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1. Introduction 

The estimation of non-perforation probabilities is of significant interest to the developers of 
armor systems, whose objective is to provide protection for vehicles and personnel against 
enemy threats.  In particular, the following questions may arise: 

 1.  What is the probability that homogenous armor of a given thickness will not be 
perforated by a specific enemy threat? 

 2.  How thick should the armor be if one is to be highly confident that the probability of 
non-perforation with this threat is high? 

Conversely, these probabilities are of interest to the developers of armor-piercing projectiles, 
whose objective is to perforate enemy armor.  From this point of view, one might ask  

 3.  What is the probability that a projectile will be able to perforate an enemy armor of a 
given thickness? 

For a particular projectile, non-perforation1 occurs if its penetration depth, denoted by x, is less 
than the thickness of the armor, denoted by 0x .  Now consider the random variable X, which 
represents the penetration depth of a randomly selected projectile.  The probability of non-
perforation is an unknown, fixed constant within the interval [0, 1] and is written as ( )0xXP ≤ .  
An estimate for the true non-perforation probability will be based on sample data and as such, is 
subject to sampling variation.  However, a point estimate for the non-perforation probability is a 
single value and therefore does not give any sense of the uncertainty associated with it.  
Preferable to a point estimate is an interval estimate that contains the non-perforation probability 
with high probability, i.e., a confidence interval.  The width of the interval provides a 
quantitative measure of the estimation error. 

The problem of estimating ( )0xXP ≤  has its origins in acceptance sampling plans for statistical 
quality control in the 1950’s.  Lieberman and Resnikoff (1955) and Barton (1961) yielded 
expressions for the minimum variance estimator.  It was not until the 1970’s that confidence 
interval estimators surfaced.  In their 1977 paper, Owen and Hua derived lower confidence limits 
for ( )0xXP ≥  and described how to obtain one-sided and two-sided limits for ( )0xXP ≤ .  
However, their derivation contains several errors in notation and as a result, is quite difficult to 
follow.  Owen and Hua’s paper also provided tables that assist in the calculation of lower 
confidence limits for ( )0xXP ≥ ; these tables were dramatically expanded in Odeh and Owen 

                                                 
1 For the remainder of this report, we only discuss non-perforation events, their probabilities of occurrence, and 

interval estimates for these probabilities.  Analogous results for the probability of perforation, ( )0xXP > , are easily 
derived if we use the axiomatic property ( ) ( )00 1 xXPxXP ≤−=> . 
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(1980, tables 7.1 through 7.7).  Odeh and Owen’s tables are cited in the more recent engineering 
statistics text by Hahn and Meeker (1991, section 4.5). 

In this report, the recent concept of generalized inference is used to develop one- and two-sided 
confidence intervals for the probability of non-perforation when it can be assumed that the 
penetrations follow a normal distribution.  Although this may be seen as an attempt to “reinvent 
the wheel,” it is meant to show the wide applicability of the generalized approach to confidence 
interval construction.  As pointed out by Weerahandi (2004, section 1.7), generalized inference 
may be used to obtain confidence intervals for any function of the normal distribution 
parameters. 

Solutions for the limits of the intervals require iterative calculation of percentiles of non-central t 
distributions.  As an alternative to the tables by Odeh and Owen and to avoid the interpolation 
errors inherent in their usage, software code is provided in the appendices so that the practitioner 
can easily obtain exact solutions for the interval limits. 
 

2. General Solution 

Suppose that n depths of penetration nxxx ,,, 21 K  are collected in an experiment for which the 
observations are assumed to come from a normal distribution with mean µ and standard deviation 
σ.  Historically, this assumption has been found to be tenable when the projectiles are of the same 
ammunition type with (approximately) equal muzzle velocities, obliquities, etc., and the target is a 
homogeneous armor.  For the purpose of this report, we assume that the armor is thick enough to 
guarantee that no projectiles will perforate.  From this sample, an estimate is desired for the 
probability of non-perforation, i.e., the probability that a future penetration, X, from the same 
population of projectiles will be less than or equal to some specified depth, 0x .  This probability is 
written as ( )0xXP ≤  and is known as the cumulative distribution function (CDF) evaluated at 0x , 
or ( )0xFX .  Notice that 

( ) 






 −
Φ=







 −
≤=







 −
≤−=≤

σ
µ

σ
µ

σ
µ

σ
µ 000

0
xx

ZP
xXPxXP ,   (1) 

in which Z is a standard normal random variable and ( )⋅Φ  is the standard normal cumulative 
distribution function (CDF) commonly tabulated in statistics texts and available in many 
software packages. Therefore, calculating a simple point estimate for ( )0xXP ≤  is 

straightforward:  one computes the standard normal CDF at an estimate of 
σ

µ−0x
.  We obtain 

this estimate by substituting the sample mean ( ∑
=

=
n

i
ix

n
x

1

1 ) and the sample standard deviation 
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( ( )∑
=

−
−

=
n

i
i xx

n
s

1

2

1
1 ) for the population mean ( µ ) and the population standard deviation (σ ), 

respectively2.  That is, 

( ) ( ) .ˆˆˆ 000
00 







 −
Φ=







 −
≤≈







 −
≤=≤=

s
xx

s
xx

ZP
x

ZPxXPxFX σ
µ

  (2) 

However, any simple point estimate for ( )0xFX  does not give information about its precision.  
What we would prefer to construct is a confidence interval or perhaps a confidence bound for 

( )0xFX  that by its width gives some sense of the degree of uncertainty associated with it.3 

We begin by recalling from equation 1 that ( ) 






 −
Φ=

σ
µ0

0
x

xFX .  Since ( )⋅Φ  is a strictly 

monotonic function, we can easily attain a confidence interval for 





 −Φ

σ
µ0x  by deriving a 

confidence interval for 
σ

µ−0x  and then applying the function ( )⋅Φ  to the resulting confidence 

limits (see Mood, Graybill, and Boes, 1974, page 378). 

The following derivation of a confidence interval for 
σ

µθ −= 0x  is based on a method by 

Weerahandi (1995) in which he uses a generalized pivotal quantity to obtain a confidence 

interval for the coefficient of variation, 
µ
σ , for a normal population with mean µ and standard 

deviation σ.  The construction of a generalized pivotal quantity requires one to find a function R 
with arguments 

1. X  and 2S  (independent and sufficient statistics for the random sample nXX ,,1 K ), 

2. x  and 2s  (the observed values of  X  and 2S ),  

3. θ , the parameter of interest, and 

4. perhaps a vector, ξ , of additional unknown (nuisance) parameters. 

                                                 
2Although this estimate is easily obtained, it does not have the desirable property of being unbiased.  An unbiased 

estimator with minimum variance is presented in either Lieberman and Resnikoff (1955) or Barton (1961).   
3Note the distinction between the problems of solving for a confidence interval for 






 −Φ

σ
µ0x  and solving for a 

tolerance interval.  With the former, the percentile value ( 0x ) is specified and an interval for its associated CDF 

value, 





 −Φ

σ
µ0x , is desired.  On the other hand, with tolerance interval construction, the CDF value (p) is 

specified while an interval for the associated percentile, σµ pz+ , is desired. 
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This function, denoted in full by ( )ξθ ,,,;, 22 sxSXR , must satisfy the following two conditions: 

Condition 1:  ( )ξθ ,,,;, 22 sxSXR  has a distribution that is free of any unknown parameters. 

Condition 2:  The observed value of R, i.e., ( )ξθ ,,,;, 22 sxsxRr = , is equal to θ . 

If such a function can be found, then it is a generalized pivotal quantity for θ , and its percentiles 
can be used to obtain confidence intervals for θ .  Since their introduction in the 1980’s, 
generalized pivotal quantities have been regarded as quite challenging to derive.  Even Weerahandi 
(1993) states “… the construction of pivotals requires some intuition.”  In essence, one obtains the 
pivotal quantity by working backwards from the expression for θ .  The mathematical “tricks” of 
adding 0 and/or multiplying by 1 are adroitly employed to link all unknown parameters in θ  with 
functions of the sufficient statistics whose distributions are parameter free.  Once the linking is 
complete, all remaining random variables are converted to their observed values. 

Step 1:  The sufficient statistics for a normally distributed random sample are X  and 2S .  
Random variables based on these statistics whose distributions are free of unknown parameters 
include 

1. 
σ

µ−= XY , distributed as a normal random variable with mean zero and variance 
n
1 ; and  

2. ( )
2

2

1
σ
SnV −= , distributed as a chi-square random variable with 1−n  degrees of freedom. 

Step 2:  We attempt to construct a random variable from θ  that involves Y and/or V.  First, 
notice that by adding zero in the form of ( )XX +−  to the numerator, θ  can be rewritten in the 
following manner: 

 .000

σ
µ

σσ
µ

σ
µθ −+

−
=

−+−
=

−
= XXxXXxx

 (3) 

Now the parameter µ  is linked to the random variable 
σ

µ−X  which was previously noted as 

having a parameter-free distribution.  When we make the substitution 
σ

µ−= XY , the parameter 

µ  is removed from :θ  

 .0 YXx +−=
σ

θ  (4) 
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It remains to manipulate the left addend of equation 4 so that the unknown parameter σ  is linked 
to a random variable whose distribution is free of unknown parameters.  We can achieve this by 

multiplying the left addend by 1, in the form of ( )
( ) 2

2

1
1

Sn
Sn

−
− : 

 ( )
( )

( ) .1
11

1
2

2
0

2

2
00 YSn

nS
Xx

Y
Sn
SnXx

Y
Xx

+−
−

−
=+

−
−−

=+
−

=
σσσ

θ  (5) 

Now σ  is linked to ( )
2

21
σ

Sn −  which was noted in step 1 as having a parameter-free distribution.  

After ( )
2

2

1
σ
SnV −=  is substituted in equation 5, all unknown parameters are removed from θ : 

 ( ) .
1

1
1

0
2

2
0 YV

nS
Xx

YSn
nS

Xx
+

−
−

=+−
−

−
=

σ
θ  (6) 

Step 3:  At this point, we replace the remaining sufficient statistics in equation 6 with their 

observed values; that is, YV
ns

xx
+

−
−

1
0 . 

Step 4:  Finally, we rewrite the random variables V and Y in their original form (as functions of 
the sufficient statistics) to obtain the generalized pivotal quantity: 

 ( ) ( )
σ

µ
σ

σµ −+−
−

−= XSn
ns

xxsxSXR 2

2
022 1

1
,,,;, .  (7) 

As was demonstrated in the development of R, its distribution is free of any unknown parameters.  
Thus, condition 1 is satisfied.  Furthermore, the observed value of R is 

 ( ) ,,,,;, 2

2
022 θ

σ
µ

σ
σµ =−+−== xs

s
xxsxsxRr  

thus satisfying condition 2.  Therefore, R is a generalized pivotal quantity whose percentiles can 
be used to obtain a confidence interval for θ .  Using the normal cumulative distribution, ( )⋅Φ , 
we then ultimately obtain a desired confidence interval for the probability of non-perforation. 
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3. Lower Confidence Bound (LCB) 

Since effective armor offers a high probability of non-perforation, engineers and management will 
most often be interested in a lower confidence bound, since this would represent a “pessimistic” 

bound on the true probability of non-perforation, 





 −Φ

σ
µ0x . 

A ( ) %1001 α−  LCB for 
σ

µθ −= 0x  is that value LB  for which 

 ( )RBP L ≤=−α1  (8) 

is satisfied.4  We can estimate a generalized LCB for θ  by randomly generating a large number 
of observations of R and selecting a value for which equation 5 is empirically satisfied.  For 
instance, with 05.=α , one could start by generating 100,000 observations of R, denoted by 

10000021 ,,, rrr K .  If the ordered observations are written as ( ) ( ) ( )10000021 rrr <<< K , then a 95% 

LCB for θ  would be any real value LB  so that ( ) ( )50015000 rBr L << , such as ( ) ( )
2

50015000 rr
BL

+
= .  

However, equation 8 can be expanded to get 

 .
1

1 0
2

2
0









+

−
−

≤=












 −+
−

≤=− Y
n
V

s
xx

BPXS
s

xx
BP LL σ

µ
σ

α  (9) 

Notice that the random variable Y in equation 9 is equal in probability to 
n

Z , in which Z is a 

standard normal random variable (having mean 0 and variance 1).  By using this fact and 
rearranging the terms in the last probability statement, we have 

.

1

1

1
1

0
,1

0

0

0
















−≥=
















−≥

−

−=









≥+

−
−=











≥+

−
−=−

−−

n
s

xxTP

n
s

xx

n
V

BnZP

BnZV
n

n
s

xxP

B
n

Z
n
V

s
xxP

LBnn

L

L

Lα

    (10) 

                                                 
4It is implicit that the upper bound equals 1 in the probability statement of equation 8, i.e., 1 - α = P(BL ≤ R ≤ 1).  



 

7 

In equation 10, 
LBnnT −− ,1 is a non-central t random variable with 1−n  degrees of freedom and 

non-centrality parameter LBn−  (see for example, Casella and Berger, 1990).  However, a non-
central t random variable with non-centrality parameter LBn−  is the mirror image of a non-
central t random variable with non-centrality parameter LBn  (Johnson and Kotz, 1970).  
Therefore, 

 















−≤=
















−≥=− −−−

n
s

xxTP
n

s
xxTP

LL BnnBnn
0

,1
0

,11 α . (11) 

The final probability expression of equation 11 is the CDF of a non-central t random variable 
with 1−n  degrees of freedom and non-centrality parameter LBn , i.e., 

 .1 0
,1
















−=− −

n
s

xxG
LBnnα  (12) 

A lower confidence bound for 
σ

µθ −= 0x , is LB , the solution to equation 12.  When we exploit the 

strict monotonicity of the normal distribution function, a ( ) %1001 α−  LCB for the probability of 

non-perforation, 





 −Φ

σ
µ0x , is ( )LBΦ . 

 

4. Upper Confidence Bound (UCB) 

A UCB would represent an “optimistic” bound on the true probability of non-perforation.  As such, 
it is of little practical value and rarely calculated.  However, its derivation is briefly discussed here 
for completeness and as a precursor to the development of a two-sided confidence interval. 

Following a similar progression to that of the previous section, a ( ) %1001 α−  UCB for 

σ
µθ −= 0x  is that value UB  satisfying 

 ( )















−≥=≤=− −

n
s

xxTPBRP
UBnnU

0
,11 α . 

Therefore, 

 















−= −

n
s

xxG
UBnn

0
,1α , (13) 
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and a ( ) %1001 α−  UCB for the probability of non-perforation, 





 −Φ

σ
µ0x , is ( )UBΦ . 

 

5. Two-Sided Confidence Interval 

A two-sided confidence interval might be of interest to the researcher simultaneously wanting 
lower and upper limits for the probability of non-perforation, neither of which is automatically 
set to their extreme value of 0 or 1, respectively. 

A ( ) %1001 α−  two-sided confidence interval for 
σ

µθ −= 0x  is given by values LC  and UC  

satisfying 

 ( )LCRP ≤=
2
α  and ( )UCRP ≥=

2
α  

Following steps similar to those used in determining one-sided confidence bounds, two-sided 

confidence limits for 
σ

µθ −= 0x  are solutions to 

 















−=− −

n
s

xxG
LCnn

0
,12

1 α , (14) 

and 

 















−= −

n
s

xxG
UCnn

0
,12

α . (15) 

Thus, a ( ) %1001 α−  two-sided confidence interval for the probability of non-perforation, 







 −Φ

σ
µ0x , is ( ) ( )( )UL CC ΦΦ , . 

 

6. Iterative Solutions for the Confidence Bounds and Confidence Limits 

As an example, consider solving equation 12 for the LCB of 
σ

µθ −= 0x .  We start by rewriting 

the equation so that the right side equals 0: 
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 010
,1 =−+
















−

− α
n

s
xxG

LBnn . (16) 

In equation 16, n, 0x , x , s, and α  are fixed constants, and the only unknown is LB .  Therefore, 

if we let ( ) 1,,,,; 0
,10 −+
















−= − αα

n
s

xxGsxxnBH
LBnnL , the problem becomes one of solving for 

the root of the function H.  We can show H to be a monotonic decreasing function in LB  by 
recognizing that the non-central t distribution function is monotonic decreasing in the non-
centrality parameter (see figure 1) or by formal proof (see appendix A).  Therefore, one can use 
the bisection method or other root-finding algorithm to solve for LB .  Finally, the LCB for the 
probability of non-perforation is ( )LBΦ . 

The bisection method can be easily programmed into most mathematical software packages.  
MATLAB5 and Mathematica6 programs appear in appendices B through G for calculating an 

LCB, a UCB, and a two-sided confidence interval for 





 −Φ

σ
µ0x . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Two non-central t density functions, 1f  and 2f , with 

respective non-centrality parameters 1λ  and 2λ .  (As the non-

centrality parameter increases, the area to the right of 0x  
under the non-central t curve decreases.) 

                                                 
5MATLAB is a registered trademark of The MathWorks. 
6Mathematica is a registered trademark of Wolfram Research, Inc. 

λ1 λ2
x0

f1 f2

λ1 λ2
x0

f1 f2
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7. Confidence Bands 

By plotting the function 





 −Φ

s
xx  for all real numbers x, one obtains a smooth, monotonically 

increasing function that is a simple estimate for the entire CDF.  A lower confidence band for the 
CDF is a plot of the function ( )( )xBLΦ .  This band lies below the estimated CDF and enables one 
to see the region above the band in which the entire actual CDF lies (with the stated level of 
confidence).  If one fixes the probability level on the vertical axis, then the corresponding x-axis 
value from the lower confidence band is an upper tolerance bound.  In the context of armor 
design, the upper tolerance bound is very important as it states with a specified level of 
confidence what armor thickness is needed to stop a (high) percentage of projectiles from 
perforating the materiel.  A MATLAB program for generating a lower confidence band appears in 
appendix H. 

Upper confidence bands and two-sided confidence bands are constructed in a similar fashion; 
however, they are likely to be of much less interest to the armor designer.  Although MATLAB 
programs for their construction are not included here, the interested reader could easily tailor the 
program in appendix H to accomplish this. 
 

8. An Application 

Table 1 gives the penetrations of 14 projectiles into an extended armor pack.  Engineers plan to use 
115 units as the armor thickness.  To determine if this thickness will provide enough protection, an 
estimate is desired for the probability that the next projectile fired will not penetrate deeper than 
115 units.  Letting X be the penetration of this next projectile, we seek an estimate for 

( )115≤XP .   

Table 1.  Penetration depths into armor (no units specified). 

47 81 89 99 114 
59 86 90 100 118 
80 88 90 113  

 
The data are first checked for normality by Lilliefors Test (see Conover, 1980).  The value of the 
test statistic is 0.1713, which corresponds to a P-value greater than 0.20.  Therefore, the 
assumption of normality is not rejected. 

Summary statistics for the sample data are 571.89=x  and 725.3902 =s .  Equation 2 is used to 
obtain a point estimate for ( )115≤XP .  The solution is 
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 ( ) ( ) 901.0286.1
725.390

571.89115115ˆ =Φ=






 −Φ=≤XP . 

To achieve a 95% LCB for ( )115≤XP , we start by using equation 12: 

 ( )813.495. 14,13 LBG= . 

Using the bisection method, we obtain a solution of 6672.0=LB .  Therefore, a 95% LCB for 
( )115≤XP  is ( ) 7477.6672.0 =Φ .  That is, for an armor of thickness 115 units, one can be 95% 

confident that the probability of non-perforation is at least 74.77%. 

At this point, a reasonable question might be “With 95% confidence, what armor thickness 
would offer at least 90% protection against perforation?”  The lower confidence band for ( )LBΦ , 
shown in figure 2, will help determine this.  We begin by extending a horizontal (dashed) line 
from the “y”-axis at ( ) 90.=− nperforationonP  to the lower confidence band and then dropping 
to the x-axis to find the desired armor thickness.  This thickness of 131.25 is the 90% upper 
tolerance bound. 
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Figure 2.  Estimated probability of non-perforation and 95% LCB as a function of armor 

thickness.  (The line formed by the bounds is referred to as the lower confidence 
band.  From the band, one is able to determine what armor thickness yields a certain 
minimum probability of non-perforation, e.g., with 95% confidence, one can state 
that a thickness of 131.25 will stop at least 90% of projectiles from perforating the 
material.) 
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A 95% two-sided confidence interval for ( )115≤XP  is calculated from equations 12 and 13.  It 

has a lower limit given by ( )LCΦ  in which LC  is the solution to 















−=− −

n
s

xxG
LCnn

0
,12

1 α , or 

( )813.4975. 14,13 LCG= .  The upper limit is given by ( )UCΦ  in which UC  is the solution to 
















−= −

n
s

xxG
UCnn

0
,12

α , or ( )813.4025. 14,13 UCG= .  Using the bisection method again, we obtain 

5566.=LC  and 9901.1=UC .  Therefore, the lower confidence limit is ( ) 7111.5566. =Φ , and the 
upper confidence limit is ( ) 9767.9901.1 =Φ .  We can be 95% confident that the true probability 
of non-perforation is between 71.11% and 97.67%. 
 

9. Summary 

Reporting an interval estimate along with a point estimate gives designers a sense of the error of 
estimation which is a function of the sample size used in the study and the inherent variability of 
each projectile-armor interaction.  Using a generalized pivotal quantity, we have achieved an 
interval estimate for the probability that a homogeneous armor plate of specified thickness will 
successfully stop a projectile from perforating.  In the derivation of this interval estimate, we 
have assumed that the penetration depths are random and that they follow a normal distribution 
of unknown mean and variance. 

The interval limit (or limits if a two-sided interval is desired) is a function of the sample mean 
and sample standard deviation of penetration depths, the number of shots fired, the thickness of 
the armor and percentiles of a non-central t distribution.  However, since the non-centrality 
parameter associated with this distribution is a function of the interval limit, numerical methods 
are required to obtain the final solution.  MATLAB and Mathematica codes to perform these 
calculations are provided in appendices B through G. 

Confidence bands that graphically display the entire the relationship between armor width and 
bounds on the probability of non-perforation follow naturally.  These bands may be of help to 
armor designers in selecting an armor width that will provide a high degree of protection against 
specific enemy threats. 
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Appendix A.  Proof of the Monotonicity of the Function H 

Show that ( )⋅H  is a monotonic decreasing function.  That is, show that if 21 λλ < , then 
( ) ( )21 λλ HH > . 

Proof: 

Let n, 0x , x , s, α , 1λ , and 2λ  be fixed constants with 21 λλ < .  Let 1X  and Y be independent 
random variables, 1X  being normally distributed with mean 1λ  and variance 1, and Y following a 
chi-squared distribution with 1−n  degrees of freedom.  The support of 1X  is the set of all real 
numbers, and the support of Y is the set of all positive reals. 

Now define 
s

xx
n
nYW −
−

= 0

1
.  The support of W is either the set of all positive real numbers (if 

xx ≥0 ) or the set of all non-positive real numbers (if xx <0 ).  However, in general, we denote 
the support of W by Θ .  

( )WXP <1  can be expressed as a double integral of the joint density of 1X  and W, namely, 

 ( ) ( ) ( )∫ ∫
Θ ∞−

=<
w

WX dwdxwfxfWXP
11 . (A-1) 

The double integral of equation A-1, can be rewritten as the sum of two double integrals: 

 ( ) ( ) ( )
( )

( ) ( )
( )

∫ ∫∫ ∫
Θ −−Θ

−−

∞−

+=<
w

w
WX

w

WX dwdxwfxfdwdxwfxfWXP
12

1

12

11
λλ

λλ

. (A-2) 

Each of these double integrals is positive, so by dropping the latter of the two, we obtain the 
inequality, 

 ( ) ( ) ( )
( )

∫ ∫
Θ

−−

∞−

><
12

11

λλw

WX dwdxwfxfWXP . (A-3) 

However, the double integral in equation A-3, represents a probability, namely, 
( )( )121 λλ −−<WXP , which in turn equals ( )WXP <−+ 121 λλ .  So, 

 ( ) ( )WXPWXP <−+>< 1211 λλ . (A-4) 

Now define ( )1212 λλ −+= XX ; then 2X  is normally distributed with mean 2λ  and variance 1.  
Therefore,  

 ( ) ( )WXPWXP <>< 21 , (A-5) 
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Consider the standard normal random variable, Z, having mean 0 and variance 1.  Employing the 
equalities 11 λ+= ZX  and 22 λ+= ZX  and the definition of W, we expand the above result to 
obtain 

 






 −
−

<+>






 −
−

<+
s

xx
n
nYZP

s
xx

n
nYZP 0

2
0

1 11
λλ . (A-6) 

Rearranging the expressions inside each of the probability statements, 

 















−

<

−

+
>
















−

<

−

+

n
s

xx

n
Y

Z
P

n
s

xx

n
Y

Z
P 0201

11

λλ
. (A-7) 

By the definition of a non-central t random variable, 

 















−<>
















−< −−

n
s

xxTP
n

s
xxTP nn

0
,1

0
,1 21 λλ . (A-8) 

Each of these probabilities is the cumulative non-central t distribution function evaluated at 

n
s

xx −0 : 

 















−>
















−

−−

n
s

xxG
n

s
xxG nn

0
,1

0
,1 21 λλ . (A-9) 

Next, we add the constant 1−α  to both sides of the inequality: 

 11 0
,1

0
,1 21

−+















−>−+
















−

−− αα λλ

n
s

xxG
n

s
xxG nn . (A-10) 

Using the definition of the function ( )⋅H , we obtain the desired result. 

 ( ) ( )21 λλ HH > . (A-11) 
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Appendix B.  MATLAB Code for Probability of Non-perforation LCB 

MATLAB Release 14, Version 7, code for calculating an LCB for the probability of non-

perforation, 





 −Φ

σ
µ0x .  The user may supply his or her own data and values for alpha, x0, and 

epsilon. 
 
% Define variables % 

alpha=.05;   x0=115;   epsilon=.000001; 

 

% Declare data % 

data=[47 59 80 81 86 88 89 90 90 99 100 113 114 118]'; 

 

% Calculate summary statistics and define K % 

n=length(data);   xbar=mean(data);   sigma=std(data); 

K=sqrt(n)*(x0- xbar)/sigma; 

 

% Initialize flag and bounds on non-centrality parameter % 

flag=0;   lononcent=xbar-10*sigma;   hinoncent=xbar+10*sigma; 

 

% Execute bisection method % 

noncent=(lononcent+hinoncent)/2; 

while flag==0 

    if hinoncent-lononcent < epsilon 

        flag=1; 

    elseif nctcdf(K,n-1,noncent)+alpha-1 < 0 

        hinoncent=noncent;  noncent=(noncent+lononcent)/2; 

    else 

        lononcent=noncent;  noncent=(noncent+hinoncent)/2; 

    end 

end 

 

%Print lower confidence bound for probability of non-perforation % 

fprintf('%3.0f%% LCB for P(non-perforation) = %6.4f\n',... 

    100*(1-alpha),normcdf(noncent/sqrt(n))) 
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Appendix C.  Mathematica Code for Probability of Non-perforation LCB 

Mathematica Version 5.1 code for calculating an LCB for the probability of non-perforation, 







 −Φ

σ
µ0x .  The user may supply his or her own data and values for alpha, x0, and epsilon. 

(* Remove warning messages that do not affect results but clutter output *) 

Off[General::spell]; Off[General::spell1]; 

Off[NIntegrate::slwcon]; Off[NIntegrate::ncvb]; 

 
(* Enable use of statistical tools *) 

<<Statistics`ContinuousDistributions` 

<<Statistics`NormalDistribution` 

 
(* Clear variables for use *) 

Clear[data,n,noncent,x0,a,epsilon,lononcent,hinoncent,flag,K,ndist] 

 
(* Define variables *) 

alpha=.05; x0=115; epsilon =.000001; 

 
(* Declare data *) 

data={47,59,80,81,86,88,89,90,90,99,100,113,114,118}; 

 
(* Calculate summary statistics and define K *) 

n=Length[data];  xbar=Mean[data]//N;  sigma=StandardDeviation[data]//N; 

K=(x0-xbar)/(sigma/Sqrt[n])//N; 

 
(* Initialize flag and bounds on non-centrality parameter *) 

flag=0; lononcent=xbar-10sigma//N; hinoncent=xbar+10sigma//N; 

 
(* Execute bisection method *) 

H:=CDF[NoncentralStudentTDistribution[n-1,noncent],K]+alpha-1 

While[flag==0,noncent=Mean[{lononcent,hinoncent}]; 

      If[hinoncent-lononcent<epsilon,flag=1, 

      If[H<0,hinoncent=noncent,lononcent=noncent]]] 

 
(* Print lower confidence bound for probability of non-perforation *) 

Print[TraditionalForm[StringForm["``0% LCB for P(non-perforation) = ``", 

      100 (1-alpha),CDF[NormalDistribution[0,1],noncent/Sqrt[n]]]]] 
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Appendix D.  MATLAB Code for Probability of Non-perforation UCB 

MATLAB Release 14, Version 7, code for calculating a UCB for the probability of non-

perforation, 





 −Φ

σ
µ0x .  The user may supply his or her own data and values for alpha, x0, and 

epsilon. 
% Define variables % 

alpha=.05;   x0=115;   epsilon=.000001; 

 

% Declare data % 

data=[47 59 80 81 86 88 89 90 90 99 100 113 114 118]'; 

 

% Calculate summary statistics and define K % 

n=length(data);   xbar=mean(data);   sigma=std(data); 

K=sqrt(n)*(x0- xbar)/sigma; 

 

% Initialize flag and bounds on non-centrality parameter % 

flag=0;   lononcent=xbar-10*sigma;   hinoncent=xbar+10*sigma; 

 

% Execute bisection method % 

noncent=(lononcent+hinoncent)/2; 

while flag==0 

    if hinoncent-lononcent < epsilon 

        flag=1; 

    elseif nctcdf(K,n-1,noncent)-alpha < 0 

        hinoncent=noncent;  noncent=(noncent+lononcent)/2; 

    else 

        lononcent=noncent;  noncent=(noncent+hinoncent)/2; 

    end 

end 

 

% Print upper confidence bound for probability of non-perforation % 

fprintf('%3.0f%% UCB for P(non-perforation) = %6.4f\n',... 

    100*(1-alpha),normcdf(noncent/sqrt(n))) 
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Appendix E.  Mathematica Code for Probability of Non-perforation UCB 

Mathematica Version 5.1 code for calculating a UCB for the probability of non-perforation, 







 −Φ

σ
µ0x .  The user may supply his or her own data and values for alpha, x0, and epsilon. 

(* Remove warning messages that do not affect results but clutter output *) 

Off[General::spell]; Off[General::spell1]; 

Off[NIntegrate::slwcon]; Off[NIntegrate::ncvb]; 

 
(* Enable use of statistical tools *) 

<<Statistics`ContinuousDistributions` 

<<Statistics`NormalDistribution` 

 
(* Clear variables for use *) 

Clear[data,n,noncent,x0,a,epsilon,lononcent,hinoncent,flag,K,ndist] 

 
(* Define variables *) 

alpha=.05; x0=115; epsilon =.000001; 

 
(* Declare data *) 

data={47,59,80,81,86,88,89,90,90,99,100,113,114,118}; 

 
(* Calculate summary statistics and define K *) 

n=Length[data];  xbar=Mean[data]//N;  sigma=StandardDeviation[data]//N; 

K=(x0-xbar)/(sigma/Sqrt[n])//N; 

 
(* Initialize flag and bounds on non-centrality parameter *) 

flag=0; lononcent=xbar-10sigma//N; hinoncent=xbar+10sigma//N; 

 
(* Execute bisection method *) 

H:=CDF[NoncentralStudentTDistribution[n-1,noncent],K]-alpha 

While[flag==0,noncent=Mean[{lononcent,hinoncent}]; 

      If[hinoncent-lononcent<epsilon,flag=1, 

      If[H<0,hinoncent=noncent,lononcent=noncent]]] 

 
(* Print upper confidence bound for probability of non-perforation *) 

Print[TraditionalForm[StringForm["``0% UCB for P(non-perforation) = ``", 

      100 (1-alpha),CDF[NormalDistribution[0,1],noncent/Sqrt[n]]]]] 
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Appendix F.  MATLAB Code for Probability of Perforation Two-Sided 
Confidence Interval 

MATLAB Release 14, Version 7, code for calculating a two-sided confidence interval for the 

probability of non-perforation, 





 −Φ

σ
µ0x .  The user may supply his or her own data and values 

for alpha, x0, and epsilon. 
% Define variables % 

alpha=.05;   x0=115;   epsilon=.000001; 

 
% Declare data % 

data=[47 59 80 81 86 88 89 90 90 99 100 113 114 118]'; 

 
% Calculate summary statistics and define K % 

n=length(data);   xbar=mean(data);   sigma=std(data); 

K=sqrt(n)*(x0- xbar)/sigma; 

 
% Initialize flag and bounds on non-centrality parameter % 

flag=0;   lononcent=xbar-10*sigma;   hinoncent= xbar+10*sigma; 

 
% Execute bisection method for lower limit % 

noncent=(lononcent+hinoncent)/2; 

while flag==0 

    if hinoncent-lononcent < epsilon 

        flag=1; 

    elseif nctcdf(K,n-1,noncent)+alpha/2-1 < 0 

        hinoncent=noncent;  noncent=(noncent+lononcent)/2; 

    else 

        lononcent=noncent;  noncent=(noncent+hinoncent)/2; 

    end 

end 

 
% Print lower confidence limit for probability of non-perforation % 

fprintf('%4.0f%% CI for P(non-perforation) = (%6.4f, ',... 

    100*(1-alpha),normcdf(noncent/sqrt(n))) 

 
% Re-initialize flag and bounds on non-centrality parameter % 

flag=0;   lononcent=xbar-10*sigma;   hinoncent= xbar+10*sigma; 
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% Execute bisection method for upper limit % 

noncent=(lononcent+hinoncent)/2; 

while flag==0 

    if hinoncent-lononcent < epsilon 

        flag=1; 

    elseif nctcdf(K,n-1,noncent)-alpha/2 < 0 

        hinoncent=noncent;  noncent=(noncent+lononcent)/2; 

    else 

        lononcent=noncent;  noncent=(noncent+hinoncent)/2; 

    end 

end 

 
% Print upper confidence limit for probability of non-perforation % 

fprintf('%6.4f)\n',normcdf(noncent/sqrt(n))) 
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Appendix G.  Mathematica Code for Probability of Perforation Two-Sided 
Confidence Interval 

Mathematica Version 5.1 code for calculating a two-sided confidence interval for the probability 

of non-perforation, 





 −Φ

σ
µ0x .  The user may supply his or her own data and values for alpha, 

x0, and epsilon. 
(* Remove warning messages that do not affect results but clutter output *) 

Off[General::spell]; Off[General::spell1]; 

Off[NIntegrate::slwcon]; Off[NIntegrate::ncvb]; 

 

(* Enable use of statistical tools *) 

<<Statistics`ContinuousDistributions` 

<<Statistics`NormalDistribution` 

 

(* Clear variables for use *) 

Clear[data,n,noncent,x0,a,epsilon,lononcent,hinoncent,flag,K, 

      ndist,lowerlimit,upperlimit] 

 

(* Define variables *) 

alpha=.05; x0=115; epsilon =.000001; 

 

(* Declare data *) 

data={47,59,80,81,86,88,89,90,90,99,100,113,114,118}; 

 

(* Calculate summary statistics and define K *) 

n=Length[data];  xbar=Mean[data]//N;  sigma=StandardDeviation[data]//N; 

K=(x0-xbar)/(sigma/Sqrt[n])//N; 

 

(* Initialize flag and bounds on non-centrality parameter *) 

flag=0; lononcent=xbar-10sigma//N; hinoncent=xbar+10sigma//N; 

 

(* Execute bisection method for lower limit *) 

H:=CDF[NoncentralStudentTDistribution[n-1,noncent],K]+alpha/2-1 

While[flag==0,noncent=Mean[{lononcent,hinoncent}]; 

      If[hinoncent-lononcent<epsilon,flag=1, 
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      If[H<0,hinoncent=noncent,lononcent=noncent]]] 

lowerlimit = N[CDF[NormalDistribution[0,1],noncent/Sqrt[n]]]; 

 

(* Re-initialize flag and bounds on non-centrality parameter *) 

flag=0; lononcent=xbar-10sigma//N; hinoncent=xbar+10sigma//N; 

 

(* Execute bisection method for upper limit *) 

H:=CDF[NoncentralStudentTDistribution[n-1,noncent],K]-alpha/2 

While[flag==0,noncent=Mean[{lononcent,hinoncent}]; 

      If[hinoncent-lononcent<epsilon,flag=1, 

      If[H<0,hinoncent=noncent,lononcent=noncent]]] 

upperlimit = N[CDF[NormalDistribution[0,1],noncent/Sqrt[n]]]; 

 

(* Print confidence interval for probability of non-perforation *) 

Print[TraditionalForm[StringForm["``0% CI for P(non-perforation) = (``,``)", 

      100 (1-alpha),lowerlimit,upperlimit]]] 
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Appendix H.  MATLAB Code for Probability of Non-perforation CDF and 
Lower Confidence Band 

MATLAB Release 14, Version 7, code for plotting an estimated CDF and lower confidence 
band.  The user may supply his or her own data and values for alpha, x0, and epsilon. 
% Define variables % 

alpha=.05;   epsilon=.0001; 

 

% Declare data % 

data=[47 59 80 81 86 88 89 90 90 99 100 113 114 118]'; 

 

% Calculate summary statistics % 

n=length(data);  Xbar=mean(data);  SDev=std(data); 

 

% Initialize counter for points along the X-axis % 

i=0; 

 

% Declare armor thickness % 

for x0=Xbar-3*SDev:SDev/10:Xbar+4*SDev 

    i=i+1; x(i)=x0; 

     

    % Calculate plug-in estimate for probability of non-perforation % 

    pointest(i)=normcdf((x0-Xbar)/SDev); 

     

    % Define K % 

    K=sqrt(n)*(x0-Xbar)/SDev; 

 

    % Initialize flag and bounds on non-centrality parameter % 

    flag=0;   lononcent=-1000;   hinoncent=1000; 

 

    % Execute bisection method for lower confidence bound % 

    noncent=(lononcent+hinoncent)/2; 

    while flag==0 

        if hinoncent-lononcent < epsilon 

            flag=1; 

        elseif nctcdf(K,n-1,noncent)-1+alpha < 0 
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            hinoncent=noncent;  noncent=(noncent+lononcent)/2; 

        else 

            lononcent=noncent;  noncent=(noncent+hinoncent)/2; 

        end 

    end 

    lcb(i)=normcdf(noncent/sqrt(n)); 

end 

 

% as a function of armor thickness, plot non-perforation probability curve % 

% in blue, and lower confidence band for probability of non-perforation in % 

% red % 

plot(x,pointest,'b-',x,lcb,'r-') 

xlabel('ARMOR THICKNESS'); ylabel('P(NON-PERFORATION)') 

text(Xbar-.25*SDev,.5,'Estimated','Color','b','Rotation',69,... 

    'HorizontalAlignment','Center') 

text(Xbar+.75*SDev,.5,'LC Band','Color','r','Rotation',67,... 

    'HorizontalAlignment','Center') 
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List of Symbols Used 

Scalar Values 

n  number of observations in sample data 

ir  the ith observed value of the random variable R 

( )ir  the ith ordered, observed value of the random variable R 

s  observed sample standard deviation 

ix  the ith observed value from a data set; in this paper, the observed depth of penetration 

from the ith projectile 

0x  a specified thickness of armor 

x  observed sample mean 

pz  the value from the standard normal distribution having an area of p to its right under the 

density curve 

α  level of significance 

σ  population standard deviation for a normally distributed random variable 

θ  parameter for which a confidence interval is constructed; may actually be a function of 

one or more parameters 

µ  population mean for a normally distributed random variable 

ξ  a set of one or more nuisance parameters 

 

Random Variables 

( )R  generalized test variable; a function of random data, observed data, parameter of interest 

and perhaps other nuisance parameters 

S  sample standard deviation of depths of penetration 

T  student’s t random variable 

V  chi-square random variable 

X  depth of penetration for a randomly selected projectile 

X  sample mean depth of penetration 
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Y  a normal random variable with mean zero and variance 
n
1  

Z  a standard normal random variable, with mean zero and variance one 

 

Functions 

( )F  cumulative distribution function 

( )F̂  estimated cumulative distribution function 

( )G  student’s t cumulative distribution function 

( )Φ  standard normal cumulative distribution function 

 

Miscellaneous 

LB  lower confidence bound 

UB  upper confidence bound 

LC  lower confidence limit 

UC  upper confidence limit 

( )P  probability of the parenthesized expression 

( )P̂  estimated probability of the parenthesized expression 

Σ  summation 

^ estimate of 
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