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This map summarizes more than 300 years of South Carolina earthquake history. It is one in a series of
three similar State earthquake history maps (Tarr and Wheeler, 2006; Dart and Hansen, 2008). The current
map and the previous two for Virginia and Ohio are accessible at http://pubs.usgs.gov/of/2006/1017/
and http://pubs.usgs.gov/of/2008/1221/. All three State earthquake maps were collaborative efforts
between the U.S. Geological Survey and respective State agencies. Work on the South Carolina map
was done in collaboration with the Department of Geological Sciences, University of South Carolina.

As with the two previous maps, the history of South Carolina earthquakes was derived from letters,
journals, diaries, newspaper accounts, academic journal articles, and, beginning in the early 20th
century, instrumental recordings (seismograms). All historical (preinstrumental) earthquakes that were
large enough to be felt have been located based on felt reports. Some of these events caused damage
to buildings and their contents. The more recent widespread use of seismographs has allowed many
smaller earthquakes, previously undetected, to be recorded and accurately located. The seismicity map
(center right) shows historically located and instrumentally recorded earthquakes in and near South
Carolina.

EARTHQUAKES

Earthquakes occur as a result of slip on faults, typically many kilometers underground, and most
earthquakes occur along the boundaries of moving crustal plates. South Carolina is within the North
American plate. The nearest plate boundary is approximately 2,000 kilometers southeast of South
Carolina near Puerto Rico, where the North American and Caribbean plates join. Usually it is not
possible to determine exactly which faults cause earthquakes. Accordingly, the most direct indicators
of earthquake hazards are the earthquakes themselves, not the faults on which they occur or the motions
of crustal plates. Although South Carolina has experienced large earthquakes in the past, no known
seismogenic faults have been mapped at the ground surface within the State.

Before earthquakes were instrumentally recorded, locations were estimated, typically within a few tens
of kilometers of the actual ground-surface location (epicenter). Even with modern instrumentation,
however, earthquake locations within the Earth are only approximations, usually within several
kilometers of their actual subsurface locations (hypocenter). However, in areas where seismic networks
of closely spaced recording instruments exist, earthquakes can be more accurately located. Despite
location uncertainties, it is certain that earthquakes have occurred in most parts of South Carolina during
the last 300 years. Plotted on the large State map (center right) are earthquake epicenter locations.

An earthquake’s magnitude (M) and intensity are measures of its size and the severity of ground shaking
experienced, respectively. Although earthquake size is characterized by a single number, intensity is
expressed as a range of values based on varying levels of ground shaking over the affected (felt)
area. Typically, ground shaking will decrease from a maximum near the earthquake’s epicenter to its
lowest levels near the edge of the felt area. Intensity values are determined from the Modified Mercalli
Intensity Scale (far lower right) based on written accounts (letters, journals, and diaries) and published
records (newspapers and official reports) of the effects of ground shaking on people, buildings, and the
landscape. The Modified Mercalli Intensity (MMI) scale consists of a range of values from I, barely felt
or not felt, to XII, total destruction.

Isoseismal maps show the distribution of intensity values and the general pattern of decreasing intensity
away from an earthquake’s epicenter. [soseismal maps also illustrate how different ground conditions
can affect ground shaking resulting in intensity patterns that may be more irregular than expected. Two
isoseismal maps for South Carolina earthquakes are shown (far lower right).

An earthquake’s magnitude reflects the total energy released as seismic waves. There are several
methods to measure earthquake magnitude. The first and most frequently cited is the “Richter scale.”
The different measuring methods can give slightly different magnitude values for the same earthquake.
As aresult, differences of several tenths of a magnitude may be reported. From intensity values recorded
at the time of the earthquake or shortly after, the magnitudes of preinstrumental earthquakes can be
estimated. The earthquake location symbols on the large State map (center right) represent the best
estimates of location and magnitude for both preinstrumental and instrumental earthquakes. These data
were compiled from several earthquake catalogs.

EASTERN U.S. EARTHQUAKES

Earthquakes are less common east of the Rocky Mountains than in Pacific Coast States, such as
California. However, because of differences in crustal properties, an Eastern U. S. earthquake of the
same magnitude as a West Coast earthquake can affect a much larger area. A magnitude 4 Eastern U.S.
earthquake typically can be felt 100 km (60 mi) from where it occurred where it may cause minor
damage. A magnitude 5.5 Eastern U.S. earthquake usually can be felt 500 km (300 mi) from where it
occurred and sometimes causes damage as far away as 40 km (25 mi).

EARTHQUAKES IN SOUTH CAROLINA AND VICINITY

The largest historic earthquake in South Carolina occurred on August 31, 1886, at 9:51 p.m., local
time. Referred to as the Charleston earthquake, this seismic event had an estimated maximum intensity
(MMI) of X, with the first shock lasting 35 to 40 seconds. This initial shock was followed by a strong
aftershock 8 minutes later and 6 more shocks over the next 24 hours. Most buildings in the city were
damaged; many were totally destroyed killing an estimated 60 people. The Charleston earthquake was
felt over a 30-State region, as well as in Cuba, Bermuda, and southeastern Canada. The affected area
covered more than 5 million km? with damage being reported in Columbia, S.C., and in Augusta and
Savannah, Ga. Additional strong aftershocks occurred on October 22 and November 5, 1886. The first
of these aftershocks had an intensity VI at Charleston; the second had an intensity of VII at Summerville,
S.C. (von Hake, 1976). The Charleston earthquake of 1886 is considered to be an intraplate earthquake.
Other significant intraplate earthquakes have occurred in the Eastern and Central United States; among
these are the Cape Ann, Mass., earthquake of 1755 and the New Madrid earthquakes of 1811 and 1812
(Stover and Coffman, 1993).

Subsequent to the Charleston earthquake of 1886, South Carolina has experienced other notable
earthquakes. An intensity VI earthquake, centered on the South Carolina-Georgia border near Savannah,
Ga., was felt on January 23, 1903. A moderate-size earthquake was felt in Charleston, Augusta, and
Savannah on April 19, 1907, and an intensity VII event near Summerville occurred on June 12, 1912.
An earthquake on January 1, 1913, in Union County, S.C., had an intensity of VI-VII, and an intensity
V event in the Summerville area was felt on September 22, 1914. A strong earthquake of intensity V in
Pickens County, S.C., affected a large area including parts of North Carolina, Georgia, and Tennessee.
An intensity IV-V earthquake near Lake Murray, west of Columbia, occurred on July 26, 1945. Minor
damage was reported in the Charleston area from an intensity VI earthquake on November 19, 1952.
Other moderately strong events in the Charleston area of intensity V or less occurred on August 3,
1959, March 12, 1960, July 23, 1960, and October 23, 1967. The March 12, 1960, earthquake was
located off the South Carolina coast (von Hake, 1976).

Other notable South Carolina earthquakes occurred on October 20, 1958 (intensity V), at Anderson,
S.C.; October 26, 1959, at Chesterfield, S.C.; April 20, 1964 (intensity V) at Gaston and Jenkinsville,
S.C.; May 19, 1971 (magnitude 3.4), near Bowman and Orangeburg, S.C.; and July 13, 1971 (intensity
VI), in the western part of the State. The October 1959 and May 1971 events caused minor damage in
the epicentral areas of these earthquakes (von Hake, 1976).

Because accurate epicentral coordinates cannot be determined for historical (preinstrumental)
earthquakes, all preinstrumental earthquakes described as occurring in the Charleston-Summerville
area of South Carolina are assigned an epicentral location of lat 32°N., long —80°W., a point between
Charleston and Summerville.

SEISMIC HAZARD

Some level of seismic hazard from earthquake ground shaking exists in every part of the United States.
The severity of the ground shaking, however, can vary greatly from place to place. Regional seismic
hazard maps, like the one shown at right, illustrate this variation. The risk level shown on seismic haz-
ard maps is based on a variety of factors, such as earthquake rate of occurrence, magnitude, extent of
affected area, strength and pattern of ground shaking, and geologic setting.

Seismic hazard maps are tools for determining acceptable risk. As such, they are critical in helping
save lives and preserve property by providing information essential in the creation and updating of the
seismic design provisions of local building codes. Because most buildings and other structures in the
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South Carolina Seismic Network

In collaboration with the U.S. Coast and Geodetic Survey, the seismic first station, CSC, began operating on January 1,
1931, at the University of South Carolina (USC), Columbia. Because of increasing urban noise, this three-component log-
period station was closed in September 1973. With funding from the U.S. Nuclear Regulatory Commission (NRC), the
U.S. Geological Survey (USGS) initiated network monitoring in early 1973 with a reconnaissance field survey of the 1886
Charleston earthquake meizoseismal region. Following this survey, the first 10 South Carolina Seismic Network (SCSN)
stations were established in May 1974. In addition, complementary mini-networks were established to study reservoir in-
duced seismicity (RIS) in the vicinity of Lake Jocassee and Lake Keowee in 1975 and the Monticello Reservoir in 1977,
and seismic safety issues at the Department of Energy’s (DOE) Savannah River Site (SRS) in 1976. The Lake Keowee and
Monticello Reservoir mini-networks were eventually incorporated into the SCSN. These two lake mini-networks operated
until January 2003 and December 2006, respectively. The SRS mini-network continues to operate.

USGS operation of the SCSN provided detailed seismic data allowing for the first comprehensive earthquake studies of the
State, with particular interest in the Charleston area regional tectonic setting. In conjunction with the USGS operation of
the SCSN, USC operated the RIS mini-networks. Analysis of these data led to the identification and description of various
seismic sources within the State. SCSN’s initial recording hub at USC was supplemented in 1977 by a secondary hub at
Charleston Southern University (CSU) in Summerville. The SCSN began digitally recording incoming analog field data
in 1987. The number of SCSN stations and their configuration varied over time with a maximum of 32. Due to a lack of
NRC funding support in 1991, SCSN network operations were assumed by USC. The USGS provided operational support.

In October 1998, the USGS initiated a new phase of cooperative seismic monitoring. Recording operations of both the
Charleston Southern University and USC facilities were augmented with the installation of “Earthworm” (a PC-based,
event-triggered and short-term continuous data recording system that utilized the Internet for data sharing). This new phase,
part of the Advanced National Seismic System (ANSS) for the Central and Southeast U.S. region, allowed data from the
SCSN to be shared with networks at the Center for Earthquake Research and Information (CERI) in Memphis, Tenn., and
the USGS in Golden, Colo. It also gave USC the ability to import data from stations throughout the Southeast, thereby
enhancing SCSN’s event detection and location capabilities. Identification of quarry-blasting activity, documentation of
regional and teleseismic events, and locating and analyzing local earthquakes was part of the routine data processing. Im-
provements in this cooperative effort initiated in June 2004 the Quick Data Distribution System (QDDS), a USGS program
for distributing earthquake data over the Internet. The SCSN monitored seismicity in coordination with the Cooperative
Central and Southeast U.S. Integrated Seismic Network until September 30, 2004.

SCSN’s CSU hub was abandoned in 2005, and efforts began to move it to the Dorchester County Emergency Management
(DCEM) facility, located near CSU. This included installation of new antennas and telephone and radiometry links. In 2007
the USGS terminated support for analog field stations and began the digital recording reconfiguration of the SCSN.
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from several catalogs. To some extent, these catalogs cover overlapping time periods. An attempt
has been made to locate and remove duplicate events. In the case of event duplication, the order of
catalog preference, as listed, was generally applied:

SIGUS, Significant Earthquakes in the U.S. (Stover and Coffman, 1993), 1568-1989

EUS, Eastern U.S., 1698-1986

SEUS, Virginia Tech Seismological Observatory Southeastern U.S. Earthquake Catalog, 1735-2006
NCEER, National Center for Earthquake Engineering Research, 1627-1985

SCSN, South Carolina Seismic Network, 1987-2008

PDE, Preliminary Determination of Epicenters, 1973-2009

ANSS, Advanced National Seismic System, 1964-2009

All the catalogs used may contain mining-related and other types of non-earthquake events. Mining
events are typically of small magnitude and may not be easily differentiated from small earthquakes
(Street and others, 2002). An attempt was made to exclude non-earthquake events.
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formation Bulletin, v. 8, no. 6, p. 34-38.
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Interpretative diagram of a sand blow crater and the liquefaction process (after Obermeier and others, 1987).

Author’s Note

The information presented here was derived from existing sources and
earlier publications. Specifically, general information on earthquake oc-
curence and seismic hazard came from Tarr and Wheeler, 2006. This
downloadable report is available at hitp://pubs.usgs.gov/of/2006/1017/.
Several additional publications provided detailed information on South
Carolina earthquake history: (for example Stover and Coffman, 1993,
Crone and Wheeler, 2000, and Wheeler, 2003).

Isoseismal maps illustrate the level of ground shaking that occurred at various locations during a par-
ticular earthquake. The distributions of intensity values in South Carolina and vicinity for two earth-
quakes are shown on the isoseismal maps (right). These events are the September 1, 1886, maximum
intensity X, magnitude 6.7, Charleston earthquake and the February 3, 1972, maximum intensity V,
magnitude 4.5, earthquake.

Contemporary accounts from newspapers of earthquake effects in cities and towns over a broad
region were the sources of the intensity observations plotted on the isoseismal maps. The intensity
observations are shown as color-coded circles. Each observation was assigned a Modified Mercalli
Intensity (MMI) and the results were contoured. The mapped intensity values (integers) correspond
to the Roman numeral values in the table (above). An observation coded “F” is a location where
shaking was felt but no MMI value was assigned and “N” if source document indicated that the
event was not felt.

Contouring of the assigned intensity values, shown as circles on the maps (right), was computer
generated using an inverse distance weighted algorithm. The assigned values are from Bollinger
and Stover (1976) for the 1886 Charleston earthquake and the National Geophysical Data Center

(NGDC, http://www.ngdc.noaa.gov/seg/hazard/int_srch.shtml.) for the 1972 earthquake.
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The suggestions and illustrations included in this document are
intended to improve earthquake awareness and preparedness;
however, they do not guarantee the safety of an individual or
structure. The contributors and sponsors of this publication do not
assume liability for any injury, death, property damage, or other
effects of an earthquake.

Any use of trade, product, or firm names is for descriptive
purposes only and does not imply endorsement by the U.S.
Government.
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