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* INTRODUCTION

We derive upper and lower bounds for the probability of failure for
systems that achieve high reliability with architectures that use redundancy
and reconfiguration. The engineering assumptions are that individual
components fail independently at a low constant rate and that the system
quickly recovers from all faults. The mathematical assumption is that the
process of component failure and system recovery can be represented by a
semi-Markov model where competing events are stochastically independent. The
bounds are synthetic in the sense that déscriptions of component failure and
system recovery are obtained from different sources. The reliability model is
constructed (synthesized) under the assumption that the processes are

independent.
UPPER AND LOWER BOUNDS

Figure 1 displays a general path in a reliability model that begins at an
initial fault-free state and ends at an absorbing system-failure state. . The
global time-independence of a semi-Markov model permits the rearrangement of
states on the path for notational and computational convenience. In the first
Tine of figure 1, successful fault transitions that have rate a; compete
with fault transitions that have rate ygx. In the second line, successful
recovery transitions that have generalized density dF; , compete with other
recovery transitions dfj ,,...,dFj p; and fault occurrences ej. In
the third line, successful fault occurrences aj compete with recovery
transitions de.,,...,de’cj and other fault occurrences Bj. For

notation
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D(T) = Probability of traversing the path in figure 1 by time T

p(Fj) = Probability the transition dFj,, is successful when campeting

against other recovery transitions

é M1 - Fi’z(t)]...[l - Fi’bi(t)] dFi’l(t)

ml(Fi) = First conditional moment of dFy
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mz(Fi) = Second conditional moment of dFi \

1T ¢ ~
= ET?;T é t4 1 - Fi,z(t)]“‘[l - Fi’bi(t)1 dFi’l(t)

ml(cj) = First moment of the holding time in state cj considering only the

recovery transitions
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[1 -6 ,(t)]...001 - Gj,cj(t)] dt

mz(cj) = Second moment of the holding time in state Cj considering only

the recovery transitions
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There is a relationship between the moments of a holding time for a state and

the conditional moments of the transition functions given by

C.
mi(cj) = zéi p(Gj,z) mi(Gj,l)

where P(Gj,z) and mi(Gj,z) are defined just as the probabilities and

moments for the F's are,

Continuing to developing the notation, figure 2 displays the constant

rate part of the path in figure 1. Let

E(T)

Probability of traversing the path in figure 2 by time T.

Let V=T -r) = ces =y =5, = «vu = s where
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We assume r) +.oot My + 5, +...4 55 < T,



The proof of the assertions below uses the elementary facts that if H is

a distribution such that H(0-) = 0 then
({ [1-H(t)] dt = m,(H)

m, (H)
[ t[1-H(t)] dt = —
0

m, (H)
1-H(c) = [ dH(t) <
Cc

for ¢ > 0 (Markov's inequality)
c

Theorem With the notation and assumptions as above
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Proposition
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Proof of the proposition

Assertions (i) and (ii) follow from the inequality e-2 < 1 for a > O.



Assertions (iii) and (iv) require more work and use the equation

[of (-]
J = ] - ] and the inequalities 1-a < e=@ <1 for a > 0.
0 0 c
To prove (iii) note that the integral is bigger than or equal to

[ et - Fo o) el = Fy g () | dFy ()

- {.[1 - Fi,z(xi)]"'[1 - Fi,bi(xi)] dFi,L(xi)
i

which is bigger than or equal to

mz(Fi)
p(F'i) - e’ip(F'i) ml(Fi) - p(Fi)

T3

when the last integral is replaced by Markov's inequality.

To prove (iv) note that the integral is bigger than or equal to

aj (I) (1'(“j+ BJ).YJ)’.I - Gj,l(.Yj)J"'l.l - Gj,Cj('yj)J d.Yj



- o g'[l - Gj’l(yj)]...[l - Gj,cj(yj)] dyj.
J

The integrand in the last integral is equal to one minus the probability of

being in state Cj at time y; and by Markov's inequality is less than or

mz(Cj)
equal to —

2
Yj

Hence (iv) is bigger than or equal to

. . + B. . . .m. .
o (c.) } QJ(GJ BJ) mz(CJ) ) asz(CJ)
3 2 F

Proof of the theorem

Let q(t) be the density function for traversing the path in figure 2 by

time t.

The probability of reaching state D in figure 1 before time T is
T
D(T) = é q(t)

T-t -g;X;
é e o - Fl’z(xl)J-..[l - Fl’bl(x,)j

T-t-xl-...x =€ X
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m, 1

Working with just the limits of integration

v T « © o ©
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The theorem is proved by applying the inequalities in the proposition to the

integrals in the above inequality for D(T).

CONCLUDING REMARKS

A new method for bounding the probability of entering an absorbing
state of a semi-Markov model has been presented. The method is based on
a path analysis of the model, and reduces the calculation of an absorbing
state probability to a single algebraic computation. The bounds are typically
close and consequently represent a practical solution to the analysis of a

class of semi-Markov reliability models.



Figure 1: General Path in a Semi-Markov Model
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Figure 2: Constant Rate Part of the Path
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