
use of nonstandard HDL libraries, implementing a hierarchical design, using version control tools, using a
particular design style, and the design documentation. These attributes are more applicable to the Design
Entry Methods and the Design Methodology that are described in separate chapters. The following are the
traceability attributes that apply to the Hardware Design Practices:
* Board-Level Design Documentation
* FPGA Internal Logic Design Documentation

Board-Level Design Documentation

The documentation that is critical for the traceability of the FPGA board-level design includes PCB
schematics, mechanical PCB drawings, board layout design files, bills of material, and the data sheets for
the parts used on the board. This documentation should be included in the licensee/vendor design report
to facilitate the review of the reliability and the robustness of the board-level design including FPGA
power-up, external FPGA interfacing, external FPGA reset, power pin decoupling, unused 1/0 pins, PCB
layer stacking, and other features describedlin this guidance.

FPGA Internal Logic Design Documentation

The documentation necessary to verify and review the FPGA internal logic design includes FPGA
design files, FPGA data sheets, pin out and package information, application notes, and white papers.
This documentation should be included in the licensee/vendor design report to facilitate the review of the
FPGA internal logic design including FPGA configuration start-up, simultaneous switching outputs,

10



output slew rate, output current drive, FPGA power dissipation, metastability, timing constraints, state
machines, high fan-out lines, and other features described in this guidance.

2.4 Maintainability

Maintainability of FPGA-based safety systems relates to attributes that facilitate the maintenance of
a system during the operation period. The maintainability attributes address issues such as PCB design for
maintainability, FPGA configuration maintainability, and FPGA design tool maintainability. The
following are the base attributes relevant to maintainability of FPGA-based safety-related designs:
" Modular Design
* Standardized PCB Format
* Test Points and Indicators
" Reprogrammability
* FPGA Selection

Modular Design

To facilitate maintenance of FPGA-based designs, designs should be modular as much as possible
(i.e., well-defined functions such as high-pressure trip, low-pressure trip, and high-flux trip) should be
implemented on separate PCBs. Placing multiple FPGAs on a single board can complicate maintenance
processes as well as unnecessarily challenge the safety system due to a faulty power supply for the board
or due to mechanical failure of the PCB, for example.

Standardized PCB Format

FPGA-based PCBs should use one of the board standard formats where the size, the back plane
connectivity, and the power supply are predefined to fit one of the hardware platform standards such as
VME ANSI/IEEE 1014-1987, PCI, PCI-X, PC/104 IEEE P966.1, etc.

Test Points and Indicators

FPGA-based designs should include a number of test points and indicators for quick board
diagnostic and for health monitoring of the board. These test points may include power supplies, clock
sources, critical signals, temperature sensors, circuit aging sensors, etc. BIST logic for health monitoring
can be placed inside the FPGA to monitor entire functions such as bus activity, occurrence of erroneous
data, and time-out circuits.

Reprogrammability

FPGA-based PC boards should have provisions for reprogramming of the FPGA during the entire
equipment design life. These provisions include physical access to the FPGA programming pins,
necessary software and hardware tools for the programming of a particular FPGA, and the configuration
files stored on a secure long-term storage media.

FPGA Selection

Selection of the vendor and the type of the FPGAs used in a design should be driven by
maintainability of the system as well. The leading FPGA vendors with long-term presence on the FPGA
market that support their legacy parts and the design tools should be considered. Furthermore, the
backward compatibility of the design tools may not always be guaranteed by some vendors, which would

11



require the end user to store and maintain the version of the tool used during the initial design of the

system.

12



3. FPGA DESIGN ENTRY METHODS

This chapter discusses the safety-critical issues related to very high speed integrated circuits HDL
(VHDL) and Verilog, the most commonly used hardware description languages for FPGA designs. The
schematic entry is still used for mainstream FPGA designs, and it is recommended for safety-critical
designs as well. Using the schematic entry, the designer creates the gate-level representation of the design
requirements that is otherwise done by the synthesis tool in the case of HDL design entry. While it gives
the designer more control over the design process, the schematic entry is more time consuming and is
expected to be replaced by HDL design over time.

The following sections discuss design practices that can lead to unreliable FPGA design, and
therefore should be avoided. Also, proper design practices are suggested, and corresponding code
examples are given for both design languages (i.e., VHDL and Verilog). The examples cover the most
commonly used HDL structures such as state machines, multiplexers, decoders, read-only memory
(ROM), random access memory (RAM), first-in-first-out (FIFO) memory, etc. This chapter is organized
into four sections, each addressing one of the top-level attributes.

3.1 Reliability

The reliability of FPGA design entry methods is the ability of the method to capture the design
requirements and to translate the requirements into the FPGA logic. A reliable HDL code gives an exact
textual representation of the design requirements and provides unambiguous instructions to the logic
synthesis tool. These goals cannot be completely achieved during the design entry phase of the
development cycle since VHDL and Verilog are not formal languages. Therefore, the development life
cycle for an FPGA-based, safety-critical system needs to include verification steps following the
synthesis, place and route, configuration, and hardware implementation. The following are the base-level
attributes relevant to reliability of FPGA design entry methods:
* Mixed Language Design
* Nonsynthesizable Code
" Port Data Types
* Sensitivity List
* Implementing Resets
" Implementing Latches
" Multiple-Clock Domains
* If and Case Statements
* Multiplexers/Encoders
" De-multiplexers/Decoders
* Comparators
* Adder Trees
* Arithmetic Overflow
* Binary Scaling
* Counters
* Shift Registers
* ROMDesign

13



" RAMDesign
* FIFO Design
* State Machines

Mixed Language Design

Even though the mixed language designs are supported by most of design tools, using different
languages to code different blocks in the same design should be avoided due to potential language
incompatibility and different synthesis rules. However, different languages can be used to design
redundant identical blocks, redundant FPGAs, or redundant boards to provide additional diversity.

Nonsynthesizable Code

Nonsynthesizable code does not get materialized into the logic by the synthesizers. It is used only for
simulation and it should reside in simulation-only files or test benches. The design files should contain
synthesizable code only. Mixing synthesizable and nonsynthesizable code reduces readability of the code
and increases probability of errors. Typical examples of nonsynthesizable codes include wait, after, and
assign statements as shown below:

-- VHDL #/Verilog

wait for 10 ns; # 10;

Q <= '0' after 20 ns; assign #20 Q=O;

Port Data Types

Use stdlogic and std_logic vector in VHDL code for port declaration to avoid restrictions that may
apply to other data types. For example, using buffer type is convenient because it allows internal use of
an output port, but it can cause errors during synthesis. Arrays in port declarations in VHDL should be
avoided as well because of the inability of VHDL to represent and store array ports in the netlists such as
Electronic Design Interchange Format (EDIF). Furthermore, the array ports can create incorrect
correlation of the placed pin names from the names used in the port declaration. The following example
shows the buffer port declaration.

-- VHDL buffer port

entity acc RAM is
port (CLK : in std_logic;

DIN : in stdlogicvector(7 downto 0);
DOUT: buffer stdlogic vector(7 downto 0));

end acc_RAM;

architecture behavioral of acc RAM is
begin

process (CLK)
begin

if CLK'event and CLK = 1' then
DOUT <= DOUT + DIN;

end if;
end process;

end behavioral;

14



Sensitivity List.

While using the process statement in VHDL or the always statement in Verilog, the sensitivity list
should be completely specified. Some of the synthesis tools may assume the presence of signals in the
sensitivity list even when these signals are omitted from the list. Synthesis tools need to be
unambiguously directed by the HDL code to avoid unpredictable outputs of the synthesis process.

Implementing Resets

Resets should be synchronous unless the reset signal comes from a different clock region or is an
external signal. In that case, the asynchronous reset signal should be resynchronized to avoid metastability
when the reset is released. Since the synchronous reset can be executed only in the presence of the clock,
asynchronous reset should be used in the case where the clock is not running continuously. The examples
below show the synchronous reset code, the asynchronous reset code, and two different reset synchronizer
codes that are HDL versions of the reset synchronizers from Figures 2 and 3.

-- VHDL synchronous reset

process (CLK)
begin

if CLK'event and CLK = '1' then
if RST = '1 then

Q <= '0';
else

Q <= D;
end if;

end if;
end process;

-- VHDL asynchronous reset

process (CLK,RST)
begin

if RST = 'I' then
Q <= '0';

elsif CLK'event and CLK = '1 then
Q <= D;

end if,
end process;

//Verilog synchronous reset

always @ (posedge CLK)
begin

if (RST)
Q= l'bO;

else
Q D;

end

//Verilog asynchronous reset

always @ (posedge CLK or posedge RST)
begin

if (RST)
Q l'b0;

else
Q D;

end

15



-- VHDL reset synchronizer] //Verilog reset synchronizer ]

process (CLK)
begin

if CLK'event and CLK ='1 then
RSTI <= RSTEXT;
RST <= RST 1;

end if;
end process;

-- VHDL reset synchronizer2

process (CLK,RSTEXT)
begin

ifRST EXT ='1'then
RST1 <= '1';
RST<=']';

elsif CLK'event and CLK ='1' then
RST1 <= '01;
RST <= RSTI;

end if;
end process;

always @ (posedge CLK)
begin

RST1 = RST EXT;
RST = RSTI;

end

//Verilog reset synchronizer2

always @ (posedge CLK or posedge RSTEXT)
begin

if (RST EXT) begin
RSTI = l'bl;
RST = Fb I;
end

else begin
RSTI = l'bO;
RST = RSTI;
end

end

Implementing Latches
Latches should be avoided in safety-critical FPGA designs because of difficult timing analysis and

their transparence to glitches. However, latches can be unintentionally generated by ambiguous HDL
statements intended to generate flip-flops. Most often, the latches are generated by incomplete if
statements or by missing clock edges in the sensitivity list. Examples below show a correct latch

implementation.

-- VHDL //Verilog

process (E,D)
begin

if E = '1' then
Q <=D;

end if;
end process;

always @ (E or D)
begin

if(E)
Q=D;

end

Multiple-Clock Domains

Multiple-clock domains in designs of safety-critical systems should be generally avoided due to
difficult verification of the interface between the clock domains. If the multiple-clock domains are
absolutely necessary for the proper functionality of the design, then double-registered interfacing between
the clock domains should be implemented. Single-bit interfaces are relatively straightforward to design
and verify, but transfer of the parallel data may be difficult to design and verify properly. Therefore, a
thorough analysis of the interface should be performed to estimate the probability of occurrence of long
metastability resolution times, their impact on design behavior, and necessary mitigation techniques that

need to be implemented.

16



If and Case Statements

If and case statements may be used to design purely combinatorial logic such as multiplexers,
encoders, de-multiplexers, and decoders as well as sequential logic such as state machines. When using if-
elsif or case statements, all the branches should be defined explicitly for all possible input combinations.
Also, all the outputs should be defined for every branch. If priority is not needed, use case statements
instead of if statements to minimize the logic created by synthesis tools. Failing to completely define if or
case statements can cause some synthesis tools to insert latches that are difficult to simulate. Examples
related to if and else statements are given in the following two sections.

Multiplexers/Encoders

All possible multiplexer or encoder branches should be explicitly defined to avoid the possibility of
creating latches and to improve the readability of the code. Case statements should be used if priority is
not required. Below are the examples of if- and case-based multiplexers and encoders.

-- VHDL 4-to-] priority mux

process (RST,SEL,IN 1,IN2,jN3,1N4)
begin

ifRST = '1' then 0 <= '0'; -- reset
elsif SEL = "00" then 0 <= IN 1;
eIsif SEL = "01" then 0 <= IN2;
elsif SEL = "10" then 0 <= IN3;
else 0 <= IN4;
end if;

end process:

-- VHDL 4-to-1 mux using case statement

process (SEL,IN 1,IN2,1N3,IN4)
begin

case SEL is
when "00" => 0 <= INI;
when "01" => 0 <= IN2;
when "10" => 0 <= IN3;
when others => 0 <= IN4;

end case;
end process;

-- VHDL 4-to-2 priority encoder

process (RST,IN 1)
begin

if RST ='1' then 0 <= "00";
elsif INi = "0000" then 0 <= "00";
elsif INI = "0010" then 0 <= "01";
elsif INI = "0100" then 0 <= "10";
elsif INI = "1000" then 0 <= "1 1";
else 0 <= "00";
end if;

//Verilog 4-to-1 priority mux

always @ (RST or SEL or IN 1 or IN2 or IN3 or IN4)
begin

if (RST == l'bl) 0 = l'bO; //reset
else if(SEL O2'b0) 0 = IN1;
else if(SEL 2'bO1) 0 = IN2;
else if(SEL == 2'b10) 0 = IN3;
else 0 = IN4;

end

IlVerilog 4-to-I mux using case statement

always @ (SEL or INI or IN2 or IN3 or IN4)
begin

case (SEL)
2'bOO 0=IN1;
2'bO : 0 = IN2;
2'bO: 0 = IN3;
2'bIl : 0 =IN4;

endcase
end

IlVerilog 4-to-2 priority encoder

always @ (RST or IN1)
begin

if(RST == l'bl) 0 = 2'bWO;
else if(IN1 == 4'bOOO1) 0 = 2'bOO;
else if (IN I 4'b0010) O = 2'b01;
else if(INI == 4'bO 100) 0 = 2'b10;
else if(iN1 ( 4'b1000) 0 = 2'bl 1;
else 0 = 2'b00;

end

17



-- VHDL 4-to-2 encoder using case statement //Verilog 4-to-2 encoder using case statement

process (IN 1)
begin

case INI is
when "0001" => 0 <-- "00";
when "0010" => 0 <= "01";

when "0100" => 0 < "t.10",

when "1000" => 0 <= "1 1";

when others => 0 <= "00";
end case;

end process;

always @ (IN 1)
begin

case (IN 1)
4'bOOO : 0 = 2'bOO;
4'bOO1 : 0 = 2'b01;
4'bO0OO 0 2'b10;
4'b1OOO 0= 2'bl 1;
default 0 = 2'bOO;

endcase
end

De-multiplexers/Decoders

All possible de-multiplexer or decoder branches should be explicitly defined to avoid the possibility
of creating latches and to improve the readability of the code. The case statement should be used if
priority is not required. Below are the examples of if- and case-based de-multiplexers and decoders.

-- VHDL 1-to-4 priority demux

process (RST,SEL,IN 1)
begin

if RST ='1' then 0 <= "0000"; -- reset
elsif SEL = "00" then 0 <= "000"&IN 1;
elsif SEL = "01" then 0 <= "00"&IN 1 &'0';
elsif SEL = "10" then 0 <= '0'&IN 1 &"00";
else 0 <= IN l&"000";
end if;

end process;

-- VHDL 1-to-4 demux using case statement

process (SEL,IN 1)
begin

case SEL is
when "00" => 0<= "000"&IN1;
when "01" => 0 <= "00"&IN 1 &'0';
when "10" => 0 <= '0'&IN 1 &"00";
when others => 0 <= IN1&"000";

end case;
end process;

//Verilog 1-to-4 priority demux

always @ (RST or SEL or 1NI)
begin

if (RST == 'b 1) 0 = 4'bOOOO; -I/reset
else if (SEL 2'b) 0 = {3'b000,IN I};
else if (SEL 2'bO1) 0 {2'bOO,IN1,l'bO};
else if(SEL == 2'b10) 0 = { I'bO,iN1,2'bOO};
else 0 {IN1,3'bOOO};

end

//Verilog 1-to-4 demux using case statement

always @ (SEL or IN 1)
begin

case (SEL)
2'bOO 0 = {3'bOOO,INI};
2'bO0 : 0 = {2'bOO,IN1,1'bO};
2'b10 :0 = { l'bO,IN1,2'bOO};
2'bl : 0 = {IN1,3'bOOO};

endcase
end

18



-- VHDL 2-to-4 priority decoder IlVerilog 2-to-4 priority decoder

process (RST,IN1)
begin

if RST = '1' then 0 < "0000"; -- reset
elsif INI = "00" then 0 <= "0111';
elsif INI = "01" then 0 <= "0110";
elsif IN1 = "10" then 0 <= "1100";
else 0 <= "1110";
end if;

end process:

-- VHDL 2-to-4 decoder using case statement

process (IN i)
begin

case INI is
when "00" => 0 <= "0111";
when "0 1 " > 0 <= "0110";
when "10" => 0 <= "1100";
when others => 0 <= "1110";

end case;
end process;

always @ (RST or IN 1)
begin

if (RST == l'bl) 0 = 4'bOOOO; / reset
else if (IN I 2'bOO) 0 = 4'bO 11;
else if(IN1 2'bO1) 0 = 4'bO I10;
else if(IN1 2'b10) 0 = 4'b1 100;
else 0 = 4'bl 110;

end

//Verilog 2-to-4 encoder using case statement

always @ (IN I)
begin

case (IN 1)
2'bOO 0= 4'b011;
2'bO1 :0 = 4'bO110;
2'b1 : 0 = 4'b1 100;
2'bll : 0 =4'bill0;

endcase
end

Comparators

Before using the greater than (>) or less than (<) statement, the designer should be aware of the
format of the numbers being compared. As the example below shows, the result of the comparison
depends on whether the numbers are signed or unsigned.

-- VHDL compare statement

O <= '1' when A > X"00" else '0';

-- if A = X"FO" is signed, 0 equals '0'
-- if A = X"FO" is unsigned, 0 equals '1'

//Verilog compare statement

assign 0 = (A > 8'hOO) ? l'bI : l'bO;

H/if A = 8'hFO is signed, 0 equals ibO
I/if A = 8'hFO is unsigned, 0 equals ibI

Adder Trees

Addition of multiple numbers should be implemented as a synchronous cascade of two-number
adders to avoid different synthesis implementations and to improve timing performance. Also, care
should be taken to properly size the data path to avoid overflows in the addition tree. Below are examples
of five-number adder trees.

19



-- VHDL pipelined adder tree with 5 inputs and 3-cycle latency

process (CLK)
begin

if CLK'event and CLK = '1' then
LEVEL ONESUMI <= IN1 + 1N2;
LEVEL ONE SUM2 <= IN3 + IN4;
LEVELONESUM3 <= IN5;
LEVEL TWO SUM I <= LEVEL ONE SUM I + LEVELONESUM2;
LEVELTWO SUM2 <= LEVELONE_SUM3;
FINALSUM <= LEVELTWOSUMI + LEVELTWO_SUM2;

end if;
end process;

//Verilogpipelined adder tree with 5 inputs and 3-cycle latency

always @ (posedge CLK)
begin

FINALSUM= LEVELTWOSUM I + LEVELTWO_SUM2;
LEVELTWOSUM I = LEVELONESUM I + LEVELONE _SUM2;
LEVELTWOSUM2 = LEVELONESUM3;
LEVEL ONE SUMI = 1NI + IN2;
LEVEL ONE SUM3 = IN5;
LEVEL ONE SUM2 = IN3 + IN4;

end

Arithmetic Overflow

To avoid overflow/underflow during addition or subtraction, the most significant bit (MSB) padding
should be applied to the operands before the operation is executed. Alternatively, the overflow/underflow
can be detected and the result saturated if the application allows it. To prevent unnecessary data-path
growth, appropriate LSB trimming may be applied with the choices of rounding off to the ceiling, to the
floor, or around the mid-point. The examples below show MSB padding together with the bit-trimming.

-- VHDL MSB padding when adding two 8-bit numbers
-- otputs are trimmed to 8-bit numbers

process (CLK)
begin

if CLK'event and CLK = ' then
FULLSIZESUM <= (IN I (7)&IN 1) + (IN2(7)&IN2);
FULLSIZEDIFF <= (IN3(7)&IN3) - (IN4(7)&IN4);

end if;
end process;
FINALSUM <= FULLSIZESUM(8 downto 1); -- LSB dropped
FINALDIFF <= FULLSIZEDIFF(8 downto 1); -- LSB dropped

20



I/Verilog MSB padding when adding two 8-bit numbers
// otputs are trimmed to 8-bit numbers

always @ (posedge CLK)
begin

FULL SIZESUM = {INI [7],IN1} + {IN2[7I,IN2};
FULLSIZEDIFF = {IN3[7],IN3} - {IN4[7],IN4};

end
assign FINAL_SUM = FULLSIZE SUM[8:1 ];//LSB dropped
assign FINALDIFF = FULLSIZEDIFF[8: 1]; /LSB dropped

Binary Scaling

Binary scaling is prone to errors due to potential mishandling of 2's complement numbers. A proper
scaling requires that the MSB is preserved during the binary up- and down-scaling, as shown below.

-- VHDL scaling of a 16-bit number

A_DIVBY4 <= A( 15)&A( 15)&A(15 downto 2);
A_MULTBY2 <= A(15)&A(13 downto 0)&'0';

IlVerilog scaling of a 16-bit number

assign A DIVBY4 = {A[15],A[15],A[15:2]};
assign AMULTBY2 = {A[ 15],A[ 13:0], 'bO};

Counters

Among all the choices for counters, the binary counters are sufficient to cover most of the design
needs. Gray counters may be used in cases when the single-bit-per-count change is absolutely necessary.
Ripple counters should be avoided in safety-critical designs due to difficult timing simulation and
verification. The examples below show the binary counter implementation as well as the ripple counter
implementations.

-- VHDL 8-bit binary counter

process (CLK)
begin

if CLK'event and CLK ='i then
if RST ='' then

CNT <= X"00";
else

CNT <= CNT +';
end if;

end if,
end process;

I/Verilog 8-bit binary counter

always @ (posedge CLK)
begin

if (RST)
CNT = 8'hOO;

else
CNT = CNT + 1;

end

21



-- VHDL 3-bit ripple counter

process (CLK)
begin

if CLK'event and CLK = '1' then
QO <= not QO;

end if;
end process;

process (QO)
begin

if QO'event and QO =']'then
Q1 <=not Ql;

end if;
end process;

process (Q I)
begin

ifQl'event and QI = '1' then
Q2 <= not Q2;

end if,
end process;

//Verilog 3-bit ripple counter

always @ (posedge CLK)
begin

QO = !Q0;
end

always @ (posedge QO)
begin

Q1 = !Q1;
end

always @ (posedge QI)
begin

Q2 = !Q2;
end

always @ (posedge Q2)
begin

Q3 = !Q3;
end

process (Q2)
begin

if Q2'event and Q2 = '1' then
Q3 <- not Q3;

end if;
end process;

Shift Registers

There are many different HDL implementations of shift registers depending on their functionality.
The examples below show implementations of the parallel-to-serial shift registers and the serial-to-
parallel shift registers.

-- VHDL P-to-S 8-bit shift register, MSB first

process (CLK)
begin

if CLK'event and CLK = 'I' then
if RST ='1' then -- reset

SHIFT <= V00%
SHIFTCNT <= "000";

elsif LOAD ='I' then -- load
SHIFT <= PDATA;
SHIFT CNT < "000";

elsif SHIF-T_CNT < " 11" then -- shift
SHIFT(7 downto 1) <= SHIFT(6 downto 0);
SHIFT CNT <= SHIFT CNT + '1';

end if;
end if;

end process;
SDATA <- SHIFT(7);

//Verilog P-to-S shift register, MSB first

always @ (posedge CLK)
begin

if (RST) begin// reset
SHIFT = 8'hOO;
SHIFTCNT = YbO00;
end

else if (LOAD == 'b 1) begin //load
SHIFT = PDATA;
SHIFTCNT = 3'b000;
end

else if (SHIFTCNT < 3'bl 11) begin//shift
SHIFT[7: I] = SHIFT[6:0];
SHIFTCNT = SHIFTCNT + 1;
end

end
assign SDATA = SHIFT[7];

22



-- VHDL P-to-S 8-bit shift register, LSB first

process (CLK)
begin

if CLK'event and CLK = '1' then
ifRST -'1'then -- reset

SHIFT <= X"00";
SHIFTCNT <= '000';

elsif LOAD ='1' then -- load
SHIFT <= PDATA;
SHIFT CNT <= "000";

elsif SHIFTCNT < "Ill" then -- shift
SHIFT(6 downto 0) <= SHIFT(7 downto 1);
SHIFT CNT <= SHIFTCNT + '1';

end if;
end if;

end process;
SDATA <= SHIFT(0);

-- VHDL S-to-P 8-bit shift register, LSB first

process (CLK)
begin

if CLK'event and CLK ='I' then
if RST ='1' then -- reset

SHIFT <= X"00";
SHIFTCNT <= "000";

else -- shift
SHIFT(6 downto 0) <= SHIFT(7 downto 1);
SHIFT(7) <= SDATA;
SHIFTCNT <= SHIFTCNT + 1;

end if;
if SHIFT CNT = "000" then

PDATA <= SHIFT; --parallel data
PDATAEN <'1';-- data ready

else
PDATA EN <V'0';

end if;
end if;

end process;

//Verilog P-to-S shift register, LSB first

always @ (posedge CLK)
begin

if (RST) begin H reset
SHIFT = 8'hOO;
SHIFTCNT = 3'bOOO;
end

else if (LOAD == l'bl) begin//load
SHIFT = PDATA;
SHIFTCNT = 3'bOOO;
end

else if (SHIFT CNT < 3'bl 11) begin //shift
SHIFT[6:0] = SHIFT[7:1];
SHIFT CNT = SHIFTCNT + 1;
end

end
assign SDATA = SHIFT[0];

//Verilog S-to-P shift register, LSB first

always @ (posedge CLK)
begin

if (RST) begin H reset
SHIFT = 8'hOO;
SHIFT CNT = 3'bO00;
end

else begin II shift
SHIFT[6:0] = SHIFT[7:1];
SHIFT[7] = SDATA;
SHIFT CNT = SHIFTCNT + 1;
end

if (SHIFTCNT == 3'bO00) begin
PDATA = SHIFT; H parallel data
PDATAEN = l'b 1; H data ready
end

else
PDATAEN I'b;

end

23



-- VHDL S-to-P 8-bit shift register, MSB first

process (CLK)
begin

if CLK'event and CLK ='' then
if RST = T then -- reset

SHIFT <= V00";
SHIFTCNT <= "000';

else -- shift
SHIFT(7 downto 1) <= SHIFT(6 downto 0);
SHIFT(0) <= SDATA;
SHIFTCNT <= SHIFTCNT +'1';

end if;
if SHIFT CNT = "000" then

PDATA <- SHIFT; -- parallel data
PDATAEN <= ''; -- data ready

else
PDATA EN <=0;

end if;
end if;

end process;

//Verilog S-to-P shift register, MSB first

always @ (posedge CLK)
begin

if (RST) begin H reset
SHIFT = 8'h00;
SHIFT CNT = 3'bO00;
end

else begin H shift
SHIFT[7: 1] = SHIFT[6:0];
SHIFT[0] = SDATA;
SHIFTCNT = SHIFTCNT + 1;
end

if (SHIFTCNT == 3'bO00) begin
PDATA = SHIFT; H/parallel data
PDATAEN = 'b 1; H data ready
end

else
PDATA EN = l'bO;

end

ROM Design

Read-Only Memory (ROM) can be implemented as a look-up table using the case statement or as a
synchronous ROM. Examples are shown below. Also, ROM can be implemented using vendor-specific
core generation tools such as CORE Generator from Xilinx, MegaWizard from Altera, or SmartGen from
Actel. The generated ROM components are then instantiated in the HDL code. The ROM cores generated
by these tools should be simulated before instantiation to avoid different interpretations of the ROM
design by different vendors.

- VHDL ROM design using case statement

process (ADDRESS)
begin

case ADDRESS is
when "00" => DATA <= X"71;

when "01" => DATA <= X"6";
when "10" => DATA <= X"C";
when others => DATA <= XE";

end case;
end process;

//Verilog ROM design using case statement

always @ (ADDRESS)
begin

case (ADDRESS)
2'bWO DATA = 4'h7;
2'bO I DATA = 4'h6;
2'b10: DATA = 4'hC;
2'bl 1: DATA = 4'hE;

endcase
end

24



-- VHDL synchronous ROM

entity synccROM is
port (CLK : in stdlogic;

ADDR: in stdlogicvector(3 downto 0);
DOUT : out std logic vector(7 downto 0));

end synccROM;

architecture behavioral of synccROM is
type rom is array(15 downto 0) of std logic vector(7 downto 0);
constant SROM : rom :=(X"01", X"20", X"AA", X"AO", -- ROM table

X"01F", XI C", X"34", X"C4",
X"99", X"32", X"70", X"131",
X"E3 ", X"B6", X"DB", X" 12");

begin

process (CLK)
begin

if CLK'event and CLK ='1' then
DOUT <= SROM(conv integer(ADDR)); -- output data

end if,
end process;
end behavioral;

//Verilog synchronous ROM

module SROM (CLK,ADDR,DOUT);
input CLK;
input [7:0] ADDR;
output [7:0] DOUT;
reg [7:0] SROM [255:0];
reg [7:0] DOUT;
initial begin

$readmemb("rom-table.list",SROM); H reads ROM data from afile
end
always @ (posedge CLK)

begin
DOUT = SROM[ADDR]; H output data

end
endmodule

RAM Design

Random Access Memory (RAM) can be in different forms, including single-port synchronous, dual-
port synchronous, and dual-port asynchronous. Single-port synchronous RAM can be used whenever
simultaneous writes and reads from two different memory locations are not required. This is the simplest
RAM implementation that can be easily tested and verified. If simultaneous reads and writes are
necessary, dual-port synchronous RAM should be used. Care should be taken to explicitly define RAM

25



behavior during simultaneous reading and writing to the same memory cell. Depending on the
application, there may be either write-first or read-first RAM implementations. Dual-port asynchronous
RAM should be generally avoided in safety-critical designs because of their cross-clock boundaries that
are difficult to simulate and verify. Below are examples of single-port synchronous RAM and the dual-
port, read-first synchronous RAM implementations. RAM can also be instantiated after the RAM
component has been generated using one of the vendor-specific core generators. The cores generated by
these tools should be simulated before instantiation to avoid different interpretations of the RAM design
by different vendors.

-- VHDL single-port synchronous RAM

entity spsync RAM is
port (CLK in std_logic;

WE • in stdlogic;
ADDR: in stdlogic vector(7 downto 0);
DIN : in stdlogic vector(7 downto 0);
DOUT: out stdlogic vector(7 downto 0));

end spsyncRAM;

architecture behavioral of spsyncRAM is
type ram is array(255 downto 0) of stdlogic vector(7 downto 0);
signal SPRAM : ram;

begin

process (CLK)
begin

if CLK'event and CLK ='1 then
if WE ='1' then

SP_RAM(conv integer(ADDR)) <= DIN; -- RAM write
end if;
DOUT <= SPRAM(conv integer(ADDR)); -- RAM read

end if;
end process;
end behavioral;

IlVerilog single-port synchronous RAM

module spsync RAM (CLK, WE, ADDR, DIN, DOUT);
input CLK;
input WE;
input [3:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
reg [7:0] SP RAM [15:0];
reg [7:0] DOUT;
always @ (posedge CLK)

begin
DOUT = SPRAM[ADDR]; //RAM read
if (WE) SPRAM[ADDR] =DIN; H/RAM write

end
endmodule

26



-- VHDL dual-port read-first synchronous RAM

entity dpsync RAM is
port (CLK • in std_logic;

WE : in stdlogic;
RE in stdlogic;
WADDR: in stdlogic vector(7 downto 0);
RADDR: in stdlogicvector(7 downto 0);
DIN : in std logic vector(7 downto 0);
DOUT: out std logic vector(7 downto 0));

end dpsyncRAM;

architecture behavioral of dpsync RAM is
type ram is array(255 downto 0) of stdlogicvector(7 downto 0);
signal DPRAM : ram;

begin

process (CLK)
begin

if CLK'event and CLK ='1' then
if WE ='I' then

DPRAM(conv-integer(WADDR)) <= DIN; -- RAM write
end if;
if RE =T 1'then

DOUT <= DPRAM(conv integer(RADDR)) ; -- RAM read
end if;

end if;
end process;

end behavioral;

//Verilog dual-port read-first synchronous RAM

module dpsync RAM (CLK, WE, RE, WADDR, RADDR, DIN, DOUT);
input CLK;
input WE;
input RE;
input [7:0] WADDR;
input [7:0] RADDR;
input [7:0] DIN;
output [7:0] DOUT;
reg [7:0] DPRAM [255:0];
reg [7:0] DOUT;

always @ (posedge CLK)
begin

if (WE) DPRAM[WADDR] =DIN; H/RAM write
end

always @ (posedge CLK)
begin

if (RE) DOUT = DPRAM[RADDR]; / RAM read
end

endmodule

27



FIFO Design

First-in-first-out (FIFO) structures are used for memory storage, data delay, data rate change, and
data format change. They are usually designed as dual-port synchronous RAM with write and read
counters controlling the write and the read address. The asynchronous FIFO should be generally avoided
in safety-critical designs because their cross-clock boundaries are difficult to simulate and verify. Below
are examples of synchronous FIFO implementations. Also, FIFO can be instantiated after the FIFO
component has been generated using one of the vendor-specific core generators. However, the cores
generated by these tools should be simulated before instantiation to avoid different interpretations of the
FIFO design by different vendors.

-- VHDL synchronous FIFO

RAMWRITE:process (CLK)
begin

if CLK'event and CLK = '1' then
if WE = 1' and FF ='0' then - write to FIFO if not full

FIFORAM(convinteger(WADDR)) <= DIN;
end if;

end if;
end process;

RAMREAD:process (CLK)
begin

if CLK'event and CLK = '1' then
if RE ='1' and EF = '0' then - readfrom FIFO if not empty

DOUT <= FIFORAM(conv-integer(RADDR));
end if;

end if;
end process;

WRITEPOINTER:process (CLK,CLR)
begin

if CLR ='1' then - clear write pointer
WADDR <= X"00";

elsif CLK'event and CLK = 'I' then
if WE = 'I' and FF ='0' then - increment write pointer if not full

WADDR <= WADDR + '1';
end if,

end if;
end process;

28



READPOINTER:process (CLK,CLR)
begin

if CLR = '1' then - clear read pointer
RADDR <= X"00";

elsif CLK'event and CLK = 1' then
if RE = 1' and EF ='0' then - increment read pointer if not empty

RADDR <= RADDR + 'T';
end if,

end if,
end process;

FFLAG:process (CLK,CLR) -- active high
begin

if CLR ='1 then -- clear full flag
FF <=V'0;

elsif CLK'event and CLK = '1' then
if RE = '1'then -- clear fullflag when read

FF <= '0';
elsif WE = '1' and WADDR = RADDR - '1' then

FF <= '1'; -- set fullflag
end if;

end if;
end process;

EFLAG:process (CLK,CLR) -- active high
begin

if CLR ='1' then -- clear emptyflag
EF <=T'1;

elsif CLK'event and CLK = '1 then
if WE = '1' then

EF <= '0'; -- clear empty flag when write
elsif RE = '1' and WADDR = RADDR+ '1' then

EF <= '1'; -- set emptyflag
end if,

end if;
end process;

29



IlVerilog synchronous FIFO

always @ (posedge CLK) //write to FIFO if not full
begin

if (WE & !FF) FIFO_RAM[WADDRI = DIN;
end

always @ (posedge CLK) /read from FIFO if not empty
begin

if(RE & !EF) DOUT FIFO_RAM[RADDR];
end

always @ (posedge CLK or posedge CLR) //write pointer
begin

if (CLR) WADDR = 8'hOO; // clear write pointer
else if(WE & !FF) WADDR = WADDR + 1; // increment write pointer if not full

end

always @ (posedge CLK or posedge CLR) // read pointer
begin

if(CLR) RADDR = 8'hOO; // clear read pointer
else if (RE & !EF) RADDR = RADDR + 1; //increment read pointer if not empty

end

always @ (posedge CLK or posedge CLR) 1/fullflag active high
begin

if(CLR) FF = l'bO; //clearfullflag
else if(RE) FF = l'bO; // clearfullflag when read
else if ((WE) & (WADDR == RADDR - 1)) FF = l'b 1; // set fullflag

end

always @ (posedge CLK or posedge CLR) //emptyflag active high
begin

if (CLR) EF = l'b 1; //clear emptyflag
else if (WE) EF = l'bO; // clear emptyflag when write
else if ((RE) & (WADDR == RADDR + 1)) EF = lb 1; //set emptyflag

end

State Machines

Safe state-machine design assumes explicit assignments for all states for all possible input
combinations. Also, the state-machine outputs should be completely defined for every state. If a state
machine contains states that transition to themselves for all input combinations (deadlock states), an
external reset signal should be implemented to move the state-machine from the deadlock state.
Furthermore, the reset signal is necessary to ensure that the state machine initially starts in a known state.
If the reset signal is not synchronous, it should be resynchronized properly. Below are shown safe state-
machine design examples.

30



-- VHDL state machine with 4 states, two inputs and three outputs using if-elsifstatements

process (CLK)
begin

if CLK'event and CLK = '1' then
if RST = '1' then -- synchronous reset

0 <= 000;
STATE < "00";

elsif STATE = "00" then -- state zero
if INI = "00" then

o <- 000;
STATE <= "00";

elsifINI = "01" then
O <= "111";
STATE <= "01 ";

elsifINI = "10" then
O <= "101";
STATE <= "00";

else
O <-"11001";
STATE <= "1 1"

end if;
elsif STATE = "01" then -- state one

if INI = "00" then
o <-- "9000";
STATE <= "00";

elsifINI = "01" then
O <= "1110";
STATE <= "0 ;

elsif IN I = "10" then
o <= "1001";
STATE <= "10";

else
O <= "110";
STATE <= "11";

end if;

elsif STATE = "10" then -- state two
if IN I = "00" then

O <= "000";
STATE <= "10";

elsif IN = "01" then
O <= "101";
STATE <= "1 1";

elsif IN I = "10" then
O <= "010";
STATE <= "00";

else
O <= "110";
STATE <= "01 ";

end if;
elsif STATE = "11" then -- state three

if IN I = "00" then
O <= "001";
STATE <= "1 1";

elsifINI = "01" then
0 <= "100";
STATE <= "11 ";

elsif IN = "10" then
O <= "001";
STATE <= "00";

else
O <= "101";
STATE <= "01 ";

end if;
end if;

end if;
end process;

31



-- VHDL state machine with 4 states, two inputs and three outputs using case statements

process(CLK,RST)
begin

if RST ='1' then -- reset
O <= "000";
STATE <= "00";

elsif CLK'event and CLK = '1' then
case STATE is

when "00" => -- state zero
case INI is

when "00" =>
O <= "000";

STATE <= "00";
when "01" =>

O < = ,1 1 1 ,,;

STATE <= "01";
when "10" =>

O <= ",101",;
STATE <= "00";

when others =>
O <= "001";
STATE <= "1 1";

end case;
when "01" => -- state one

case INI is
when "00" =>

O <= "010";
STATE <= "01";

when "01" =>
O <= ,111,;
STATE <= "01";

when "10" =>
O <= ",101,";
STATE <= "00";

when others =>
O <= "110";
STATE <= "11";

end case;

when "10" => -- state two
case INI is

when "00" =>
O <- "000";
STATE <= "10";

when "01" =>
O <= "101";
STATE <= "01";

when "10" =>
O <= "100";
STATE <= "00";

when others =>
O <= "001";
STATE <= "11";

end case;
when others => -- state three

case INI is,
when "00" =>

O <= "101";
STATE <= "1 1";

when "01" =>
O <= "110";
STATE <= "01";

when "10" =>
O <= "000";
STATE <= "00";

when others =>
O <= "001";
STATE <= "10";

end case;
end case;

end if,

end process;

32



//Verilog state machine with 4 states, two inputs and three outputs using if-else if statements

always @ (posedge CLK)
begin

if(RST == l'b ) begin // reset
0 = 3'bOOO;
STATE = 2'bOO;
end

else if (STATE == 2'bOO) begin //state zero
if(IN1 == 2'bOO) begin

O = 3'b000;
STATE = 2'bOO;
end

else if (IN1 == 2'bO1) begin
0=3'blll;
STATE = 2'bO1;
end

else if(IN1 == 2'b 10) begin
O = 3'b1O0;
STATE = 2'bOO;
end

else begin
o = 3'bOO;
STATE = 2'b 11;
end

end
else if (STATE == 2'b01) begin 11 state one

if(INI == 2'bOO) begin
O 3'bOOO;
STATE = 2'b00;
end

else if(IN1 == 2'b01) begin
0 = 3'blOO;
STATE = 2'bO 1;
end

else if(IN1 == 2'b10) begin
0 = 3'bO01;
STATE = 2'b 10;
end

else begin
0 = 3'bl10;
STATE = 2'b 11;
end

end

else if (STATE == 2'b 10) begin// state two
if (IN I == 2'bOO) begin

0 = 3'bOOO;
STATE = 2'b10;
end

else if (IN 1 == 2'bO1) begin
O = 3'bl0l;
STATE = 2'b 1;
end

else if (IN1 == 2'b10) begin
0 = 3'bO10;
STATE 2'bOO;
end

else begin
0 = 3'bl10;
STATE = 2'bO 1;
end

end
else if (STATE == 2'bl 1) begin //state three

if (IN 1 == 2'bOO) begin
0 = 3'b001;
STATE 2'b 11;
end

else if (IN == 2'b01) begin
0 = 3'b100;
STATE = 2'b I1;
end

else if(INl == 2'b10) begin
0 = 3'b001 ;
STATE = 2'bOO;
end

else begin
0 = 3'bl0l;
STATE = 2'bO 1;
end

end
end

33



IlVerilog state machine with 4 states, two inputs and three outputs using case statements

always @ (posedge CLK)
begin

if (RST == l'b 1) begin //reset
O = 3'bOOO;
STATE = 2'bOO;
end

else if (STATE == 2'bOO) begin //state zero
if (IN 1 == 2'bOO) begin

0 = 3'bOOO;
STATE = 2'bOO;
end

else if (IN I == 2'bO1) begin
O 3'bl 11;
STATE = 2'bO 1;
end

else if (IN 1 ==2'b 10) begin
O = 3'bl0l;
STATE = 2'bOO;
end

else begin
O 3'bOO1;
STATE = 2'bl 1;
end

end
else if (STATE == 2'bO I) begin //state one

if (IN 1 == 2'b00) begin
O = 3'bOOO;
STATE = 2'bOO;
end

else if (IN I == 2'bO1) begin
O = 3'blOO;
STATE = 2'bO1;
end

else if (IN 1 == 2'b 10) begin
O = 3'bOO1;
STATE = 2'b 10;
end

else begin
O = 3'b110;
STATE = 2'bl 1;
end

end

else if (STATE == 2'b 10) begin //state two
if (IN I == 2'bOO) begin

0 = 3'b000;
STATE = 2'b10;
end

else if (IN I == 2'bO1) begin
O = 3'bl0l;
STATE = 2'b 11;
end

else if (IN I == 2'b 10) begin
O = 3'b010;
STATE = 2'bOO;
end

else begin
0 = 3'b110;
STATE = 2'b01;
end

end
else if (STATE == 2'bl 1) begin //state three

if (IN I == 2'bOO) begin
O 3'b001 ;
STATE = 2'bl 1;
end

else if(INI == 2'bO1) begin
0 = 3'b100;
STATE = 2'b 11;
end

else if(IN1 == 2'b10) begin
0 3'bOO1;
STATE = 2'b00;
end

else begin
o = 3'b101;
STATE = 2'b01;
end

end
end

34



3.2 Robustness

Robustness of design entry methods refers to the capability of the generated design to operate in an
acceptable manner under abnormal conditions or events over the entire lifetime of the system. The
following are the base-level attributes relevant to robustness of FPGA design entry methods:
* Input Overflow
* Input Activity
* SEUHandling

Input Overflow

A robust HDL design should be able to properly handle a potential input overflow. In the first step,
the overflow should be recognized either by sampling an external overflow flag or by checking whether
the input is in an acceptable range. In the second step, proper actions are taken such as ignoring the
current input sample, replacing it by a default value, accepting the overflow, or reporting the overflow.

Input Activity

To prevent the hang-ups in the design due to an inactive or disconnected input, the HDL code should
implement a logic that will respond to an inactive input. The response may include a specific internal
action, such as ignoring the input or setting an error flag.

SEU Handling
Any potential changes of internal states of the design caused by an SEU should be properly handled

by the HDL code. To detect an error, double redundancy logic can be implemented at the module level or
at the FPGA level, and the comparison of the outputs can be done. Proper action may include a scheduled
internal reset of the entire FPGA or reporting the error to an operator. Some parts of the design, such as
setting points or state machines, may require error correction to be implemented. Possible methods
include triple module redundancy and Hamming coding. Examples below show double module
redundancy with self-reset on error and self-correctable triplicated flip-flop code with majority voting
logic that can correct a single SEU within the clock period.

-- VHDL double module redundancy I/Verilog double module redundancy
-- with reset-on-error //with reset-on-error

COMPONENT1 :process (CLK) always @ (posedge CLK)
begin begin

if CLK'event and CLK ='1' then if (RST I ERROR)
if RST = '1' or ERROR = '1' then CNTI = 8'hOO; //reset when error

CNTI <= X"00"; -- reset when error else
else CNTI = CNTI + 1;

CNTI <= CNT1 + '1'; end
end if;

end if;
end process;

35



COMPONENT2:process (CLK)
begin

if CLK'event and CLK = '1' then
if RST ='1' or ERROR = 'I then

CNT2 <= X"00"; -- reset when error
else

CNT2 <= CNT2 + '1';
end if;

end if;
end process;

COMPARE:process (CLK)
begin

if CLK'event and CLK = ' then
if CNT1 = CNT2 then

ERROR <= '0';
else

ERROR <= '1'; -- error set
end if;

end if;
end process;

-- VHDL Self-correctable, triplicated flip-flop

process (CLK)
begin

if CLK'event and CLK = '1' then
if RST ='1' then

QI <='0';
Q2 <='0';
Q3 <= '0';

else
QI <= D; --flip-flop one
Q2 <= D; --flip-flop two
Q3 <= D; --flip-flop three

end if;
end if;

end process;
--voter
Q <= (QI and Q2) or (Q2 and Q3) or (QI and Q3);

always @ (posedge CLK)
begin

if (RST I ERROR)
CNT2 = 8'hOO; //reset when error

else
CNT2 = CNT2 + 1;

end

always @ (posedge CLK)
begin

if (CNTl == CNT2)
ERROR = I'bM;

else
ERROR= l'b 1;//error set

end

//Verilog Self-correctable, triplicated flip-flop

always @ (posedge CLK)
begin

if (RST) begin
QI = l'M;
Q2 = l'bO;
Q3 = l'bO;
end

else begin
QI = D; //flip-flop one
Q2 = D; //flip-flop two
Q3 = D; //flip-flop three

end
end
I/voter
assign Q = (Q I &Q2)I(Q2&Q3)j(Q 1 &Q3);

3.3 Traceability

Traceability of the HDL code refers to attributes that support V&V of the design throughout the
design life cycle as well as safety evaluation review during the licensing process. Traceability attributes
cover issues related to the HDL coding style, such as using hierarchical design, indenting and spacing,
and code comments. The following traceability attributes apply to FPGA design entry methods:

36



" Code Line Length
" Naming Conventions
* Port Mapping
* Constants and Parameters
* Indenting and Spacing
* Dynamic Parameters
* Hierarchical Code
" Code Comments

Code Line Length

Code lines should be restricted to 80 character spaces, as a rule of thumb, to improve code
readability. Longer lines can be broken with the continuation character and aligned with the first line.

Naming Conventions

The design entry file names should match the entity/module name of the VHDL/Verilog code
contained in the file. This helps code readability and simulation. Names for signals, variables, wires,
instances, etc., should be concise but meaningful using underscore where appropriate. Example:
EVENTCOUNTER.

Port Mapping

To improve code readability, use named rather than positional association for the port mapping when
instantiating a sub-module. Also, a single port mapping per line is preferred over single-line port
mapping.

-- VHDL named port mapping //Verilog named port mapping

INSTO : tbuf port map ( tbuf INSTO (
I => DATAIN, .1 (DATAIN),

O => DATA_OUT, .0 (DATA OUT),
T => DATAENB .T (DATAENB)

-- VHDL positional port mapping

INSTO : tbuf port map (DATAIN, DATAOUT, DATAENB);

37



Constants and Parameters

Using constants and parameters to substitute numbers helps readability and portability of the code.

-- VHDL constants //Verilog parameters

constant INIT : std_logic vector(1 downto 0) := "00";
constant SLOW : std logic vector(I downto 0) := "01";
constant FAST : std logic vector(1 downto 0) := "10";
signal STATE: stdlogicvector(1 downto 0);

begin
if STATE = INIT then

O <= '0';
elsif STATE = SLOW then

O <= IN1;
elsif STATE = FAST then

O <= not IN 1;
else

O <= 1';
end if;

parameter INIT = 2'b00;
parameter SLOW = 2'bO 1;
parameter FAST = 2'b 10;
wire STATE;

always @ (posedge CLK)
begin

if (STATE == INIT) begin
0 = I'0;
end

else if (STATE SLOW) begin
O =;

end
else if (STATE FAST) begin

0 = IN;
end

else begin
0 = I'bl;
end

end

Indenting and Spacing

To have better readability of the code and to reduce coding errors, use proper indentation and
spacing. The following example shows proper code indentation.

-- VHDL IlVerilog

process (CLK,RST)
begin

if RST = '1' then
O <= '0';

elsif CLK'event and CLK = 'I' then
if SEL = '1' then

O <= I1;
else

O <= 12;
end if;

end if;
end process;

always @ (posedge CLK or posedge RST)
begin

if (RST)
O = 0;

else if(SEL == 1'bl)
O= I1;

else
O 12;

end

38



Dynamic Parameters

Implementing variable bus and array widths using generic-s and parameter-s helps code reuse and
readability.

--VHDL //Verilog

entity adder is
generic (

INWIDTH: integer := 16;
OUT_WIDTH: integer := 16

port (
IN1 : in stdlogic vector(IN_WIDTH-I downto 0);
IN2 : in std_logic vector(IN_WIDTH-I downto 0);
0 : out stdlogic vector(OUTWIDTH-I downto 0);

end adder;
architecture behavioral of adder is

module (IN 1, 1N2, OUT);
parameter INWIDTH = 16;
parameter OUTWIDTH = 16;
input INI [IN WIDTH-1 • 0];
input 1N2 [IN WIDTH-I : 0];
output OUT [OUTWIDTH-I : 0];

always @ (IN 1, IN2)
begin

OUT = IN1 + IN2;
end

end module

begin

0 <= INI + IN2;

end behavioral;

Hierarchical Code

Avoid using flat-module designs where all the code resides in a single file.. Using hierarchical design
makes the code easier to read, trace, and verify. Also, it facilitates team work on large designs. In
hierarchical code, use the top-level code for component/module declaration and instantiation. The
behavioral code should generally be placed at the lowest hierarchical level. Examples below show
hierarchical design code for both VHDL and Verilog.

39



-- VHDL file top. vhd -- VHDL file adder. vhd

entity top is
port (

IN 1: in stdlogicvector( 15 downto 0);
IN2 in stdlogic vector(15 downto 0);
IN3 in stdlogicvector(15 downto 0);
O : out stdlogic vector(l 5 downto 0)

end top;
architecture Behavioral of top is

component adder is
port (

NIN: in stdlogic vector(] 5 downto 0);
[N2 : in stdlogic vector(15 downto 0);
O : out std logicvector( 15 downto 0)

end component;

signal SUM I : stdlogicvector(15 downto 0);

begin

INSTO : adder port map (
INI => [NI,
[N2 => IN2,
O => SUM1

entity adder is
port (

[NI : in std logic vector(15 downto 0);
IN2: in std logic vector(15 downto 0);
O : out std logic vector( 15 downto 0)

end adder;
architecture Behavioral of adder is

begin

O <= INi + IN2;

end Behavioral;

INST1 : adder port map (
[NI => [N3,
[N2 =>SUM 1,
O => 0

end Behavioral;

40



IlVerilogfile top. v //Verilog file adder. v

module (IN I, IN2, IN3, OUT); module (IN1, IN2, OUT);
input INI [15 :0]; input INI [15 01;
input IN2 [15 • 0]; input IN2 [15 : 0];
input IN3 [15 0]; output OUT [15 :0];
output OUT [15 : 0]; always @ (IN1, IN2)
wire SUMI [15 :0]; begin
always @ (IN1, IN2, IN3) OUT = INI + IN2;

begin end
end module

adder INSTO (
.INI (INI),
.IN2 (IN2),
.OUT (SUMI)

adder INSTI (
.INI (INI),
.rN2 (SUM 1),
.OUT (OUT)

end
end module;

Code Comments

Add comments to the code to describe the purpose and functionality of each of the components in the
design. Also, comment on critical lines and segments of the code to help verification, traceability, and
maintainability of the code.

3.4 Maintainability

Maintainability of the design entry methods relates to attributes that facilitate the maintenance of
HDL code during the operation period. The following are the base attributes relevant to maintainability of
HDL code:
" Generic Code
* Synthesis Directives
* Place and Route Directives
* Vendor-Specific Hard Macros
* Vendor-Specific Intellectual Property Cores

Generic Code

To allow for possible regeneration of the FPGA configuration file using different design tools or
different FPGAs, the HDL code should be as generic as possible without tool-specific or FPGA-specific
directives and structures. Examples in the previous sections of this chapter represent the generic code
examples covering the most common HDL structures needed for safety-critical FPGA design. The
example below shows the generic VHDL code to implement 4-to-I multiplexer as well as the VHDL code
that uses Xilinx M4_I macro for 4-to-1 multiplexer.

41



-- VHDL 4-to- I mux using generic code -- VHDL 4-to-I mux using Xilinx M4_I macro

entity top is
port (

entity top is
port (

SEL
INI
IN2
IN3
fN4
0

in stdlogicvector(ldownto 0);
in stdlogic;
in stdlogic;
in stdlogic;
in stdlogic;
out std_logic

SEL
IN1
IN2
IN3
1N4
0

in std_logic vector(1 downto 0);
in std_logic;
in std_logic;
in std_logic;
in std_logic;
out std logic

end top;
architecture Behavioral of top is

end top;
architecture behavioral of top is

begin begin

process (SEL,[N I ,IN2,IN3,rN4)
begin

case SEL is
when "00" => 0 <= INI;
when "01" => 0 <= 1N2;
when "10" => 0 <= 1N3;
when others => 0 <= 1N4;

end case;
end process;

end Behavioral;

inst: M4_1 port map (
DO => IN I,
D I => MN2,
D2 => IN3,
D4 => IN4,
S => SEL,
0 => 0

end Behavioral;

Synthesis Attributes and Constraints

Avoid synthesis attributes and constraints in HDL code that are specific to a particular synthesis tool.
Future versions of the synthesis tool, even from the same vendor, may not support old synthesis attributes
and constrains. Below are some examples of the tool-specific synthesis constraints used by XST Xilinx
synthesis tool.

USEDSP48 - uses FPGA-specific DSP block for arithmetic operations
RAMSTYLE - defines whether to use distributed or block RAM

Place and Route Directives

Place and route directives are very specific to a particular FPGA vendor and even to a particular
FPGA family from the same vendor. Avoid directives in the HDL code that are not critical for the design,
such as particular placement of design components or use of specific logic and routing resources.
Essential place and route constraints, such as pin placements, global clock lines, and registered POs, are
generally transparent to most of FPGA place and route tools. The examples below show some essential
place and route constraints that should be used as well as some non-essential constraints that should be
avoided. The examples show Xilinx place and route constraints specified in the user constraint files
(UCF).

42



-Essential place and route constraints

NET "CLK" LOC = V 10; -place external signal CLK to pin V10
TIMESPEC "TSCLK" = PERIOD "CLK" 10 ns; - specify the period for signal CLK

-Non-essential place and route constraints

INST "FFI" LOC = CLBR4C4; -- place flip-flop FF I in the CLB in row 4, column 4
INST "BUF I" LOC =TL; -- place clock buffer BUF I in the top left comer

Vendor-Specific Hard Macros

Avoid instantiating hard-core macros in the HDL code such as multipliers, accumulators,
microprocessor cores, and 1/0 interface blocks. These are specific to the particular FPGA vendor and
particular FPGA family.

Vendor-Specific Intellectual Property Cores

Intellectual property (IP) cores from FPGA vendors and third-party suppliers are helpful in the
mainstream FPGA design for speeding up the design process and reducing the design costs. However,
they have a very limited transparency and may be difficult to verify and maintain in safety critical
systems. Use of IP cores in safety-critical systems should be avoided or otherwise additional software and
hardware verification of the core itself needs to be performed.

43





4. FPGA DESIGN METHODOLOGIES

This chapter discusses the FPGA design methodologies that should be used to develop safety-critical
FPGAs that are components in nuclear power control systems. The term design methodology refers to the
development life cycle, which includes requirements capture, conceptual design, detailed design,
implementation, and V&V. More specifically, the FPGA design methodology defines guidance on the use
of mainstream FPGA design tools for safety-critical designs. The specific steps in the methodology need
to be incorporated into the design life-cycle model adopted by the vendor according to its own
management development plan. The chapter is organized into four sections, each covering a base-level
attribute related to safe design practices for using FPGA design tools. The main objective in the selection
of safe design practices is the development of a reliable, robust, traceable, and maintainable FPGA
design. The following are the base-level attributes describing the suggested FPGA design methodologies
in more detail:
* Design for Safety
" FPGA Selection
" Design Tool Selection
* Design Flow

4.1 Design for Safety

Design for safety is a different goal for most designers and Electronic Design Automation (EDA)
tools which traditionally target speed and/or power consumption. A reliable FPGA should perform its
intended functions in a predictable and consistent manner with the desired timing. It is essential that the
design be verifiable and reviewable at each level (behavior simulation, logic simulation, physical
simulation, and prototype measurement). Many EDA vendors offer verification tool suites that can greatly
help in testability analysis and design simulation. Advanced simulation techniques such as constraint-
random stimuli generation, assertion-based verification, and formal verification together with the code
coverage analysis should be encouraged for use in the verification of safety-critical FPGA designs as an
integral part of the design life cycle. Additional requirement for the design for safety is that the errors that
occur while the FPGA is in use due to abnormal conditions and events should be detected, reported, and
fixed.

4.2 FPGA Selection

Advances in the manufacturing of hardware components over the past few decades have produced
FPGAs that contain millions of logic elements and interconnections. However, FPGAs in nuclear power
plant control systems are generally required to implement relatively small designs requiring only a few
thousand elements, and therefore, these designs do not warrant the use of the newest models of FPGA
components. Further, it is best to employ one or more small FPGAs with low capacity rather than a
single, large-capacity device. As a rule of thumb, if the FPGA occupancy is below 30%, the FPGA is too
big for the application, and if the occupancy is over 80%, the FPGA is too small for the application. In
many cases where designs do not require a large number of memory elements, CPLDs can be a safer
choice than FPGAs due to their on-chip configuration memory, their rich combinatorial circuitry, and
better timing predictability. The flash-based FPGAs have build-in configuration memory that is more
resistant to single event upsets (SEUs) than the SRAM-based FPGAs. They are a valid alternative to
CPLDs, especially for large designs that can not fit in any of available CPLD. Finally, one-time
programmable FPGAs have advantages over the reprogrammable FPGAs in cases where re-
programmability is not necessary or not desired. The configuration in one-time programmable FPGAs is

45



immune to single event upsets (SEUs), is protected from accidental or malicious reprogramming, and
does not require special maintenance.

4.3 Design Tool Selection

Electronic design automation (EDA) tools are continually being enhanced to handle larger and more
complex designs. However, newer versions of tools generally have not been tested as much as older
versions, so designers of FPGAs intended for nuclear power plant control systems may intentionally
prefer to use stable versions of EDA tools to increase the likelihood that errors are not present in the tools.
FPGA EDA tools that are used by only a few thousand designers are less desirable for safety system
development compared with those for main-stream processors, which are used by potentially millions of
users. Since no EDA vendors offer certified versions of their tools for safety-critical applications, the
reviewer needs to rely on the review of the entire design life-cycle. In this process, the review of the EDA
tools should establish whether the vendor exercised the following activities to assess the tools:
* Identifying the tool
* Identifying which design and verification processes the tool supports
* Independently assessing the tool output
" Identifying tool relevant history
* Indentifying known tool issues
* Identifying tool settings used for the design
" Assessing designers' experience with the tool

4.4 Design Flow

Recommended design flow, as shown in Figure 5, includes the design path and the verification path
where every step in the design path has a corresponding step in the verification path. Depending on the
results of each of the verification steps, the corresponding design step may need to be redesigned until the
verification requirements are satisfied. Also, the verification steps may require revision of the initial
requirements and consequently require an update of all previous design steps. In the following
paragraphs, the design and verification steps are described in more detail.

4.4.1 Design Requirements

The design begins with a narrative description of the requirements for the FPGA-based component.
This description should state the desired functionality of the device and describe the context in which the
device will be employed. Additional requirements, such as critical timing, power, and board size, may be
added to the requirements.

4.4.2 Architectural Design

The most critical part of the architectural design process is the top-level design partitioning. The
main criteria in the design partitioning should be design reliability, design traceability, and design
verifiability. Other criteria may include functionality, clock domains, SEU mitigation, and safety vs
nonsafety separation. These criteria are not mutually exclusive as they can lead to the same partitioning of
the design. Below is a more detailed description of the design partitioning criteria.

46



Figure 5. FPGA design flow.

47



* Partitioning for reliability refers to dividing the design into sub-blocks that best represent the initial
requirements as some of the requirements may be loosely correlated to each other or not correlated at
all. This will also help traceability of the initial requirements throughout the design life cycle.

* Partitioning for verifiability divides the design into blocks that can be separately simulated and
verified throughout the development life cycle.

* Partitioning by digital functions divides the design into blocks that perform a specific function such as
state machines, memories, memory controllers, I/O interfaces, etc.

" Partitioning by clock domains divides the design into separate clock islands that may or may not
interconnect.

* Partitioning by SEU mitigation includes redundant blocks to implement error detection and/or error
correction.

" Partitioning by safety separates safety functions from the nonsafety functions residing on the same
FPGA device. Note that nonsafety function blocks cannot be sufficiently isolated from safety
functions residing on the same FPGA device. As a consequence, the nonsafety blocks should receive
the same rigor of verification as the safety blocks. Implementing safety and nonsafety functions on
separate FPGAs or separate boards and then implementing a proper isolation on the interfacing lines
is a better partitioning approach.

Additional architectural consideration may include critical timing of the internal FPGA design,
FPGA interfacing with outside circuitry, external reset, external clock sources, power dissipation, etc.

4.4.3 Detailed Design

Detailed design objective is to define specific implementation blocks such as state machines,
memories, internal and external interfaces, data-path sizes, and clock speeds. Additionally, circuitry for
design health monitoring, built-in self test, redundancy, and observability needs to be specified in detail.
The output of this step is most likely a block diagram showing functional blocks, their interfaces, and
other information necessary for HDL coding or schematic design that follow in the design flow.

4.4.4 Design Review

Output of the architectural design and detailed design steps in the form of textual or graphical
description of the design partitioning and other design requirements should be reviewed in the design
review process. The result of the review may require a different design partitioning or correction of the
initial requirements. The review can be conducted initially by the designer but, subsequently, by other
members of the designer's organization or an independent third party.

4.4.5 Behavioral Description

In the next design step, the designer refines the architectural specifications into behavioral
descriptions that delineate the functionality of each module and their interactions. The behavioral
description is done by schematic diagram, block diagram, or HDL such as VHDL and Verilog which use
register transfer level (RTL) representation of digital, two-valued logic. It is essential that the hierarchy in
the behavioral description exactly represent the design partitioning done during the architectural design
step. Also, the hardware design practices and the HDL coding practices suggested in previous chapters
should be followed in the behavioral description. Outputs of the behavioral design step such as schematic
diagrams, block diagrams, VHDL, or Verilog code can serve as the documentation base for the review of
this design step, to trace back to the original design requirements, and to generate input stimuli for the
behavioral simulation.

48



Other design entry methods exist that use a higher level of abstraction such as Matlab, C, or
LabVIEW. Additional tools (code generators) are then used to translate the high-level behavioral
description into HDL code. Using higher levels of abstraction saves development time but leaves
numerous details up to the synthesis tool to interpret. On the other hand, specifying the design at a low
level of detail requires more effort on the part of the designer, but the final implementation is more likely
to reflect the original intent. This situation is analogous to an upper-level manager providing directions
which are then interpreted by subordinate managers for final disposition by staff.

Whenever these higher level abstraction methods are employed, it is essential that thorough testing
and evaluation be performed to ensure that the final implementation corresponds to the intent of the
designer. Even though the higher level of abstraction increases productivity in the mainstream digital
design, it may not be suitable for safety-critical designs as the generated HDL code may be difficult to
read and trace back to the original design requirements.

4.4.6 Behavioral Simulation

Behavioral simulation, also referred to as presynthesis simulation, uses standard simulation tools and
is based solely on the graphical or textual description of the design requirements. Input stimuli and
expected output behavior vectors should be specified according to the initial design requirements. Simple
designs that do not contain hierarchical blocks can have a single set of top-level input and output
simulation vectors. In the case of hierarchical designs with multiple blocks, the simulations should be
done for each block separately to achieve a higher level of simulation coverage.

After the block-level simulation is performed, the top-level simulation may be performed to confirm
proper connectivity between the blocks. Special care should be taken when generating the input stimuli
for safety-critical designs as a high-level of testability is generally required. Small combinatorial designs
or design blocks can be 100% tested; however, even small sequential designs containing just a few tens of
flip-flops may be practically impossible to test 100%. To achieve a reasonable confidence in the design,
the input stimuli should not only cover the expected input combinations but also those input combinations
that are not expected in normal use of the design. To increase confidence in the design, fault injection
techniques can be used to change the internal state of the design to simulate SEUs.

Outputs of this step, the timing diagrams, and textual reports are necessary documentation needed to
verify correct behavior of the design. There may be a need to correct the behavioral description of the
code until the initial requirements are met. Sometimes, the initial requirements may need to be corrected
or the behavioral simulation may show that the initial requirements are incomplete, inconsistent, or
otherwise deficient.

4.4.7 Logic Synthesis

Separate design tools such as VHDL or Verilog synthesizers are used to generate the gate-level
representation of the RTL description contained in HDL code. Synthesis tools optimize digital logic
described in HDL code and produce either textual outputs such as EDIF files or graphical (schematic)
outputs. Most synthesizers generate FPGA-independent schematic representation of the HDL code as well
as the FPGA-specific schematic representation. The FPGA-independent schematic uses AND, OR, and
NOT gates and flip-flops to represent the design, while the FPGA-specific schematic utilizes look-up
tables to replace the combinatorial logic and different macros to represent higher-level functional blocks
such as memories, multipliers, adders, etc. To be able to understand what possible optimizations and
design changes are applied during the synthesis, designers and reviewers should carefully examine the
synthesis report documents generated by the synthesis tool. Usually, the warnings in the report may give
important information about how the synthesis tool understands the HDL code and, thereby, whether the
original designer's intent remained unchanged.

49



4.4.8 Logic-Level Simulation

. Since different synthesis tools perform different optimization of the HDL code and produce different
FPGA-specific schematic diagrams, a post-synthesis simulationis required to confirm that the initial
design requirements are preserved during the synthesis. While presynthesis simulation is technology
independent, post-synthesis simulation uses technology-dependent elements that are FPGA specific. It is
important to understand that the post-synthesis simulation does not accurately model the interconnection
delays or critical timing parameters of the involved logic. The exact timing analysis is done by post-
layout simulation performed after physical implementation of the design.

It is essential for the post-synthesis simulation that the same input stimuli that were used during the
behavior simulation are used for post-synthesis simulation as well. If new stimuli are added at any level or
changes are made to any descriptions, regression tests should be performed at each level to ensure that all
levels have been subjected to the same tests and their responses are consistent. The verification process at
this step should confirm that the outputs of the post-layout simulations are equivalent to those achieved
during the behavioral simulation. Any differences between the simulations should be analyzed to
determine how they affect the original design requirements.

4.4.9 Physical Implementation

Following synthesis, the design is physically implemented, which in the case of FPGAs involves
placing and routing steps or in the case of CPLDs, the fitting step. During this design phase, an EDA tool
maps the logic abstraction into the physical elements and interconnections on the FPGA device. At this
design step, additional design requirements may need to be implemented. These requirements include the
timing requirements, I/O placement, I/O parameters, use of FPGA-specific logic elements, etc.

4.4.10 Post-Layout Simulation

Post-layout simulation should be performed by the designer using the same input stimuli from the
previous two simulation steps. Also, the outputs of the simulation should be compared to the simulation
results from previous steps. As a result of exact timing parameters of the involved logic and interconnects,
additional information is generated by the post-layout simulation. Designers and reviewers should use the
additional timing information to verify whether the design can operate at the required speed or whether
there are other timing issues such as glitches, excessive signal skews, etc. As a part of the verification
process at this design step, the post-layout report files should be analyzed to confirm that all the timing
requirements are met and within margin; the utilization of the FPGA resources is acceptable; the I/O pins
are placed at the requested positions; and the I/O parameters such as slew rate or drive current correspond
to the design requirements. Most of the EDA tools include chip viewing utilities that can be used to see
how the design elements are positioned inside the FPGA device. The utilities also provide information
about the fan-outs and the delays for each connection path.

4.4.11 Prototype

The main purpose of the prototyping is to perform hardware verification of the FPGA design that has
been previously verified in software. After the post-layout simulation confirms that the design conforms
to the initial requirements, a configuration file is generated by the design tool and downloaded into the
target FPGA device. FPGA prototyping is needed to verify that the downloaded configuration file
produces a configured FPGA with the intended behavior. Prototyping includes the FPGA board design
where the FPGA device is placed in the interfacing environment that is expected in the final board design.

Because the software-based simulation from previous steps was done on both modular and top
levels, additional access I/O pins such as JTAG boundary scan pins may be needed to perform hardware
verification of the blocks inside the FPGA device as the functional I/O pins may not allow access to the

50



internal signals of interest. These additional pins provide the outputs of the internally connected modules
as well as the inputs to the modules that need to be multiplexed with the existing internal inputs. Using
this approach, all the internal signals relevant in the hardware verification will be accessible from the
FPGA device 1/0 pins, thereby allowing separate verification of internal blocks as well as the entire
design. In the final hardware implementation, these additional pins may be left unconnected with the
input pins pulled high or low. The internal logic used to bring in input signals from the outside may be
left inside the FPGA device as they do not use significant FPGA resources.

4.4.12 FPGA Verification

. FPGA verification should be performed using hardware generated input stimuli that are identical to
the stimuli used in the software-based simulation. By comparing the hardware simulation outputs with the
software simulation outputs, one can verify whether the hardware implementation conforms to the initial
design requirements both at the module level and at the top level. The verification process applied in the
design flow is shown schematically in Figure 5, where different intermediate design steps undergo the
same simulation process.

The unit under test in Figure 6 represents either a block within the design or the entire design. The
stimuli used in the simulation should be designed to perform 100% or as-high-as-practically-achievable
testability of the unit under the test.

II I qI
STIMULI UNIT UNDER TEST - RESPONSES

I I
I I

I I I

Figure 6. Testing procedure for each design step.

4.4.13 Hardware Implementation

Hardware implementation refers to final board/module design and fabrication. The board may
include one or more FPGA devices and the necessary interfacing circuitry. The FPGA hardware design
guidance from Chapter 2 should be used by the designers and the reviewers during the hardware
implementation. Documentation needed to verify this step of the development life cycle includes
schematic diagrams of the board, bill of materials, and data sheets for components on the board
interfacing the FPGA device(s).

4.4.14 Functional Hardware Verification

At the end of the development life cycle, functional hardware verification should be performed to
confirm correct board/module functionality in the operational environment. In contrast to the verification
process described in Figure 6, functional hardware verification is performed on the entire FPGA board
with a limited set of input stimuli that covers the input combinations expected during normal operation of
the FPGA. Additionally, the input stimuli should include input combinations that are not expected during
a normal board/module operation to confirm that there are no unexpected responses.

Functional hardware verification should also include design issues related to the circuitry residing on
the same board with the FPGA device. These issues include verifying FPGA device interfaces with

51



external circuitry including proper 1/0 logic levels, output driving currents, external resets, external clock
sources, FPGA power regulators, etc. FPGA hardware design practices described in Chapter 2 should be
used as guidance for the hardware verification.

52



5. CONCLUSIONS

The FPGA review guidance has been developed to address the gaps in existing regulatory documents
used to review instrumentation and controls (I&C) systems in nuclear power plants. The existing
documents address the principal relevant issues, such as system safety assessment, development life
cycle, V&V, configuration management, and documentation requirements, but they do not offer specific
review guidance for FPGA-based systems. For example, the system safety assessment and the design life
cycle are addressed in several regulatory documents such as DO-254, IEEE 1012-2001, and IEC 61508,
and they can be used for FPGA-based system as a general guide. Also, the V&V process, configuration
management, and the development life cycle documentation are addressed in the above documents and in
IEEE Std 7-4.3.2. The FPGA-specific review guidance in this document includes FPGA hardware design
practices, FPGA design entry methods, and FPGA design methodologies. Several key statements
summarize the specific safety design issues in FPGA-based systems.
* FPGAs should be considered a mix of hardware and software and, therefore, specific design and

review guidance should be applied. Their static configuration after programming can lead to a
conclusion that they are purely hardware systems. However, since the configuration is based on a
software-based design process using software design tools, FPGAs are software systems as well.

" The FPGA designer adds to the functionality of an empty FPGA from the FPGA manufacturer as a
quality-assurance (QA)- tested and qualified part. To have sufficient assurance that the added
functionality satisfies safety requirements, a rigorous and well-defined development and verification
process should be applied.

* FPGAs are relatively complex digital components, and, in most of the cases, the FPGA designs are
sufficiently complex that 100% testing is practically impossible. In a general case, the FPGA design
will contain a significant number of memory elements (i.e., flip-flops). To perform a 100% testing of
such a design, not only should the FPGA inputs be exercised for all possible combinations but also all
possible internal states should be exercised as well.

" Even if a hardware-accelerated simulation is used, 100% testing may take a prohibitively long time to
complete. Therefore, the review of the entire development life cycle should be performed to verify
FPGA-based systems unless the design is purely combinatorial with no more than a couple of tens of
inputs allowing for 100% testability.

• Design tools used for safety-critical FPGA designs are the mainstream tools that are usually used for
large, high-speed FPGA designs. Tool manufacturers typically offer additional support for the
designers to fix possible tool errors during the life cycle of the tool version. New tool versions or
software packages are offered to handle larger and faster designs as well as to fix all known errors in
the previous version. It is, therefore, likely that the mainstream tools will not pass the tool
certification process for use in safety-critical design without significant changes and additional
development cost. Consequently, the vendor needs to assess the design tools before using it for FPGA
design and verification.

53





APPENDIX A

SURVEY OF FIELD PROGRAMMABLE GATE ARRAY
DESIGN GUIDES AND EXPERIENCE RELEVANT TO

NUCLEAR POWER PLANT APPLICATION





APPENDIX A
SURVEY OF FIELD PROGRAMMABLE GATE ARRAY
DESIGN GUIDES AND EXPERIENCE RELEVANT TO

NUCLEAR POWER PLANT APPLICATION

A.1 INTRODUCTION

Oak Ridge National Laboratory (ORNL) has been engaged by the U. S. Nuclear Regulatory
Commission (NRC) Office of Nuclear Regulatory Research to develop the technical basis for
assessing field programmable gate array (FPGA) technology in safety-related systems within
nuclear power plants. In particular, ORNL has investigated programmable digital logic
technology and implementation practices to support development of review guidance. As part of
this study, ORNL has surveyed information on the use of FPGA technology for high-assurance
applications. This report presents the findings of these surveys, along with a summary of
particularly relevant programmable logic device standards.

Information for this report was obtained through publicly available sources such as
published papers and presentations. No proprietary information is represented.

A.1.1 Background

An FPGA is a digital device containing programmable logic components and programmable
interconnects between the logic components. The logic components can be programmed to
duplicate the functionality of basic logic gates such as AND', OR2, XOR3, NOT4, or more
complex combinational 5 functions such as decoders or simple math functions. Also, the
programmable logic can include memory elements such as simple flip-flops 6 or more complete
blocks of memories.

FPGAs emerged more than two decades ago as a normal process of constantly increasing
integration level in digital electronics. They offered a significant improvement in the digital
design by moving the logic block interconnects from the designer's responsibility to the
specialized synthesis, place, route, and simulation tools. This simple paradigm enabled several
major advantages of the FPGA-based design over the existing glue-logic design that was based on
extensive board-level interconnects.

First, FPGA design tools offer automatic detection and/or correction of many typical errors
that were much more difficult to detect and correct in the old design environment. Second,
moving the interconnections from the board level to the silicon level enables a huge reduction in
size, power, and price of digital systems. Third, many of the tedious design steps that were prone

AND is a digital logic gate that only outputs a high (1) result when both inputs are high (1).
Otherwise, the output is low (0).

2 OR is a digital logic gate that outputs a high (1) result when an input is high (1). Otherwise, the
output is low (0).

3 XOR is a digital logic gate that outputs a high (1) result when only one input is high (1). Otherwise,
the output is low (0).

4 NOT is a digital logic gate that is essentially an inverter. If the input is low (0) then the output will
be high (1) and vice versa.

' Combinational logic is logic whose output is a function of the present input.
6 Flip-flops are electronic circuits with two stable states that are capable of serving as one bit of

memory.

A-I



to errors are now performed by the FPGA manufacturer so that the whole process can be
standardized, tested, and constantly improved. Fourth, FPGA feature sizes are continually
decreasing, allowing manufacturers to pack more logic into a single chip. FPGAs today use 65nm
technology that can provide nearly 10 million basic logic gates in a single chip. Many of the
mentioned advantages of the FPGA technology make it inherently more reliable and safe for use
in critical applications. Obviously, the increased complexity requires special care when FPGAs
are used in safety-critical systems.

In further detail, a hierarchy of programmable interconnects allows the logic blocks of an
FPGA to be interconnected as needed by the system designer, somewhat like a one-chip
programmable breadboard. An FPGA designer can program these logic blocks and interconnects
after the chip manufacturing process (hence the term "field programmable"), so that the FPGA
can perform whatever logical function is needed. Not all FPGAs are truly field reprogrammable.
Vendors often sell less flexible versions of their FPGAs, which cannot be modified after the
design is committed. For safety applications, this has the advantage of permanently committing
the logical functions into an invariant form.

The FPGA design process begins with the designer creating a hardware description language
(HDL)7 or a schematic design of the desired logical functions. Common HDLs are VHDL' and
Verilog9 Then, using an electronic design automation tool, a technology-mapped netlist'° is
generated. The netlist can then be fitted to the actual FPGA architecture using a process called
place-and-route, usually performed by the FPGA company's proprietary place-and-route
software. Different companies' place-and-route software packages are likely to implement the
same logical functions in different physical layouts. The next step in a typical FPGA design
process is for the designer to validate the place-and-route results via timing analysis and
performance simulation. Once the design and validation process is complete, the generated binary
file (also using the FPGA company's proprietary software) is used to (re)configure the FPGA.

In an attempt to reduce its complexity, the abstraction level of the HDL design can be raised.
A number of FPGA design tools that use high-level languages such as System-CTM, LabVIEWTM,
MatlabTM , SystemVerilog, SystemVHDL, and Handel-CTM have been recently developed. To
further simplify the design of complex systems in FPGAs, libraries of predefined complex
functions and circuits, with widely varying performances in speed, accuracy, reliability, etc., are
commonly employed as a block to avoid having to recreate previously developed logic.

Generally, FPGAs can perform any arbitrary logic function for which they have been
programmed, so they can be deployed in nuclear power plants in place of any logic function
component such as trip logic units, engineered safety feature (ESF) actuation decision logic, or
digital communication interface priority logic. Due to their technical capabilities, FPGAs are
currently widely deployed for industrial applications requiring fixed or infrequently changing
logical functions.

FPGAs constitute a broad technology class with differing implications for their application
to safety systems based on the particular details of the implementation. In its simplest form, an
FPGA could be restricted to implementing small logic blocks such as interdivisional voting. This
type of implementation would likely lack any system memory (signal history), and therefore may
be sufficient to be completely and deterministically analyzed and tested.

7 HDL describes the components operation, design, and organization.

8 VHDL stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description Language

and is the most common software for FPGA and ASIC designs.
9 Verilog is another HDL for FPGAs and ASICs. Its syntax is similar to C programming language.
10 A netlist describes the connections that need to be made for the design.

A-2



In a more advanced form, the FPGA could possess memory functions and a set of basic math
functions. This type of FPGA would very likely be designed, validated, and tested using
computer-based tool sets based on some form of formal verification. The logic implementing this
type of FPGA would almost certainly be too complicated to be completely validated analytically
due to the extremely large number of possible logic states. Even more advanced logical functions
can be implemented within FPGAs, including embedded microprocessors with their related
peripheral components, enabling the creation of system-on-a-chip devices. These types of
systems include both the digital logic and software designs, greatly increasing the overall
complexity of the validation process.

Even though designing FPGA-based systems involves hardware implementation of logical
functions, the design process itself is highly software intensive. Hence, errors within the software
design process can result in undesired behavior of logical functions implemented in hardware. In
this case, the software validation process extends to assesment of the FPGA design tools.

A.1.2 Research Approach

From a safety perspective, it is difficult to assess the correctness of FPGA devices without
extensive documentation, tools, and review procedures. NUREG/CR-6463, "Review Guidelines
on Software Languages for Use in Nuclear Power Plant Safety Systems [52]," provides guidance
to NRC staff for auditing of safety system programs written in ten high-level languages. A
uniform framework for the formulation and discussion of language-specific programming
guidelines was employed. Comparable guidelines based on a similar framework are needed for
FPGA-based systems. It is the objective of this project to develop the technical basis for these
guidelines.

The first task in this research project involved evaluation of regulatory experience gained by
other countries and other agencies, and experience captured in existing standards to identify
regulatory approaches that can be adopted by NRC. If existing regulations do not provide a
sufficient framework for adopting relevant regulatory approaches that are uncovered, ORNL was
tasked with identification of the gaps. This report presents the findings of this initial research
activity.

A.1.3 Report Organization

This report contains summaries of documents discussing the use of FPGAs in safety-critical
systems. The summaries are divided into two main sections: 1) Regulatory Approaches by Other
Countries and Agencies, and 2) Existing Standards. The first section contains documents found
with regulatory experience from Japan and France. The remaining section is composed of
documents dealing with the aerospace industry, which includes those from the European Space
Agency (ESA), the National Aeronautics and Space Administration (NASA), and general FPGA
findings for space, the nuclear industry, and the automotive industry. The final section includes
the existing standards such as "Design Assurance Guidance for Airborne Electronic Hardware,"
DO-254"1 [11].

"DO-254 is a standard for complex electronic hardware created by the Radio Technical
Commission for Aeronautics (RTCA), which develops standards for the Federal Aviation
Administration (FAA).

A-3



A.2 FPGA-RELATED TECHNICAL STANDARDS/
PUBLISHED MATERIAL

Internet searches of technical standards related to FPGA design were performed. The main
goal was to find FPGA design standards from other countries, industries, etc. to assess and
possibly adopt as a basis for reviewing FPGA-based nuclear power plant safety system
applications. Although the searches did not result in any standards specifically dedicated to the
use of FPGAs, a total of more than 80 documents were identified as relevant. The material was
then examined more closely for topics related to the following:

* Integrity of the FPGA programming process and methods of FPGA code and hardware
verification and validation (V&V),

" Single event effects (SEEs) and the techniques to reduce/eliminate their impact on the FPGA
functionality, and

* Safe hardware design practices specific to FPGAs

Of the 83 documents, 22 were selected based on relevance to the above criteria for further

review. The selected documents are listed below:

Regulato Apjproaches by Other Countries and Agencies

" Transition and Current Status of NPP C&I System of BWRs in Japan [15]
" PLD-Based Safety Critical Systems: An Introduction and Survey [31]
" A Comparison of Radiation-Hard and Radiation-Tolerant FPGAs for Space Applications

[23]
* Formal Verification of Fault Tolerance in Safety-Critical Reconfigurable Modules [28]
" Lessons Learned From FPGA Developments [29]
" Application-Specific Integrated Circuit (ASIC) Design and Manufacturing Requirements

[39]
" Independent Verification and Validation: First Year Summary Report for the Programmable

Logic Devices Research [63]
* A Preliminary Practitioner's Guide to Defect Detection in VHDL Based Designs [66]
" Architectural Principles for Safety-Critical Real-Time Applications [55]
" Harmonization of the Licensing Process for Digital Instrumentation and Control Systems in

Nuclear Power Plants [36]
" AP1000 Instrumentation and Controls [41]
" Design, Test, and Certification Issues for Complex Integrated Circuits [37]
" FPGA Space Qualification Presentation [56]
" Suitability of Reprogrammable FPGAs in Space Applications [67]
" VHDL Modeling Guidelines[38]
" Guidance on Software Reviews for Digital Computer-Based Instrumentation and Control

Systems [42]
" Reliability Considerations for Automotive FPGAs [62]
" Embedded Digital System Reliability & Safety Analyses (NUREG/GR-0020) [34]

Existing Standards

" Design Assurance Guidance for Airborne Electronic Hardware (DO-254) [11]
* IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power

Generating Stations (IEEE 7-4.3.2) [40]

A-4



* International Standard for Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems - Part 2: Requirements for
Electrical/Electronic/Programmable Electronic Safety-Related Systems (IEC 61508-2) [54]

* IEEE Standard for Software Verification and Validation (IEEE 1012-2004) [80]

A.3 SUMMARIES OF SELECTED STANDARDS/
PUBLISHED MATERIAL

Summaries have been provided for each of the 22 selected documents. The summaries are

meant to highlight issues/solutions to designing safety-critical systems with FPGAs.

A.3.1 Regulatory Approaches by Other Countries and Agencies

A.3.1.1 Japan

Transition and Current Status of NPP C&I System of BWRs in Japan [15]

This document overviews the number and status of nuclear plants in Japan. The document
also presents the plan for controls and instrumentation (C&I) modernization using FPGA-based
modules. The Power Range Neutron Monitor safety system design is based on a one-time
programmable FPGA that has been recently developed and is currently undergoing quality
assurance. Many other C&I systems under development are to be based on the FPGA technology.

A.3.1.2 France

PLD-Based Safety Critical Systems: An Introduction and Survey [31]

This report was prepared by the University of Virginia (UVA) for Electricitd de France. The
first half of the report is a survey of FPGA devices. The report then discusses the use of mil-spec
parts, test coverage (off-line and on-line), and triple-modular redundancy (TMR). Fault tolerance
was also included and highly advocated due to degradation and/or disruption of the configuration
memory. The report did raise concerns about the lack of independent fault containment regions,
clocking, and power issues if replicated modular fault tolerance were to be achieved on an FPGA.
Formal verification methods such as equivalence checking and model checking were
recommended as good design practices. The report also identified the DS-00-54 [83] as well as
citing DO-254 [ 11] as the best guidance to date for defining the desired performance rather than
prescribing how to achieve it.

A.3.1.3 Aerospace Industry

A.3.1.3.1 General findings

A Comparison of Radiation-Hard and Radiation-Tolerant FPGAsfor Space Applications [23]

The document compares rad-hard FPGA families, static random access memory- (SRAM-)
based Xilinx® FPGAs, and one-time programmable Actel® FPGAs based on their performances
for space applications. The performance characteristics compared are: total ionizing dose (TID)
performance, single event upset (SEU) performance, SEU mitigation techniques, fan-out12,
package quality, operating temperature, operation clock speed, set-up and configuration time,
power consumption, and known quality issues. The document also mentions AeroflexTM and
AtmelTM rad-hard FPGAs.

12 The term fan-out is used to indicate the maximum number of digital inputs that can be fed by the

output of a single logic gate.

A-5



Formal Verification of Fault Tolerance in Safety-Critical Reconfigurable Modules [28]

This document considers Esterel, a formal verification language for FPGA-based safety
systems. It describes a design process that includes top-level design and verification as well as
automatic code generation for synthesizable VHDL. The document states that this process
reduces the likelihood of systematic faults. Also, it reveals how Esterel can be used for failure
mode and effects analysis (FMEA) and for fault tree analysis (FTA).

Design, Test, and Certification Issues for Complex Integrated Circuits [3 7]

This document mainly focuses on ASICs but does contain some information on SRAM and
antifuse FPGAs. It stated that as more sequential logic becomes available in a device, the more
difficult it becomes to test that logic. Signal delays in FPGAs were discussed with causes listed as
1) signal wire characteristics, 2) programmable elements, 3) amount of cascaded logic cells, and
4) propagation delay of each logic cell.

FPGA Space Qualification Presentation [56]

This document describes qualification of FPGA parts for space applications. The aerospace
community and the United States govemment updated two main space qualification standards
(MIL-STD-1546 and MIL-STD-1547) and published those updates as Aerospace Technical
Operating Report. Then in 2006 the standards were updated again to include more stringent
requirements and will be published again as MIL-STD- 1546 and MIL-STD- 1547. These
documents will be used to qualify FPGA manufacturing processes as well.

Suitability of Reprogrammable FPGAs in Space Applications [67]

This document investigates SEU issues related to FPGAs emphasizing Xilinx® XC4000 and
Virtex® FPGAs, both rad-hard and general use versions. It briefly describes reprogrammable
FPGA technology and its susceptibility to SEUs. The SRAM-based FPGAs have been used
recently in applications such as avionics, space exploration, and high performance reconfigurable
processors (different SEU mitigation techniques are reported for these applications). The most
common is the TMR technique, but others include adding idle cycles for concurrent error
detection, Hamming codes, and other parity codes, built-in self-test (BIST), etc. To increase rad-
hardness and reduce SEU sensitivity, most FPGA manufacturers use some kind of rad-hardened
adjustment of their standard commercial foundry.

The document also describes three kinds of SEU in SRAM-based FPGAs. These are
configuration memory upsets, used logic upsets, and architectural upsets [joint test action group
(JTAG) upsets]. Several sensitive FPGA structures have been identified such as sequential and
combinatorial logic, half-latches, lookup tables (LUTs), block random access memory (BRAM),
digital clock manager (DCM), input/output (I/O) logic, and JTAG. The document covers many of
the most common SEU mitigation techniques such as configuration memory protection, user
logic protection, module-level protection, and gate-level protection. The document also reports
some of the results of various SEU and TID tests performed on Virtex® and Xilinx® XC4000
FPGAs.

A.3.1.3.2 European Space Agency

VHDL Modeling Guidelines [38]

This document defines acceptable practices for designing VHDL models and test benches
used by the ESA. The purpose of these requirements is to ensure the models are of high quality so
they can be efficiently used and maintained throughout the full life-cycle of a safety critical
system. Some of the requirements are to use VHDL93, use the English language, limit the
number of characters per line to 80, comment the design in detail within the code, use a defined
code header at the beginning, and use assertions. The document suggests avoiding the buffer

A-6



mode for the ports of top-level entity and single wait statements, in which a process statement
with sensitivity list should be used.

Lessons Learned From FPGA Developments [29]

This document contains information regarding problems encountered and lessons learned in
the use of FPGAs involved in satellite missions from the ESA and NASA. This document has
also been used by these agencies as an FPGA design guideline. However, the report only focuses
on existing once-only programmable devices. The following topics were discussed as lessons
learned: (1) transient performance of components not adequately accounted for in the design;
(2) little to no documentation from FPGA designers and no established SEU requirements;
3) timing, static timing, clock skew, and low power designs performed with ASICs should be
tested with FPGAs; (4) FPGA verification should not be done in isolation by the designer; and
(5) specifications should be established to define all relevant system configurations and
characteristics to a level allowing FPGA device requirements to be derived.

The document concluded that employing FPGAs for critical use is only recommended when
appropriate risk analysis has been performed and when the developer can prove that the selected
FPGA will fulfill its task in a given application and environment.

ASIC Design and Manufacturing Requirements [39]

This document presents the requirements for ASIC (not FPGA) design used by ESA.
Although FPGA design is not discussed, FPGA and ASIC design share many similarities. The
document requires VHDL-based simulation at the architectural level, including the ASIC and
other components on the board. Also, during the detailed design, VHDL should be used to
simulate the ASIC's functionality. Later, during the prototype testing, the same VHDL test
benches should be used. The ASIC's set of specific design requirements include (1) use of
asynchronous reset rather than synchronous reset (the ASIC state should be completely
deterministic after the reset); (2) ensuring the design is as synchronous as possible throughout the
design; (3) mitigation of metastability issues; (4) power minimization using the clock control in
the design; (5) addressing the SEU issues; (6) avoidance of floating nodes; (7) avoidance of bus
contention; and (8) elimination of unnecessary circuitry.

A.3.1.3.3 National Aeronautics and Space Administration

Independent Verification and Validation: First Year Summary Report for the Programmable
Logic Devices Research [63]

This document is related to the SAI Corporation's 2005 study for NASA's Goddard
Software IV&V Facility regarding independent verification and validation (1V&V) of defect
detection in VHDL based FPGA designs [79, 66]. The document concentrates on verification and
validation (V&V) of the VHDL code design, particularly syntax, 110 unknown states, coding
style, unnecessary circuitry, dangerous semantics, etc.

The document examines four existing standards for software and hardware V&V: NASA-
STD-8739.8 [72], IEEE STD 1012-1998 [80], IEEE STD 1076-2002 [81], and DO-254 [11]. All
of these documents mention the need for IV&V with regards to PLDs. The document stated that,
"NASA has provided no clear guidance on the software aspects, design and development of
PLDs, or how to assure safety, reliability, or quality of these hybrid devices."

Further, the document surveys formal PLD verification techniques, listing the most popular
software tools for model checking, emphasizing the model-based verification of the VHDL
programs where the design specification is used to test the designer's code. The document also
lists most frequent structures in a VHDL design, and lists the VHDL code design practices that
need to be avoided.

A-7



A Preliminary Practitioner's Guide to Defect Detection in VHDL Based Designs [66]

NASA's preliminary guide suggests an IV&V process for VHDL validation in FPGAs. The
process includes artifacts (documents) collection, VHDL standard compliance analysis,
pedagogical code examination, design artifact analysis, and final assessment.

Architectural Principles for Safety-Critical Real-Time Applications [55]

This document discusses redundancy management, common mode/cause failures affecting
multiple regions, fault avoidance, tolerance, and removal, and exact versus approximate
consensus. Stating that critical systems in many industries (such as the aerospace industry) are
usually designed from the ground up, it concludes that VHDL and a synthesis methodology
should be integrated with formal specification and verification. It was also noted that for safety-
critical applications, physical operational hardware faults no longer pose a major threat to
dependability, but the dominant threat is now common mode failures, for which no single theory
can be applied and for which multidiscipline, multiphase defense is required.

A.3.1.4 Nuclear Industry

Harmonization of the Licensing Process for Digital Instrumentation and Control Systems in
Nuclear Power Plants [36]

A Technical Working Group on Nuclear Power Plant Control and Instrumentation (TWG-
NPPCI) met in 2001 and 2002 to develop consensus positions on processes for efficiently
licensing nuclear power plant safety instrumentation and control systems for a worldwide market.
The working group concluded that the present national licensing approaches of digital I&C for
nuclear power plants needs to be reduced to a set of documents that can provide the industry with
structure and support instead of continually producing and having to refer to more documents.

API00 Instrumentation and Controls [41]

Chapter 7 of this document discusses the descriptions and commitments pertaining to the
primary instrumentation and control systems of the AP 1000 advanced nuclear power plant
design. The system uses microprocessor-based distributed digital systems to perform plant
protection and control functions and safety monitoring. Digital components for safety systems
should be qualified for their intended application by either a 10 CFR Part 50, Appendix B quality
assurance program or the item should be dedicated for use in the safety system as defined in 10
CFR Part 21. The NRC-approved EPRI TR-106439, "Guideline on Evaluation and Acceptance of
Commercial Grade Digital Equipment for Nuclear Safety Applications," (1997) and BTP HICB-
18 "Guidance on the Use of Programmable Logic Controllers in Digital Computer-Based
Instrumentation and Control Systems." [61, 82]

Guidance on Software Reviews for Digital Computer-Based Instrumentation and Control Systems
[42]

This document provides guidance on evaluating the life cycle of safety system software.
Figure A-I identifies the documented evidence that BTP 7-14 indicates should be provided to the
NRC by the licensee.

A-8



Lit.

eRequirment Dsigin Code Sylont OWIld OpeWrton

p ......... ..... ....

bt ~ ~ ---- ---- .. P.n... .. ..
Marrenrtrnln Plan Sotaor onfnte, LnnpDnnren Meintenan

n. I.Owt 1
ArahutontutProteins

- •Q .... ...... .

.Io.
' olw- r ....... .... .. .. . .. . .. . . . . .. .. .. . . ... .. .

Ploilirrgri~kirrPlanDesign

.lyrnl o •n P l n .P &O vl esV

PioM;mo ntl dyr raorm ml'•oeaym= leyn &Tet I MiS& es nlnarne & I F

SMtarale Main.O.ege

ro nnPlen iplerpron•. atiof

Figueree ln .- - -- ----IDcuetsr.urd.houhu thMsftar lfecyle1 42

Emedd Digtal [reytenme. Re.lib Slity Cd Safey A oongialiy SlelyU VEidaGROn S020)y [34.]w Change elery
lNUE_ Soly Adisuee es tlye. Adependbt nalysis Aoyfi. S.'n.' =i1ayse A si well

1o3.1%.e V&V V&V Roque, V&V Design V6V brrMe.1-n V V wk.erel V&V V.rtd.-er V&V Inetaution, V&V Ch-"o
Fit- -arterize d eyenda bil ret liabliye , Anayi. a lee Analyi a I afee Ay.Thi s A en lPor-

rtecris temot c rmon R Raeluo Rkor s,

Snilttree OM CM a CM design CM nimplemen. CM nlgr CM Vmiid.r CM avalableO CsCanre

prcticel Not A separate docualent isi not rpUireo for
plannthng each iopc Iittllod howep ver, priolct doefn-

mert ntatden sdaility etconps Allot the tpc

Figure A-I. Documents required throughout the software life cycle 1421.

Embedded Digital System Reliability & Safety Analyses (NUREG/GR-0020) [34]

NTREGIGR-0020 discusses the dependability analysis of embedded digital systems as well
as metrics that characterize dependability, reliability, availability, and safety. This regulatory
research report describes the most common axiomatic models such as Markov models, Petri nets,
and fault trees. Each of these models are implemented using commercially available software
tools for dependability analysis.

NUREG/GR-0020 also identifies methods that can be used to achieve dependability: defense
in depth, redundancy, diversity, and robustness. The most important dependability parameters are
failure rate, repair rate, and coverage. The document classifies four types of redundancy:
hardware, software, time, and information redundancy. Diversity is classified as human, design,
software, functional, equipment, and signal diversity as in Nr naREG/CR-6303.

In discussing the embedded digital systems reliability and safety analysis, the document
recommends that the hardware and software in these systems be analyzed as integral parts of the
systems and not separately, as is common practice. However, the document does not address any
methods specific to the digital systems, but only suggests that the existing regulatory documents
be used for digital systems as well.

A.3.1.5 Automotive Industry

Reliability Considerations for Automotive FPGAs [62]

This Actel paper focuses on the fundamental importance of technology selection and its
relationship to overall system reliability relative to the automobile industry. Cause and cure are
emphasized. The following topics are discussed: temperature as a primary stress factor in
semiconductor failure, neutron-induced soft and firm errors, tamper resistance in automotive
FPGAs, and time-dependent dielectric breakdown (TDDB). Reliability problems frequently
encountered by FPGAs are typically due to one of four root causes: (I) the packaging technology,
(2) assembly technology, (3) environmental overstress, or (4) electrostatic discharge (ESD).
Exposure to high temperature exacerbates these types of problems. Actel also states that antifuse
FPGA architectures used for automotive applications are superior in their tolerance to extended
temperature exposures (+ 1500'C).

A-9



This document discusses SEUs and the fact that it is not possible to shield against high-
energy neutrons, so designers should either account for the effects of such neutrons or use
neutron-resistant technology. Of the three main FPGA technologies, antifuse, Flash, and SRAM,
only antifuse and Flash are immune to the effects of neutron-induced soft and firm errors. SRAM-
based products are the least secure of all technologies.

A.3.2 EXISTING STANDARDS

Design Assurance Guidance for Airborne Electronic Hardware (DO-254) [11]

The DO-254 standard establishes assurance guidelines for complex hardware systems that
use FPGAs, complex programmable logic devices (CPLD), and ASICs. This standard is
concerned with the entire hardware design life cycle-planning, hardware design, validation,
verification, configuration management, process assurance, and certification. However, the
standard considers FPGAs as purely hardware devices ignoring the fact that FPGA design
involves Hardware Design Language (HDL) programming and simulation typical for software
systems. Also, the standard does not include any details regarding safe FPGA design practices,
acceptance criteria, or licensing procedures that are necessary parts of a regulatory document for
I&C safety systems in nuclear power plants.

DO-254 defines five levels of safety criticality from Level A, the most critical, to Level E,
not critical. Also, the standard requires the assessment of the hardware safety using the following
principles: (1) circuit or component redundancy, (2) separation or electrical isolation between
circuits or components, (3) dissimilarity (i.e., diversity) between circuits or components, (4)
monitoring of circuit or components, (5) protection or reconfiguration mechanisms, (6) allowed
failure rates and probabilities for the circuit and component random failures and latent failures,
(7) limitation of usage or installation, and (8) prevention and management of upsets and upset
recovery. However, the document does not address the specific failure modes for FPGA-based
safety systems.

IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating
Stations (IEEE 7-4.3.2) [40]

IEEE 7-4.3.2 supplements IEEE 603 by addressing the use of computers as part of safety
systems in nuclear power plants. This standard includes (1) software quality (software tools,
V&V and IV&V requirements [IEEE 1012-1998]), software configuration management, and
software program risk management); (2) data communication between safety systems and safety
to non-safety systems (performance of the safety function shall not be inhibited); and (3) common
cause failure criteria (guidance on performing an engineering evaluation of software common-
cause failures).

International Standard for Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems-Part 2: Requirements for Electrical/Electronic/Programmable
Electronic Safety-Related Systems (IEC 61508-2) [54]

IEC 61508 is a standard that provides a generic approach intended for all industries using
electrical/electronic/programmable electronic components to perform safety-related activities.
This standard discusses safety requirements and provides a list of specifications that should be
met. It also contains a list of safety integrity requirements.

The standard states that using static, dynamic, and failure analysis should reduce the test
cases needed and that there should be an estimated rate of failure. Finally, it is stated that it is
practically impossible to list all physical failures of complex hardware. One reason given is the
difficulty in determining the relationship between failures. Another reason is that there is a

A-10



greater contribution of systematic failures in contrast to random failures when complex hardware
and software is used. Failures should also be categorized in terms of failures caused by faults,
before or during system installation, and failures caused by faults or human errors, after system
installation.

IEEE Standard for Software Verification and Validation (IEEE 1012-2004) [80]

IEEE-1012-2004 deals with the software V&V process throughout the entire software life
cycle. The V&V process determines whether the developed products for a particular activity,
during the software life cycle, conform to the requirements of that activity and whether the
software satisfies the intended use. The lifecycle processes include acquisition, supply,
development, operation, and maintenance.

The purpose of the standard is to establish a common -framework for V&V processes, define
V&V tasks, required inputs and required outputs, identify the minimum V&V, and define the
content of the software V&V plan (SVVP). The standard provides a detailed description of each
of the above processes and underlines specific activities within each process. Each activity is
further divided into V&V tasks.

The V&V tasks as well as inputs and outputs are included in an easy-to-follow table that
leads the user through the entire V&V process. The table also defines the V&V independence by
three parameters: technical independence, managerial independence, and financial independence.

IEEE- 1002-2004 is a software-only standard, and it can not be directly applied to V&V
process for FPGA-based systems. Even though the top level V&V processes and underlying
activities are generic and can be used for FPGAs, the low level tasks are software specific, and
not directly applicable to FPGAs.

A.4 DOCUMENT EVALUATION/COMMENTS

It is evident from reviewing the documents discussed in this report that there is no ready-to-
use regulatory guidance directly applicable to the FPGA-based safety-critical system design.
However, DO-254 does represent a good overall approach for design of hardware-based safety-
critical systems. DO-254 considers all phases of the hardware-design life cycle including
requirement capture, conceptual design, detailed design, implementation, and production
transition. For each of these phases, it describes how to implement V&V, configuration
management, process assurance, and certification. It also describes how to apply the assessment
and qualification process for the software/hardware tools used during design.

IEEE 7-4.3.2, "Standard Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations," concentrates on the software side of safety-critical system design using
digital computers. It can be used as guidance for developing V&V planning, configuration
management, requirement traceability, failure modes and effects, and environmental
qualifications during the software design. Generally, the software side of the FPGA design more
closely resembles the assembly language programming in computers and only recently have
higher-level languages been used for FPGA design. The software design in digital computers and
microprocessors has almost exclusively involved the use of high-level programming languages
and powerful compilers.

Many of the reviewed documents recognize the need for a specific design approach when
considering FPGAs for safety-critical systems. This is particularly elaborated in documents from
the aerospace community as well as in the transportation and auto industries. This specific design

A-11



approach is due to the unique FPGA characteristics that require concurrent and interdependent
hardware and software design paths.

The reviewed documents identify a large number of safe FPGA design practices, including
hardware and software design. The hardware design practices include issues such as board-level
design, FPGA logic design, mitigation of SEEs in FPGAs, programming guidelines, etc. Software
design practices include using schematic entry for time-critical designs, avoiding unsafe and
ambiguous VHDL and Verilog programming structures, ensuring full.coverage during simulation
and hardware verification processes, using formal methods to support V&V, etc.

Thus far, the FPGA design methodology used by the manufacturers of safety-critical systems
has been based on mainstream FPGA design tools that have not been certified for use for safety-
critical designs. The FPGA design verification is performed by exhaustive simulation-based
testing. It seems that this approach has been accepted as offering sufficient confidence in a design
primarily because such testing involves relatively simple designs with full-simulation coverage
capability. However, the growing complexity of FPGA designs in safety-critical systems is likely
to require a different design methodology based on more formal verification methods.
Furthermore, the mainstream FPGA design tools should be certified for use in developing safety-
critical systems.

Recently vendors have started offering FPGA-based systems for I&C safety systems in
nuclear plants. From the available documentation, these systems use FPGAs generally for
relatively simple tasks. The most frequently employed FPGAs are one-time programmable
FPGAs with built-in redundancy for SEE mitigation. Also, some European systems use CPLDs
instead of FPGAs, which are appropriate for simple logic subjected to benign environments.
SRAM-based reprogrammable FPGAs are widely used in aerospace and military applications
where high-density FPGAs and reprogrammability are needed. However, these FPGAs require a
different set of mitigation techniques to address SEEs in the configuration and user logic.

A.5 RELEVANT GUIDANCE

When extracting relevant guidance from the existing regulatory and other documents for
FPGA-based systems, it is useful to consider two different groupings of information; the first is
related to the design assurance guidance applicable to FPGA-based systems and the second
involves acceptable FPGA design practices. The first category of information can be extracted
from different guidance documents such as DO-254, IEEE 1012, IEEE 603, IEEE 7-4.3.2, and
IEC 61508, while the FPGA design practices are covered at different levels and relevance in
many conference, jou-nal, and other papers. In this section, these relevant pieces of information
are listed in more detail so that the letter report can serve as a framework for the new review
guidance document for FPGA-based systems.

A. Design Assurance Guidance

System Safety Assessment

It is necessary for the FPGA-based systems to undergo a methodical system safety
assessment. DO-254 offers an acceptable approach where the entire assessment process is divided
into three groups:

A-12



• Functional Hazard Assessment
" Preliminary System Safety Assessment
* Safety Assessment Process

Also, several documents define a multilevel assurance system and their corresponding
failure conditions. While IEC 61508 has only three levels (i.e., low, medium, and high), DO-254
uses a five-level assurance system with the following levels:

0 Catastrophic
• Hazardous/Severe
0 Major
0 Minor
0 No Effect

IEEE 1012-2004 uses four software integrity levels based on consequences and mitigation
potential.

For failure analysis and control, Annexes A and B of IEC 61508 provide useful information
with the measures to avoid and control failures being presented in a comprehensive way.

Design Life Cycle for FPGA-based systems

An appropriate design life cycle for FPGA-based systems should include a planning
process, hardware/software design processes, and a number of supporting processes as described
in DO-254. The planning process may include specification of the hardware/software design
cycle, selection of standards and other regulatory documents, selection of hardware and software
design tools, selection of necessary supporting processes, etc. The hardware/software design life
cycle should include processes such as design requirements, conceptual design, detailed design,
implementation, product transition, product upgrade, maintenance, etc. Supporting processes
include validation and verification, configuration management, process assurance, and the life
cycle design documentation.

IEC 61508 defines the following safety life cycle activities: requirements specification,
validation planning, design and development, integration, operation, maintenance, validation,
modification, verification, and functional safety assessment.

IEEE 1012-2004 defines software-specific life cycle processes such as management,
acquisition, supply, and development. In this standard, the software is considered a product
developed by an outside vendor, and as such used by the system developer. Therefore, the
software life cycle processes are not directly applicable to the FPGA systems. The FPGA
software (code) development is closely related to the hardware design, and it is usually performed
by the same design teams that are designing the hardware platforms to run that FPGA code. On
the other hand, software, as defined in IEEE 10 12-2004, can be purchased as a final product and
then run on a standard of-the-shelf hardware platform.

Validation and Verification

The validation process is defined here as a process that is intended to ensure that the design
requirements for the FPGA-based system are correct and complete with respect to the overall
system requirements. The verification process is defined as the process that provides assurance
that the FPGA-based system meets its design requirements.

A-13



In FPGA-based systems, the validation and verification needs to be done for all the
processes of the design life cycle related to the system manufacturing, such as design
requirements, conceptual design, detailed design, implementation, product upgrade. Independent
V&V may be required as well.

The DO-254 guidance defines the V&V process for the hardware systems, including
separate activities that may be applied to any of the life cycle design processes. IEEE 1012 also
provides the useful concept of V&V activities for every life cycle process with detailed V&V
tasks. Since these tasks are related to the software only, they need to be adjusted for use in FPGA-
based systems. Also, IEEE 1012, in its Annex C, describes how to implement independent V&V
in more detail. There, the independent V&V is defined by three parameters: technical
independence, managerial independence, and financial independence. The IEEE 7-4.3.2 standard
addresses the V&V process for safety systems in nuclear plant and includes the requirements for
independent V&V.

Configuration Management

An FPGA-based system design needs to be supported by a configuration management
process to ensure that the system and its parts can be consistently replicated and modified if
necessary. DO-254 guidance can be a good reference for establishing configuration management
objectives and activities. IEEE 1012-2004 addresses these issues in its software V&V reporting,
administrative, and documentation requirements.

Design Life Cycle Documentation

Requirements for the design documentation throughout the design life cycle are specified in
many regulatory documents, including DO-254 and IEEE 10 12-2004. The main purpose for such
documentation is to provide evidence of design assurance and compliance with certification
requirements. As defined in DO-254, the documentation needs to be unambiguous, complete,
verifiable, consistent, modifiable, and traceable. It should cover the following: hardware/software
design plans, design standards and guidance, hardware/software design data, validation and
verification data, hardware/software acceptance test criteria, problem reports, configuration
management records, process assurance records, etc.

B. Acceptable FPGA Design Practices

Acceptable design practices can be divided into three major groups: system-level design
practices, board-level design practices, and FPGA-level design practices. Many of the system-
level and the board-level practices for general digital systems are well documented, and they can
be applied to FPGA-based systems as well. However, some specific design issues are related
specifically to FPGAs that need to be addressed. These issues include power dissipation,
simultaneous 1/0 switching, high-speed line termination, and ground bounce.

The main published sources of information for acceptable FPGA design practices arise from
numerous conference and journal papers, FPGA application notes and data sheets, technical
reports, white papers, regulatory documents, and intemet sites.

Most of the board-level design issues are covered in the application notes of major FPGA
manufacturers such as Xilinx, Altera, Actel, and others.

A-14



The NASA web site, www.klabs.org, gives substantial useful information related to all
major groups of the FPGA design practices. The site offers the most comprehensive coverage of
SEU issues in FPGAs because these effects are very critical for space applications.

Acceptable VHDL design practices are covered in several documents listed in Appendix B
[29], [38], [39], and [66].

Verification of FPGA-based designs includes a wide range of different methods and
techniques such as 100% testability, code coverage, formal methods, insertion-based verification,
hardware-software co-simulation. The following documents listed in Appendix B address most of
these issues: [22], [28], [30], [37], [63], [76], and [79].

A.6 CONCLUSION

In conclusion, there are several guidance documents such as DO-254 and IEEE- 1012-2004
that can be used as the framework for comprehensive guidance on the design of safety-related
FPGA-based systems. These documents address the principal relevant issues such as system
safety assessment, design life cycle, V&V, configuration management, and documentation
requirements. In particular, DO-254 stands are a suitable base upon which comprehensive
guidance can be established. However, the life cycle framework offered by DO-254 is restricted
to treatment of FPGA-based devices as solely hardware components and does not adequately
address the software-like nature of "hard logic" embodied by more complex FPGA designs that
cannot be fully tested. Thus, the guidance in DO-254 would need to be enhanced through
adoption of software-based system life cycle considerations and activities addressed in other
standards. Additionally, several FPGA-specific areas are not sufficiently addressed in any of the
guidance documents reviewed and need to be added to the FPGA review guidance. These are
related to the acceptable FPGA design practices covering the system level design, the board level
design, and the FPGA logic design.

A key need to achieve sufficiently comprehensive guidance arises from the need to tailor the
V&V process to account for the specific characteristics of FPGAs. In particular, guidance should
cover both the software tools V&V as well as the FPGA design V&V. The inherent complexity of
FPGA designs in most cases prohibits 100% code coverage during the code simulation and
hardware verification. Therefore, a suitable V&V process is needed for FPGA-based safety
related designs. This process should include design tool verification, such as that established in
IEEE 7-4.3.2 for example. Also, comprehensive guidance needs to include specific FPGA design
practices that will lead to verifiable designs. Some of these practices may include using
combinatorial design only, partitioning the design to verifiable pieces, redundancy, error
reporting, etc.

A-15





APPENDIX B

RESULTS OF SEARCH FOR
TECHNICAL STANDARDS RELATED TO FPGA DESIGN





APPENDIX B.
RESULTS OF SEARCH FOR TECHNICAL STANDARDS

RELATED TO FPGA DESIGN

1. R. Katz (2005, Jul.) "This Is What We Find In This Stuff: A Designer Engineer's View,"
Presentation at the FY2005 Software/Complex Electronic Hardware Standardization
Conference, Norfolk, Virginia, July 26-28, 2005.
http://www.klabs.org/richcontent/Tutorial/MiniCourses/stuff-faa-nasa-2005/index.htm

2. G. Chen, F. Li, M. Kandemir, and I. Demirkiran, "Increasing FPGA Resilience Against Soft
Errors Using Task Duplication," ASP-DAC-2005, pp. 924-927.
http://ieeexplore.ieee.org/iel5/9883/31416/O1466490.pdf

3. John Lach, William H. Mangione-Smith, and Miodrag Potkonjak, "Enhanced FPGA
Reliability Through Efficient Run-Time Fault Reconfiguration," IEEE Transactions on
Reliability, Vol. 49, No. 3, September 2000 pp. 296-304.
http://ieeexplore.ieee.org/ie15/24/19750/00914546.pdf?arnumber=914546

4. Chandru Mirchandani, "Using Software Rules To Enhance FPGA Reliability,"
P226/MAPLD2005, September 2005. http://www.klabs.org/mapldO5/presento/226_mirchandani-bof-w.ppt

5. D. Czajkowski, D. Strobel, P. Samudrala, and M. Pagey, "Radiation Hardened, Ultra Low
Power, High Performance Space Computer Leveraging COTS Microelectronics With SEE
Mitigation," Space Micro Inc. (MAPLD2005/138).
http://www.klabs.org/mapld05/presento/138_czajkowski-bof-m.pdf

6. Howard Bogrow, "The Continued Evolution of Re-Configurable FPGAs for Aerospace and
Defense Strategic Applications," Xilinx (MAPLD2005/176).
http://www.klabs.org/mapldO5/presento/176_bogrow-p.ppt

7. Carl Carmichael, Brendan Bridgford, and Xilinx, Inc., "A Cost/Benefit Framework for
Evaluating Re-Configurable FPGA SEU mitigation Techniques," Xilinx (MAPLD2005/194).
http://www.kiabs.org/mapldO5/presento/194_bridgford_p.ppt

8. Carl Carmichael, Sana Rezgui, Gary Swift, Jeff George, and Larry Edmonds, "SEE
Validation of SEU Mitigation Methods for FPGAs," California Institute of Technology, Jet
Propulsion Laboratory, and National Aeronautics and Space Administration
(P201 -L/MAPLD2005). http://www.klabs.org/mapld05/presento/201_carmichael-bof-l.ppt

9. Sajid Baloch, Tughrul Arslan, and Adrian Stoica, "Design of a 'Single Event Effect'
Mitigation Technique for Reconfigurable Architectures," MAPLD 2005, Submission 1024,
Session P and L. http://www.klabs.org/mapldO5/abstracts/1024_baloch-a.pdf

10. Department of Defense, "Test Method Standard Microcircuits," MIL-STD-883E, December
1996. http://atlas.web.cern.ch/Attas/GROUPS/FRONTEND/WWW/RAD/RadWebPage/StandardMeth/milstd-l.pdf

11. Advisory Circular, "RTCA, Inc., Document RTCA/DO-254, Design Assurance Guidance for
Airborne Electronic Hardware," June 2005.
http://www.airweb.faa.gov/RegulatoryandGuidanceLibrary/rgAdvisoryCircular.nsf/7aab5bad14f9417885256a3500
6d56b0/6d4ae0bflbde3579862570360055d119/$FILE/AC%2020-152.pdf

12. Terrence Leier and Robert Haug, "Best Practices in Complex Electronic Hardware
Development," Rockwell Collins, July 2005.

B-1



13. Thomas Phan, "Special Delegations for Complex Hardware & TSO Software," Presented to
2005 National Software and Complex Electronic Hardware Standardization Conference,
Norfolk, Virginia, July 2005.
http://klabs.org/richcontent/conferences/faa-nasa 2005/presentations/tuesday-general.htm

14. Memorandum from Kim Smith, Manager of Small Airplane Directorate at FAA, "Applying
Advisory Circular 20-152, 'RTCA, Inc., Document RTCA/DO-254, Design Assurance
Guidance for Airborne Electronic Hardware,' to Title 14 Code of Federal Regulations, Part
23 Aircraft; PS-ACD 100-2005-50001."
http://www.airweb~faa.gov/Regulatory-andGuidanceLibrary/rgPolicy.nsf/97a6l2e22b32398d85256b7500496a9a/c

f51a956fO7bOc208625727cOO6745ca/$FILE/PS-ACE100-2005-50001%0/20final.pdf

15. Akira Fukumoto, Toshiba Corporation, "Transition and Current Status of NPP C&I System
of BWRs in Japan." http://entrac.iaea.org/I-and-C/TWlG.NPPCI_2005_05/Presentations%5CJapan-
Fukumoto.pdf

16. Suresh Srinivasan, Aman Gayasen, N. Vijaykrishnan, M. Kandemir, Y. Xie, and M.J. Irwin,
"Improving Soft-Error Tolerance of FPGA Configuration Bits," Department of Computer
Science and Engineering, Pennsylvania State University, 2004.
http://www.cse.psu.edu/-degalaha/paper/iccad.pdf

17. H. Helstrup,V. Lindenstruth, S. Martens, L. Musa, J. Nystrand, E. Olsen, D.Rohrich,
K. Roed, B. Skaali, M. Stockmeier, H. Tilsner, K. Ullaland, and J. Wikne, "Irradiation Tests
of the ALTERA SRAM Based FPGA and Fault Tolerant Design Concepts."
http : / /hc-electronics-workshop•web~cern~ch/LHC-electronics-workshop/2003/sessionsPDF/Eleccal/ROED.PDF

18. Ghazanfar Asadi and Mehdi B. Tahoori, "An Analytical Approach for Soft Error Rate
Estimation in Digital Circuits." http://www.ece.neu.edu/groups/trg/index-files/papers/ser/iscas05.pdf

19. Ghazanfar Asadi and Mehdi B. Tahoori, "Soft Error Rate Estimation and Mitigation for
SRAM-Based FPGAs," 2005. http://www.ece.neu.edu/groups/trg/index-files/papers/serfpga/fpga05final.pdf

20. Goddard Space Flight Center NASA Advisory, "Application Note on Grounding the MODE
Pin in Actel Field Programmable Gate Arrays," November 2002.
http://klabs.org/rchcontent/UserNotes/Actel/na-gsfc-2003-02.pdf

21. Goddard Space Flight Center NASA Advisory, "TRST* and the IEEE JTAG 1149.1
Interface," February 2004. http://klabs.org/richcontent/maplug/notices/na-gsfc-2004-04.pdf

22. NASA Independent Verification and Validation Facility, NASA IV& V2005.
http://www.nasa.gov/centers/iw/about/policyplans.html

23. Ramin Roosta, "A Comparison of Radiation-Hard and Radiation-Tolerant FPGAs for Space
Applications," NASA Electronic Parts and Packaging Program, December 2004.
http://nepp.nasa.gov/docuploads/3C8F70A3-2452-4336-B70CDFlC1BO8F805/JPL%2ORad-
Tolerant%2OFPGAs%20for%20Space%20Applications.pdf

24. Commission on Engineering and Technical Systems, "Dedication of Commercial Off-the-
Shelf Hardware and Software," Digital Instrumentation and Control Systems in Nuclear
Power Plants: Safety and Reliability Issues (1997).
http://www.nap.edu/openbook.php?isbn=0309057329&page=71

25. Actel, "Overview of iRoC Technologies' Report 'Radiation Results of the SER Test of Actel,
Xilinx and Altera FPGA Instances,' "2004.
http://www.actel.com/documents/OverviewRadResultsIROC.pdf

B-2



26. iRoC Technologies, "Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA
Instances," October 2004. http://www.actel.com/documents/RadResultsIROCreport.pdf

27. iRoC Technologies, ,"White Paper on VDSM IC Logic and Memory Signal Integrity and Soft
Errors," January 2002.

28. Jerker Hammarberg and Simin Nadjm-Tehrani, "Formal Verification of Fault Tolerance in
Safety-Critical Reconfigurable Modules," August 2004.
http://www.ida.liu.se/-.rtslab/publications/2005/STTTO152.pdf

29. Gaisler Research, "Lessons Learned from FPGA Developments," Technical Report,
September 2002. http://www.gaisler.com/doc/fpga_001_01-0-2.pdf

30. John Lach, Scott Bingham, Carl Elks, Travis Lenhart, Thuy Nguyen, and Patrick Salaun,
"Accessible Formal Verification for Safety-Critical FPGA Design," MAPLD 2005/241.
http://klabs.org/mapldO5/presento/241_lach_p.ppt

31. Carl Elks and Barry Johnson, "PLD-Based Safety Critical Systems: An Introduction and
Survey," Final Technical and Scientific Report, University of Virginia, February 2004.

32. John Lach, Scott Bingham, Travis Lenhart, Thuy Nguyen, and Patrick Salaun, "RAFFIA-
Reliable ASIC/FPGA-Based Solutions for I&C Applications," American Nuclear society
International Topical Meeting on Nuclear Plant Instrumentation, Controls, and Human
Machine Interface Technology, pp. 1032-37 (2006).

33. John Lach, "Integrated Circuits and Systems Design Methodologies," Research Program
Overview. http://www.ee.virginia.edu/graduate/Lachresearchoverview.pdf

34. University of Virginia, "Embedded Digital System Reliability and Safety Analyses,"
NUREG/GR-0020, February 2001.

35. Dr. Wagih Abdel-Kader, "Radiation Induced Effects in Semiconductor Devices," Parts 1-3,
South Carolina State University.

36. International Atomic Energy Agency, "Harmonization of the Licensing Process for Digital
Instrumentation and Control Systems in Nuclear Power Plants," December 2002.
http://www-pub.iaea.org/MTCD/publications/PDF/te_1327_web.pdf

37. L. Harrison and B. Landell, "Design, Test, and Certification Issues for Complex Integrated
Circuits," DOT/FAA/AR-95/3 1, August 1996.
http://klabs.org/richcontent/verification/faa/ar-95-31-ceh.doc

38. European Space Research and Technology Center, "VHDL Modelling Guidelines,"
Approved by R. Creasey and R. Coirault, ASIC/001, Issue 1, September 1994.
http://www.eda.org/rassp/vhdi/guidelines/Mode]Guide.pdf

39. European Space Research and Technology Center, "ASIC Design and Manufacturing
Requirements," Prepared by S. Habinc and P. Sinander, WDN/PS/700, Issue 2, October 1994.
http://www.eda.org/rassp/vhdl/guidelines/DesignReq.pdf

40. Institute of Electrical and Electronics Engineers, Inc., IEEE STD 7-4.3.2-2003, "IEEE
Standard Criteria for Digital Computers in Safety Systems of Nuclear Power Generating
Stations."

41. APi1000 Design Control Document Tier 2, Chapter 7, "Instrumentation and Controls."
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1793/chapter7.pdf

B-3



42. Branch Technical Position HICB-14, "Guidance on Software Reviews for Digital Computer-
Based Instrumentation and Control Systems," Rev. 5, U.S. Nuclear Regulatory Commission,
March 2007.

43. Jonathan Tillack, Lori Kaufman, Karthik Kannan, and Barry Johnson, "Design Standards and
Their Application to the Digital Retrofit of Existing Analog Safety-Critical Systems," 2000
Proceedings Annual Reliability and Maintainability Symposium.
http://ieeexplore.ieee.org/iel5/6628/17683/OO816332.pdf

44. Ray DiSandro and Ray Torok, "Generic Qualification of Digital Components," EPRI, Palo
Alto, CA.

45. EPRI, Generic Qualification of Digital Components for Nuclear Applications: A Low-Cost
Approach to Qualifying New Digital I&C Components for Nuclear Plant Use, Especially in
Safety Systems, EPRI-1006958, EPRI, Palo Alto, CA, April 2002.

46. Matthew Chiramal, "Application of Commercial-Grade Digital Equipment in Nuclear Power
Plant Safety Systems." http://ieeexplore.ieee.org/iel5/7654/20915/OO969772.pdf

47. International Atomic Energy Agency, "Managing modernization of nuclear power plant
instrumentation and control systems," IAEA-TECDOC-1389, February 2004.
http://www-pub.iaea.org/MTCD/publicatdons/PDF/te_1389_web.pdf

48. Matthew Chiramal, "Regulatory Framework for Digital Instrumentation and Control Systems
in Nuclear Power Plants," MIT Workshop on Safety-Critical Software and Safety, February
2001. http://sunnyday.mit.edu/safety-club/chiramal.rtf

49. Lawrence Livermore National Laboratory, "Review Templates for Computer-Based Reactor
Protection Systems," NUREG/CR-6680, UCRL-ID-139344, August 2000.
http://adamswebsearch2.nrc.gov/idmws/doccontent.dll?library=PU_ADAMSA PBNTAD01&ID=003960624

50. Hluboka nad Vltavou, "CNRA/CSNI Workshop on Licensing and Operating Experience of
Computer-Based I&C Systems," NEA/CSNI/R(2002)4, May 2002.
http://www.nea.fr/html/nsd/docs/2002/csni-r2OO2-4.pdf

51. Nihal Kececi and Mohammad Modarres, "Software Development Life Cycle Model to
Ensure Software Quality." http://www.cse.ohio-state.edu/-kirschen/Research/psam-paper2.PDF

52. M. Hecht and H. Hecht, "Digital Systems Software Requirements Guidelines."

53. "Safety Evaluation by the Office of Nuclear Reactor RegulationTopical Reports 7286-545
and 7286-546," Project #709, December 2001.
http://adamswebsearch2.nrc.gov/idmws/doccontent.dl1?1ibrary=PUADAMSA PBNTAD01&ID=004042634

54. International Standard, IEC 61508-2, "Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems-Part 2: Requirements for
Electrical/Electronic/Programmable Electronic Safety-Related Systems."

55. Jaynarayan Lala and Richard Harper, "Architectural Principles for Safety-Critical Real-Time
Applications," Proceeding of IEEE, Vol.82, No. 1, January 1994.
http://ieeexplore.ieee.org/iell/5/6554/00259424.pdf?arnumber=259424

56. Larry Harzstark, "FPGA (Field Programmable Gate Array) Space Qualification
Presentation," December 2005. http://www.aero.org/conferences/mrqw/2005-papers/VI-1 0/02OHarzstark.ppt

B-4



57. Douglas Sheldon, "Integrated Qualification Strategies for FPGAs," December 2005.
http://www.aero.org/conferences/mrqw/2005-papers/VII-2%/o2OSheldon.ppt

58. Michael Wirthlin, Brian Pratt, and Keith Morgan, "The Challenges and Benefits of Partial
Mitigation of FPGAs." http://www.aero.org/conferences/mrqw/2005-papers/VII-3%2OWirthlin.ppt

59. iRoC Technologies, "Answers to Frequently Asked Questions Regarding iRoC's Testing
Methodology for SRAM-Based FPGAs," June 2004.

60. Michael Wirthlin, Eric Johnson, Nathan Rollins, Michael Caffrey, and Paul Graham, "The
Reliability of FPGA Circuit Designs in the Presence of Radiation Induced Configuration
Upsets," Proceeding of IEEE Symposium on Field-Programmable Custom Computing
Machines, 2003.

61. EPRI Working Group on Use of Commercial Digital Equipment in Nuclear Safety
Applications with MPR Associates, "Guideline on Evaluation and Acceptance of Commercial
Grade Digital Equipment for Nuclear Safety Applications," TR-106439, October 1996.

62. Actel White Paper, "Reliability Considerations for Automotive FPGAs," September 2003.
http://www.actel.com/documents/AutoWP.pdf

63. Science Applications International Corporation, "Independent Verification and Validation
(IV&V) First Year Summary Report for the Programmable Logic Devices Research," SAIC-
PLD-0002, ISTO-06-98-133, September 2005.

64. United States Nuclear Regulatory Commission, "Briefing on Digital Instrumentation and
Control," November 2006.

65. L. Sterpone and M. Violante, "A Design Flow for Protecting FPGA-Based Systems Against
Single Event Upsets," Proceedings of IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005.
http://ieeexplore.ieee.org/iel5/10366/32969/01544543.pdf~arnumber= 1544543

66. James Cercone, Mike Beims, Richard Grigg, and Jack Homer, "A Preliminary Practitioner's
Guide to Defect Detection in VHDL Based Designs," NASA, IV&V Facility, West Virginia.

67. Gaisler Research, "Suitability of reprogrammable FPGAs in space applications," FPGA-002-
01, Version 0.4, September 2002. http://www.gaisler.com/doc/fpgaOO2_O1-O-4.pdf

68. Adrian Hilton, Gemma Townson, and Jon Hall, "FPGAs in Critical Hardware/Software
Systems," Technical Report No: 2003/01, 2003.

69. Adrian Hilton and Jon Hall, "High-Integrity Interfacing to Programmable Logic with Ada,"
Ada-Europe International Conference, June 2004.
http://www.praxis-his.com/sparkada/pdfs/hiltonhall-adaeurope.pdf

70. Moore Industries, "IEC 61508 Fact Sheet."
http://www.mooreindustries.com/products/datasheets/iec_61508.pdf

71. "Functional Safety and IEC 61508-A Basic Guide," November 2002.
http://www.nepss.org/PSES/IEC61508basicguide.pdf

72. NASA, "Software Assurance Standard," NASA-STD-8739.8, July 2004.
http://www.hq.nasa.gov/office/codeq/doctree/87398.pdf

B-5



73. Rod Barto, "Suggestions for FPGA Design Presentation."
http://www.klabs.org/DEI/References/design-guidelines/design-checklists/fpga-design-presentation.ppt

74. Carl Elks, John Lach, and Barry Johnson, "PLD-Based Safety Critical Systems: Task 1
and 2-Assessment, Practices and Design," University of Virginia, November 2006.

75. Carl Elks, Yang Yang Yu, and Barry Johnson, "Quantitative Safety Assessment for Safety-
Critical I&C Systems." University of Virginia.

76. Scott Bingham and John Lach, "Accessible Formal Verification for Safety-Critical Hardware
Design: The Library Approach RAFFIA 1," Annual Reliability and Maintainability
Symposium, pp. 29-32 (2006).

77. John Lach, "Dependable Hardware Systems Research Program Overview."
http://www.ee.virginia.edu/graduate/Lach_research-overview.pdf

78. John Lach, Scott Bingham, Carl Elks, Travis Lenhart, Thuy Nguyen, and Patrick Salaun,
"Accessible Formal Verification for Safety-Critical FPGA Design," MAPLD 2005/241.

79. Science Applications International Corporation, "Independent Verification and Validation
(IV&V) Preliminary Practitioner's Guide to Defect Detection in VHDL Based FPGA
Designs," SAIC-PLD-0003, ISTO-06-98-135, September 2005.

80. Institute of Electrical and Electronics Engineers, Inc., IEEE STD 1012-2004, "IEEE Standard
for Software Verification and Validation," sponsored by Software Engineering Standards
Committee, June 2005.

81. Institute of Electrical and Electronics Engineers, Inc., IEEE STD 1076-2002, "IEEE Standard
VHDL Language Reference Manual," sponsored by Design Automation Standards
Committee, May 2002.

82. Branch Technical Position HICB-18, "Guidance on the Use of Programmable Logic
Controllers in Digital Computer-Based Instrumentation and Control Systems," Rev. 5, U.S.
Nuclear Regulatory Commission, March 2007.

83. Interim Defense Standard 00-54, "Requirements for Safety Related Electronic Hardware in
Defense Equipment," Issue 1, March 1999. http://www.dstan.mod.uk/data/00/054/01000100.pdf

B-6



NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
(9-2004) (Assigned by NRC, Add Vol., Supp., Rev.,

NRCMD 3.7 and Addendum Numbers, if any.)

BIBLIOGRAPHIC DATA SHEET
(See instructions on the reverse) NUREG/CR-7006

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED

Review Guidelines for Field-Programmable Gate Arrays in Nuclear Power Plant Safety Systems MONTH YEAR

February 2010
4. FIN OR GRANT NUMBER

N6351
5. AUTHOR(S) 6. TYPE OF REPORT

M. Bobrek (ORNL), D. Bouldin (University of Tennessee), D. E. Holcomb (ORNL), S. M. Technical
Killough (ORNL), S. F. Simth (ORNL), C. Ward (ORNL), R. T. Wood (ORNL)

7. PERIOD COVERED (Inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address, if contractor,

provide name and mailing address.)

Oak Ridge National Laboratory University of Tennessee
P.O. Box 2008 419 Ferris Hall, 1508 Middle Drive
Oak Ridge, TN 37831-6010 Knoxville, TN 37996-5483

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above';if contractor, provide NRC Division, Office orRegion, U.S. Nuclear Regulatory Commission,
and mailing address.)

Division of Engineering
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

M. E. Waterman, NRC Project Manager
11. ABSTRACT (200 words or less)

This report is a compilation of field-programmable gate array (FPGA) design practices that can be used by NRC staff as
guidance for reviewing FPGA-based safety systems in nuclear power plants. It can also serve as a basis for developing specific
activities supporting the licensing process such as review procedures and acceptance criteria. This document follows on the
investigation of existing regulatory documents and standards related to design and review of safety-related FPGA systems.
Since the existing regulatory documents are not specific about FPGA design practices, this document also serves as the
complement to standards that address general issues related to digital safety systems in nuclear power plants.

FPGA design practices are classified into three major groups: FPGA hardware design practices, FPGA design entry methods,
and FPGA design methodologies. Within these major groups, design practices are further classified according to four top-level
attributes: reliability, robustness, traceability, and maintainability.

The report focuses on listing and describing FPGA design practices that are potentially unsafe as well as suggesting practices
that are acceptable for safety-critical designs. Additionally, the report outlines a design life cycle that could be used by
designers and reviewers for FPGA-based safety systems.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13. AVAILABILITY STATEMENT

FPGA, field-programmable gate array, FPGA guidance unlimited
14. SECURITY CLASSIFICATION

(This Page)

unclassified
(This Report)

unclassified
15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (9-2004) PRINTED ON RECYCLED PAPER



Framl Recycling Program





NUREG/CR-7006 Review Guidelines for Field-Programmable Gate Arrays in
Nuclear Power Plant Safety Systems

February 2010

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS


